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Lattice-Boltzmann simulation of the sedimentation of charged disks
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We report a series of lattice-Boltzmann simulations of the sedimentation velocity of charged disks.
In these simulations, we explicitly account for the hydrodynamic and electrostatic forces on disks
and on their electrical double layer. By comparing our results with those for spheres with equal
surface and charge, we can clarify the effect of the particle shape on the sedimentation process. We
find that disks and spheres exhibit a different dependence of the sedimentation velocity on the
Debye screening length. An analysis of the behavior of highly charged disks (beyond the scope of
the linearized Poisson-Boltzmann equation) shows that, in that regime, the charge dependence of the
sedimentation velocity of disks and spheres is similar. This suggests that, at high charge, the
effective hydrodynamic shape of the disks becomes more spherical. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2178804]

I. INTRODUCTION

Suspensions of charged disks are of great practical im-
portance. Examples range from clay suspensions to biologi-
cal fluids. In the present paper, we present calculations of the
electrokinetic behavior of charged disks. As disks are not
spherically symmetric, they also provide an ideal model sys-
tem to study the effect of shape on the coupling between
electrostatic and hydrodynamic responses of a macroscopic
particle.

There exists experimental interest and knowledge in the
transport properties of suspensions of charged disks." Yet, in
spite of the importance of these systems, there is surprisingly
little theoretical knowledge about the effect of the charge of
the disks on their transport properties. One reason may be
that the nonspherical geometry greatly complicates the use of
the analytical approach that is used to describe charged
spherical particles. While there are papers that consider the
hydrodynamical properties of uncharged disks® or the elec-
trostatic properties of charged disks,™* we are not aware of
any theoretical publications that treat the interplay between
electrostatics and hydrodynamics for charged disks.

Several theoretical studies suggest that, in general, there
may be nontrivial coupling effects due to shape
asymmetries.s’6 The need for a numerical (rather than an ana-
lytical) approach is related to the fact that the analytical ap-
proaches are usually only tractable in certain simplified lim-
its. For example, to arrive at tractable analytical expressions
it is often necessary to assume that the Poisson-Boltzmann
equation can be linearized or that the Debye screening length
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is small compared to the linear dimensions of the charged
colloid. Yet these conditions are rarely satisfied for charged
biocolloids and biopolymers. These (nonspherical) particles
usually have high charges under physiological conditions,
making the use of the linearized Poisson-Boltzmann equation
questionable.

The total number of ionizable groups of colloids can be
determined experimentally by titration. However, the experi-
mental determination of the effective charge of colloids usu-
ally exploits nonequilibrium techniques, such as electro-
phoresis or sedimentation. The interpretation of many of
these experiments is based on theoretical expressions that
have been derived for weakly charged spherical colloids. Yet,
it is not at all obvious that expressions valid for spheres can
be extrapolated to disks. Hence, it is important to understand
the effect of shape and charge on the transport behavior of
nonspherical charged particles.

In the present paper we report a numerical study of the
electrokinetics of charged disks, using a kinetic lattice model
based on the Boltzmann equation. Different implementations
of electrokinetic phenomena have been proposed within a
lattice-Boltzmann (LB) scheme’ ' and finite-difference
methods.'' We use a LB method introduced previously12 and
which has been shown to perform well when coupling
charged solid particles to solvent flows. As any other LB
scheme, this method ignores charge fluctuations and static
charge correlation effects, and it allows the study of charged
particles’ dynamics at the nonlinear Poisson-Boltzmann
level.

Our simulations extend from the regime where the elec-
trohydrodynamic coupling is small (low charge, thin double
layer) to the case where the charge is large and the double
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layer is extended. By performing simulations of many differ-
ent conditions, we can disentangle the effects of charge,
double layer width, and shape.

The paper is organized as follows. In Sec. II we present
the basic electrokinetic equations and the simulation method
that we use to solve them. In order to study the effect of
charge on the sedimentation of disks, we must first know the
sedimentation behavior of uncharged disks. This is done in
Sec. III, where we use our model to compute the friction
coefficients of a neutral sedimenting disk for motions paral-
lel to and perpendicular to its axis of symmetry (we refer to
these motions as “longitudinal” and ‘“transverse,” respec-
tively). In Sec. IV we discuss the effect of the charge of the
disk on the sedimentation velocity. In Sec. V we consider the
effect of the concentration of the disks on the sedimentation
velocity. Section VI focuses on the variation of the sedimen-
tation velocity with Debye screening length. Section VII
contains a comparison of the sedimentation behavior of disks
and spheres. Concluding remarks are contained in Sec. VIII.

