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In this paper we emphasize themixing entropyphenomenon, which is common to both microemulsion and
nucleation theory, and call upon its commonality to both areas to aid in the understanding of both the
replacement free energyand1/S factorin nucleation theory. In microemulsion theory the mixing entropy
must be evaluated by the identification of a physically consistentlength scale. After a brief summary of
previous work in this direction, we use the same method, in nucleation theory, with the result that both the
replacement free energy factor and the 1/S factor appear in a natural and physically consistent manner.

1. Introduction: Mixing Entropy in Microemulsions

An important goal of this paper is the use of the identity of
the phenomenological models used in both microemulsion and
nucleation theory to arrive at a natural solution of the much
discussed issues (in nucleation theory) known as the replacement
free energy factor1 R and the 1/S factor.1-3 Actually, the
replacement free energy issue appears in microemulsion theory
in connection with the evaluation of themixing entropy,4,5 and
this evaluation suggests a means for deriving bothRand 1/S in
nucleation theory. The solution depends upon the determination
of the fundamentallength scale6 that must be used in the
evaluation of apart of the total entropy of a system, a part
that, because of the model, must be evaluated inconfiguration
or coordinatespace whereasphysicalentropy is defined inphase
space.
The model of microemulsions that we consider is in fact

referred to as thephenomenological model, but in nucleation
theory, it emerges as thecapillarity approximation.7 Its main
feature is the treatment of mesodomains, e.g., large clusters,
drops, or mesoscopic entities of arbitrary shape, as fragments
of bulk phases having the same intensive properties as those
macroscopic phases. It is convenient to begin our discussion
with a summary of the mixing entropy problem in microemul-
sions as reported in a recent paper by the authors.6

In statistical mechanics, in the microcanonical ensemble, the
total entropy (physical entropy) of a system is defined in terms
of the number of quantum states of the system consistent with
its macroscopic state (of fixed energy). In the phase space
representation (in the classical or semiclassical limit) this number
of states is associated with a particular volume of phase space.
Since, in the semiclassical limit, the dynamical state of the
system is described by a set of continuous coordinates of
position and momentum, it is necessary to introduce a “length”
scale capable of resolving distinct physical states. For the total
entropy, using the phase space representation, there is a natural
length (of action) scale that serves this purpose. This is of
course Planck’s constant that measures the extent (in one degree
of freedom) of a particular state.
The phenomenological model within which mixing entropy

or configurational entropy (forming only apart of the total
entropy) is defined requires it to be evaluated within configu-
ration space alone and not within the full phase space of the

system! As a result one cannot appeal directly to Planck’s
constant as a length scale, and some less direct means must be
employed to ensure physical consistency.
An obvious method to avoid this dilemma (at least in

principle) involves the choice of a length scale for the resolution
of “patterns”, such that when the configurational entropy based
on it is added to the remaining entropy, the sum yields the true
total physical entropy. This leaves the possibility that the length
scales for different models of thesamesystem will be different.
The length scale is therefore not absolute.
A concrete example of these ideas involves a droplet-type

microemulsion and is due to Overbeek and co-workers.8 Figure
1 is helpful in describing it. On the left we show a droplet-
type microemulsion consisting of drops of water surrounded
by a continuous phase of oil. However the drops are all hanging
from syringes so they are fixed in space. The drops are assumed
large enough to have the intensive properties of bulk water,
and the same is true for the continuous phase. A surfactant
monolayer that covers the drops is considered to be an
incompressible, elastic surface, having the same chemical
potential as it has in a reservoir of pure bulk surfactant. Then
the Gibbs free energy of the system on the left is prescribed by

whereµ1, µ2, andµs are the chemical potentials of pure bulk
oil, water, and surfactant, respectively, andN1, N2, andNs are
the corresponding total numbers of oil, water, and surfactant
molecules in the microemulsion phase.σA is the interfacial
free energy withσ the interfacial tension andA the area of the
total oil-water interface. All interactions between oil, water,
and surfactant are accounted for by the interfacial free energy.
If the drops are released from the syringes that immobilize

them, so that the picture on the right of Figure 1 applies, they
can adopt a continuum of configurations with which mixing
entropySmix will be associated. The full free energy of the
unconstrained microemulsion can then be expressed as

