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Dynamics of a Bose-Einstein condensate near a Feshbach resonance
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We discuss the response of a Bose-Einstein condensate to a change in the scattering length, which is
experimentally realized by tuning the magnetic field near a Feshbach resonance. In particular, we consider the
collapse of the condensate induced by a sudden change in the scattering length from a large positive to a small
negative value. We also consider the condensate dynamics that results from a single pulse in the magnetic field,
due to which the scattering length is rapidly increased from zero to a large value and then after some time
rapidly decreased again to its initial value. We focus primarily on the consequences of the quantum evaporation
process on the dynamics of the Bose-Einstein condensate, but also discuss the effects of atom-molecule

coherence.
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[. INTRODUCTION can be adjusted experimentally from large negative values, to

large positive ones. Moreover, at a magnetic field Bf

From single-channel scattering theory, it is well known~166.5 G the scattering length vanishes, and the gas be-
that the collisional cross section changes dramatically if thdaves effectively as an ideal Bose gas.
energy of the incoming particles is close to the energy of a With this experimental degree of freedom, it is possible to
long-lived bound state in the interaction potential. In particu-study very interesting new regimes in the many-body physics
lar, the magnitude of the-wave scattering length of an  of ultracold atomic gases. The first experimental application
attractive potential well diverges as the depth of the potentialvas the detailed study of the collapse of a condensate with
well is increased such that a new bound state enters the wadttractive interactions. In general, a collapse occurs when the
[1]. A similar behavior occurs in the case of a Feshbachattractive interactions overcome the kinetic energy of the
resonance, when the energy of the two particles in the ineondensate atoms in the trap. Since the typical interaction
coming channel is close to the energy of a bound state in anergy is proportional to the density, there is a certain maxi-
closed chann€g]2]. In the case of collisions between alkali mum number of atoms above which the condensate is un-
atoms, the coupling between the two channels is provided bgtable[10-14. In the first observations of the condensate
the hyperfine interaction. Due to the spin flips involved incollapse by Bradlegt al.[15], a condensate of doubly spin-
this interaction, the difference in energy between the boungolarized’Li atoms was used. These atoms have a magnetic-
state and the continuum, the so-called detuning, is adjustabfeeld independent scattering length afs —27a,. For the
by means of a magnetic bias field. Feshbach resonances weasgperimental trap parameters, this leads to a maximum num-
first predicted theoretically3,4], but have now also been ber of condensate atoms that was so low that nondestructive
observed experimentally, in various atomic speftes8]. As  imaging of the condensate was impossible. Moreover, ther-
a result, the experiments with magnetically trapped ultracoldnal fluctuations due to a large thermal component make the
atomic gases, where tlsewave scattering length fully deter-

mines the interaction effects, have an unprecedented higl ' ' ' '
level of control over the interatomic interactions. In this pa- 4000 | 1
per, we focus orf°Rb in thef=2m;=—2 hyperfine state,
which has a Feshbach resonance at a magnetic fieBl, of 2000 - ]
~154.9 G[9]. Near the resonance the scattering length, as ¢
function of magnetic field, is given by S
0
(B) 1 2B ) (1) e
aB)=ap 1—- =——=|.
¢ B—Bo -2000 |- .
The resonance is characterized by the wiliB~11.6 G and
the off-resonant background scattering lengthyg -4000 - .
~ —450a,, with ay the Bohr radius. In Fig. 1, the scattering L L L L
length is shown as a function of the magnetic field. Clearly, it 145 150 155 81?33) 5 170 7S
_ _ FIG. 1. The scattering length as a function of the magnetic field
*Electronic address: duine@phys.uu.nl; for 8°Rb in the statéf =2;m;= —2). The position of the resonance
URL: http://www.phys.uu.nlduine/bec is indicated by the vertical dashed line. At the horizontal dashed
TEmail address: stoof@phys.uu.nl; line, the scattering length vanishes. The dash-dotted line indicates
URL: http://www.phys.uu.nl- stoof the background scattering lengti,~ —450a,.

1050-2947/2003/68)/01360217)/$20.00 68 013602-1 ©2003 The American Physical Society



R. A. DUINE AND H. T. C. STOOF PHYSICAL REVIEW A68, 013602 (2003

initiation of the collapse a stochastic process, thus preventingondensate. Besides the quantum evaporation process, we
also a series of destructive measurements of a single-collaptfaus want to consider this physics in the case of the single-
event[16—18. A statistical analysis, has nevertheless, re-pulse experiments as well. We are able to achieve this be-
sulted in important information about the collapse processcause very recently we have derived an effective quantum
Very recently, it was even possible to overcome these probfield theory that offers a description of the Feshbach reso-
lems[19]. nance in terms of an atom-molecule Hamiltonian, that cap-

In addition to the experiment witfLi, experiments with tures all the relevant two-body physics exadi8g]. Apart
8Rb have been carried out. In particular, Robettsl. [20] from a detailed discussion of the condensate collapse, the

also studied the stability criterion for the condensate, andh@in application of this paper therefore concerns the effect
Donley et al. [21] studied the dynamics of a single-collapse Of guantum evaporation in the single-pulse experiments and
event in great detail. Both of these experiments make use ¢f€ investigation of the importance of atom-molecule coher-
the above-mentioned Feshbach resonance to achieve a wefilce in this case. With respect to the latter remark it should
defined initial condition for each destructive measurement, [P€ Nnoted that the effect of atom-molecule coherence in the
turns out that during a collapse, a significant fraction of at-case of the condensate collapse will be neglected in the fol-
oms is expelled from the condensate. Moreover, one ob!oWing, because the magnetic field is tuned to a far off-
serves a burst of hot atoms with an energy of about 150 nk€sonant value to induce the collapse.

Several mean-field analyses of the collapse, which model the " view of this, the paper is organized as follows. In Sec.
atom loss phenomenologically by a three-body recombinall: We present and discuss the theoretical description of quan-
tion rate constant, have offered some theoretical ingig (UM €evaporation. In Sec. Ill, we present the applications to
27]. However, the physical mechanism responsible for thdhe condensate collapse, and to the single-pulse experiments

explosion of atoms out of the condensate and the formatiol¥ith POsitive scattering length. We end in Sec. IV with our

of the noncondensed component s still largely ununderstoogenclusions.
at present.
A second experimental application of the Feshbach reso- II. QUANTUM EVAPORATION

nance has been implemented by Claussteal. [33]. Starting
from the noninteracting limit, the scattering length is made to  In this section, we derive the generalized Gross-Pitaevskii
jump very fast back and forth to a large and positive value €guation that includes the correction term due to the quantum
Surprisingly, in this case one also observes loss of atomevaporation of atoms out of the condensate. From this result
from the condensate, as well as a burst of hot atoms. Evelgllows a rate equation for the change in the number of at-
more Surprising is the fact that the amount of atoms expe”e@ms in the condensate. Section Il A is rather technical and
from the Bose-Einstein condensate decreases with time dufay be omitted in a first reading. To facilitate this the final
ing some intervals, excluding a theoretical explanation infate equation, which is most important for our purposes, is
terms of a loss process characterized by a rate constant. Presented in Sec. I B.