Il. ELECTROKINETIC MODEL

We analyze a simple geometry in which one disklike
colloidal particle with radius a and height / sediments due to
the action of a uniform external field. The disk has an overall
charge Q=Ze, where Z is the valency and e is the elementary
charge unit. The aspect ratio p is defined as p=2a/h. The
disk is suspended in a symmetric electrolyte and, for the sake
of simplicity, we assume that coions and counterions have
the same mobility. The fluid mixture is characterized locally
by the solvent density p, and by the microion electrolyte
densities p,. The latter also determine the local charge den-
sity of the fluid, g(r)=ze[p,(r)—p_(r)]. We restrict ourselves
to monovalent electrolytes, i.e., z=1.

On a macroscopic length scale, the dynamics of the sys-
tem is governed by the standard electrokinetic equations13
that specify the interplay between the electrical potential,
local charge density, electrical currents, and fluid flow:

0
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P Jk + (1)
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~(pv) = 7V (pv) = VP + 2—qV D, 2)
dt e
jk:—ka+Dk[Vpk+kakV(D]a (3)

where 7 is the shear viscosity, P is the pressure, v is the fluid
velocity, kzT= 8! measures the temperature, and D, stands
for the diffusivity of each electrolyte species (which reduce

to a single constant for symmetric electrolytes). d is the
electrostatic potential, while @Eé(kBT/ e) is an appropriate
dimensionless potential which satisfies the Poisson equation
ViD= - 47713[2 by + pw] , )

k=%
where [p=Be¢*/(4me) is the Bjerrum length and e=¢,¢€, de-
notes the dielectric constant of the medium, while p,, refers

to the charge density due to embedded solid objects, either
colloids of solid walls.
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Equation (1) simply expresses a conservation law and
Eq. (3) is the constitutive equation. Together with the incom-
pressibility condition V-v=0, Eq. (2) corresponds to the
Navier-Stokes equations for an incompressible, isothermal
electrolyte. In the presence of external forces (such as the
gravitational field), the corresponding force must be added to
the right-hand side of Eq. (2).

A. Simulation method

To simulate the sedimentation of charged disks, we used
the lattice-Boltzmann scheme reported in Ref. 12. We
showed therein that lattice Boltzmann can be used to com-
pute transport coefficients of charged spherical colloids. Be-
low, we briefly summarize the main features of the method
and refer the reader to that reference for further details.

The LB method is the lattice counterpart of the Boltz-
mann equation. It prescribes a dynamical evolution rule for
the distribution function n,(r,), which represents the density
of particles at the lattice node r, at the discrete time ¢ and
with the discrete velocity ¢;. The density-weighted moments
of the local velocity distribution correspond to the hydrody-
namic fields. In particular, ¥;c;n,(r,t)=pv is the fluid’s mo-
mentum; it satisfies the Navier-Stokes equation on length and
time scales that are large compared to the lattice spacing and
the LB time step, respectively. The use of LB avoids having
to solve for the pressure explicitly. Moreover, it is easy to
deal with general geometries.14 Since LB is a kinetic model,
it provides a framework where it is easier to introduce new
features from a physically motivated perspective.

The electrolyte species are simulated by following the
diffusion and convection of the local densities of coions and
counterions described by Egs. (1) and (3). This equation is
based on the flux of each species along the links that connect
neighboring nodes and ensures strict local charge conserva-
tion. This local charge combined with the corresponding
electrostatic potential—computed by a numerical solution of
the Poisson equation (4)—provides the local force that accel-
erates the fluid. With this technique, colloidal particles are
simply introduced as surfaces where the collision rules of the
populations of the neighboring nodes are modified to ensure
nonslip boundary conditions.”” The link-based definition of
the flux of the electrolyte species leads to a straightforward
implementation of the no-flux boundary condition for each
of the ionic species at solid surfaces. This suppresses pos-
sible charge leakage through the solid walls.

In Ref. 12 we checked systematically how discretization
affects electrokinetics by comparing the simulated results
with existing theoretical predictions, where available. We
found excellent agreement; the only numerical limitation be-
ing the need to resolve properly the double layer width,
which becomes more costly as a finer grid is required when
decreasing the double layer if the numerical accuracy is kept
constant.

For computational convenience, we choose the value of
the kinematic viscosity »=1/6 [in lattice units (L.u.)] (Ref.
15) and the p,=1 Lu., as the density unity. The Boltzmann
temperature kz7=1/2 l.u. to ensure thermodynamic consis-
tency (see Ref. 12 for details). The external (gravitational)
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field that induces sedimentation was chosen to be 107, a
value that is well inside the linear-response regime. This
gravitational field generates fluid velocities of the order of
1078 1.u. This choice of the gravitational field ensures that all
our simulations are free from nonlinear effects, while nu-
merical round-off errors are absent. The diffusivity of the
electrolyte is set to D=0.19, a value for which spurious dif-
fusion due to lattice advection is negligible (see Ref. 12).
When expressed in the appropriate units for aqueous electro-
lyte solutions, the diffusion coefficient chosen is typically
one order of magnitude smaller than that of small salt ions.
In the simulations described in the subsequent sections we
vary the salt concentration between 7 X 10+ and 5% 1073 as
a way to control the electrical double layer thickness and its
effect on sedimentation so that xR ranges from values
smaller than unity to values larger than unity.

