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Dynamics of a Bose-Einstein condensate near a Feshbach resonance

R. A. Duine* and H. T. C. Stoof†

Institute for Theoretical Physics, University of Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
~Received 22 November 2002; published 9 July 2003!

We discuss the response of a Bose-Einstein condensate to a change in the scattering length, which is
experimentally realized by tuning the magnetic field near a Feshbach resonance. In particular, we consider the
collapse of the condensate induced by a sudden change in the scattering length from a large positive to a small
negative value. We also consider the condensate dynamics that results from a single pulse in the magnetic field,
due to which the scattering length is rapidly increased from zero to a large value and then after some time
rapidly decreased again to its initial value. We focus primarily on the consequences of the quantum evaporation
process on the dynamics of the Bose-Einstein condensate, but also discuss the effects of atom-molecule
coherence.
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I. INTRODUCTION

From single-channel scattering theory, it is well know
that the collisional cross section changes dramatically if
energy of the incoming particles is close to the energy o
long-lived bound state in the interaction potential. In partic
lar, the magnitude of thes-wave scattering lengtha of an
attractive potential well diverges as the depth of the poten
well is increased such that a new bound state enters the
@1#. A similar behavior occurs in the case of a Feshba
resonance, when the energy of the two particles in the
coming channel is close to the energy of a bound state
closed channel@2#. In the case of collisions between alka
atoms, the coupling between the two channels is provided
the hyperfine interaction. Due to the spin flips involved
this interaction, the difference in energy between the bo
state and the continuum, the so-called detuning, is adjust
by means of a magnetic bias field. Feshbach resonances
first predicted theoretically@3,4#, but have now also bee
observed experimentally, in various atomic species@5–8#. As
a result, the experiments with magnetically trapped ultrac
atomic gases, where thes-wave scattering length fully deter
mines the interaction effects, have an unprecedented
level of control over the interatomic interactions. In this p
per, we focus on85Rb in the f 52,mf522 hyperfine state,
which has a Feshbach resonance at a magnetic field oB0
'154.9 G@9#. Near the resonance the scattering length, a
function of magnetic field, is given by

a~B!5abgS 12
DB

B2B0
D . ~1!

The resonance is characterized by the widthDB'11.6 G and
the off-resonant background scattering lengthabg
'2450a0, with a0 the Bohr radius. In Fig. 1, the scatterin
length is shown as a function of the magnetic field. Clearly
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can be adjusted experimentally from large negative values
large positive ones. Moreover, at a magnetic field ofB
'166.5 G the scattering length vanishes, and the gas
haves effectively as an ideal Bose gas.

With this experimental degree of freedom, it is possible
study very interesting new regimes in the many-body phys
of ultracold atomic gases. The first experimental applicat
was the detailed study of the collapse of a condensate
attractive interactions. In general, a collapse occurs when
attractive interactions overcome the kinetic energy of
condensate atoms in the trap. Since the typical interac
energy is proportional to the density, there is a certain ma
mum number of atoms above which the condensate is
stable @10–14#. In the first observations of the condensa
collapse by Bradleyet al. @15#, a condensate of doubly spin
polarized7Li atoms was used. These atoms have a magne
field independent scattering length ofa'227a0. For the
experimental trap parameters, this leads to a maximum n
ber of condensate atoms that was so low that nondestruc
imaging of the condensate was impossible. Moreover, th
mal fluctuations due to a large thermal component make

FIG. 1. The scattering length as a function of the magnetic fi
for 85Rb in the stateu f 52;mf522&. The position of the resonanc
is indicated by the vertical dashed line. At the horizontal dash
line, the scattering length vanishes. The dash-dotted line indic
the background scattering lengthabg'2450a0.
©2003 The American Physical Society02-1
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initiation of the collapse a stochastic process, thus preven
also a series of destructive measurements of a single-coll
event @16–18#. A statistical analysis, has nevertheless,
sulted in important information about the collapse proce
Very recently, it was even possible to overcome these pr
lems @19#.

In addition to the experiment with7Li, experiments with
85Rb have been carried out. In particular, Robertset al. @20#
also studied the stability criterion for the condensate, a
Donley et al. @21# studied the dynamics of a single-collap
event in great detail. Both of these experiments make us
the above-mentioned Feshbach resonance to achieve a
defined initial condition for each destructive measuremen
turns out that during a collapse, a significant fraction of
oms is expelled from the condensate. Moreover, one
serves a burst of hot atoms with an energy of about 150
Several mean-field analyses of the collapse, which mode
atom loss phenomenologically by a three-body recomb
tion rate constant, have offered some theoretical insight@22–
27#. However, the physical mechanism responsible for
explosion of atoms out of the condensate and the forma
of the noncondensed component is still largely ununderst
at present.

A second experimental application of the Feshbach re
nance has been implemented by Claussenet al. @33#. Starting
from the noninteracting limit, the scattering length is made
jump very fast back and forth to a large and positive val
Surprisingly, in this case one also observes loss of ato
from the condensate, as well as a burst of hot atoms. E
more surprising is the fact that the amount of atoms expe
from the Bose-Einstein condensate decreases with time
ing some intervals, excluding a theoretical explanation
terms of a loss process characterized by a rate constant

As a third application, Donleyet al. @29# have conducted
an experiment where two trapezoidal pulses in the magn
field were applied. As a function of the time between the t
pulses an oscillatory behavior in the number of condens
atoms is observed, which is attributed to coherent Rabi
cillations between atoms and molecules@30–32#. In this pa-
per, we will not consider this experiment, but instead foc
on the first and second experimental applications. In part
lar, the single-pulse experiment has not received much at
tion theoretically, even though an understanding of this
periment seems an essential first step in the theore
treatment of the recent two-pulse experiment. Therefore,
discussion of this most recent experiment will be postpo
to a future publication.

In a previous paper, we have considered the loss of at
by means of elastic two-body collisions, in the situati
where the condensate collapses@34#. However, the mecha
nism put forward in this paper is much more general.
particular, the mechanism should also be relevant for
above-mentioned single-pulse experiments. The main go
this paper is to present the theory behind it in great de
Since the mechanism is able to describe loss from a con
sate at zero temperature, we will hereafter refer to it as qu
tum evaporation. The two-pulse experiments of Donleyet al.
@29# have made it clear that atom-molecule coherence
have an important effect on the dynamics of a Bose-Eins
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condensate. Besides the quantum evaporation process
thus want to consider this physics in the case of the sin
pulse experiments as well. We are able to achieve this
cause very recently we have derived an effective quan
field theory that offers a description of the Feshbach re
nance in terms of an atom-molecule Hamiltonian, that c
tures all the relevant two-body physics exactly@28#. Apart
from a detailed discussion of the condensate collapse,
main application of this paper therefore concerns the ef
of quantum evaporation in the single-pulse experiments
the investigation of the importance of atom-molecule coh
ence in this case. With respect to the latter remark it sho
be noted that the effect of atom-molecule coherence in
case of the condensate collapse will be neglected in the
lowing, because the magnetic field is tuned to a far o
resonant value to induce the collapse.

In view of this, the paper is organized as follows. In Se
II, we present and discuss the theoretical description of qu
tum evaporation. In Sec. III, we present the applications
the condensate collapse, and to the single-pulse experim
with positive scattering length. We end in Sec. IV with o
conclusions.

II. QUANTUM EVAPORATION

In this section, we derive the generalized Gross-Pitaev
equation that includes the correction term due to the quan
evaporation of atoms out of the condensate. From this re
follows a rate equation for the change in the number of
oms in the condensate. Section II A is rather technical a
may be omitted in a first reading. To facilitate this the fin
rate equation, which is most important for our purposes
presented in Sec. II B.

A. Generalized Gross-Pitaevskii equation

Although the desired rate equation for the number of
oms can also be derived from the imaginary-time formali
by means of a Wick rotation to real time, the equation
motion for the condensate wave function cannot be deri
in this manner. Therefore, we use a functional formulation
the Schwinger-Keldysh nonequilibrium theory@35,36# devel-
oped in Refs.@37–39#, from which the equation of motion
for the condensate wave function follows directly as t
equation for the ‘‘classical’’ part of the fluctuating orde
parameter field.