As a third application, Donlegt al. [29] have conducted
an experiment where two trapezoidal pulses in the magnetic A. Generalized Gross-Pitaevskii equation
field were applied. As a function of the time between the two . .
pulses an oscillatory behavior in the number of condensate Although the desired rate equation for the number of at-
atoms is observed, which is attributed to coherent Rabi o2MS can also be derived from the imaginary-time formalism
cillations between atoms and molecu[89—33. In this pa- by means of a Wick rotation to real time, the equation of

per, we will not consider this experiment, but instead focugmotion for the condensate wave function cannot be derived
on the first and second experimental applications. In particu'—” this manner. Therefore, we use a functional formulation of

lar, the single-pulse experiment has not received much atteri?€ Schwinger-Keldysh nonequilibrium thed6,36 devel-
tion theoretically, even though an understanding of this exPed in Refs{37-39, from which the equation of motion
periment seems an essential first step in the theoreticd" the condensate wave function follows directly as the
treatment of the recent two-pulse experiment. Therefore, thgauation for the “classical” part of the fluctuating order-

discussion of this most recent experiment will be postponedarameter field. , o
to a future publication. Within this formalism, the Wigner probability distribution

In a previous paper, we have considered the loss of atorff the ordgr parameter is written as a fungtional integra_\l over
by means of elastic two-body collisions, in the situationcomplex fieldsy™ (x,t) andy(x,t). These fields are defined
where the condensate collapg@d]. However, the mecha- ©On the Keldysh contoug', which runs fromt, to t and then
nism put forward in this paper is much more general. InPack tot,. The probability distribution is given by
particular, the mechanism should also be relevant for the S = 6(X) i
above-mentioned single-pulse experiments. The main goal ofp[ g* ¢:t]= f d[ ¢* 1d[ ¢/] exp[%S[zﬂ*,z//]],
this paper is to present the theory behind it in great detail. P* (x,1)=* (x)

Since the mechanism is able to describe loss from a conden- (2
sate at zero temperature, we will hereafter refer to it as quan-

tum evaporation. The two-pulse experiments of Dordegl. where we absorbed the appropriate initial condition
[29] have made it clear that atom-molecule coherence caR[ ¢*,;ty] into the measure of the functional integfaB].
have an important effect on the dynamics of a Bose-EinsteiThe action in the exponent of the integrand is given by
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9 h2v2 ever, the terms of third and fourth order, which is known as
S[z,b*,tjx]zf ldt’f dx’ ¢* (x',t") ih—+ om the Bogoliubov approximation. This approximatio_n is v_aIid_
¢ ot for the zero-temperature applications under consideration in

this paper. Moreover, the terms of higher order in the fluc-
W(x ) tuations describe the interactions among the ejected atoms
o and are expected to be of little importance in determining the

T2Bt/)
Vo) T )

ejection rate for the atoms expelled from the condensate.

®) We write the quadratic actio8'[ ¢ ,¢o,¢'*,4'] as
whereV®{(x) is the external trapping potential. The interac- STt vk
tion is determined by the two-body (transitior) matrix el- [0 tho. 9" 4]
ement T28(t) =4 ra(t)A%/m, wherea(t)=a((B(t)) is the
interatomics-wave scattering length, amu is the mass of =f tdt’f dx’f tdt”J dx"¢'* (x",t")
C C

one atom. Note that we explicitly allowed the scattering
length to depend on time. This is experimentally realized by XAGTHX Xt (X,1), (6)
tuning the magnetic field near the Feshbach resonance.

To arrive at an effective action for the condensate wavevhere we introduced the Green’s functi@(x,t,x’,t") for
function, we explicitly separate out the condensate part fronthe fluctuations by means of
the field #(x,t). Therefore, we write /(X,t)= o(X,t)
+ ¢’ (x,t), and substitute this into the action in E®). In
this separationy(x,t) describes the condensed part of the
gas, whereag’ (x,t) describes the fluctuations. The precise
distinction between the condensate and the noncondensed
part is discussed in detail in Sec. lll. Physically, the idea isI—Iere thes function in the time variables is defined on the
that zpol(x,t) describes the Bose-Eipstein co_ndensa_te and itﬁeld),/sh contour, by means gf.«dt’ 5(t,t')=1. The part of
collective modes, whereag’(x,t) is associated with the the action that describes the interactions between the con-

modes no'; occupied by the conde'nsate. To define these.t nsed and noncondensed parts of the system is, in first in-
parts consistently, we have to require that they are essential ance, given by

orthogonal, i.e.,
Sint[wg !lv["Ovl)[,,* ’ l//]

—V(x) — 2T2B(1)| ¢ho(x,1)|? | G(X,1,X",1")

2 2m
=hS(x—x")(t,t'). (7)

f dX[ 5 (X D¢ (X0 + 4" (X1 ho(x,1)]=0.  (4)

h2v2
=f dt’de’[%‘(x’,t’) ih—+
This condition ensures that the Jacobian of the transforma- ct at’ 2m
tion of integration variables in the functional integral in Eq.
.(2) |§ equal to 1. In theT operator fqrmahsm, th|As,$ond|t|on S VX ) = T28(t) [ gro(X ) |2 [0 (X' 1)
implies that the Bose field operatogs (x,t) and ¢ "(x,t)
associated with the fluctuations, obey the usual Bose com- 2p2
mutation relations in the Fock space built upon the states TN P vext o
orthogonal toy(X,t). YY) Ihat' * 2m V)
After this substitution, the functional integral becomes
i =Tt | o(x' )2 %(x’,t’)]. )

P[¢*,¢;t]=f d[‘/’é]d[‘lfo]exF’[gSW/g,l//o]]

i It is important to note that this part of the action does not
X J d[lp’*]d[w’]exp{%sim[ Y5 . o,¢'*,¢']  vanish because the condensate wave function, as we see in a
moment, does not obey the usual Gross-Pitaevskii equation
i once we include the quantum evaporation process. Further-
+ %S’[zp’g ,¢0,¢’*,¢']J. (5)  more, the fieldy’ (x,t) describes the high-energy part of the
system, and thus has an expansion in terms of the high-
Here, we definé'[ % , o, 4'* ,4' ] such that it contains the energy trap states. As a result, we are allowed to neglect the

terms up to quadratic order in the fluctuations. We do noﬁerms proportional to the single-particle Hamiltonian. The
retain the terms proportional toy()? and (#'*)2, since erms with the time derivative vanish because of the orthogo-

these so-called anomalous terms are only needed to descriB@“ty condition in Eq.(4). The action in Eq(8), therefore,
the collective motion of the condensate. Their effect is, there[educes to
fore, already included in the actid 75 , o] for the part of
the field that describes the condensate. In principle,Spd &5 .%o, ¢'* ¢’ 1= —f tdt’f dx'[I* (X", t") ' (X' ,1)
Sl 8 o, ¥’ * ,¢'] contains terms which are either of first, ¢

third, or fourth order in the fluctuations. We neglect, how- +y' (X t)I(x )], 9
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where we introduced the “current density” damental point of view, the latter field together with an ap-
- 5 propriate fluctuation-dissipation theorem ensures that in
I, =T(t) [¢ho(X, D) “o(X, ). (100 equilibrium the occupation numbers of the Bose-Einstein

condensate and its collective modes are given by the Bose

The.fun.ctional integral over the fluctuations in Eﬁ). is a . distribution function39]. When substituting this transforma-
Gau55|an. mtegral and can be easily performed. This defingg) ., into the effective action in Eq12), we should, in prin-
the effective action for the condensate on the Keldysh CONginle, only keep terms up to quadratic order in the fluctua-

tour by means of tions, to avoid a double counting of the interactions that we
i have already taken into account. However, to read off the
p[¢*,¢;t]=f d[l/,g]d[%]exp[%swg ,,/,O]] generalized Gross-Pitaevskii equation, including the correc-
tion terms associated with the quantum evaporation process,
i it suffices to consider only the linear terms in the fluctua-
xf d[z//’*]d[w’]exp{%sim[ WS o, ' * '] tions. This can be understood from the fact that with this
approximation a functional integration over the fluctuations
i leads to a constraint fap(x,t), which is precisely the clas-
+ %S’[ng ,wo,tp’*,w’]] sical equation of motion that we are interested in. With the
transformation in Eq(15), we thus project the effective ac-
i tion on the real-time axis and read off the equations of mo-
EJ d[%]d[lﬁo]exp[gseﬁ[lﬂg 1%]}, (11)  tion for ¢(x,t) and ¢* (x,t) by putting the coefficient of the
terms linear iné* (x,t) and&(x,t) equal to zero, respectively.