In all the simulations the Bjerrum length /3z=0.4, ensur-
ing that it is always smaller than the Debye length. For water
at room temperature, lz=7 A which implies that our simula-
tions correspond to colloids of nanometric size. Both Rey-
nolds and electrolyte Péclet numbers are much smaller than
unity in the simulations described below, ensuring a realistic
setting of dimensionless numbers (see, e.g., Ref. 16 for a
discussion on the relevance of dimensionless numbers in
LB). In our simulations the diffusion coefficient has a value
which corresponds to nanometric electrolytes (again for
monovalent ions in water). While in principle we can access
any value of the diffusion coefficient, using larger values for
D results in a drastic slowing down of the simulations. Al-
though the diffusion coefficients that we use are unrealistic
for simple salts, they can be relevant for nonaqueous solu-
tions of colloidal disks or aqueous solutions of colloidal
disks with large, weakly charged, molecular counterions. Fi-
nally, the surface charge densities used in the simulations are
smaller than 1 in units of e/ lé; hence neglecting electrostatic
correlations is a consistent approximation [in fact, since
R/lg~10, Q/(4mR*) ~Z X 107 in units of e/[3].

lll. SEDIMENTATION OF NEUTRAL DISKS

Before assessing the role of electrostatics on the sedi-
mentation of nonspherical particles, we performed LB simu-
lations to compute the sedimentation velocity of uncharged
hard disks. Such reference calculations are needed because,
in contrast to the case of hard spheres, analytic expressions
for the sedimentation velocity of an isolated hard disk only
exist in the limit of infinitely thin disks. 1718 We are not aware
of analytical results for disks with finite aspect ratios.

We have simulated the sedimentation of disks with two
different nominal aspect ratios p=10 and p=35, correspond-
ing to disks of lateral dimension A=2, and radii a=10 and 5,
respectively. However, these aspect ratios are only approxi-
mate: in the LB approach, the hydrodynamic boundary of a
solid particle is usually located close to the midpoint of links
joining fluid and solid nodes. In practice, the hydrodynamic
shape of an object may differ slightly from the nominal one.
For this reason, we need to calibrate the shapes of the disks.
An unambiguous way to determine these effective sizes (the
hydrodynamic radius and height) would be to measure the
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FIG. 1. Transverse (circles) and longitudinal (squares) friction coefficients
for a sedimenting neutral disk of aspect ratio p=5 as a function of the
volume fraction of the array. The friction coefficients are normalized by the
friction coefficient of a sphere with the same radius as the cylinder, i.e.,
&é4=6mnR. The dashed lines are linear fits.

friction coefficients of the particles and compare the results
with the appropriate analytical expression of an infinitely
thin disk. Great care must be taken when comparing the LB
numerical results for the friction coefficient with results ob-
tained for an isolated disk. Since we use periodic boundary
conditions, the simulations measure the friction coefficient of
a regular array of particles at volume fraction ¢=ma’h/L?,
where L is the diameter of the simulation box. Hence, in
order to extrapolate to infinite dilution, we must perform a
series of simulations with increasing box size. The same pro-
cedure will also be used to compute the sedimentation veloc-
ity of a charged disk in the dilute limit.

A. Friction coefficients

In the following calculations, the reference frame is cen-
tered on the disk and the disk is fixed on the lattice. Hence,
the gravitational force acting on the disk becomes a body
force, with opposite direction, that acts to the fluid. We then
determined the total fluid velocity at steady state vp. As this
velocity is equal and opposite to the sedimentation velocity
of the particle, U;=—vp, we can relate the sedimentation ve-
locity to the friction coefficient through U;=F,/§, where Uy
is the sedimentation velocity of the disk, ¢ is its friction
coefficient, and F, is the applied gravitational force. We
computed both the friction coefficient for motion along the
symmetry axis of the disk and the one for perpendicular
(transverse) motion.

Hashimoto'® has shown that the friction coefficient of an
array of hard spheres depends, at low volume fractions ¢, as
(€/1&)'=1-1.760"3+ o+ 0(¢?), which shows that the ini-
tial decrease in the sedimentation velocity of an array of hard
spheres is controlled by the colloid volume fraction.