Within this formalism, the Wigner probability distribution
of the order parameter is written as a functional integral o
complex fieldsc* (x,t) andc(x,t). These fields are define
on the Keldysh contourC t, which runs fromt0 to t and then
back tot0. The probability distribution is given by

P@f* ,f;t#5E
c* (x,t)5f* (x)

c(x,t)5f(x)

d@c* #d@c# expH i

\
S@c* ,c#J ,

~2!

where we absorbed the appropriate initial conditi
P@f* ,f;t0# into the measure of the functional integral@39#.
The action in the exponent of the integrand is given by
2-2



c-

ng
b

v
o

he
se
ns

i
i

t
ia

m
q.
on

om
te

no

cr
re

le
t,
w

as
id
n in
c-

oms
the
.

e

con-
t in-

ot
in a

tion
her-
e
igh-
the

he
go-

DYNAMICS OF A BOSE-EINSTEIN CONDENSATE NEAR . . . PHYSICAL REVIEW A 68, 013602 ~2003!
S@c* ,c#5E
C t

dt8E dx8c* ~x8,t8!F i\
]

]t8
1

\2¹2

2m

2Vext~x8!2
T2B~ t8!

2
uc~x8,t8!u2Gc~x8,t8!,

~3!

whereVext(x) is the external trapping potential. The intera
tion is determined by the two-bodyT ~transition! matrix el-
ement T2B(t)54pa(t)\2/m, where a(t)[a„(B(t)… is the
interatomics-wave scattering length, andm is the mass of
one atom. Note that we explicitly allowed the scatteri
length to depend on time. This is experimentally realized
tuning the magnetic field near the Feshbach resonance.

To arrive at an effective action for the condensate wa
function, we explicitly separate out the condensate part fr
the field c(x,t). Therefore, we writec(x,t)5c0(x,t)
1c8(x,t), and substitute this into the action in Eq.~3!. In
this separation,c0(x,t) describes the condensed part of t
gas, whereasc8(x,t) describes the fluctuations. The preci
distinction between the condensate and the nonconde
part is discussed in detail in Sec. III. Physically, the idea
that c0(x,t) describes the Bose-Einstein condensate and
collective modes, whereasc8(x,t) is associated with the
modes not occupied by the condensate. To define these
parts consistently, we have to require that they are essent
orthogonal, i.e.,

E dx@c0* ~x,t !c8~x,t !1c8* ~x,t !c0~x,t !#50. ~4!

This condition ensures that the Jacobian of the transfor
tion of integration variables in the functional integral in E
~2! is equal to 1. In the operator formalism, this conditi
implies that the Bose field operatorsĉ8(x,t) and ĉ8†(x,t)
associated with the fluctuations, obey the usual Bose c
mutation relations in the Fock space built upon the sta
orthogonal toc0(x,t).

After this substitution, the functional integral becomes

P@f* ,f;t#5E d@c0* #d@c0#expH i

\
S@c0* ,c0#J

3E d@c8* #d@c8#expH i

\
Sint@c0* ,c0 ,c8* ,c8#

1
i

\
S8@c0* ,c0 ,c8* ,c8#J . ~5!

Here, we defineS8@c0* ,c0 ,c8* ,c8# such that it contains the
terms up to quadratic order in the fluctuations. We do
retain the terms proportional to (c8)2 and (c8* )2, since
these so-called anomalous terms are only needed to des
the collective motion of the condensate. Their effect is, the
fore, already included in the actionS@c0* ,c0# for the part of
the field that describes the condensate. In princip
Sint@c0* ,c0 ,c8* ,c8# contains terms which are either of firs
third, or fourth order in the fluctuations. We neglect, ho
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ever, the terms of third and fourth order, which is known
the Bogoliubov approximation. This approximation is val
for the zero-temperature applications under consideratio
this paper. Moreover, the terms of higher order in the flu
tuations describe the interactions among the ejected at
and are expected to be of little importance in determining
ejection rate for the atoms expelled from the condensate

We write the quadratic actionS8@c0* ,c0 ,c8* ,c8# as

S8@c0* ,c0 ,c8* ,c8#

5E
C t

dt8E dx8E
C t

dt9E dx9c8* ~x8,t8!

3\G21~x8,t8;x9,t9!c8~x9,t9!, ~6!

where we introduced the Green’s functionG(x,t,x8,t8) for
the fluctuations by means of

F i\
]

]t
1

\2¹2

2m
2Vext~x!22T2B~ t !uc0~x,t !u2GG~x,t,x8,t8!

5\d~x2x8!d~ t,t8!. ~7!

Here, thed function in the time variables is defined on th
Keldysh contour, by means of*C tdt8d(t,t8)51. The part of
the action that describes the interactions between the
densed and noncondensed parts of the system is, in firs
stance, given by

Sint@c0* ,c0 ,c8* ,c8#

5E
C t

dt8E dx8H c0* ~x8,t8!F i\
]

]t8
1

\2¹2

2m

2Vext~x8!2T2B~ t8!uc0~x8,t8!u2Gc8~x8,t8!

1c8* ~x8,t8!F i\
]

]t8
1

\2¹2

2m
2Vext~x8!

2T2B~ t8!uc0~x8,t8!u2Gc0~x8,t8!J . ~8!

It is important to note that this part of the action does n
vanish because the condensate wave function, as we see
moment, does not obey the usual Gross-Pitaevskii equa
once we include the quantum evaporation process. Furt
more, the fieldc8(x,t) describes the high-energy part of th
system, and thus has an expansion in terms of the h
energy trap states. As a result, we are allowed to neglect
terms proportional to the single-particle Hamiltonian. T
terms with the time derivative vanish because of the ortho
nality condition in Eq.~4!. The action in Eq.~8!, therefore,
reduces to

Sint@c0* ,c0 ,c8* ,c8#52E
C t

dt8E dx8@J* ~x8,t8!c8~x8,t8!

1c8* ~x8,t8!J~x8,t8!#, ~9!
2-3
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where we introduced the ‘‘current density’’

J~x,t !5T2B~ t !uc0~x,t !u2c0~x,t !. ~10!

The functional integral over the fluctuations in Eq.~5! is a
Gaussian integral and can be easily performed. This defi
the effective action for the condensate on the Keldysh c
tour by means of

P@f* ,f;t#5E d@c0* #d@c0#expH i

\
S@c0* ,c0#J

3E d@c8* #d@c8#expH i

\
Sint@c0* ,c0 ,c8* ,c8#

1
i

\
S8@c0* ,c0 ,c8* ,c8#J

[E d@c0* #d@c0#expH i

\
Seff@c0* ,c0#J , ~11!

and results in

Seff@c0* ,c0#5S@c0* ,c0#2
1

\EC t
dt8E dx8E

C t
dt9E dx9

3J* ~x8,t8!G~x8,t8;x9,t9!J~x9,t9!. ~12!

Because the Green’s function in this effective action is eq
to

iG~x8,t8;x9,t9![Tr$r̂~ t0!TC t„ĉ8~x8,t8!ĉ8†~x9,t9!…%J50 ,

~13!

whereTC t denotes time ordering along the Keldysh conto
andr̂(t0) represents the initial density matrix of the gas, th
Green’s function can be decomposed into its analytic pie
by means of

G~x,t;x8,t8!5u~ t,t8!G.~x,t;x8,t8!

1u~ t8,t !G,~x,t;x8,t8!, ~14!

with u(t,t8) the Heaviside function on the Keldysh contou
The Green’s functionsG. andG, thus correspond to aver
ages of a fixed order of creation and annihilation operat
Note that these Green’s functions essentially describe
propagation of a noncondensed atom in the presence o
mean-field interaction with the condensate.

To finally derive the generalized Gross-Pitaevskii eq
tion for the condensate wave function, we want to sepa
out the classical part of the fieldc0(x,t). This is achieved by
means of the transformation

c0~x,t6!5f~x,t !6
j~x,t !