and results in After straightforward but somewhat tedious algebra, this re-
sults in
1
Sul v pol= S5 el -3 | av [ ax [ av [ ae sy | H2V2
effl ¥0 0 0 0 h ot ct i% ¢((9t ) | _ o +V9Xt(X)+TZB(t)|¢(X,t)|2 d)(X,t)
XJ* (X' t)G(X, "X ) I(X" 7). (12
TzB(t) * ’ 1 12B(+1
Because the Green'’s function in this effective action is equal + A fﬁxdt J dx"T(t')
to
i i i X[2¢* (x,1)GI(x,t:x",t") p(X',t")
|G X,,t,;X”,t” E-I—r t T ! X/,t/ 1t X”,t” —0,
( ) {P( O) ct(lﬁ ( )lﬂ ( ))}J 0 +d)(x,t)G(*)(X’,t’;X,t)¢*(X’,t')]
(13
where T« denotes time ordering along the Keldysh contour ><|¢>(x’,t’)|2] B(x,t) (16)
and;)(to) represents the initial density matrix of the gas, this
Green'’s function can be decomposed into its analytic pieces ) )
by means of with the complex conjugate expression it (x,t). We de-
fined the retarded and the advanced Green'’s functions in the
G(x,t;x",t")=0(1,t") G~ (x,t;x',t") usual way by
+O(t, )G (x5 ,t'), (14 GENx,t:x 1) =% 0(=(t—t"))[G”(x,t;x",t)
with 6(t,t") the Heaviside function on the Keldysh contour. —G=(x,t;x,t)]. a7

The Green’s function&~ andG= thus correspond to aver-
ages of a fixed order of creation and annihilation operatorsNote that the Heaviside function in this definition is precisely
Note that these Green’s functions essentially describe thsuch that the equation of motion f@r(x,t) is causal.
propagation of a noncondensed atom in the presence of the The time-ordered Feynman diagrams corresponding to the
mean-field interaction with the condensate. two terms in the generalized Gross-Pitaevskii equation de-
To finally derive the generalized Gross-Pitaevskii equa-scribing the quantum evaporation process are given in Figs.
tion for the condensate wave function, we want to separat@(a) and 2b), respectively. In these diagrams, a condensate
out the classical part of the fiel(x,t). This is achieved by atom is denoted by a dashed line. An ingoing dashed line

means of the transformation thus corresponds to a factgi(x,t), and an outgoing dashed
line to a factorg™* (x,t). The advanced and retarded propa-

§(x,t) gators of the ejected atoms are denoted by solid lines. A

Po(xt)=(x,) = 2 (19 retarded propagator is denoted by an arrow pointing from

(x',t") to (x,t), and corresponds to the propagation of a
where the uppeflower) sign corresponds to the forward particle. An advanced propagator is denoted by a reversed
(backward branch of the Keldysh contour. Heré(x,t) de-  arrow, and can be interpreted as the propagation of a “hole.”
notes the condensate wave function, whereas the §{eid) Note that the first term in Eq416) has an additional factor of
describes its quantum and thermal fluctuations. From a fun2 with respect to the second term. This is understood from
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(a) . P (b) P external trapping potential, the rate equation for the number

of atoms in the condensate acquires a familiar form. To see
this, we note that in this limit the retarded propagator is
given by

GI(x, ;X 1) =—if(t—t") >, e (/Melt=t)
n#0

. X xn(X) X% (x'), (19

because the single-particle stajggx) and energieg, are,

FIG. 2. These time-ordered Feynmans diagrams correspond 6 this limit, by definition not affected much by the interac-
terms associated with quantum evaporation in the equation of mdions. The sum in this expression is over all the trap states,

tion for the condensate wave function. except for the condensate mode, i.e., the one-particle ground
state.

the fact that the corresponding diagrgfig. 2(a)] has two The condensate wave function is given by

outgoing lines at X,t) and therefore contributes twice, L

whereas the diagram in Fig(l8 has only one outgoing line p(x,t)=e" UMHIN(t) xo(x), (20

at those coordinates. . .
where u=¢, is the ground-state energy, ain>1 is the

number of atoms in the condensate. Using these expressions,
the rate equation for the number of atoms in Ef) can be

In the preceding section, we have generalized the Grosgewritten as
Pitaevskii equation to include the quantum evaporation pro- NG
cess. With this equation, we derive a rate equation for the dN(t) _ (t)
number of atoms in the condensate. It is given by dt

B. Rate equation

m 1Oy |2
7 2 den—el(nlVI0)?,
dN(t) (21
c 2
dt dtf dx| (x,1)] which is precisely Fermi's golden rule for the rate to scatter
out of the initial statg0), found from second-order pertur-
bation theory. The sum is over all final states of the form

2 ©
— ’ ’ 2B 2
_—ﬁzf dXJ,wdt de IM[T25(t)| p(X,1)] )
><¢*(X,t)G(+)(X,t;X/,t')TZB(t') <X1X2|ﬂ>E \/E[XO(Xl)Xn(XZ)+Xn(X1)X0(X2)]| (22

X[p(x' 1) [2p(x',t)]. (18

with energy e,+ . Since we are dealing with identical
bosons, these states are symmetric. This final state thus rep-
resents a condensate atom and an ejected atom, whereas the
itial state with energy 2 is given by

The retarded propagat@(*)(x,t;x’,t") describes the non-

condensed atoms. Note that in both, this rate equation aq

the equation of motion in Eq16) we have taken the limit

to— —c0 to eliminate initial transient effects. Furthermore, {(X1X2| 0Y= x0(X1) x0(X2), (23

we have made use of the fact the&(")(x,t;x’,t")]*

=GI)(x',t":x,t), which follows from the definition of this and therefore represents two condensate atoms. The addi-

Green’s function. tional factorN? is a result of the Bose statistics of the atoms.
The non-Markovian rate equation in E(L8) describes There is a factoN(N.— 1)/2~N§/2 for the number of con-

the evolution of the number of condensate atoms due to gensate atom pairs and an additional facterN.~N, for

change in the scattering length or the condensate wave funghe condensate atom that is Bose stimulated back into the

tion. Physically, the coupling between the condensed andondensate. Finally, the potential is given by
noncondensed parts of the system allows the condensate to

eject atoms. Since we have neglected the interactions among V=T2S(X;—X,). (24)
the ejected atoms, this rate equation is applicable only for
short times and does not describe the rethermalization of the We see that, in the weak-coupling limit, the energy-
ejected atoms. Because of this approximation, the ejectiononserving § function can never be obeyed, and thus
process is coherent, and atoms can come back into the codN./dt=0, as expected in this limit. Another important ob-
densate on short-time scales. To get more physical insigtgervation is that energy conservation also forbids the ejection
into the quantum evaporation process, we discuss the weakf atoms out of a static condensate with repulsive interac-
coupling limit, where it just corresponds to elastic conden-tions, even in the strong-coupling limit. This is because of
sate collisions. the fact that the energy of a condensate atom, i.e., the chemi-
In the weak-coupling limit, where the mean-field interac- cal potential, is positive in this case, and that the energy of
tion is small compared to the energy-level splitting of thethe excited states is always larger than the chemical poten-
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tial. This leads to the important conclusion that in order toThe most important theoretical task is therefore to identify
eject atoms out of the condensate by means of the quantuthe physical mechanism responsible for this ejection. We
evaporation process, there has to be a strong time depehave recently argued that the quantum evaporation process
dence of either the condensate wave function, or of the scaprovides an explanation for these experimer®4]. More-
tering length. In the following section, we discuss two ex-over, we will explicitly show here that the decay solely by

perimentally relevant examples where this is the case. means of three-body recombination does not explain the ex-
perimental results for the type-Il collapse.
IIl. APPLICATIONS Interestingly, the metastable condensate that is the result

) ) _ ) of a type-Il collapse is precisely the starting point for a type-I
_ In this section we apply the theory, described in the precgjiapse, making this last collapse a much more violent phe-
vious section, to two different experimental situations. In thengmenon. We restrict ourselves here to the description of the
first part, we consider the case where the Feshbach resonang@e-|| collapse, because a proper treatment of the type-I
is used to investigate the collapse of a condengB®1]. In  cqjjapse requires a full numerical solution of the generalized
the second part, we apply our theory to the situation whergsyoss-pitaevskii equation that includes the nonlocal correc-
the scattering length is chan_g_ed very rapidly back .and fortRion term due to guantum evaporation. This is beyond the
from zero to a large and positive vall@3]. We also discuss scope of the present paper, and we use a simpler variational
the importance of atom-molecule coherence in this case. approach here that we believe is appropriate for a type-II-

collapse event.
A. Condensate collapse

1. Gaussian approximation and semiclassical

The use of a Feshbach resonance has made it possible to
retarded propagator

explore the physics of the collapse in two different regimes.