In Fig. 1 we show the transverse and longitudinal fric-
tion coefficients for a neutral disk with p=5 at various vol-
ume fractions, normalized by the Stokes friction coefficient
of a sphere with the same area, i.e., by & =6myR,
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TABLE I. Friction coefficients of an isolated disk in transverse and in lon-
gitudinal motions normalized by the Stokes friction coefficient £,=67 7R of
a sphere with equal surface area, i.e., with radius R=+/a(a+h)/2 (a is the
radius of the cylinder). We compare the computed value of the friction
coefficients with approximate theoretical values for an oblate spheroid with
the two axes equal to the disk radius and to the disk height. We studied two
disks with aspect ratios p=5 and p=10, respectively.

p=5 p=10

&,=6mpR  Simulation Oblate spheroid Simulation Oblate spheroid

£1&, 0.91 0.9 0.93 0.85
g1&, 1.1 1.06 1.19 L1
£1¢ 0.83 0.84 0.78 0.77

R=+/a(a+h)/2. The figure shows that, just as in the case of
neutral spheres, the friction varies linearly with ¢!, Knowl-
edge of this concentration dependence allows us to extrapo-
late the numerical results to estimate the friction coefficients
(¢, and &) at infinite dilution. One limiting case is known:
the friction coefficients of infinitely thin disks (p— ) are
identical to that of an oblate spheroid with the same aspect
ratios between its main axis.'®

We summarize the results for the normalized friction co-
efficients for disks of two aspect ratios in Table I. For the
disk with p=5, we conclude that, to a good approximation,
the hydrodynamic radius and height correspond to the nomi-
nal ones. The numerical values obtained for the larger disk
(p=10) are less satisfactory than for the shorter one. While
one could conclude that, for a larger aspect ratio, the hydro-
dynamic radius and height are different with respect to the
nominal ones, and hence recompute the effective values for a
and £ so as to adjust &,, this does not seem satisfactory, since
for a larger object the disagreement between the nominal and
hydrodynamic sizes is expected to decrease. Moreover, be-
cause we have always used cubic simulation boxes, we can
attribute such a difference to the stronger coupling between
image disks for longitudinal sedimentation. On the other
hand, the ratio between the perpendicular and parallel fric-
tions &, /& do agree with the value estimated on the basis of
the nominal size, suggesting that the deviations come mostly
from uncertainties related to the extrapolation from finite
volume fraction values. Hence, we conclude that, also for
this shape, the disagreement between the two sizes is negli-
gible, and we ascribe the deviations to interactions with the
periodic images.

IV. SEDIMENTATION VELOCITIES OF CHARGED
DISKS: CHARGE DEPENDENCE

Before discussing the computed sedimentation velocities
of charged disks, we briefly recall the theoretical results con-
cerning the sedimentation velocity of weakly charged
spheres, since this theory serves as a reference point for the
discussion of the results for disks. Booth® (and Ohshima et
al.*") predicted that the sedimentation velocity U,(Z), where
Z is the valence, of an isolated sphere is a quadratic function
of the sphere valence, which can be expressed as

J. Chem. Phys. 124, 124903 (2006)

Uy (2)
= =1-c,)(kR)Z?, 5
U,(0) 2(kR) (5)
where U(0) corresponds to the sedimentation velocity of a
hard sphere in the dilute limit. In the regime where the
Debye-Hiickel theory is valid, the prefactor ¢, for a symmet-
ric 1-1 electrolyte is given by

kTl

cy(kR) = TR an(KR), (6)

where R is the radius of the sphere and, with pg denoting the
bulk value of the charge density of species k, «
=4l BZkzipg stands for the inverse Debye length that char-
acterizes the size of the electrical double layer. The function
f(kR) is defined as

1
f(kR) = W[GZKR(3E4(KR) - 5E¢(kR))?
+ 8¢"R(E;(kR) — Es(kR)) — e**R(4E;(2kR)
+3E,(2kR) — TE4(2kR))], (7)

expressed as a linear combination of the integral function,
E,(x)=x""'[7dtr™" exp(~t). Since the values for the diffu-
sion D we are using are smaller than those characteristic to
molecular electrolytes, we will obtain a larger reduction of
sedimentation velocities. In the linear regime, such a change
only modifies the magnitude but not the trends we will dis-
cuss, as tested quantitatively in Ref. 12. In the nonlinear
regime we have seen that changing D does not modify sig-
nificantly the qualitative dependence of the sedimentation
velocity, even if the simple proportionality is lost. If we as-
sume that the diffusion coefficient follows the Stokes-
Einstein relation, D=kzT/(67na,) (with a, being the electro-
lyte size), then Eq. (6) can be expressed as c;
=(lga,/R?)f(kR)/12, making explicit the role that molecular
size plays in the magnitude of the sedimentation velocity.