2
, ~15!

where the upper~lower! sign corresponds to the forwar
~backward! branch of the Keldysh contour. Here,f(x,t) de-
notes the condensate wave function, whereas the fieldj(x,t)
describes its quantum and thermal fluctuations. From a
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damental point of view, the latter field together with an a
propriate fluctuation-dissipation theorem ensures that
equilibrium the occupation numbers of the Bose-Einst
condensate and its collective modes are given by the B
distribution function@39#. When substituting this transforma
tion into the effective action in Eq.~12!, we should, in prin-
ciple, only keep terms up to quadratic order in the fluctu
tions, to avoid a double counting of the interactions that
have already taken into account. However, to read off
generalized Gross-Pitaevskii equation, including the corr
tion terms associated with the quantum evaporation proc
it suffices to consider only the linear terms in the fluctu
tions. This can be understood from the fact that with t
approximation a functional integration over the fluctuatio
leads to a constraint forf(x,t), which is precisely the clas
sical equation of motion that we are interested in. With t
transformation in Eq.~15!, we thus project the effective ac
tion on the real-time axis and read off the equations of m
tion for f(x,t) andf* (x,t) by putting the coefficient of the
terms linear inj* (x,t) andj(x,t) equal to zero, respectively
After straightforward but somewhat tedious algebra, this
sults in

i\
]f~x,t !

]t
5F2

\2¹2

2m
1Vext~x!1T2B~ t !uf~x,t !u2Gf~x,t !

1H T2B~ t !

\ E
2`

`

dt8E dx8T2B~ t8!

3@2f* ~x,t !G(1)~x,t;x8,t8!f~x8,t8!

1f~x,t !G(2)~x8,t8;x,t !f* ~x8,t8!#

3uf~x8,t8!u2J f~x,t ! ~16!

with the complex conjugate expression forf* (x,t). We de-
fined the retarded and the advanced Green’s functions in
usual way by

G(6)~x,t;x8,t8!56u„6~ t2t8!…@G.~x,t;x8,t8!

2G,~x,t;x8,t8!#. ~17!

Note that the Heaviside function in this definition is precise
such that the equation of motion forf(x,t) is causal.

The time-ordered Feynman diagrams corresponding to
two terms in the generalized Gross-Pitaevskii equation
scribing the quantum evaporation process are given in F
2~a! and 2~b!, respectively. In these diagrams, a condens
atom is denoted by a dashed line. An ingoing dashed
thus corresponds to a factorf(x,t), and an outgoing dashe
line to a factorf* (x,t). The advanced and retarded prop
gators of the ejected atoms are denoted by solid lines
retarded propagator is denoted by an arrow pointing fr
(x8,t8) to (x,t), and corresponds to the propagation of
particle. An advanced propagator is denoted by a rever
arrow, and can be interpreted as the propagation of a ‘‘ho
Note that the first term in Eq.~16! has an additional factor o
2 with respect to the second term. This is understood fr
2-4
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the fact that the corresponding diagram@Fig. 2~a!# has two
outgoing lines at (x,t) and therefore contributes twice
whereas the diagram in Fig. 2~b! has only one outgoing line
at those coordinates.

B. Rate equation

In the preceding section, we have generalized the Gr
Pitaevskii equation to include the quantum evaporation p
cess. With this equation, we derive a rate equation for
number of atoms in the condensate. It is given by

dNc~ t !

dt
5

d

dtE dxuf~x,t !u2

5
2

\2E dxE
2`

`

dt8E dx8Im@T2B~ t !uf~x,t !u2

3f* ~x,t !G(1)~x,t;x8,t8!T2B~ t8!

3uf~x8,t8!u2f~x8,t8!#. ~18!

The retarded propagatorG(1)(x,t;x8,t8) describes the non
condensed atoms. Note that in both, this rate equation
the equation of motion in Eq.~16! we have taken the limit
t0→2` to eliminate initial transient effects. Furthermor
we have made use of the fact that@G(1)(x,t;x8,t8)#*
5G(2)(x8,t8;x,t), which follows from the definition of this
Green’s function.

The non-Markovian rate equation in Eq.~18! describes
the evolution of the number of condensate atoms due
change in the scattering length or the condensate wave f
tion. Physically, the coupling between the condensed
noncondensed parts of the system allows the condensa
eject atoms. Since we have neglected the interactions am
the ejected atoms, this rate equation is applicable only
short times and does not describe the rethermalization of
ejected atoms. Because of this approximation, the ejec
process is coherent, and atoms can come back into the
densate on short-time scales. To get more physical ins
into the quantum evaporation process, we discuss the w
coupling limit, where it just corresponds to elastic conde
sate collisions.

In the weak-coupling limit, where the mean-field intera
tion is small compared to the energy-level splitting of t

FIG. 2. These time-ordered Feynmans diagrams correspon
terms associated with quantum evaporation in the equation of
tion for the condensate wave function.
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external trapping potential, the rate equation for the num
of atoms in the condensate acquires a familiar form. To
this, we note that in this limit the retarded propagator
given by

G(1)~x,t;x8,t8!52 iu~ t2t8!(
nÞ0

e2( i /\)en(t2t8)

3xn~x!xn* ~x8!, ~19!

because the single-particle statesxn(x) and energiesen are,
in this limit, by definition not affected much by the intera
tions. The sum in this expression is over all the trap sta
except for the condensate mode, i.e., the one-particle gro
state.

The condensate wave function is given by

f~x,t !5e2( i /\)mtANc~ t !x0~x!, ~20!

where m[e0 is the ground-state energy, andNc@1 is the
number of atoms in the condensate. Using these express
the rate equation for the number of atoms in Eq.~18! can be
rewritten as

dNc~ t !

dt
52FNc

3~ t !

2 G 2p

\ (
nÞ0

d~en2e0!u^nuV̂u0&u2,

~21!

which is precisely Fermi’s golden rule for the rate to scat
out of the initial stateu0&, found from second-order pertur
bation theory. The sum is over all final states of the form

^x1x2un&[
1

A2
@x0~x1!xn~x2!1xn~x1!x0~x2!#, ~22!

with energy en1m. Since we are dealing with identica
bosons, these states are symmetric. This final state thus
resents a condensate atom and an ejected atom, wherea
initial state with energy 2m is given by

^x1x2u0&[x0~x1!x0~x2!, ~23!

and therefore represents two condensate atoms. The a
tional factorNc

3 is a result of the Bose statistics of the atom
There is a factorNc(Nc21)/2'Nc

2/2 for the number of con-
densate atom pairs and an additional factor 11Nc'Nc for
the condensate atom that is Bose stimulated back into
condensate. Finally, the potential is given by

V̂5T2Bd~ x̂12 x̂2!. ~24!

We see that, in the weak-coupling limit, the energ
conserving d function can never be obeyed, and th
dNc /dt50, as expected in this limit. Another important o
servation is that energy conservation also forbids the ejec
of atoms out of a static condensate with repulsive inter
tions, even in the strong-coupling limit. This is because
the fact that the energy of a condensate atom, i.e., the ch
cal potential, is positive in this case, and that the energy
the excited states is always larger than the chemical po

to
o-
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tial. This leads to the important conclusion that in order
eject atoms out of the condensate by means of the quan
evaporation process, there has to be a strong time de
dence of either the condensate wave function, or of the s
tering length. In the following section, we discuss two e
perimentally relevant examples where this is the case.

III. APPLICATIONS

In this section we apply the theory, described in the p
vious section, to two different experimental situations. In
first part, we consider the case where the Feshbach reson
is used to investigate the collapse of a condensate@9,21#. In
the second part, we apply our theory to the situation wh
the scattering length is changed very rapidly back and fo
from zero to a large and positive value@33#. We also discuss
the importance of atom-molecule coherence in this case

A. Condensate collapse

The use of a Feshbach resonance has made it possib
explore the physics of the collapse in two different regim
First, we can have a collapse in which the dynamics of
condensate is mostly determined by the mean-field inte
tions. This is the case in the experiments with7Li @15–
17,19#, which has a fixed negative scattering length. In th
experiments, there is always a large thermal compon
which feeds the condensate. Therefore, we call such a
lapse a type-I collapse, in analogy with a type-I superno
which is believed to be the result of an accreting white dw
that explodes when the accumulated mass becomes
@51#, similar to the7Li condensate that grows from the the
mal cloud and then collapses. The more recent experim
by Donleyet al. @21# also deal with a type-I collapse, sinc
one starts a collapse from the noninteracting limit, where
density is relatively high compared to Bose-Einstein cond
sates with a repulsive self-interaction.