First, we can have a collapse in which the dynamics of the In principle, we must now numerically solve the general-

condensate is mostly determined by the mean-field interadzed Gross-Pitaevskii equation in Ed.6) that includes non-

tions. This is the case in the experiments withi [15—  local terms. However, in order to gain physical insight, we

17,19, which has a fixed negative scattering length. In thesavill make several approximations to reduce the solution of

experiments, there is always a large thermal componerthis equation to a numerically more tractable problem. First

which feeds the condensate. Therefore, we call such a cobf all, we use a Gaussian variational approach to the conden-

lapse a type-l collapse, in analogy with a type-l supernovasate wave functiof52]. More precisely, we assume the con-

which is believed to be the result of an accreting white dwarfdensate wave function to be of the form

that explodes when the accumulated mass becomes large

[51], similar to the Li condensate that grows from the ther- 1 14

mal cloud and then collapses. The more recent experiments — N1 et

by Donleyet al. [21] also deal with a type-I collapse, since P(x0=VNe()er™s H (wq?(t))

one starts a collapse from the noninteracting limit, where the .

density is relatively high compared to Bose-Einstein conden- sz _mgq(t) dg(t)

sates with a repulsive self-interaction. - ZT( i T) (25
Complementary to this regime we can have a second type aj(t)

of collapse where the dynamics is mostly determined by the

external trapping potential. This regime was considered exmn the limit of a small number of condensate atohgt),

perimentally by Cornistet al. [9]. Using the Feshbach reso- this ansatz becomes an exact solution of the Gross-Pitaevskii

nance of ®Rb at B;~154.9 G, one first makes a large, equation for a harmonic external trapping potential, and

stable, and essentially pure condensate, i.e., there is no vigherefore a good description of the condensate after the col-

ible thermal cloud present, with repulsive interactions. Then|apse. It is, however, also known that a Gaussian ansatz gives

one suddenly switches the interactions from repulsive tgood results on the frequencies of the collective modes, even

slightly attractive, and watches the subsequent collapse. Bén the Thomas-Fermi regimiet1]. Moreover, since we con-

cause the collapse in this case starts at low density due to thgder only the type-Il collapse and therefore by definition

initially large and repulsive interatomic interactions and theassume that the trapping potential is more important than the

magnitude of the final negative scattering length is muchmean-field interactions, we expect the Gaussian ansatz to

smaller than the initial positive one, its dynamics is mostlygive physically reasonable results at all times.

determined by the trapping potential. We call such a collapse |n the case of the ordinary Gross-Pitaevskii equation the

a type-ll collapse, in analogy with a type-Il supernova. Suchvariational parameters obey Newton's equation of motion
a supernova is the fate of a massive star analogous to the2]

large condensate with repulsive interactions.
In the experiments on the type-Il collapse, it was found

that after such a collapse the number of atoms in the conden- dqu'(I) _ .
sate is of the same order as the maximum number of atoms m a2 a—%V(q(t),NC(t)), (26)

allowed to have a metastable conden$dfd. This suggests
that during such a collapse, enough atoms are ejected from
the condensate, so that the condensate becomes metastabli#h a potential given by
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2 a(t)h2N of the quantum evaporation process to the mean-field energy,
— < it is up to an irrelevant constant given by8]

2 1t
( 7) 00(t):_%[f_wd7

where the frequencies; are the frequencies of the harmonic

external trapping potential in the three spatial directions. We 1 )

have recently extended the above variational calculus also to + quj(t)qj(t)] : (30)

the case of a nonlinear Scliinger equation including an J

imaginary term due to the presence of a thermal cloud, anf{ote that in equilibrium, this results in a phase faeof“!/"

found that the equation of motion for the variational param-for the condensate wave function, with= aV(q,N.)/oN,.

eters, in principle, contains a damping teffr8]. However,  This is clearly the correct expression for the chemical poten-

we are interested in the zero-temperature situation, in whickjy.

this damping term s negligible. This means that for a de- \wjth the above approximations, we have reduced the dif-

scription of the collapse, we only have to couple EZf) 0 ficyit problem of solving a partial differential equation with a

the rate equation for the number of atoms in Ecf). nonlocal correction term to the problem of solving the ordi-
To determine this rate equation in detail, we need an expary differential equations for the variational parameters in

pression for the propagator of the ejected atoms. Antmpatmgq. (26) coupled to the rate equation for the change in the

that the energy of the ejected atoms will be much higher th_a"r‘number of atoms in Eq18). This rate equation is now only

the energy of a condensate atom, we take for the one-particlgyniocal in time, since all the integrals can be done analyti-

Green's function of the ejected atoms the semiclassical asa|ly for the Gaussian wave function and the semiclassical

proximation retarded propagator we are considering here. In the following

section, we will present our results obtained by numerically
dk solving these equations.

(2m)°

V(q;Nc):z

2 2.2
(ﬁ_+m
]

2mq’ 2

™ MGy,

aV(q(7),Ny(7)) 1 .
TN, 2 amae

G(+)(x,t;x’,t’)=—i0(t—t’)f
2. Results

x g~ (MMekRDA-)glk- (=X - (28) We have performed numerical simulations for the experi-

mental conditions of Cornisket al. [9,40] with °Rb. The
where we introduced the center-of-mass coordirte(X  frequencies of the external trapping potential are equal to
+x")/2, and usedr = (t+t')/2 for notational convenience. ¢, /27=17.4 Hz andw,/27=6.8 Hz, in the radial and axial
The energy of the ejected atoms is, in this approximationdirections, respectively. One starts with a condensate consist-
given by ing of N,(0)~4000 atoms and a scattering lengthagB;)
122 I=_2_5(|)|an,hwhereBi is t_hgblma%netic Iﬁelld a(;[ the initial timer.]
_ ex 2B 2 nitially, there is no visible thermal cloud present, so the
e(k,R,T)= 2m FVER)+2THMIS(R TP+ €1 system is approximately at zero temperature? One then ramps
(290  the magnetic field linearly in a tim&t from its initial value
B; to the final valueB;, chosen such thai(B;) = —60a,.
This energy is measured froey, which is the first excited The ramp time is taken equal tbt=0.5 ms.
level in the trap. This energy thus determines the cutoff be- To investigate the importance of three-body recombina-
tween the condensate and the ejected atoms. Although thion during the collapse, we have included it in our simula-
cutoff is important to make the distinction between conden+ions in addition to the quantum evaporation process. This
sate and noncondensate atoms, we find that our numericamounts to including a term
results are not very sensitive to its precise value.
Since the most important contribution to the rate equation ih K 2
comes from the center of the trap, we expect that we can, to ) §| D[ B(x,)
a good approximation, take for the energy of an ejected atom
the valuee(k,0,T)=€(k,T). We use this value for the en- on the right-hand side of Eq416), from which the contribu-
ergy of an ejected atom from now on. This approximation istion to the rate equation for the number of atoms can be
very convenient, since we can now perform the spatial inteeasily found. Although there are several predictions for the
grals in the rate equation, as well as the integral over th@ormal-component rate constadfj [42—415, its behavior as
momenta in the expression for the retarded propagator ana-function of the magnetic field is unknown near the Fesh-
lytically. The final result is given in Appendix A. bach resonance and precise experimental data are unavail-
In the ansatz in E¢25), we have included a global phase able[47]. Following Saito and Uedf26], we takeK;=1.2
6,(t). This is important, since we have already seen in thex 10” 2" cm®/s. With this value, these authors have been able
preceding section that this global phase determines the etw explain some of the results of the experiment on the type-I
ergy of a condensate atom in equilibrium. We can determineollapse by Donleyet al. [21]. Since the final value of the
this global phase by insertion of the ansatz in the Grossmagnetic field is in the same range for both experiments, we
Pitaevskii equation including the correction term in ELp), expect the three-body recombination rate constant to be of
and separating out the real part. Neglecting the contributiothe same order of magnitude.
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FIG. 4. Number of atoms in the condensate as a function of time
during a type-Il collapse. The solid line corresponds to a simulation
where both quantum evaporation and three-body recombination are
included. The dashed line corresponds to a simulation including
only three-body recombination. The experimental points are also
shown and taken from Reff40].