It is important to realize thatSmix is definedand makes its
appearance because of the nature of the model.
It should be noted that, if the drops in Figure 1 are of different

sizes (polydisperse), only those ofonesize could (according to
the Gibbs-Thomson relation9) be in equilibrium with the
surrounding phase. However, entropy of mixing, when it is
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G′ ) N1µ1 + N2µ2 + Nsµs + σA (1.1)

G) N1µ1 + N2µ2 + Nsµs + σA- TSmix (1.2)
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large enough, offers the possibility of stabilizing thetotal system
by reducing the system free energy. This collective phenom-
enon can be employed as one means of defining the mesoscopic
regime for drops or other small systems.
In the simple case in which there arend drops, all of the same

size, one might first think of evaluatingSmix by calculating a
configuration integralZd corresponding to the continuum of drop
configurations, but as indicated earlier, it is then necessary to
convertZd to a pure numberΓ through division by the volume
l3nd wherel is some length scale. Then

Division by nd! removes configurations obtained by merely
permuting identical drops. The “entropy of mixing” is then

Even if l can be determined, the problem is not completely
solved. InG′, corresponding to the left of Figure 1, all of the
degrees of freedom of theN1 + N2 + Nsmolecules in the system
have already been utilized, at least in part. In proceeding to
the system on the right, the same degrees of freedom must be
further utilized and care must be taken to ensure that, in the
evaluation ofZD, they are not used redundantly.
At this point it is convenient to mention some features of

Smix that we shall address in further detail later. The first
concerns the issue ofpolydispersityand its effect on the mixing
entropy. In the example to which eqs 1.3 and 1.4 refer, the
drops were monodisperse. However, if they were polydisperse,
the different-sized drops could be permuted among the syringes
to yield distinct configurations and therefore some mixing
entropy. This would be achieved without allowing the drops
to occupy a continuum of positions. Allowing the continuum
would lead to an even larger mixing entropy. Later, we shall
demonstrate the interesting result that the entropy associated
with the permutation of drops among syringesdeterminesthe
polydispersity, i.e., theshapeof the size distribution while that
associated with the continuum of positions determines theheight
of the distribution, i.e., the drop population!
What strategies are available for the determination of a length

scale consistent with the phase space definition of entropy? The
most direct and reliable approach would involve a method that
refers the problem back to phase space where the definition of
entropy is unambiguous. Although this method cannot always
be applied with precision, it offers a starting point where things
are well defined. To explore this approach, assume that we
are somehow in possession of theexactpartition function, or
what is the same thing, in possession of theexactfree energy
of the system. Denote this free energy byGexact. Then
substitutingGexact for G in eq 1.2 and solving forSmix, we find

where we have indicated thatSmix depends on the length scale
l. To make further progress we need a more detailed expression

for Smix. If, for example, we are dealing with drops, as in Figure
1, we would represent thecontinuumof configurations by the
configuration integralZd, the number of configurationsΓ(l)
would be given by eq 1.3, andSmix, by eq 1.4. Equation 1.3
can be substituted into eq 1.4, and the result into eq 1.5, to
yield an equation whose solution gives the value ofl. Lest it
be overlooked, it should be mentioned that, in the method just
described, referral back to phase space is implicit in the use of
the exact system partition function or, equivalently, the use of
the exact free energy. Of course there are very few examples
in which these quantities are known exactly, but it turns out
that there are significant situations in which they can be
estimated with good precision, and we return to this subject
later.