Complementary to this regime we can have a second
of collapse where the dynamics is mostly determined by
external trapping potential. This regime was considered
perimentally by Cornishet al. @9#. Using the Feshbach reso
nance of 85Rb at B0'154.9 G, one first makes a larg
stable, and essentially pure condensate, i.e., there is no
ible thermal cloud present, with repulsive interactions. Th
one suddenly switches the interactions from repulsive
slightly attractive, and watches the subsequent collapse.
cause the collapse in this case starts at low density due to
initially large and repulsive interatomic interactions and t
magnitude of the final negative scattering length is mu
smaller than the initial positive one, its dynamics is mos
determined by the trapping potential. We call such a colla
a type-II collapse, in analogy with a type-II supernova. Su
a supernova is the fate of a massive star analogous to
large condensate with repulsive interactions.

In the experiments on the type-II collapse, it was fou
that after such a collapse the number of atoms in the con
sate is of the same order as the maximum number of at
allowed to have a metastable condensate@40#. This suggests
that during such a collapse, enough atoms are ejected
the condensate, so that the condensate becomes metas
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The most important theoretical task is therefore to iden
the physical mechanism responsible for this ejection.
have recently argued that the quantum evaporation pro
provides an explanation for these experiments@34#. More-
over, we will explicitly show here that the decay solely b
means of three-body recombination does not explain the
perimental results for the type-II collapse.

Interestingly, the metastable condensate that is the re
of a type-II collapse is precisely the starting point for a typ
collapse, making this last collapse a much more violent p
nomenon. We restrict ourselves here to the description of
type-II collapse, because a proper treatment of the typ
collapse requires a full numerical solution of the generaliz
Gross-Pitaevskii equation that includes the nonlocal corr
tion term due to quantum evaporation. This is beyond
scope of the present paper, and we use a simpler variati
approach here that we believe is appropriate for a type
collapse event.

1. Gaussian approximation and semiclassical
retarded propagator

In principle, we must now numerically solve the gener
ized Gross-Pitaevskii equation in Eq.~16! that includes non-
local terms. However, in order to gain physical insight, w
will make several approximations to reduce the solution
this equation to a numerically more tractable problem. F
of all, we use a Gaussian variational approach to the cond
sate wave function@52#. More precisely, we assume the co
densate wave function to be of the form

f~x,t !5ANc~ t !eiu0(t))
j

S 1

pqj
2~ t !

D 1/4

3expH 2
xj

2

2qj
2~ t !

S 12 i
mqj~ t !

\

dqj~ t !

dt D J . ~25!

In the limit of a small number of condensate atomsNc(t),
this ansatz becomes an exact solution of the Gross-Pitae
equation for a harmonic external trapping potential, a
therefore a good description of the condensate after the
lapse. It is, however, also known that a Gaussian ansatz g
good results on the frequencies of the collective modes, e
in the Thomas-Fermi regime@41#. Moreover, since we con
sider only the type-II collapse and therefore by definiti
assume that the trapping potential is more important than
mean-field interactions, we expect the Gaussian ansat
give physically reasonable results at all times.

In the case of the ordinary Gross-Pitaevskii equation
variational parameters obey Newton’s equation of mot
@12#

m
d2qj~ t !

dt2
52

]

]qj
V~q~ t !;Nc~ t !!, ~26!

with a potential given by
2-6
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V~q;Nc!5(
j

S \2

2mqj
2

1
mv j

2qj
2

2 D 1A2

p

a~ t !\2Nc

mqxqyqz
,

~27!

where the frequenciesv j are the frequencies of the harmon
external trapping potential in the three spatial directions.
have recently extended the above variational calculus als
the case of a nonlinear Schro¨dinger equation including an
imaginary term due to the presence of a thermal cloud,
found that the equation of motion for the variational para
eters, in principle, contains a damping term@18#. However,
we are interested in the zero-temperature situation, in wh
this damping term is negligible. This means that for a d
scription of the collapse, we only have to couple Eq.~26! to
the rate equation for the number of atoms in Eq.~18!.

To determine this rate equation in detail, we need an
pression for the propagator of the ejected atoms. Anticipa
that the energy of the ejected atoms will be much higher t
the energy of a condensate atom, we take for the one-par
Green’s function of the ejected atoms the semiclassical
proximation

G(1)~x,t;x8,t8!52 iu~ t2t8!E dk

~2p!3

3e2( i /\)e(k,R,T)(t2t8)eik•(x2x8), ~28!

where we introduced the center-of-mass coordinateR5(x
1x8)/2, and usedT5(t1t8)/2 for notational convenience
The energy of the ejected atoms is, in this approximati
given by

e~k,R,T!5
\2k2

2m
1Vext~R!12T2B~T!uf~R,T!u21e1 .

~29!

This energy is measured frome1, which is the first excited
level in the trap. This energy thus determines the cutoff
tween the condensate and the ejected atoms. Although
cutoff is important to make the distinction between cond
sate and noncondensate atoms, we find that our nume
results are not very sensitive to its precise value.

Since the most important contribution to the rate equat
comes from the center of the trap, we expect that we can
a good approximation, take for the energy of an ejected a
the valuee(k,0,T)[e(k,T). We use this value for the en
ergy of an ejected atom from now on. This approximation
very convenient, since we can now perform the spatial in
grals in the rate equation, as well as the integral over
momenta in the expression for the retarded propagator
lytically. The final result is given in Appendix A.

In the ansatz in Eq.~25!, we have included a global phas
u0(t). This is important, since we have already seen in
preceding section that this global phase determines the
ergy of a condensate atom in equilibrium. We can determ
this global phase by insertion of the ansatz in the Gro
Pitaevskii equation including the correction term in Eq.~16!,
and separating out the real part. Neglecting the contribu
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of the quantum evaporation process to the mean-field ene
it is up to an irrelevant constant given by@18#

u0~ t !52
1

\ H E
2`

t

dtF ]V~q~t!,Nc~t!!

]Nc
2(

j

1

4
mq̇j

2~t!G
1(

j

1

4
mqj~ t !q̇ j~ t !J . ~30!

Note that in equilibrium, this results in a phase factore2 imt/\

for the condensate wave function, withm5]V(q,Nc)/]Nc .
This is clearly the correct expression for the chemical pot
tial.

With the above approximations, we have reduced the
ficult problem of solving a partial differential equation with
nonlocal correction term to the problem of solving the or
nary differential equations for the variational parameters
Eq. ~26! coupled to the rate equation for the change in
number of atoms in Eq.~18!. This rate equation is now only
nonlocal in time, since all the integrals can be done anal
cally for the Gaussian wave function and the semiclass
retarded propagator we are considering here. In the follow
section, we will present our results obtained by numerica
solving these equations.

2. Results

We have performed numerical simulations for the expe
mental conditions of Cornishet al. @9,40# with 85Rb. The
frequencies of the external trapping potential are equa
v r /2p517.4 Hz andvz/2p56.8 Hz, in the radial and axia
directions, respectively. One starts with a condensate con
ing of Nc(0)'4000 atoms and a scattering length ofa(Bi)
52500a0, whereBi is the magnetic field at the initial time
Initially, there is no visible thermal cloud present, so t
system is approximately at zero temperature. One then ra
the magnetic field linearly in a timeDt from its initial value
Bi to the final valueBf , chosen such thata(Bf)5260a0.
The ramp time is taken equal toDt50.5 ms.