Equation (7) provides the general features of the shape
of the sedimentation curves as function of kR (ka when the
curves refer to disks) depicted in Figs. 5-8.

It is reasonable to assume that, in the case of disks, the
dependence of the sedimentation velocity on colloidal charge
in the Debye-Hiickel limit has the same functional form as
Eq. 5, where all the shape dependence and hydrodynamic
coupling enter through the factor c,(«R). To test this and to
analyze the role of charge on the sedimentation velocity of
disks, we performed a series of simulations at constant De-
bye screening length and volume fraction (¢=7.2 X 107* for
p=5 and ¢=2.9X 107 for p=10). Since in many cases of
practical interest colloidal particles are highly charged (see
e.g., Ref. 22 for the case of disklike clay particles) we per-
formed numerical simulations covering a wide range of disk
charges.

The results obtained are displayed in Fig. 2, where the
velocity, normalized by the sedimentation velocity of a hard
disk at the same volume fraction, is depicted as a function of
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1-U@)/U(0)

FIG. 2. Surface-charge-density dependence of 1-U,(Z)/U,0) for a disk
with aspect ratios p=5 (squares) and p=10 (triangles) in transverse (dotted
lines) and longitudinal (continuum lines) motions at ka=1. For comparison,
we also show the behavior for a sphere with radius R=4.2 (circles). In the
inset, we show 1-U,(Z)/U,4(0) for weakly charged disks as a function of
72, The curves for the disk with p=10 are plotted against Z>/10 to show
them on the same scale. The inset shows that for small charges, the sedi-
mentation velocity varies quadratically with charge. The lines in the inset
are linear fits to the simulation data. In contrast, the curves in the main
figure are simply meant as a guide to the eye.

the surface charge o=eZ/[2ma(a+h)]. One can identify the
quadratic dependence at low charge, consistent with Booth
theory for spheres. Such dependence can be clearly appreci-
ated in the figure’s inset. After this quadratic growth, a cross-
over region is identified, for surface charge densities between
0.1 and 0.4, before entering the asymptotic regime at even
larger surface charge densities, where the sedimentation ve-
locity increases much more slowly. This behavior is consis-
tent with numerical results on the sedimentation velocity of
charged colloidal spheres which also show a deviation from
Booth’s predictions for surface charge densities around 0.1.

Comparing the deviation of the sedimentation velocity
for transverse and longitudinal motions, as displayed in
Fig. 2, one can see that the sedimentation velocity decreases
faster with charge for transverse motion, regardless of the
aspect ratio. This is indicative of a stronger electrokinetic
coupling for transverse motion. Interestingly, the sedimenta-
tion velocities [expressed by 1-Uy(Z)/Uy40)] become al-
most independent of the aspect ratio of the disks for large
surface charge densities. In the same figure, we also plot the
decrease in sedimentation velocity for a sphere of radius R
=4.2, which shows the same dependence on surface charge
as that of the disks.

Figure 2 allows us to draw some qualitative conclusions
concerning the nature of the errors that are made when esti-
mating the charge of disklike particles by assuming the va-
lidity of Booth’s theory.22 As mentioned above, Booth’s
theory is valid only for weakly charged sedimenting spheres.
As we now have numerical results for the sedimentation ve-
locity of disks, we can identify two sources of errors. At low
charge, where the quadratic dependence of the sedimentation
velocity on colloidal charge holds, there will still be some
discrepancy in the coefficient c,. We address this issue in
more detail in Sec. VII. At high charge, where even the qua-
dratic surface charge dependence does not apply, the use of
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FIG. 3. Volume-fraction-dependent normalized friction coefficients for a
disk with radius a=5, aspect ratio p=5, and valency Z=10 for xa equal to
0.5 (spheres), 0.8 (pluses), and 2.1 (filled diamonds). The upper curves are
for the transverse friction coefficient, while the lower curves are for a lon-
gitudinal friction coefficient. The curves are normalized by the friction co-
efficient of an isolated sphere with equal surface area §A=67'rr;\s"a(a+h)/ 2
(see Table I for the corresponding neutral values). Curves are drawn as a
guide to the eye.

the Booth theory leads to serious errors in the estimation of
the zeta potential. To give an idea of the magnitude of this
error, one should compare the curves shown in Fig. 2 with a
parabolic extrapolation of the curves up to o=0.1. Our cal-
culations also suggest that if the sedimentation velocity of a
charged colloid is plotted as a function of the surface charge
density (and not as a function of the total charge as one
might be tempted to do when comparing with Booth’s
theory) the curves corresponding to the sedimentation veloc-
ity of a variety of charged disks show the same functional
dependence.