increases with time during the collapse. In principle, this can
occur, because the quantum evaporation process is coherent,
and can thus describe multimode Rabi oscillations between
the condensate and the noncondensed part of the system, as
we shall see in much more detail in the following section.
. . . . The simulation that includes the quantum evaporation
%5 0 10 20 30 40 50 process shows quantitative agreement with the experimental
time (ms) results[40], which are also shown in Figs. 3 and 4. The
disagreement for small values of the widths of the conden-
FIG. 3. (a) Radial and(b) axial width of the condensate as a sate is a result of the fact that the experimental resolution for
function of time during a type-Il collapse. At the origin of the time the condensate size is aboupn [40].
axis, the scattering length vanishes as it is changed from large and \yre have also performed a simulation that includes only
postive to negative. The soliq line corresponds to a S,iml{latior{hree-body recombination and no quantum evaporation. The
where both quantum evaporation and three-body recombination ae,q i for this simulation are shown in Figs. 3 and 4 by the
mlu?ﬁd' Ttr;eddashed tl)l_ne porre;‘,ﬁonds to a snmlulatl_on 'ncmd'ln%ashed lines. The fact that the minima in the widths of the
y three-body recombination. The experimental points are alsq,,jensate in Fig. 3 are lower than the results including
shown and taken from Reff40]. S :
guantum evaporation indicates that the condensate density
has to be relatively high for the recombination of atoms to
In Figs. 3 and 4, we present the results of our simulationsoccur. Once such a high density is reached, the ejection of
The widths of the condensate in the radial and axial direcatoms occurs very fast, resulting in a staircaselike pattern for
tions, i.e., the variational parametepsandq,, are shown as the number of atoms as a function of time, which is clearly
a function of time in Figs. @ and 3b), respectively. The not visible in the experimental data. & 38 ms the conden-
number of atoms as a function of time is displayed in Fig. 4.sate decays so fast that the radial direction becomes stable
The origin of the time axis is chosen such that the scatteringgain, resulting in a large increase of the radial width.
length is equal to zero &t=0. The solid line corresponds to Finally, we make some remarks about the properties of
a simulation that includes both the quantum evaporation prothe ejected atoms. In Rdf34], we have calculated the dis-
cess and three-body recombination. The condensate cakibution of the kinetic energy of the ejected atoms, as well as
lapses first in the radial direction in a timg(2w,)~14 ms  the angular distribution. We have also performed preliminary
and during the last part of this radial collapse the condensatealculations of the average kinetic energy emitted in the ra-
ejects a large fraction of its atoms, by means of the quanturdial and axial directions, and have found that the energy
evaporation process. In our simulations, we find that thedistribution of the ejected atoms is anisotropic. Dordel.
three-body recombination hardly contributes. After a time[21] have measured the angular and radial temperatures of
7/(2w,)~36 ms the axial width of the condensate reacheshe emitted atoms and have indeed found an anisotropic dis-
its minimum, resulting again in a slight increase of the ejec-ribution of the energies. However, our calculations are done
tion rate. Note that these time scales are expected, since tifer the type-Il collapse and our approximations are especially
dynamics is determined by the external trapping potentialsuited for this case, whereas these experiments deal with a
More remarkably, for a very short time the number of atomstype-I collapse. Therefore, we do not directly compare our

axial condensate width (um)
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results with the available experimental data of Dordal. 2500 T . A -
[21]. Moreover, to improve the experimental resolution limit, rise hold fise
one expands the gas at the end of each destructive measur
ment by an increase in the scattering length. Therefore, the
resulting mean-field energy and rethermalization effects may
play an important role in determining the energy of the 1500
ejected atoms, which is not included in our calculations of:\%> 12‘2‘
the energy distribution function in Ref34]. © @ 160
In conclusion, we have shown in this section that the [ D sg
simulations of the type-ll collapse that include quantum 156
evaporation show quantitative agreement with the experi-  s00 | 154
mental results. The most important feature of these experi- 0 10 20 30 40 50 60 70
mental results is the fact that the condensate starts to ejec g time (us)
atoms almost immediately after the initiation of the collapse. 0 o 20 30 a0 0 o 70
We have also shown that solely three-body recombination time (us)
does not account for this rapid onset of the loss of atoms. At
this point it is important to notice that this conclusion also  FIG. 5. The scattering length as a function of time in the experi-
holds if we numerically solve the generalized Gross-ments by Clausseet al.[33], and the corresponding magnetic field
Pitaevskii equation, without approximations. The reason fofinsed. One increases the scattering length in a tipgby means
this is that the Gaussian ansatz used here is certainly appr8t @ linear ramp in the magnetic field, and holds the magnetic field
priate for the first part of the collapse, when the dynamics 40" @ fimetnaq, before ramping back. The position of the Feshbach
not yet very violent. This is borne out by numerical simula-€sonance is indicated by the dashed line.
tions of the Gross-Pitaevskii equation, which have also
shown that when the highest densities are reached duringrate constant, such as three-body recombination. Also note
type-I collapse, high-density “spikes” can form on the pro- that the time scales of the pulse are very small compared to
file of the wave functior{23—27. These spikes are not in- the time scales set by the inverse frequencies of the external
cluded in our ansatz for the condensate wave function anttapping potential. This means that the density profile of the
therefore our approximations might be less appropriate focondensate hardly changes its shape during the pulse, since
the highest densities reached during the collapse. Howevethe collective modes which alter the density profile have fre-
our results suggest that such high-density spikes may wetjuencies of the same order of magnitude.
never occur if one includes the effects of the quantum evapo-
ration process. 1. Retarded propagator

The single-pulse experiments start in the noninteracting
limit where the density profile of the condensate has the
shape of a Gaussian, and the pulse in the magnetic field is so

Apart from the negative scattering length regime, the ex{ast that the condensate wave function hardly changes due to
perimental control over the interatomic interactions has alsehe interactions. This makes it convenient to expand the
made it possible to explore the regime where the interactiopropagator for the ejected atoms in the excited harmonic-
is large and positive. To this end, Claussaral. [33] have  oscillator eigenstates, since the condensate part is then left
conducted an experiment where the magnetic field undergoest most easily. The fact that the condensate density profile
a trapezoidal pulse in time, resulting in a quick jump in thealmost remains the shape of the ground state of the trap
scattering length towards a large positive value. In detail, ongnakes this problem easier to deal with theoretically and
ramps the magnetic field linearly in a timg, from its value  makes it therefore worthwhile to determine the propagator
in the noninteracting limit B~166.5 G), to a value where for the ejected atoms as accurate as possible. With the type-
the scattering is of the order of a few thousand Bohr radiill-collapse problem of the preceding section, this objective is
The magnetic field is kept at this value for a titpgg before  much more difficult, since then the condensate wave function
ramping back to the initial value again within the satpg. changes its shape considerably during the collapse. This
The scattering length as a function of time for a typical pulsemeans that at each time a different number of trap states has
is shown in Fig. 5 and the inset shows the correspondingo be included in the wave function, making the cutoff be-
magnetic field. The rise timg;se and the hold time,,q are  tween condensate and noncondensed atoms strongly time de-
typically of the order of 10—10Q@s. pendent. Therefore, we have applied several approximations

In this experiment, one observes particle loss from then that case. Even though the density profile of the conden-
condensate as a function of both the rise time and the holdate does not change much, the phase of the condensate wave
time, accompanied by a “burst” of atoms from the conden-function does change very fast in the single-pulse case.
sate. The temperature of the burst atoms is of the same ord&herefore we use for the phase of condensate wave function
as in the case of the experiments on the collapse, i.e., abotite phase of the Gaussian ansatz given in(2g). Since this
150 nK. Most importantly, the amount of atoms lost from thewave function also describes the low-lying collective modes
condensate decreases with increasjpggover some interval, of the condensate, we have to exclude these from the propa-
which can never be the case for atom loss characterized bygator of the noncondensed atoms.