To investigate the importance of three-body recombi
tion during the collapse, we have included it in our simu
tions in addition to the quantum evaporation process. T
amounts to including a term

2
i\

2

K3

3!
uf~x,t !u4f~x,t !

on the right-hand side of Eq.~16!, from which the contribu-
tion to the rate equation for the number of atoms can
easily found. Although there are several predictions for
normal-component rate constantK3 @42–45#, its behavior as
a function of the magnetic field is unknown near the Fe
bach resonance and precise experimental data are una
able @47#. Following Saito and Ueda@26#, we takeK351.2
310227 cm6/s. With this value, these authors have been a
to explain some of the results of the experiment on the typ
collapse by Donleyet al. @21#. Since the final value of the
magnetic field is in the same range for both experiments,
expect the three-body recombination rate constant to be
the same order of magnitude.
2-7
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R. A. DUINE AND H. T. C. STOOF PHYSICAL REVIEW A68, 013602 ~2003!
In Figs. 3 and 4, we present the results of our simulatio
The widths of the condensate in the radial and axial dir
tions, i.e., the variational parametersqr andqz , are shown as
a function of time in Figs. 3~a! and 3~b!, respectively. The
number of atoms as a function of time is displayed in Fig
The origin of the time axis is chosen such that the scatte
length is equal to zero att50. The solid line corresponds t
a simulation that includes both the quantum evaporation p
cess and three-body recombination. The condensate
lapses first in the radial direction in a timep/(2v r)'14 ms
and during the last part of this radial collapse the conden
ejects a large fraction of its atoms, by means of the quan
evaporation process. In our simulations, we find that
three-body recombination hardly contributes. After a tim
p/(2vz)'36 ms the axial width of the condensate reach
its minimum, resulting again in a slight increase of the ej
tion rate. Note that these time scales are expected, sinc
dynamics is determined by the external trapping poten
More remarkably, for a very short time the number of ato

FIG. 3. ~a! Radial and~b! axial width of the condensate as
function of time during a type-II collapse. At the origin of the tim
axis, the scattering length vanishes as it is changed from large
postive to negative. The solid line corresponds to a simula
where both quantum evaporation and three-body recombination
included. The dashed line corresponds to a simulation includ
only three-body recombination. The experimental points are a
shown and taken from Ref.@40#.
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increases with time during the collapse. In principle, this c
occur, because the quantum evaporation process is cohe
and can thus describe multimode Rabi oscillations betw
the condensate and the noncondensed part of the syste
we shall see in much more detail in the following section

The simulation that includes the quantum evaporat
process shows quantitative agreement with the experime
results @40#, which are also shown in Figs. 3 and 4. Th
disagreement for small values of the widths of the cond
sate is a result of the fact that the experimental resolution
the condensate size is about 4mm @40#.

We have also performed a simulation that includes o
three-body recombination and no quantum evaporation.
results for this simulation are shown in Figs. 3 and 4 by
dashed lines. The fact that the minima in the widths of
condensate in Fig. 3 are lower than the results includ
quantum evaporation indicates that the condensate de
has to be relatively high for the recombination of atoms
occur. Once such a high density is reached, the ejectio
atoms occurs very fast, resulting in a staircaselike pattern
the number of atoms as a function of time, which is clea
not visible in the experimental data. Att'38 ms the conden-
sate decays so fast that the radial direction becomes s
again, resulting in a large increase of the radial width.

Finally, we make some remarks about the properties
the ejected atoms. In Ref.@34#, we have calculated the dis
tribution of the kinetic energy of the ejected atoms, as wel
the angular distribution. We have also performed prelimin
calculations of the average kinetic energy emitted in the
dial and axial directions, and have found that the ene
distribution of the ejected atoms is anisotropic. Donleyet al.
@21# have measured the angular and radial temperature
the emitted atoms and have indeed found an anisotropic
tribution of the energies. However, our calculations are do
for the type-II collapse and our approximations are especi
suited for this case, whereas these experiments deal w
type-I collapse. Therefore, we do not directly compare o

nd
n
re
g
o

FIG. 4. Number of atoms in the condensate as a function of t
during a type-II collapse. The solid line corresponds to a simulat
where both quantum evaporation and three-body recombination
included. The dashed line corresponds to a simulation includ
only three-body recombination. The experimental points are a
shown and taken from Ref.@40#.
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DYNAMICS OF A BOSE-EINSTEIN CONDENSATE NEAR . . . PHYSICAL REVIEW A 68, 013602 ~2003!
results with the available experimental data of Donleyet al.
@21#. Moreover, to improve the experimental resolution lim
one expands the gas at the end of each destructive mea
ment by an increase in the scattering length. Therefore,
resulting mean-field energy and rethermalization effects m
play an important role in determining the energy of t
ejected atoms, which is not included in our calculations
the energy distribution function in Ref.@34#.

In conclusion, we have shown in this section that t
simulations of the type-II collapse that include quantu
evaporation show quantitative agreement with the exp
mental results. The most important feature of these exp
mental results is the fact that the condensate starts to
atoms almost immediately after the initiation of the collap
We have also shown that solely three-body recombina
does not account for this rapid onset of the loss of atoms
this point it is important to notice that this conclusion al
holds if we numerically solve the generalized Gros
Pitaevskii equation, without approximations. The reason
this is that the Gaussian ansatz used here is certainly ap
priate for the first part of the collapse, when the dynamic
not yet very violent. This is borne out by numerical simu
tions of the Gross-Pitaevskii equation, which have a
shown that when the highest densities are reached duri
type-I collapse, high-density ‘‘spikes’’ can form on the pr
file of the wave function@23–27#. These spikes are not in
cluded in our ansatz for the condensate wave function
therefore our approximations might be less appropriate
the highest densities reached during the collapse. Howe
our results suggest that such high-density spikes may
never occur if one includes the effects of the quantum eva
ration process.

B. Multimode Rabi oscillations

Apart from the negative scattering length regime, the
perimental control over the interatomic interactions has a
made it possible to explore the regime where the interac
is large and positive. To this end, Claussenet al. @33# have
conducted an experiment where the magnetic field underg
a trapezoidal pulse in time, resulting in a quick jump in t
scattering length towards a large positive value. In detail,
ramps the magnetic field linearly in a timet rise from its value
in the noninteracting limit (B'166.5 G), to a value where
the scattering is of the order of a few thousand Bohr ra
The magnetic field is kept at this value for a timethold before
ramping back to the initial value again within the samet rise.
The scattering length as a function of time for a typical pu
is shown in Fig. 5 and the inset shows the correspond
magnetic field. The rise timet rise and the hold timethold are
typically of the order of 10–100ms.

In this experiment, one observes particle loss from
condensate as a function of both the rise time and the h
time, accompanied by a ‘‘burst’’ of atoms from the conde
sate. The temperature of the burst atoms is of the same o
as in the case of the experiments on the collapse, i.e., a
150 nK. Most importantly, the amount of atoms lost from t
condensate decreases with increasingt rise over some interval,
which can never be the case for atom loss characterized
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rate constant, such as three-body recombination. Also n
that the time scales of the pulse are very small compare
the time scales set by the inverse frequencies of the exte
trapping potential. This means that the density profile of
condensate hardly changes its shape during the pulse, s
the collective modes which alter the density profile have f
quencies of the same order of magnitude.

1. Retarded propagator

The single-pulse experiments start in the noninteract
limit where the density profile of the condensate has
shape of a Gaussian, and the pulse in the magnetic field
fast that the condensate wave function hardly changes du
the interactions. This makes it convenient to expand
propagator for the ejected atoms in the excited harmo
oscillator eigenstates, since the condensate part is then
out most easily. The fact that the condensate density pro
almost remains the shape of the ground state of the
makes this problem easier to deal with theoretically a
makes it therefore worthwhile to determine the propaga
for the ejected atoms as accurate as possible. With the t
II-collapse problem of the preceding section, this objective
much more difficult, since then the condensate wave func
changes its shape considerably during the collapse. T
means that at each time a different number of trap states
to be included in the wave function, making the cutoff b
tween condensate and noncondensed atoms strongly tim
pendent. Therefore, we have applied several approximat
in that case. Even though the density profile of the cond
sate does not change much, the phase of the condensate
function does change very fast in the single-pulse ca
Therefore we use for the phase of condensate wave func
the phase of the Gaussian ansatz given in Eq.~25!. Since this
wave function also describes the low-lying collective mod
of the condensate, we have to exclude these from the pr
gator of the noncondensed atoms.

FIG. 5. The scattering length as a function of time in the expe
ments by Claussenet al. @33#, and the corresponding magnetic fie
~inset!. One increases the scattering length in a timet rise by means
of a linear ramp in the magnetic field, and holds the magnetic fi
for a timethold, before ramping back. The position of the Feshba
resonance is indicated by the dashed line.
2-9
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Denoting the eigenstates of the single-particle Ham
tonian again byxn(x) and the corresponding eigenvalues
en , we have for the propagator of the ejected atoms

G(1)~x,t;x8,t8!52 iu~ t2t8!(
n,n8

8an,n8~ t,t8!