2. Analysis of the Length Scale

The method implicit in eq 1.5 has been used, in ref 6, to
study the entropic length scale in several systems and under a
variety of conditions. These studies involve simple ideal cases
wherel can be determined exactly and more realistic cases where
it can only beestimatedin a reasonably accurate manner. The
simple cases involve models for thermodynamicallyclosed
spherical drops and one-dimensional systems of hard rods. An
important conclusion derived from these studies with simple
systems is that the length scale can depend very sensitively on
the model. The closed drop models had been studied earlier10

within the context of the replacement free energy problem,
although not from the perspective of the mixing entropy
phenomenon, and a replacement free energy correction to the
nucleation rate of the order a factor of 104 was derived in place
of the more dramatic factor of 1018, originally suggested by
Lothe and Pound.1 Below, we shall also arrive at a factor of
104 by invoking the mixing entropy, but this should not be
viewed as a confirmation of the method used in ref 10. That
method arrived fortuitously at a correction of the proper order
of magnitude because of the size of the drop that was considered.
Had it been applied to a sufficiently large drop, it would have
predicted an even larger correction than the 1018 of Lothe and
Pound. In reality, theclosedmodel upon which it was based
could not represent an actual drop in contact with vapor since
an actual drop is anopen system! The same is true of the
mesophases found in microemulsions; they are alsoopen
systems.
In ref 6 open models representing microemulsions were

examined. However, for these systems an exact result for the
length scale could not be obtained. Instead, a very good estimate
could be made. The estimate was based on what might be called
a “fluidization” of a lattice or cell model in which the cells
were restricted to single occupancy by molecules. Lattice
models, based on almost single occupancy, have been success-
fully applied to the study of microemulsions.11,12 However, the
model used in ref 6 was not the strict lattice model that
ultimately corresponds to a solid but was truly representative
of a fluid. Among other things, the system of cells was a
nonunique array of singly occupied pseudocells whose useful-
ness lay chiefly in its ability to provide a visual aid as well as
a framework for discussion. In addition, real fluid partition
functions were involved in the estimate. The reader is referred
to ref 6 for further details.
The length scale estimate derived from this study was

where 〈V〉 is the average volume per molecule in the micro-
emulsion andF is the average number density. This value for

Figure 1. Schematic of a polydisperse globular microemulsion. On
the left, the drops are immobilized on “syringes”. On the right, the
drops are free to assume a continuum of configurations.

Γ ) Zd/nd!l
3nd (1.3)

Smix) k ln Γ (1.4)

Smix(l) ) (1/T)(N1µ1 + N2µ2 + Nsµs + σA- Gexact) (1.5) l ) 〈V〉1/3 ) F-1/3 (2.1)
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the scale was much smaller (orders of magnitude smaller) than
many other scales5 that had been used previously and had been
chosen on a somewhat ad hoc basis. The length scale prescribed
by eq 2.1 is the more fundamental, but some of the larger more
heuristic scales could be reconciled with it, approximately, by
considering constraints imposed on the average curvature of the
oil-water interface and on the total area of that interface.
Constraints limit the number of allowable permutations of oil
and water molecules and therefore reduce the mixing entropy.
However, a larger length scale also leads to a reduced entropy
and can therefore imitate the effects of constraints. It is
interesting to note that the lack of conscensus concerning the
length scale for the mixing entropy is the microemulsion
counterpart of the replacement free energy issue in nucleation
theory. For further details the reader is again referred to ref 6.
Reference 6 lists several qualifications underlying the validity

of eq 2.1. We will only discuss the one that is fundamental to
the transfer of ideas to the nucleation problem, namely, the
qualification that eq 2.1 is generally only valid when the molar
volumes of all components in the system are of comparable
magnitude. In the case of nucleation, say in a supersaturated
vapor, the liquid drops (clusters) play the role of the disperse
phase (e.g., water droplets) in a microemulsion and the
surrounding vapor plays the role of the continuous phase (e.g.,
oil) in the microemulsion. Clearly the molar or molecular
volumes in the drops and the vapor are vastly different so that
eq 2.1 would not appear to be applicable. However, it is
possible to advance a strong plausibility argument to show that,
when the molecular volumes are so vastly different, eq 2.1 is
once again valid, provided that the length scale is chosen to be
that of thedenserphase, i.e., the molecular volume of the liquid.
We address this issue in the following section.