2000

166

B. Multimode Rabi oscillations
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Denoting the eigenstates of the single-particle Hamil-
tonian again byy,(x) and the corresponding eigenvalues by
€,, we have for the propagator of the ejected atoms

N
o)
a

-

154
©
a

o
©

GO tx ) =—i6(t—t") > "ay n(t,t)
n,n’

! ' 0.85
X Xn(X)X:,(X’ e~ (/m)(ent—ent’)

4
[«

(31

n of atoms in the condensate

The prime denotes summation over all the excited trap state,8 °75
not contained in the condensate wave function. The equatimg

0.7 1 1 1 1

of motion for the expansion coefficients, /(t,t') can be * 0 50 100 150 200 250
found by inserting Eq(31) into the equation of motion for time (us)

the Green'’s function given in Eq7). However, it is easier to _ _ _
realize that the Green’s function is in EG.3) shown to be FIG. 6. The fraction of atoms in the condensate as a function of

related to the expectation value of the product of two Heisentime for a calculation that includes only quantum evaporation. The
berg annihilation and creation operators for the noncon1nitia| number of condensate atomsNg(0)= 16 500. The rise time

densed atoms. The equation of motion for the annihilatiorjffise: 12.5ps and the hold time igyqq=200 us. The scattering
operator of interest is given by ength is equal ta= 2000, during hold.

cally and the result is given in Appendix. B. The advantage
_ %2v?2 . 5|~ of the above approach is that we do not have to solve the
ih—t+ = — V() —2T?8(1)| (X, 1)] }l/f’(x,t)zo, equation for the derivative od,, ,(t,t') with respect tot’
(32) separately.
Putting the results together, we find for the coefficients in
with the Hermitian conjugate expression for the creation opihe expansion of the Green'’s function the expression
erator. We solve this equation by expanding the annihilation
operator as

ann(tt)=22" cRtiep(t’). (37)

P(x)= %’d’m(xlt)'//r,n' (33 With this Green’s function we have performed simulations of
the single-pulse experiments by Claussetal. [33], of

where the Schiinger operator)/, annihilates an atom in which the results are presented in the following section.

the harmonic-oscillator state with quantum number We

then expand also the functions,,(x,t) in trap states by
means of We perform our calculations for the parameters of the

experiment by Claussest al.[33]. In particular, the frequen-
cies of the external trapping potential are the same as in the
¢m(x,t):2’Cnm(t)ef(i/h)ent)(n(x), (34) preceding section. Figure 6 show_s the fraction of atoms in
n the condensate as a function of time, for a pulse such that
) ) _ . lisem12.5 us andtygq=200 us. The magnetic field during
and determine the equation of motion for the coefficientsne pold isB=156.9 G, which corresponds to a scattering
cn(t) from Eq.(32). This results in length of a=200Q,. The simulation shows that once the
scattering length nearly takes on its largest value and the
2i coupling between the condensate and the excited states is
= —TZB(t)E IVn n,(t)cnm,(t)e*(i/ﬁ)(enf*en)t, therefore largest, the condensate starts ejecting atoms. Part of
h n ' these atoms then oscillate back and forth between the con-
(39  densate and the excited states. The curve in Fig. 6 clearly
contains several frequencies, since we are dealing with sev-
eral excited states and thus a multimode Rabi oscillation. At
the end of the pulse, the rate, i.e., the slope of the curve,
. 5 becomes equal to zero because the coupling between the
Vn,n’(t):f dxxp ()] (X, D)% xnr(X), (360 condensate and the excited states becomes equal to zero at
the end of the pulse, where the scattering length is equal to
which depend on time through the variational parameters izero.
the Gaussian ansatz in E@5) and the number of conden- To compare our results with the available experimental
sate atoms. These matrix elements can be calculated analytiata, we calculate the number of atoms as a function of the

2. Results

dep(t)
dt

with matrix elements given by
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FIG. 8. Fraction of atoms in the condensate as a function of the
rise time for a calculation that includes only quantum evaporation.
The hold time is kept fixed at,qq=1 us (solid ling), t gq=5 us
(dashed ling andt;,q=15 us (dotted ling. The scattering length
is equal toa=2000, during hold.

number of atoms in condensate
o
[+

o
[

able to make progress by realizing that the hold time is gen-
] erally larger than the rise time for the experimental points
shown in Fig. 7. Since experimentally three-body recombi-
nation is known to increase by orders of magnitude near the
resonance47], the contribution of three-body recombination
will be most important during hold, where the magnetic field

04

02

0 L L L L L is closest to the resonance. This suggests that we only need
0 20 40 60 80 100 120 to include it during hold. Note that for this approximation to
hold time (us) be valid it is essential that the rise time is shorter that the

FIG. 7. Fraction of atoms in the condensate as a function of thé0ld time. _lf the rise time is larger than the hold time, th.e
hold time. The rise time is kept fixed at the valyg,=12.5us.  Magnetic-field dependence of the three-body recombination
The initial number of condensate atoms is tak&(0)=6100(solid ~ rate constant is of importance, since the magnetic field is
line) andN(0) = 16 500(dotted ling. The scattering length is equal then time dependent for almost the entire pulse.
to a=2000, during hold. (a) The result of the calculation that ~ Figure 1b) shows the result for a calculation that includes
includes only quantum evaporatiofh) The calculation that in- both quantum evaporation and three-body recombination,
cludes both quantum evaporation and three-body recombinatiowith a rate constank;=3x10" 23 cm®/s during hold. This
The experimental points are taken from R&3]. value for the normal-component rate constant agrees with the

order of magnitude of the experimental dé4]. This cal-
hold timet,q and the rise time,;s.. Figure 7@ shows the culation shows good quantitative agreement with experiment
result of a calculation of the fraction of condensate atoms afor both initial numbers of condensate atoms.
a function oft;y4, with t,isc=12.5 us fixed. The calculation Finally, we have calculated the number of atoms in the
is done for two different initial numbers of condensate at-condensate as a function of the rise time. The result of this
oms. The solid line displays the result fig(0)=6100 and calculation is shown in Fig. 8, for various hold times. The
the dashed line foN,(0)=16 500. Notice that the latter ini- solid line corresponds t,,=1 us. The dashed and dotted
tially has a larger slope because the effective Rabi couplingines correspond to hold times of @s and 15us, respec-
between the condensate and the excited states is larger in thigely. The scattering length during hold is equal o
case. This is because of the fact that it is proportional to the=200Q, for this simulation. For all the results in Fig. 8, the
condensate density. rise time of the pulse is larger than the hold time. This means

The results of the simulation that includes only quantumthat the magnetic-field dependence of the three-body recom-
evaporation, shown in Fig.(&, show an oscillation in the bination rate constant is very important in this case, since the
fraction of condensate atoms as a function of the hold timemagnetic field is varying most of the time. Fitting the depen-
This oscillation is not observed in experiment, because of theence to the experiments is difficult due to the long times
fact that three-body recombination plays an important role irtaken by the numerical computations. Therefore, we refrain
this case since it becomes large near the resonpfie  from including three-body recombination in these simula-
Therefore, we also want to perform a calculation that in-tions. Nevertheless, there is agreement with the experimental
cludes both quantum evaporation and three-body recombinaesults regarding several aspects of our results. First, we find
tion. However, the magnetic-field dependence of the rat¢hat the number of atoms increases with the rise time over
constant for this process is unknown. Nevertheless, we areome interval. This was also found in the experiment by
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Clausseret al. [33]. Note that this fact cannot be explained At first glance, the term proportional to
by any loss process characterized by a rate constant becaugiei d/dt+#2V?/(4m) may appear unexpected. It corre-
the amount of atom loss will then always be larger withsponds to the imaginary part of the self-energy of the bare
longer times. Second, the minima of the curves in Fig. 8 shifimolecule which arises physically from the fact that the mo-
to lower values ot with longer hold times. This was also lecular state interacts with the two-atom continuum. This af-
observed in the experiment by Claussetal. [33]. These fects both the wave function of the dressed molecule and its
minima also occur on approximately the experimental valuesinding energy. By determining the pole of the molecular
of t;ce. The fact that in the experiment the minima becomepropagator for negative detuning, the latter can be shown to
lower with increasing hold time can be explained by threebe given by[28]
body recombination.