V. SEDIMENTATION VELOCITIES OF CHARGED
DISKS: VOLUME FRACTION DEPENDENCE

As discussed above, the inverse friction coefficient of a
dilute, ordered array of hard spheres scales as ¢'/. In Ref.
12, we have verified that this functional dependence also
holds for charged spheres, provided that the system is dilute
enough to guarantee that there is no significant overlap of the
double layers. For charged disks, we expect the ¢'/* depen-
dence to hold under the same circumstances. In order to test
whether there is a detectable effect of the overlap of electric
double layers of different disks, we have computed the nor-
malized friction coefficients for disks of aspect ratio p=35 as
a function of the volume fraction, for volume fractions up to
10%, for different widths of the diffuse layer.

In Fig. 3 we show the results for a weakly charged disk
both for transverse and longitudinal motions. Note that, in
the dilute limit, the friction coefficients will depend on ka
due to the electrohydrodynamic interaction. For transverse
motion the convergence to the dilute limit is slower, indicat-
ing a stronger coupling between disks; we attribute this to
the fact that the distance of closest approach coincides with
the external field direction. Although for ka=1/2 and high
volume fractions the diffuse layers overlap, the effect of the
diffuse layer is much weaker than the volume fraction depen-
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FIG. 4. Volume-fraction-dependent normalized friction coefficients for a
disk with radius a=5, aspect ratio p=5, and valency Z=100 or ka equal to
0.5 (spheres), 0.8 (pluses), and 2.1 (filled diamonds). (a) Transverse friction
coefficient and; (b) longitudinal friction coefficient. In all cases, the curves
are normalized by the friction coefficient of a sphere with equal surface area
& =6mnJala+h)/2 (see Table 1 for the corresponding neutral values).
Curves are drawn as a guide to the eye.

dence or than the effect of the particle shape. The shape
effect is reflected in the substantial difference between the
friction coefficients for transverse and longitudinal sedimen-
tations. Although barely visible in Fig. 3, there is a small but
significant dependence of the friction coefficients on «. This
we discuss in more detail in the next section.

The dependence on « is better visible in Fig. 4, where
we display the friction coefficients of highly charged disks.
Although here the dependence on « is clearly visible, it be-
comes less important at higher volume fractions. This sug-
gests that with increasing volume fraction, the effect of the
overlap of diffuse layers becomes less important than the
direct effect of hydrodynamic interaction between disks. At
small volume fractions, we always recover the ¢!”* depen-
dence of the inverse friction coefficients. However, devia-
tions from this scaling are already noticeable at small ¢. This
fact indicates that the dilute regime is confined to smaller ¢
values for highly charged disks. In the limit xa — % (vanish-
ing Debye length), the sedimentation friction coefficient of a
charged and a neutral disk should coincide. The fact that, for
finite a, the ratio of the friction coefficients extrapolates at
¢=0 to a value different from 1 indicates the importance of
electrokinetic coupling for the sedimentation of charged
disks.

We stress that the values of « are computed on the basis
of the electrolyte densities in the bulk. For concentrated sus-
pensions of highly charged disks, the density of counterions
added to the system to ensure charge neutrality (p_=-Z/V/,
where Z is the valency of the sphere and V; is the volume
occupied by the electrolyte) may exceed the concentration of
added salt. In that case, «”!, the screening length in the salt
“reservoir” is not simply related to the apparent screening
length in the dense suspension. For our simulations this phe-
nomenon becomes important only for the highest volume
fractions (typically ¢>0.08). Hence, our extrapolation at
low ¢ is not affected by this complication.
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FIG. 5. Normalized sedimentation velocity of a charged disk with aspect
ratio p=5, radius a=5, and valency Z=10 as a function of the electrical
double layer (EDL) thickness expressed in dimensionless units ka. The
different simulation points correspond to ¢=3.8 X 1072 (circles), 4.8 X 1073
(squares), 7.3 X 107 (pluses), 4.6 X 107 (stars), and 3.1 X 10~ (diamonds).
(a) Transverse motion and (b) longitudinal motion. Curves are drawn as a
guide to the eye.

VI. SEDIMENTATION VELOCITY OF CHARGED DISKS:
DEBYE LENGTH DEPENDENCE

Having analyzed the role of charge and volume fraction
on the sedimentation velocity, we now consider in more de-
tail the effect of the double layer width on the sedimentation
of the disks. We follow the same procedure as in Sec. III A
and study the sedimentation velocity U,(Z) at different vol-
ume fractions, normalized by the corresponding velocity of
isolated charged-neutral disks Uy(0). In this way, the ratio
U,(Z)/U,40) measures the reduction in the sedimentation ve-
locity of one charged disk due to its electrokinetic interaction
with the electrolyte. The reduction in sedimentation velocity
in the dilute limit is interesting theoretically, because we can
compare with analytic results for weakly charged spheres,
although in experiments the reduced sedimentation velocity
UAZ,9)/U40,¢) at finite ¢ is the relevant quantity. For
simplicity, in the remaining part of this section, we will be
writing U,(Z) instead of Uy(Z,) but, unless explicitly
stated, the volume fraction dependence is always assumed.