3. Lattice Gas Argument for the Length Scale

Figure 2 is a lattice-cell model representation (schematic) of
a supersaturated vapor containing a fixed distribution of drop
sizes. The drops are represented as approximately spherical
clumps of molecules (singly occupied shaded cells), while the
vapor molecules lie in the singly occupied, isolated shaded cells.
This model is very similar to the model employed in arriving
at the estimate, eq 2.1, except that it is a strict lattice model
whereas in the microemulsion case the array of singly occupied
cells did not constitute a periodic lattice and, in fact, was
nonunique. As mentioned earlier, it was introduced primarily
as a visual aid and for its value as a tool in the organization of
the argument.
The reader should not assume, because of our reference to a

strict lattice model, that we are using this model to develop the
“length scale” theory for the nucleation case. In fact, we refer

to this schematic model only as a means of clarifying the
essential physical picture that we have in mind and not as a
quantitative tool. Our goal is to render the use of the length
scale result, obtained with greater rigor for the microemulsion
case, both plausible and reasonable. Once that result is accepted
it becomes unnecessary to concern ourselves with such standard
replacement free energy problems as those associated with
continuous translation and rotation of the drops (clusters). These
processes are automatically accounted for in the evaluation of
the fluid partition functions corresponding to the phenomeno-
logical or capillarity approximation model. For the details of
this argument the reader is again referred to ref 6.
As indicated above, in the microemulsion case, all species

had comparable molar volumes. In that case (see ref 6), the
step leading to the mixing entropy involved the permutation
(subject to constraints) of the oil and water molecules among
the various cells. In this way it was possible to move whole
mesodomains and even change their shapes (again within the
constraints).
The same thing can be done with the “drops” of Figure 2.

For example, the drops can be “moved” by permuting their
molecules among the cells. However, these permutations must
be limited to those that preserve the size and spherical shape of
each drop. Furthermore, the vapor molecules must not be
allowed to aggregate to form new drops; otherwise, the
requirement that we are dealing with aparticular distribution
of drop sizes will be violated. These are the constraints to which
the permutation must conform.
It is obvious that, in order to move whole drops of fixed

density by permutation, the cells must have volumes equal to
the molecular volume of a molecule in the drop, i.e., to the
molecular volume of the liquid. We notice that at the same time
this restriction does not prevent the vapor molecules from being
permuted.
This simple argument makes it extremely plausible that the

length scale for the permutation, and therefore for the mixing
entropy, is again given by eq 2.1 with the proviso that〈V〉 is
the molecular volume of the liquid. It does seem possible to
increase the rigor of this claim, but we leave such further
analysis to a later paper.

4. Derivation of the Factor due to Replacement Free
Energy

The so-called “equilibrium distribution” of clusters13,14 in
nucleation theory is usually obtained through an application of
the “law of mass action”. The most popular procedure for
applying mass action refers the problem to thesaturatedvapor.14

However, in reality, there is nothing wrong with performing
the analysis entirely within thesupersaturatedvapor in ac-
cordance with the earlier custom. Referral to the saturated vapor
is convenient when the vapor isnonideal, since in that case
activity coefficients must be introduced, and these cannot be
easily measured in the supersaturated vapor. Since we shall
be concerned with ideal, or nearly ideal, vapors we shall take
the simpler route and perform the analysis in the supersaturated
vapor.
For the proper application of the law of mass action, it is

necessary to have an expression for the chemical potential of a
drop. Usually we are concerned with a dilute “solution” of
drops and the time-honored expression for the chemical potential
of a component of a dilute solution is

whereX is the mole fraction of the component in question and
µ°, dependent only on temperature and pressure, is the chemical

Figure 2. Lattice version of a supersaturated vapor. Isolated shaded
cells contain single vapor molecules, each free to move through its
cell. Shaded clumps of cells are schematic representations of liquid
drops. Each cell in a clump is singly occupied.