3xn~x!xn8
* ~x8!e2( i /\)(ent2en8t8).

~31!

The prime denotes summation over all the excited trap st
not contained in the condensate wave function. The equa
of motion for the expansion coefficientsan,n8(t,t8) can be
found by inserting Eq.~31! into the equation of motion for
the Green’s function given in Eq.~7!. However, it is easier to
realize that the Green’s function is in Eq.~13! shown to be
related to the expectation value of the product of two Heis
berg annihilation and creation operators for the nonc
densed atoms. The equation of motion for the annihilat
operator of interest is given by

F i\
]

]t
1

\2¹2

2m
2Vext~x!22T2B~ t !uf~x,t !u2G ĉ8~x,t !50,

~32!

with the Hermitian conjugate expression for the creation
erator. We solve this equation by expanding the annihilat
operator as

ĉ8~x,t !5(
m

8fm~x,t !ĉm8 , ~33!

where the Schro¨dinger operatorĉm8 annihilates an atom in
the harmonic-oscillator state with quantum numberm. We
then expand also the functionsfm(x,t) in trap states by
means of

fm~x,t !5(
n

8cn
m~ t !e2( i /\)entxn~x!, ~34!

and determine the equation of motion for the coefficie
cn

m(t) from Eq. ~32!. This results in

dcn
m~ t !

dt
52

2i

\
T2B~ t !(

n
8Vn,n8~ t !cn8

m
~ t !e2( i /\)(en82en)t,

~35!

with matrix elements given by

Vn,n8~ t !5E dxxn* ~x!uf~x,t !u2xn8~x!, ~36!

which depend on time through the variational parameter
the Gaussian ansatz in Eq.~25! and the number of conden
sate atoms. These matrix elements can be calculated an
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cally and the result is given in Appendix. B. The advanta
of the above approach is that we do not have to solve
equation for the derivative ofan,n8(t,t8) with respect tot8
separately.

Putting the results together, we find for the coefficients
the expansion of the Green’s function the expression

an,n8~ t,t8!5( 8
m

cn
m~ t !cn8

m
~ t8!. ~37!

With this Green’s function we have performed simulations
the single-pulse experiments by Claussenet al. @33#, of
which the results are presented in the following section.

2. Results

We perform our calculations for the parameters of t
experiment by Claussenet al. @33#. In particular, the frequen-
cies of the external trapping potential are the same as in
preceding section. Figure 6 shows the fraction of atoms
the condensate as a function of time, for a pulse such
t rise512.5ms andthold5200 ms. The magnetic field during
the hold isB5156.9 G, which corresponds to a scatteri
length of a52000a0. The simulation shows that once th
scattering length nearly takes on its largest value and
coupling between the condensate and the excited state
therefore largest, the condensate starts ejecting atoms. P
these atoms then oscillate back and forth between the
densate and the excited states. The curve in Fig. 6 cle
contains several frequencies, since we are dealing with
eral excited states and thus a multimode Rabi oscillation
the end of the pulse, the rate, i.e., the slope of the cu
becomes equal to zero because the coupling between
condensate and the excited states becomes equal to ze
the end of the pulse, where the scattering length is equa
zero.

To compare our results with the available experimen
data, we calculate the number of atoms as a function of

FIG. 6. The fraction of atoms in the condensate as a function
time for a calculation that includes only quantum evaporation. T
initial number of condensate atoms isNc(0)516 500. The rise time
t rise512.5ms and the hold time isthold5200 ms. The scattering
length is equal toa52000a0 during hold.
2-10
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hold time thold and the rise timet rise. Figure 7~a! shows the
result of a calculation of the fraction of condensate atoms
a function ofthold, with t rise512.5ms fixed. The calculation
is done for two different initial numbers of condensate
oms. The solid line displays the result forNc(0)56100 and
the dashed line forNc(0)516 500. Notice that the latter ini
tially has a larger slope because the effective Rabi coup
between the condensate and the excited states is larger in
case. This is because of the fact that it is proportional to
condensate density.

The results of the simulation that includes only quant
evaporation, shown in Fig. 7~a!, show an oscillation in the
fraction of condensate atoms as a function of the hold tim
This oscillation is not observed in experiment, because of
fact that three-body recombination plays an important role
this case since it becomes large near the resonance@47#.
Therefore, we also want to perform a calculation that
cludes both quantum evaporation and three-body recomb
tion. However, the magnetic-field dependence of the r
constant for this process is unknown. Nevertheless, we

FIG. 7. Fraction of atoms in the condensate as a function of
hold time. The rise time is kept fixed at the valuet rise512.5ms.
The initial number of condensate atoms is takenNc(0)56100~solid
line! andNc(0)516 500~dotted line!. The scattering length is equa
to a52000a0 during hold. ~a! The result of the calculation tha
includes only quantum evaporation.~b! The calculation that in-
cludes both quantum evaporation and three-body recombina
The experimental points are taken from Ref.@33#.
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able to make progress by realizing that the hold time is g
erally larger than the rise time for the experimental poi
shown in Fig. 7. Since experimentally three-body recom
nation is known to increase by orders of magnitude near
resonance@47#, the contribution of three-body recombinatio
will be most important during hold, where the magnetic fie
is closest to the resonance. This suggests that we only n
to include it during hold. Note that for this approximation
be valid it is essential that the rise time is shorter that
hold time. If the rise time is larger than the hold time, t
magnetic-field dependence of the three-body recombina
rate constant is of importance, since the magnetic field
then time dependent for almost the entire pulse.

Figure 7~b! shows the result for a calculation that includ
both quantum evaporation and three-body recombinat
with a rate constantK353310223 cm6/s during hold. This
value for the normal-component rate constant agrees with
order of magnitude of the experimental data@47#. This cal-
culation shows good quantitative agreement with experim
for both initial numbers of condensate atoms.

Finally, we have calculated the number of atoms in t
condensate as a function of the rise time. The result of
calculation is shown in Fig. 8, for various hold times. Th
solid line corresponds tothold51 ms. The dashed and dotte
lines correspond to hold times of 5ms and 15ms, respec-
tively. The scattering length during hold is equal toa
52000a0 for this simulation. For all the results in Fig. 8, th
rise time of the pulse is larger than the hold time. This me
that the magnetic-field dependence of the three-body rec
bination rate constant is very important in this case, since
magnetic field is varying most of the time. Fitting the depe
dence to the experiments is difficult due to the long tim
taken by the numerical computations. Therefore, we refr
from including three-body recombination in these simu
tions. Nevertheless, there is agreement with the experime
results regarding several aspects of our results. First, we
that the number of atoms increases with the rise time o
some interval. This was also found in the experiment

e

n.

FIG. 8. Fraction of atoms in the condensate as a function of
rise time for a calculation that includes only quantum evaporati
The hold time is kept fixed atthold51 ms ~solid line!, thold55 ms
~dashed line!, and thold515 ms ~dotted line!. The scattering length
is equal toa52000a0 during hold.
2-11
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Claussenet al. @33#. Note that this fact cannot be explaine
by any loss process characterized by a rate constant bec
the amount of atom loss will then always be larger w
longer times. Second, the minima of the curves in Fig. 8 s
to lower values oft rise with longer hold times. This was als
observed in the experiment by Claussenet al. @33#. These
minima also occur on approximately the experimental val
of t rise. The fact that in the experiment the minima becom
lower with increasing hold time can be explained by thre
body recombination.

In conclusion, we have applied the generalized Gro
Pitaevskii equation to the recent single-pulse experiment
Claussenet al. @33#. We have shown that the number of a
oms increases with time over some ranges. This canno
understood in terms of conventional loss processes suc
three-body recombination or dipolar decay. However, to
tain agreement with the available experimental data we
to include three-body recombination in our simulations. D
to the fact that the magnetic-field dependence of this proc
is completely unknown, we are not able to make a fit
experiment in all situations.