In conclusion, we have applied the generalized Gross-

Pitaevskii equation to the recent single-pulse experiments by B)= 5(B)+ g*m® 1- 16m°h° S(B)—1
Clausseret al. [33]. We have shown that the number of at- €m(B)=(B) 87246 g*m? (B) '
oms increases with time over some ranges. This cannot be (39)

understood in terms of conventional loss processes such as

three-body recombination or dipolar decay. However, to obwhich reduces te,(B) = —#2/(m[a(B)]?) for values of the
tain agreement with the available experimental data we hathagnetic field close to the resonance. Due to the coupling
to include three-body recombination in our simulations. Duewith the continuum of atoms, i.e., the open channel of the
to the fact that the magnetic-field dependence of this procedseshbach problem, the molecular state is strongly affected
is completely unknown, we are not able to make a fit toand is given by

experiment in all situations.

| Xm:dressed=\Z(B)| xm;bare

C. Atom-molecule coherence

Recent experimental and theoretical work has shown that + f
atom-molecule coherence is of importance in the case of a

double pulse in the magnetic fie][@9—-32 . Therefore, we

may expect it to have an important effect in the case of thavhere the coefficients C(k) are normalized as
single-pulse experiments as well. To make the discussion ofdk|C(k)|?/(2)3=1-Z(B). It contains with an amplitude
these experiments more complete, we investigate the role ofZ(B) the bare molecular stafey,;baré. Moreover, be-

the molecules by means of a quantum field theory that weause of the coupling to the two-atom continuum, the mol-
derived recently{28]. This theory incorporates the correct ecule acquires a nonzero component in the open channel
molecular binding energy and scattering properties of th¢46]. The wave-function renormalization factd(B) is
atoms at the quantum level by using coupling constants thagiven by[28]
are dressed by ladder diagrams and by including the molecu-

lar self-energy. Introducing Heisenberg operatpgsand i, .
that annihilate an atom and a bare molecule, respectively, the Z(B)= ,
Hamiltonian for the atom-molecule system reads 1+g?°m* (4713 |en(B)])

7T3

dk
) C(k)|k,—k;open, (40

(41)

which approaches 1 for values of the magnetic field far off-

OPm(X,1) h2v? , m¥ resonance, where the dressed molecular state reduces to the
A st | 4m +(B(1))-g 253 bare molecular state, as expected. However, for values of the
magnetic field close to the resonance, it is much smaller than
9 #2vZ2 |. R 1. In particular, for the case of the single-pulse experiments
Xi iﬁa‘i‘ am z,/;m(x,t)+gz,//§(x,t), we always have thaf(B)<1, which implies that the mag-
netic moment of the dressed molecule is in very good ap-
proximation equal to twice the magnetic moment of an atom.
For magnetically trapped atoms, this implies that the dressed
CaPx,b) h2v? 2B 1 - - molecule is subject to twice the trapping potential for the
i — = = 5 T Tog¥a(X, D e X,1) | X,1) atoms. With respect to this remark, it is important to note that
the result of the calculations of Kokkelmans and Holland
+291};(x,t)fﬂm(x,t). (38) [30] for the density of the molecular condensate should be

multiplied by a factor 1Z(B)>1 to obtain the density of real

Here,gzﬁ\/quabgATM/m is the atom-molecule coupling Qressed molecules, since these aythors Ca|CEJ|ate the expecta-
constant andd(B)=Au(B(t)—B,) denotes the detuning, tion value of the bare molecular-field operat@n(x,t)).

i.e., the energy difference between two atoms and the bare TO bring out the physics of Eq38) more clearly, we
molecule. It is determined by the difference in magnetic mo-introduce the operatat;,= ¢,/ Z(B) that creates a dressed
ment between the atoms and the bare molecule, which in theolecule, i.e., a molecule with an internal state as in Eq.
case of®Rb is equal toA u~ —2.2ug [30]. (40). Since we intend to consider the situation where initially
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all atoms are in the atomic condensate, we are allowed tc 1
make a mean-field approximation for the atomic field opera-
tor and consider only its expectation value. There are, how-
ever, no molecules present at the initial time and this requires
a quantum treatment of the molecular field operators. The \
resulting equations for the atomic condensate wave functior 008 ;
coupled to the dressed molecular-field read for the experi-g 2

08

mental conditions of interest 8
Bo4
5
Ipa(x,1) h?v? ex 2B 2 S
—| — [&]
-, =
+Zg Vz(t)(ﬁ;(xit)wm(xlt)i E 0
£
A o1
APl () 72v? o ., Z
h | am +2VE(X) + €m(t) [ (X, 1) 20.8
.0
+VZ() BE(X,D), 42 8

o
[

where ¢>az(f//a), Z(t)=2Z(B(t)), and e (t)=€,(B(1)). In
the derivation of the above coupled equations, we have as ,, |
sumed that we are allowed to make an adiabatic approxima . p
tion for the renormalization factoZ(B) and that we can ]
evaluate it at every time at the magnetic fi@¢t). In prin- 02 1 . T
ciple, there are retardation effects due to the fact that the

dressed molecular state does not change instantaneously. . . L L L
turns out that these effects can be neglected if 0 20 40 60 80 100 120

hold time (us)

<|em(t)], (43) FIG. 9. Fraction of atoms converted in the condensate as a func-
tion of the hold time. The rise time is kept fixed at the vatug
=12.5us. The initial number of condensate atoms is taki(D)
which is fulfilled for almost the entire duration of most of the =6100(solid line) andN,(0)= 16 500(dashed ling The scattering
pulses in the experiments of Claussetral. [33]. We come  |ength is equal toa=2000, during hold. (a) The result of the
back to this point in the discussion at the end of the paper. Igalculation that includes only the coupling of the atomic condensate
principle, the coupling between the two-atom continuum ando the molecular field(b) The calculation that includes both atom-
the molecule also contains an incoherent part correspondingolecule coupling and three-body recombination. The experimental
to the rogue-dissociation process considered by Maekad. points are taken from Ref33].
[31]. The rate for this process will be small, however, under
the condition given in Eq(43). Moreover, the mean-field that the conversion of the atoms to the molecular states is
effects of the condensate on the thermal atoms will suppresoherent, the operato,bm(x t) acquires a nonzero expecta-
this process even further. It can, in principle, be includedion value[48]. Figure 9b) shows the results of simulations
straightforwardly and will take the form of a dissipation term where also a three-body decay is taken into account in the
in the equation for the molecular operator. same manner as in the preceding section. The normal-
We solve the equations for the atomic condensate waveomponent rate constant is taken equal #;=3
function coupled to the dressed molecular field by using forx 10~22 cm®/s. Interestingly, the initial decay without three-
the condensate wave function again the Gaussian ansatz lidy recombination is already larger than the experimental
Eq. (25), and by expanding the dressed molecular annihiladata and by adding three-body recombination it is, therefore,
tion operator in harmonic-oscillator eigenstates, similar tampossible to make a fit to the experimental data. This is
the expansion in Eq33). As an initial condition, we assume possibly the result of neglecting the retardation effects of the
that att=0 only condensed atoms are present. The results aenormalization factoZ(t) and the rogue-dissociation pro-
our calculations are shown in Figs. 9 and 10. cess, since the condition in E@L3) is violated for a signifi-
The calculations presented in Fig. 9 are performed for theant fraction of the total duration of the pulse in this case.
same experimental conditions as in Fig. 7. This result clearlfor the simulations presented in Fig. 10, this condition is
shows that a large fraction of atoms is coherently convertediolated only for a very small fraction of the total duration of
into molecules as a result of the fast ramp in the magnetithe pulse for rise times larger that,~50 us and is not
field and that these oscillate back and forth between theiolated at all fort,ic=150 us. Note that the effect of retar-
atomic condensate and the molecular states. Due to the fadation and rogue dissociation lead to decoherence, which

alnZ(t)
h—a
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longest hold time, comparable to that of the simulations

where only quantum evaporation is included. This implies

that for a thorough treatment of the single-pulse experiments,
both atom-molecule coherence and quantum evaporation
should be included. This is beyond the scope of the present
paper but work in this direction is in progress.

o
©

o
=3

o
3

IV. CONCLUSIONS

o
=

We have put forward a generalized Gross-Pitaesvkii equa-
tion that includes nonlocal terms which describe the quantum

05T i evaporation of the Bose-Einstein condensate. We have ap-
. . . . . (a) plied this equation to two experimental situations which