µ ) µ°(T,p) + kT ln X (4.1)

10430 J. Phys. Chem., Vol. 100, No. 24, 1996 Reiss and Kegel

+ +

+ +



potential in the standard state. For the case of a drop, the task
before us is the specification ofµ°.
We begin by rewriting, for the nucleation case, eq 1.2. We

find

in which Nvap andNliq are the total numbers of molecules of
vapor and liquid in the system andµvap and µliq are the
corresponding chemical potentials of single molecules.Nn and
an are, respectively, the number of drops (clusters) ofn
molecules in theparticular distribution and the surface area of
a drop ofn molecules.
The next problem is the specification ofSmix. We note that,

since the assembly of drops is dilute, the configuration integral
Zd is simply∏n)2(V)NnwhereV is the total volume of the system.
Then forΓ in eq 1.3 we can write

where, for simplicity, we have writtenV for 〈V〉 ) l3 andNn!
compensates for the indistinguishability of drops of the same
size. Substitution of this relation into eq 1.4, and the result
into eq 4.2, gives

µn is now computed as follows:

where Fvap and Fliq are the densities of vapor and liquid,
respectively, and where we have assumed (as is actually the
case) thatNvap ≈ FvapV. Since the total number of molecules
in the system (counting drops as molecules) is almost indistin-
guishable fromNvap, we could writeXn ) Nn/Nvap and eq 4.5
could be expressed as

from which it is clear, by comparison with eq 4.1 that

This differs from the standard result in classical nucleation
theory by the logarithmic term involving the ratio of the
densities. That logarithmic term is a direct result of the inclusion
of the full mixing entropy, a quantity that, as we shall see, is
partially omitted from the classical theory.
To obtain the cluster size distribution we now employ the

law of mass action in the form

and substitute eq 4.6 into this relation. The result for the size
distributionnNn is

where the subscript (e) refers to the saturated vapor and where

is the supersaturation and

is the factor due to the replacement free energy, an interpretation
that is clear since the factor in square brackets in the last form
of eq 4.9 is the classical expression for the equilibrium number
of clusters of sizen (which, interestingly enough, would have
been our full result if for〈V〉 ) V we had used the molecular
volume in the vapor instead of the molecular volume in the
liquid). Thus bothRand 1/Shave their origins in the inclusion
of themixing entropyin the theory, a fact which shows that the
problems in both the nucleation and microemulsion fields are,
in essence, identical except that they go by different names.
Even more important is the fact that both the replacement

factor and the 1/S factor arise naturally when the full mixing
entropy is taken into account. The replacement factor prescribed
by eq 4.11 is on the order of 104 rather than the 1018 suggested
by Lothe and Pound!1 The analysis in ref 10 arrived at a value
of R having the same order of magnitude but, as explained
earlier, this agreeable result was fortuitous.
Now we turn to the question concerning the relation of mixing

entropy to bothpolydispersityandpopulation,a question raised
earlier in connection with Figure 1. We will prove (referring
to Figure 1) that polydispersity is controlled by the mixing
entropy associated with the permutation of drops among the
fixed “syringes” while the height of the size distribution (drop
population) is determined by the mixing entropy associated with
the continuum of positions available to drops not immobilized
on syringes. We consider single-component polydisperse drops
such that there areNn of them consisting ofn molecules. We
rewriteΓ, prescribed by eq 4.3, in the form

whereNd is the total number of drops. It is clear thatΓ1, the
first factor in parentheses, is the part of the mixing entropy
obtained by merely permuting the drops among the syringes
while Γ2, the second factor in parentheses, is the remaining part

G) Nvapµvap+ Nliqµliq + σA- TSmix )

Nvapµvap+ ∑
n)2

Nn(nµliq + σan) - TSmix (4.2)

Γ ) ∏
n)2[(V/V)

Nn

Nn! ] (4.3)

G) Nvapµvap+ ∑
n)2

Nn(nµliq + σan) - kT ln ∏
n)2[(V/V)