In Fig. 5(a), we show the normalized sedimentation ve-
locity as a function of the double layer width for a disk with
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FIG. 6. Normalized sedimentation velocity of a charged disk with aspect
ratio p=10, radius a=10, and valency Z=10 as a function of the EDL
thickness expressed in dimensionless units xa at volume fractions ¢=1.9
X 1072 (circles), =6.5X 1073 (squares), ¢=2.9X 1073 (diamonds), and ¢
=1.8X 1073 (triangles), and the corresponding dilute limit extrapolation
(stars). Left: Transverse motion; right: longitudinal motion. Curves are
drawn as a guide to the eye.

aspect ratio p=35 in transverse motion, for different volume
fractions. For infinitely thin and infinitely broad diffuse lay-
ers, the sedimentation velocity should coincide with that of a
charged-neutral disk, and hence the curve should approach
one for both small and large «a, as is indeed observed. The
decrease at intermediate values of ka is the result of the
interplay between hydrodynamic dissipation and electrolyte
diffusion. The largest effect is observed when the size of the
double layer is of the order of the largest dimension of the
disk, i.e., ka~ 1. The effect increases with decreasing vol-
ume fraction, consistent with the discussion in the previous
section, and above volume fractions around 1%, the changes
in normalized sedimentation become negligible. The mini-
mum velocity also depends on volume fraction, an effect
which is consistent with previous findings for spheres.23 A
similar behavior is observed in Fig. 5(b), where the longitu-
dinal sedimentation for a weakly charged disk is depicted. It
is interesting to note that the decrease in sedimentation ve-
locity is slightly smaller. We can ascribe this effect to the fact
that the distorted double layer is not isotropic and has a
smaller contribution to the friction when the wider side of
the disk is exposed to a region where the velocity gradients
are smaller.

In Figs. 6(a) and 6(b), we show the sedimentation veloc-
ity for a weakly charged disk with a somewhat larger aspect
ratio: p=10. The trends are the same as for the disk with p
=5, although the minimum velocity seems to depend on as-
pect ratio and is achieved now for slightly narrower double
layers. The reduction in absolute terms is now smaller, but
this is simply due to the lower surface charge density as
compared with the smaller (p=5) disk. It is worth mention-
ing that for disks with p=5 we could effectively reach the
dilute limit for U,(Z)/U40). In contrast, for disks with p
=10 we had to perform the dilute limit extrapolation.

In Fig. 7 we show the sedimentation velocity for a
highly charged disk with p=5, normalized by the sedimen-
tation velocity of uncharged disks at the same volume frac-
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FIG. 7. Normalized sedimentation velocity of a charged disk with aspect
ratio p=5, radius a=5, and valency Z=100 as a function of the EDL thick-
ness expressed in dimensionless units xa at various volume fractions: ¢
=3.8X 1072 (circles), 4.8 X 1073 (squares), 7.3 10~ (pluses), 4.6 X 107*
(stars), and 3.1 X 10~ (diamonds). (a) Transverse sedimentation and (b) lon-
gitudinal sedimentation. Curves are drawn as a guide to the eye.

tion. Although, again, the relevance of the electrokinetic cou-
pling in the sedimentation velocity diminishes upon
increasing volume fraction, the coupling between electric
friction and velocity dissipation becomes much more domi-
nant now. The sedimentation velocities decrease by almost
50%, and the range of the values of xa where appreciable
deviations from the uncharged disk behavior is observed is
wider than in the case of weakly charged disks. Hence, the
electrokinetic coupling for disks is much larger than that ob-
served for spheres and is, in fact, consistent with mobility
reductions observed in laponites.22 For higher aspect ratios
the same trends are observed, as shown in Fig. 8, for the
particular aspect ratio p=10.