“0 50 100 150 200 250 300 350 400 make use of a Feshbach resonance to alter the interaction

time (us) properties of the atoms. First, we have considered the case

-

where the condensate undergoes a type-ll collapse whose
dynamics is mainly determined by the external trapping po-
tential and have found good quantitative agreement with ex-
periment. Second, we have considered the recent single-
pulse experiment§33]. In general, we have also found

i agreement with experiment in this case, keeping in mind that
the magnetic-field dependence of the three-body recombina-
tion rate constant is completely unknown. The latter is the
first serious complication in the theoretical analysis. Apart
} from considering quantum evaporation we have also consid-
02 b J ered the role of atom-molecule coherence in the single-pulse

fraction of atoms in atomic condensate
o o
© 'S

4
=

experiments, by means of an adiabatic approximation to our
(b) effective quantum field theory for the description of Fesh-
0 ' . . bach resonancd&8]. In first instance, atom-molecule coher-
0 50 100 150 200 . !
rise time (us) ence appears to be an important effect. However, the second

theoretical complication is that the adiabatic approximation,
FIG. 10. Fraction of atoms in the atomic condensate for thein general, overestimates the effect and does not take into
situation where the atomic condensate is coupled to the moleculgfccount rogue dissociatiofid1]. Including this process
field. Initially, there areN(0)=16500 atoms and no molecules. gamps out the Rabi oscillations between the atoms and mol-
The magnetic field is such that=2000, during the hold.(@)  ecyles and leads to the production of energetic atoms that
Fraction of atoms as a function of the real time fgg=200 us may contribute to the experimentally observed bufgej.
(solid line) andt,ise=100 us (dashed !in}a The hold time is egual Due to these two complications, a completely satisfying
10 thoig=1 s for both pulsesib) Fraction of atoms as a function of 3 nitative description of these experiments is still lacking.
the rise time for different hold times dfoiq=1 1S (solid line), It should be mentioned that our calculations take into ac-
thow=5 s (dashed ling andt poq=15 ws (dotted fing. count the inhomogeneity of the trapped gas exactly and not
in local-density approximation. In addition, we do not make
single-mode approximation either for the atomic conden-
Figure 1Ga) shows the result of two calculations for dif- sate or the dressed molecqles. In futur.e wo_rk,_ we intend to
consider quantum evaporation, rogue dissociation, and three-

ferent rise time as a function of the total time. As eXpe.Ctedbody recombination simultaneously to obtain more insight
the number of atoms in the atomic condensate first oscillate

with large frequency, since the dressed molecular bindinéj%tO these intriguing JILA experiments.

energy is large here. As the magnetic field approaches values

closer to the resonance, the frequency decreases. From Fig. ACKNOWLEDGMENTS

10(a) it is clear that only the smallest frequency, which also |t js 3 pleasure to thank Neil Claussen, Eric Cornell, Si-

has the largest amplitude since the gas is then closest {fon Cornish, Elisabeth Donley, and Carl Wieman for helpful
resonance, gives a significant contribution to the frequencyemarks that have contributed to this paper.
observed in the number of condensate atoms as a function of

the rise time, because the larger frequencies with smaller
amplitude average out. However, these oscillations are not
observed in the experimental data of Re¥3]. Introducing
three-body recombination to fit the theory to experiment is With the Gaussian ansatz for the condensate wave func-
impossible with pulses having relatively long rise times, fortion and the semiclassical propagator for the ejected atoms,
the same reasons as in the preceding section. Neverthelesise final rate equation for the change in the number of atoms
the amplitude of the oscillations is in this case, except for thds given by

means that our calculations give an upper bound on th
amount of molecules that are coherent with the atoms.

APPENDIX A: RATE EQUATION
FOR TYPE-II COLLAPSE
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d'\(ljct(t) — _6di \/gﬁ‘q’a(t)Ng/z(t)jt dt,[a(t,)Nglz(t,)e—i[ao(t)—oo(t')]—(2i/ﬁ)¢(o,(t+t')/2)|2(t'—t)

(marq,(t)q, (t"){ig,(t)g.(t")

X[(t—t")a, (1) =g (1)]g,(t") —a,(t")g (1) }m?+ 3mA{g?(t) + (t' —t)[ g, (1), (1) — g, (t")q.(t )]+ g3(t)}

oIt —1) \/lqzuz)qz(t ) s \/qz(t) qz(t,)(3_ M)t >)

p 3
X \/M+q§(t)+3iﬁ (A1)

3ihmay(t)qy(t)

N
*3B73qf ()t

qi(t") +t—t’)
ih+mat)g,(t’) M

Here,q,(t) andq,(t) denote the radial and axial widths of only have to take into account the states witk=0, since
the condensate, respectively. the interaction conserves parity. The radial part of these
states is given by
APPENDIX B: MATRIX ELEMENTS

In this appendix, we calculate the matrix elements 1 (af—jat\™/at+ial\ ™
V(1) in Eq. (36). Because of the fact that we are dealing Ixn )= _( X y) ( Y| 0y, (B2)
with a trapping potential that is symmetric around #exis, *oon! V2 V2

the excited states factorize into a radial and an axial part. It is

convenient to characterize the radial part of the excited states . .

by the quantum numbersi(,m), wheren, counts the num- Where the operatoral —iaJ)/\2 lowers the magnetic quan-

ber of radial nodes in the wave function antis the quan-  tum numbem of the angular momentum by 1. The operator

tum number corresponding to the projection of the angula(af +ia})/\2 raises this quantum number by 1. Here, the

momentum on thez axis. Th(_a third qgant_um _numbefrz _ operators é-iTE /—mwi/(zﬁ)[;(i_iﬁl(mwi)] are the usual

counts the number of nodes in the axial direction. In cylin-parmonic-oscillator creation operators. The ground state is

drical coordinates, these states are giverj49j denoted by|0). The creation operators commute and hence
we can rewrite the radial wave function of the state as

Xn, ,m,nz(r ,0,2)

o —r2/(2|r2)| |m oJ@enm,—n))!
e r _ r
|an>_nzo nl(n,—n)!2"

2 |2n),|2m),, (B3)
X 1F1(=np|ml+1(r/1,)%)e™H, (/1 e 2@,

(B1) where|n); denote the normalized eigenstates of the Hamil-

wherel;= JA/(mw;). The Hermite polynomials are denoted tonianH;= p?/(2m)+mw;x?/2 of the one-dimensional har-
by H,(x) and the confluent hypergeometric function is de-monic oscillator. In the derivation of this expression, we used
noted by ;F.(p,q,x). The overlap integral with two func- Newton’s binomium to rewrite tha,th powers of the opera-
tions of the form as in EqB1) with a Gaussian of arbitrary tors on the right-hand side of EB2) as a sum of, terms.
width is, to the best of our knowledge, not tabulated. NeverWith this result, the normalized wave functions of the ex-
theless, we can make analytical progress by realizing that weited states of interest are given by

n, 1

~ 04y ~2i(212)
PP DI T Han(X1 )Mo, -m(y/l) | €755 (2. (B4

Xn, ,nZ(X) =

The overlap integrals of the two excited states of this form with a Gaussian of arbitrary width are tapbdieéiche final
result for the matrix elements is given by
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n,  m; min(2n,2m) min[2(n,—n),2(m, —m)]

- Ng(t) [ g2t 1 1
Vnr Ny im, ,mz(t)_ ’773/2| ?qz(t)((qr(t)/lr)z_’_ 1) qi(t)+|§2nr+mr =0 mE=O =) IZO n!(nr_n)!
1 (2n)! 2(n,—n) 2m\ [ 2(m,—m)
Xl m—m)! (2n—K)! [2(n,—m)—1]' | k |
><[2(m+n—k)—1]!![2(nr+mr—n—m—|)—1]!!{[q,(t)/|,]2+1}k+'nrmr}
min(n, ,m,) m )
X % q!(nz_q)!(mz_q)!{[qz(t)llz]2+1}q/2 (ma* Z”4(nz+mz—2q—1)!!}, (B5)

if n,+m, is even, otherwise it is equal to zero.
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The proper classification scheme of supernovas is based on the
characteristics of their spectra.

In Ref. [34] we used the form ¢(x,t)

= (1/(2m))3fdke~ (MMt gk 1), where ¢(k,t) is the Fou-

rier transform of the Gaussian ansatz, and assumed the energy
of a condensate atoms to be negligibly small with respect to
the energy of an ejected atom. Moreover, in the retarded propa-
gator of the ejected atoms we neglected the mean-field energy
with respect to the kinetic energy of the ejected atoms. Here
we go beyond these approximations.