C. Atom-molecule coherence

Recent experimental and theoretical work has shown
atom-molecule coherence is of importance in the case
double pulse in the magnetic field@29–32# . Therefore, we
may expect it to have an important effect in the case of
single-pulse experiments as well. To make the discussio
these experiments more complete, we investigate the ro
the molecules by means of a quantum field theory that
derived recently@28#. This theory incorporates the corre
molecular binding energy and scattering properties of
atoms at the quantum level by using coupling constants
are dressed by ladder diagrams and by including the mol
lar self-energy. Introducing Heisenberg operatorsĉa and ĉm
that annihilate an atom and a bare molecule, respectively
Hamiltonian for the atom-molecule system reads

i\
]ĉm~x,t !

]t
5F2

\2
“

2

4m
1d~B~ t !!2g2

m3/2

2p\3

3 iAi\
]

]t
1

\2
“

2

4m G ĉm~x,t !1gĉa
2~x,t !,

i\
]ĉa~x,t !

]t
5F2

\2
“

2

2m
1Tbg

2Bĉa
†~x,t !ĉa~x,t !G ĉa~x,t !

12gĉa
†~x,t !ĉm~x,t !. ~38!

Here,g5\A2pabgDBDm/m is the atom-molecule coupling
constant andd(B)5Dm„B(t)2B0… denotes the detuning
i.e., the energy difference between two atoms and the b
molecule. It is determined by the difference in magnetic m
ment between the atoms and the bare molecule, which in
case of85Rb is equal toDm'22.2mB @30#.
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At first glance, the term proportional to
Ai\]/]t1\2¹2/(4m) may appear unexpected. It corre
sponds to the imaginary part of the self-energy of the b
molecule which arises physically from the fact that the m
lecular state interacts with the two-atom continuum. This
fects both the wave function of the dressed molecule and
binding energy. By determining the pole of the molecu
propagator for negative detuning, the latter can be show
be given by@28#

em~B!5d~B!1
g4m3

8p2\6 FA12
16p2\6

g4m3
d~B!21G ,

~39!

which reduces toem(B)52\2/„m@a(B)#2
… for values of the

magnetic field close to the resonance. Due to the coup
with the continuum of atoms, i.e., the open channel of
Feshbach problem, the molecular state is strongly affec
and is given by

uxm;dressed&5AZ~B!uxm;bare&

1E dk

~2p!3
C~k!uk,2k;open&, ~40!

where the coefficients C(k) are normalized as
*dkuC(k)u2/(2p)3512Z(B). It contains with an amplitude
AZ(B) the bare molecular stateuxm;bare&. Moreover, be-
cause of the coupling to the two-atom continuum, the m
ecule acquires a nonzero component in the open cha
@46#. The wave-function renormalization factorZ(B) is
given by @28#

Z~B!5
1

11g2m3/2/~4p\3Auem~B!u!
, ~41!

which approaches 1 for values of the magnetic field far o
resonance, where the dressed molecular state reduces t
bare molecular state, as expected. However, for values o
magnetic field close to the resonance, it is much smaller t
1. In particular, for the case of the single-pulse experime
we always have thatZ(B)!1, which implies that the mag
netic moment of the dressed molecule is in very good
proximation equal to twice the magnetic moment of an ato
For magnetically trapped atoms, this implies that the dres
molecule is subject to twice the trapping potential for t
atoms. With respect to this remark, it is important to note t
the result of the calculations of Kokkelmans and Holla
@30# for the density of the molecular condensate should
multiplied by a factor 1/Z(B)@1 to obtain the density of rea
dressed molecules, since these authors calculate the exp
tion value of the bare molecular-field operator^ĉm(x,t)&.

To bring out the physics of Eq.~38! more clearly, we
introduce the operatorĉm8 5ĉm/AZ(B) that creates a dresse
molecule, i.e., a molecule with an internal state as in E
~40!. Since we intend to consider the situation where initia
2-12
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all atoms are in the atomic condensate, we are allowe
make a mean-field approximation for the atomic field ope
tor and consider only its expectation value. There are, h
ever, no molecules present at the initial time and this requ
a quantum treatment of the molecular field operators. T
resulting equations for the atomic condensate wave func
coupled to the dressed molecular-field read for the exp
mental conditions of interest

i\
]fa~x,t !

]t
5F2

\2
“

2

2m
1Vext~x!1Tbg

2Bufa~x,t !u2Gfa~x,t !

12gAZ~ t !fa* ~x,t !ĉm8 ~x,t !,

i\
]ĉm8 ~x,t !

]t
5F2

\2
“

2

4m
12Vext~x!1em~ t !G ĉm8 ~x,t !

1gAZ~ t !fa
2~x,t !, ~42!

wherefa[^ĉa&, Z(t)[Z(B(t)), and em(t)[em(B(t)). In
the derivation of the above coupled equations, we have
sumed that we are allowed to make an adiabatic approxi
tion for the renormalization factorZ(B) and that we can
evaluate it at every time at the magnetic fieldB(t). In prin-
ciple, there are retardation effects due to the fact that
dressed molecular state does not change instantaneous
turns out that these effects can be neglected if

\U] lnZ~ t !

]t U!uem~ t !u, ~43!

which is fulfilled for almost the entire duration of most of th
pulses in the experiments of Claussenet al. @33#. We come
back to this point in the discussion at the end of the pape
principle, the coupling between the two-atom continuum a
the molecule also contains an incoherent part correspon
to the rogue-dissociation process considered by Mackieet al.
@31#. The rate for this process will be small, however, und
the condition given in Eq.~43!. Moreover, the mean-field
effects of the condensate on the thermal atoms will supp
this process even further. It can, in principle, be includ
straightforwardly and will take the form of a dissipation ter
in the equation for the molecular operator.

We solve the equations for the atomic condensate w
function coupled to the dressed molecular field by using
the condensate wave function again the Gaussian ansa
Eq. ~25!, and by expanding the dressed molecular annih
tion operator in harmonic-oscillator eigenstates, similar
the expansion in Eq.~33!. As an initial condition, we assum
that att50 only condensed atoms are present. The result
our calculations are shown in Figs. 9 and 10.

The calculations presented in Fig. 9 are performed for
same experimental conditions as in Fig. 7. This result cle
shows that a large fraction of atoms is coherently conve
into molecules as a result of the fast ramp in the magn
field and that these oscillate back and forth between
atomic condensate and the molecular states. Due to the
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that the conversion of the atoms to the molecular state
coherent, the operatorĉm8 (x,t) acquires a nonzero expecta
tion value@48#. Figure 9~b! shows the results of simulation
where also a three-body decay is taken into account in
same manner as in the preceding section. The norm
component rate constant is taken equal toK353
310223 cm6/s. Interestingly, the initial decay without three
body recombination is already larger than the experime
data and by adding three-body recombination it is, therefo
impossible to make a fit to the experimental data. This
possibly the result of neglecting the retardation effects of
renormalization factorZ(t) and the rogue-dissociation pro
cess, since the condition in Eq.~43! is violated for a signifi-
cant fraction of the total duration of the pulse in this ca
For the simulations presented in Fig. 10, this condition
violated only for a very small fraction of the total duration
the pulse for rise times larger thatt rise'50 ms and is not
violated at all fort rise>150 ms. Note that the effect of retar
dation and rogue dissociation lead to decoherence, wh

FIG. 9. Fraction of atoms converted in the condensate as a f
tion of the hold time. The rise time is kept fixed at the valuet rise

512.5ms. The initial number of condensate atoms is takenNc(0)
56100~solid line! andNc(0)516 500~dashed line!. The scattering
length is equal toa52000a0 during hold. ~a! The result of the
calculation that includes only the coupling of the atomic condens
to the molecular field.~b! The calculation that includes both atom
molecule coupling and three-body recombination. The experime
points are taken from Ref.@33#.
2-13
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means that our calculations give an upper bound on
amount of molecules that are coherent with the atoms.

