
Appendix: Light scattering

General

Light scattering by particles is often best described usingspherical coordinates. The par-
ticle center is located at the origin (0,0,0), and in case of rotationally symmetric particles,
the symmetry axis is chosen to coincide with thez-axis. The angles in the spherical coor-
dinate system are given byθ andφ, in whichθ ∈ [0, π] is the polar angle measured from
the positivez-axis andφ ∈ [0, 2π〉 the azimuthal angle measured from thex-axis in the
xy-plane (see Fig. 10.4).

The transverse electromagnetic plane-wave incident alongthe direction of̂n = θ̂ × φ̂
on a scatterer can then be described by two componentsE‖ andE⊥ in the θ̂ and φ̂ di-
rections, respectively. The scattered wave is an outgoing spherical wave. The scattering
matrixS linearly transforms the components of the incoming electric field into the com-
ponents of the scattered wave: [154]
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The four elements of the scattering matrix, the amplitude functionsS1, S2, S3 andS4,
are all complex functions that depend on the directions of incidence and scattering and
on the particle size and morphology. For spherical particles, the off-diagonal elementsS3

andS4 are zero, and the extinction cross section efficiency is given:

Qext =
λ

πR2
Im[S1 + S2] (10.2)

Figure 10.4: Spherical coordinate system.
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Mie theory

The solution of Maxwell’s equations to the problem of scattering and absorption of light
by a sphere illuminated by a plane-wave was given by Gustav Mie in the beginning of
the 20th century. [1] It is based on the method of separation of variables and described
in many text books, see e.g., Refs. [34, 175, 176]. The differential equations can be
solved separately for the parametersr, θ, andφ. The electric fields of the incoming
and scattered waves are then expressed in a series of spherical harmonic functions. The
geometry excludes some of the spherical harmonics in these series, since amplitude of
the fields must be finite at the origin, and the (outgoing) scattered wave must vanish at
large distances from the particle. By applying the boundary conditions that the tangential
components of the fields must be continuous at the surface of the particle, the coefficients
of the scattered and the internal fields can be solved as a function of the known coefficients
of the incoming fields.

The exact analytical results via the method of separation ofvariables can only be
applied to a limited number of particle geometries. [154] Besides the solution for an
isotropic sphere, solutions of concentric core/shell spheres, [44] concentric multilayered
spheres, infinite cylinders, homogeneous and core/shell spheroids, [177, 178] and a sphere
on a surface [179] have been presented in literature.

T-matrix formalism

The T-matrix or transition matrix method was first introduced by Waterman for homoge-
neous particles in the late 1950s and later improved by several people. Nowadays, it is a
widely used technique to calculate the optical properties of nonspherical particles. Like
in the frame-work of Mie-theory, the incoming and scatteredfields are expanded in vector
spherical harmonics. The T-matrix is the matrix that relates the expansion coefficients of
the scattered fieldpmn andqmn to the coefficients of the incoming fieldamn andbmn:
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From the T-matrix, the elements of the scattering matrixSand other quantities can be
calculated. A fundamental and convenient feature of the T-matrix is that it only depends
on the size, composition and shape of the scatterer.

In a typical T-matrix calculation, the field inside the scatterer is also expanded in
vector spherical harmonics, with coefficientscmn anddmn. These coefficients are related
to the coefficientsamn andbmn of the incident field by the matrixQ. The elements of the
matrix Q are 2-dimensional integrals over the surface of the particle. [180] The T-matrix
method is therefore also referred to as the extended boundary condition method. The
T-matrix is calculated from the matrixQ by

T = −Q2 [Q]−1 (10.4)

in which the matrixQ is equal toQ2, except that in the evaluation of the matrix elements
the Bessel functions of the first kind have to be replaced by Hankel functions.

The formulas for T-matrix calculations become much simplerfor axially symmetric
particles with the rotational axis along the z-axis, because the surface integrals then reduce
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to single integrals over the polar angleθ and the T matrix becomes diagonal with respect
to the indicesm andm

′

.
The T-matrix of a coated particle can be written in terms of the T-matrix T1 of a

homogeneous particle with a radius equal to that of the core and a refractive index of
m1/m2, and the matricesA2 andB2 that form the T-matrix of a homogeneous particle of
the same (total) size and refractive indexm2 by−B2 · A

−1

2 : [155]

T = −[B2 + B · T1] · [A2 + A · T1]
−1 (10.5)

The matricesB andA are equal to the matricesB2 andA2, except that in the evaluation
of the matrix elements the Bessel functions of the first kind have to be replaced by Hankel
functions.

T-matrix program

The calculations in Chapter 8 and 9 were done using a Fortran code written by Moroz, [41]
based on the T-matrix codes by Mishchenko and Quirantes. Thecodes are available on
the World Wide Web and described in several papers in the literature. [153, 155, 156, 180,
180, 181] The outcomes for spherical particles were benchmarked to results from Mie-
theory calculations. Results for anisotropic particles were compared to analytical results
for oblate spheroids from Asano [34, 178] (using the method of separation of variables)
and results published by Kellyet al.. [33]

Convergence

For computations, the expansion of the electromagnetic fields is cut-off after a finite num-
berNmax. The convergence of the extinction and scattering cross sections is checked by
a subroutine. [156] When convergence is not obtained within acertain accuracy,Nmax

is increased. An increase inNmax results in larger computer usage (it also determines
the size of the submatricesT ij), and can result in computational instability. For a coated
particle, the convergence of the T-matrices in equation 10.5 require differentNmax to con-
verge. In the calculations, the largest of the value ofNmax required to obtain convergence
is used. The routine also checks for the convergence of the surface integrals, which is
determined by the number of Gaussian integration points. Inliterature, a rule of thumb
for coated particles is that this number should be about 4Nmax. [155] In our calculations,
the number of Gaussian integration points was set to 6Nmax.

For larger particles and/or larger anisotropy, it is well known that computation of the
T-matrix can be an ill-conditioned process. Due to the largenumbers in theQ-matrix,

Table 10.1:Convergence parameterNmax as a function of size anisotropy for an oblate ellipsoidal
silica-core/Au-shell particle in silica with sphere-equivalent-dimensions ofRcore = 156 nm and
Rtotal = 181 nm (system A) andRcore = 228 nm andRtotal = 266 nm (system B).

System Aspect ratio 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1 Nmax 8 10 12 14 16 18 20 20
2 Nmax 12 14 14 18 20 26 28 -
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the matrix inversion involved in the computation of the T-matrix (see Equations 10.3
and 10.5) can become numerically unstable. Therefore, especially for a-spherical parti-
cles, special attention has to be paid to the convergence of the calculation.

For spherical Au-shell particles of about the size in the experiments reported here,
convergence is obtained at typical values of 7−13 for Nmax in the wavelength ranging
from 1900 nm to 300 nm. Table 10.1 shows the increase in the convergence parameter
Nmax for the calculations for oblate ellipsoidal Au-shells as the particle anisotropy is
increased for the systems studied in Chapters 8 (system A) and9 (system B).