Nn

Nn! ]
(4.4)

µn ) ( ∂G
∂Nn

)
Nvap,Nn′,T,p

) nµliq + σan + kT ln
NnV
V

)

nµliq + σan + KT ln
NnFvap
NvapFliq

(4.5)

µn ) (nµliq + σan + kT ln
Fvap
Fliq ) + KT ln Xn (4.6)

µn° ) nµliq + σan + kT ln
Fvap
Fliq

(4.7)

µn ) nµvap (4.8)

Nn ) (Fliq
Fvap)Nvapexp{- 1

kT
[n(µliq - µvap) + σan]}

)
FliqFvap

(e)

Fvap
(e)Fvap

Nvapexp{- 1
kT
[n(µliq - µvap) + σan]}

)
Fliq
Fvap
(e)

1
S
Nvapexp{- 1

kT
[n(µliq - µvap) + σan]}

) R
1
S[Nvapexp{- 1

kT
[n(µliq - µvap) + σan]}] (4.9)

S)
Fvap
Fvap
(e)

(4.10)

R)
Fliq
Fvap
(e)

(4.11)

Γ ) Γ1Γ2 ) ( Nd!

∏
n)2

Nn!)( VNd

Nd!V
Nd) (4.12)
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of the mixing entropy associated with the continuum of positions
to which the configurational integralVNd corresponds.
The mixing entropy isk ln Γ1 + k ln Γ2 so that the free energy

of the system is

In view of eq 4.12, this equation is really the same as eq 4.4,
but we can now truncate it by retaining only one of the
logarithmic terms. If we retain the term inΓ1, only that portion
of the mixing entropy involving the permutation of drops among
the syringes will be involved. Then, using the truncated
expression, we can repeat the steps contained in eqs 4.5, 4.8,
and 4.9, recalling that

to obtain

Since Nn/Nd is the fraction of drops of sizen, eq 4.15
characterizes thepolydispersity.Thus we have shown that the
part of the mixing entropy corresponding to permutation of the
drops among syringes determines the polydispersity. Since
retention ofboth logarithmic terms in eq 4.14 leads to eq 4.9,
it is evident that the inclusion of the second term merely
introduces the factorRNvap/SNd in front of the exponential in
eq 4.15. Thus we see that the mixing entropy associated with
the continuum of drop positions controls theheight(population
of drops) of the distribution. TheNn of classical nucleation
theory does contain the exponental function of eq 4.15 so that
it must include at least that part of mixing entropy associated
with the permutation of drops on the fixed syringes.
Finally, we should not conclude this paper without calling

attention to a remarkable but little quoted paper of Kikuchi15

in which the problem of the replacement free energy is
addressed, not explicitly in terms of the mixing entropy, but in
a manner such that this quantity is involved, at least implicitly.
Kikuchi already arrived at the conclusion that the length scale
was on the order of the cube root of the volume per molecule
in the liquid, although he did not put his conclusion in these
terms, but rather in terms of a statement that he called the
“molecular volume theorem”. Kikuchi also made use of a

lattice. Our plausibility argument is in some ways a restatement
of Kikuchi’s theorem and the two results are mutually reinforc-
ing.

5. Conclusion

This paper has featured several issues. An important feature
is the demonstration that the mixing entropy problem in the
field of microemulsions is essentially identical with the replace-
ment free energy problem in the field of nucleation. Another
important feature is the demonstration that both the replacement
and 1/S factors arise naturally when the mixing entropy is
included in the theory. Still another feature is the resolution of
the mixing entropy into two types,syringe-fixedentropy and
continuumentropy, and the demonstration that the first type
determines polydispersity while the second type determines the
height of the drop size distribution. Finally, we have shown
that the classical theory of nucleation is recovered if the length
scale is taken to be the cube root of the molecular volume in
the vapor rather than the cube root of the molecular volume in
the liquid. The authors hope that these various demonstrations
will generate concensus in the discussions concerning both the
replacement free energy and 1/S.
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