Figure 10~a! shows the result of two calculations for di
ferent rise time as a function of the total time. As expect
the number of atoms in the atomic condensate first oscill
with large frequency, since the dressed molecular bind
energy is large here. As the magnetic field approaches va
closer to the resonance, the frequency decreases. From
10~a! it is clear that only the smallest frequency, which al
has the largest amplitude since the gas is then closes
resonance, gives a significant contribution to the freque
observed in the number of condensate atoms as a functio
the rise time, because the larger frequencies with sma
amplitude average out. However, these oscillations are
observed in the experimental data of Ref.@33#. Introducing
three-body recombination to fit the theory to experimen
impossible with pulses having relatively long rise times,
the same reasons as in the preceding section. Neverthe
the amplitude of the oscillations is in this case, except for

FIG. 10. Fraction of atoms in the atomic condensate for
situation where the atomic condensate is coupled to the molec
field. Initially, there areNc(0)516 500 atoms and no molecule
The magnetic field is such thata52000a0 during the hold.~a!
Fraction of atoms as a function of the real time fort rise5200 ms
~solid line! and t rise5100 ms ~dashed line!. The hold time is equal
to thold51 ms for both pulses.~b! Fraction of atoms as a function o
the rise time for different hold times ofthold51 ms ~solid line!,
thold55 ms ~dashed line!, andt hold515 ms ~dotted line!.
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longest hold time, comparable to that of the simulatio
where only quantum evaporation is included. This impl
that for a thorough treatment of the single-pulse experime
both atom-molecule coherence and quantum evapora
should be included. This is beyond the scope of the pres
paper but work in this direction is in progress.

IV. CONCLUSIONS

We have put forward a generalized Gross-Pitaesvkii eq
tion that includes nonlocal terms which describe the quan
evaporation of the Bose-Einstein condensate. We have
plied this equation to two experimental situations whi
make use of a Feshbach resonance to alter the intera
properties of the atoms. First, we have considered the c
where the condensate undergoes a type-II collapse wh
dynamics is mainly determined by the external trapping
tential and have found good quantitative agreement with
periment. Second, we have considered the recent sin
pulse experiments@33#. In general, we have also foun
agreement with experiment in this case, keeping in mind t
the magnetic-field dependence of the three-body recomb
tion rate constant is completely unknown. The latter is
first serious complication in the theoretical analysis. Ap
from considering quantum evaporation we have also con
ered the role of atom-molecule coherence in the single-p
experiments, by means of an adiabatic approximation to
effective quantum field theory for the description of Fes
bach resonances@28#. In first instance, atom-molecule cohe
ence appears to be an important effect. However, the sec
theoretical complication is that the adiabatic approximati
in general, overestimates the effect and does not take
account rogue dissociation@31#. Including this process
damps out the Rabi oscillations between the atoms and m
ecules and leads to the production of energetic atoms
may contribute to the experimentally observed bursts@29#.
Due to these two complications, a completely satisfyi
quantitative description of these experiments is still lackin
It should be mentioned that our calculations take into
count the inhomogeneity of the trapped gas exactly and
in local-density approximation. In addition, we do not ma
a single-mode approximation either for the atomic cond
sate or the dressed molecules. In future work, we intend
consider quantum evaporation, rogue dissociation, and th
body recombination simultaneously to obtain more insig
into these intriguing JILA experiments.
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APPENDIX A: RATE EQUATION
FOR TYPE-II COLLAPSE

With the Gaussian ansatz for the condensate wave fu
tion and the semiclassical propagator for the ejected ato
the final rate equation for the change in the number of ato
is given by

e
lar
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dNc~ t !

dt
5264iA6\3a~ t !Nc

3/2~ t !E
2`

t

dt8H a~ t8!Nc
3/2~ t8!e2 i [u0(t)2u0(t8)] 2(2i /\)uf„0,(t1t8)/2…u2(t82t)F „mpqr~ t !qr~ t8!$ iqr~ t !qr~ t8!

3@~ t2t8!q̇r~ t !2qr~ t !#q̇r~ t8!2qr~ t8!q̇r~ t !%m213m\$qr
2~ t !1~ t82t !@ q̇r~ t !qr~ t !2qr~ t8!q̇r~ t8!#1qr

2~ t8!%

19i\2~ t82t !…Aiqz~ t !q̇z~ t8!

vz
13 Aqz~ t !qz~ t8!S 32

imqz~ t8!q̇z~ t8!

\
D

3A mq̇z~ t !qz
3~ t !

3i\mqz~ t !q̇z~ t !
1qz

2~ t !13i\S qz
2~ t8!

3i\1mqz~ t8!q̇z~ t8!
1

t2t8

m D G21J 2K3

Nc
3~ t !

3A3p3qr
4~ t !qz

2~ t !
. ~A1!
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Here,qr(t) and qz(t) denote the radial and axial widths o
the condensate, respectively.

APPENDIX B: MATRIX ELEMENTS

In this appendix, we calculate the matrix elemen
Vn,n8(t) in Eq. ~36!. Because of the fact that we are deali
with a trapping potential that is symmetric around thez axis,
the excited states factorize into a radial and an axial part.
convenient to characterize the radial part of the excited st
by the quantum numbers (nr ,m), wherenr counts the num-
ber of radial nodes in the wave function andm is the quan-
tum number corresponding to the projection of the angu
momentum on thez axis. The third quantum numbernz
counts the number of nodes in the axial direction. In cyl
drical coordinates, these states are given by@49#

xnr ,m,nz
~r ,u,z!

}e2r 2/(2l r
2)ur um

3 1F1~2nr ,umu11,~r / l r !
2!eimuHnz

~z/ l z!e
2z2/(2l z

2),

~B1!

wherel i[A\/(mv i). The Hermite polynomials are denote
by Hn(x) and the confluent hypergeometric function is d
noted by 1F1(p,q,x). The overlap integral with two func
tions of the form as in Eq.~B1! with a Gaussian of arbitrary
width is, to the best of our knowledge, not tabulated. Nev
theless, we can make analytical progress by realizing tha
01360
s
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es
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-

-
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e

only have to take into account the states withm50, since
the interaction conserves parity. The radial part of the
states is given by

uxnr
&5

1

nr !
S âx

†2 i ây
†

A2
D nrS âx

†1 i ây
†

A2
D nr

u0&, ~B2!

where the operator (âx
†2 i ây

†)/A2 lowers the magnetic quan
tum numberm of the angular momentum by 1. The operat
(âx

†1 i ây
†)/A2 raises this quantum number by 1. Here, t

operators âi
†[Amv i /(2\)@ x̂i2 i p̂/(mv i)# are the usual

harmonic-oscillator creation operators. The ground state
denoted byu0&. The creation operators commute and hen
we can rewrite the radial wave function of the state as

uxnr
&5 (

n50

nr A~2n!!A~2~nr2n!!!

n! ~nr2n!!2nr
u2n&xu2m&y , ~B3!

where un& i denote the normalized eigenstates of the Ham
tonian Hi5 p̂i

2/(2m)1mv i x̂i
2/2 of the one-dimensional har

monic oscillator. In the derivation of this expression, we us
Newton’s binomium to rewrite thenr th powers of the opera
tors on the right-hand side of Eq.~B2! as a sum ofnr terms.
With this result, the normalized wave functions of the e
cited states of interest are given by
xnr ,nz
~x!5

1

4nrnz!2
nzp

F (
n50

nr 1

n! ~nr2n!!
e2(x21y2)/(2l r

2)H2n~x/ l r !H2(nr2n)~y/ l r !Ge2z2/(2l z
2)Hnz

~z/ l z!. ~B4!

The overlap integrals of the two excited states of this form with a Gaussian of arbitrary width are tabulated@50#. The final
result for the matrix elements is given by
2-15
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Vnr ,nz ;mr ,mz
~ t !5

Nc~ t !

p3/2l r
2qz~ t !~~qr~ t !/ l r !

211!
A qz

2~ t !

qz
2~ t !1 l z

2

1

2nr1mr
F (

n50

nr

(
m50

mr

(
k50

min(2n,2m)

(
l 50

min[2(nr2n),2(mr2m)]
1

n! ~nr2n!!

3
1

m! ~mr2m!!

~2n!!

~2n2k!!

2~nr2n!

@2~nr2n!2 l #! S 2m

k D S 2~mr2m!

l D
3@2~m1n2k!21#!! @2~nr1mr2n2m2 l !21#!! $@qr~ t !/ l r #

211%k1 l 2nr2mrG
3F (

q

min(nz ,mz) Anz!mz!

q! ~nz2q!! ~mz2q!!
$@qz~ t !/ l z#

211%q/22(mz1nz)/4~nz1mz22q21!!! G , ~B5!

if nz1mz is even, otherwise it is equal to zero.
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