In all figures we observe that the reduction in sedimen-
tation velocity for transverse motion is larger than that for
longitudinal motion. For wide double layers the differences
may amount to 20%. This effect can be intuitively under-
stood in terms of the different forces felt by the electric
double layer in the two configurations. For transverse sedi-
mentation, most of the diffuse layer is exposed to the flow
induced by the sedimenting array of disks. On the contrary,
for longitudinal motion most of the electric double layer is
located in a region where the fluid velocity is small and is
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FIG. 8. Volume-fraction-dependent reduction in the sedimentation velocity
of a charged disk with aspect ratio p=10, radius a=10, and valency Z
=100. The plot on the left refers to a disk sedimenting along its edge, while
the right part along its symmetry axis. The different curves correspond to
volume fractions ¢=1.9X 1072 (circles), 6.5X 107 (squares), 2.9 X 1073
(diamonds), and 1.8 X 1073 (triangles), and the corresponding dilute limit
extrapolation (dashed line with star symbols). Curves are drawn as a guide
to the eye.

not subject to large gradients. One would then naively expect
that this difference will be enhanced by an increase of the
surface charge. But, in fact, the relative difference decreases
with the charge of the disk. Hence, as qualitatively illustrated
in Figs. 9 and 10 there are nontrivial couplings between the
electrostatic restoring force and the flow field. From the fig-
ures it is clear that for longitudinal sedimentation most of the
diffuse layer is in a region of smoothly varying velocity,
while for transverse sedimentation the double layer is ex-
posed to large velocity gradients. More interestingly, by
comparing the flow fields past the weakly and the highly
charged disk, we observe that the effective hydrodynamic
shape of the particle becomes more isotropic. Moreover,
close to the surface of the particle in Fig. 9(b), the direction
of the flow is reversed with respect to the direction of the
bulk flow. This effect can only be caused by the different
behavior of the electrostatic and the hydrodynamic fields at
the edge of the disks, an effect we have not analyzed in
detail, because much more expensive simulations are re-
quired to gain a more quantitative understanding of the flow
patterns in Fig. 9(b). Such simulations fall out of the scope of
the present paper.

Vil. SEDIMENTATION VELOCITY OF CHARGED
DISKS: SHAPE EFFECTS

It is not straightforward to quantify the effect of shape
variations on the sedimentation of (charged) disks because
one cannot change the shape without modifying either the
surface charge density or the overall particle charge. Then,
because the electrostatic field next to a particle is propor-
tional to the surface charge o, a change in the surface area
will change the electric field surrounding the particle, mak-
ing it impossible to isolate the effect of shape change. On the
other hand, keeping o constant by varying the overall par-
ticle charge is not a solution either since the reduction in
sedimentation velocity does depend also on Z [see Eq. (5)].
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FIG. 9. Projection of the fluid velocity field near a sedimenting charged disk
on the plane parallel to the axis of revolution of the disk. The disk sediment
along its edge.

As aresult, we will have to modify both valency and volume
(to keep the surface area constant) to disentangle charge ef-
fects from effects arising from shape changes. However,
even if we take care of this problem, we can only compare
each disk with the corresponding sphere, because the two
disks we study have different areas.
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FIG. 10. Projection of the fluid velocity field near a sedimenting charged
disk on the plane parallel to the axis of revolution of the disk. The disk
sediment along its symmetry axis.

In order to focus on the shape effects as much as pos-
sible, we computed the normalized sedimentation velocity
U/2)/U40) [with U,(Z) the sedimentation velocity of an
isolated particle with valency Z, and U,4(0) the velocity of the
same object with Z=0] with the corresponding normalized
sedimentation velocity of a sphere with the same valency Z
and surface area, U,(Z)/U,(0).
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FIG. 11. Normalized reduction in the velocity of a sedimenting disk of
charge Z=10 at infinite dilution both for transverse (spheres) and longitudi-
nal (squares) motions as a function of its double layer thickness. The dashed
curve corresponds to the theoretical prediction for a sedimenting sphere of
equal charge and surface area. (a) p=5 and (b) p=10. Lines joining the
simulation points are drawn as a guide to the eye.

For weakly charged particles, we can make use of
Booth’s prediction to analyze the results. To this end, rather
than studying the scaled velocity directly, we have found
fruitful to consider [1-U,(Z)/U,40)]/Z?*, which is the coef-
ficient ¢, [see Eq. (6)] in the case of a sphere. This is a direct
measure of the electrokinetic reaction induced by the electric
double layer. Since we have argued (see Sec. IV) that the
charge dependence of disks is the same as the one observed
for spheres in the Debye-Hiickel limit, the previous ratio is a
quantitative way of assessing the role of shape on the sedi-
mentation velocity.

In Figs. 1l1(a) and 11(b), we show [l
—Ud(Z)/Ud(O)]/ZZEc‘ZI for disks with two different aspect
ratios and with a small charge, Z=10, both for transverse and
longitudinal sedimentations. cf is expressed in units of A}
=kyTlg/ (72D na?), in such a way that for spheres it re-
duces to f(ka) as predicted by Booth. For weakly charged
disks and thin double layers, the decrease in velocity does
not depend strongly on shape. This is consistent with Smolu-
chowski’s theory for electlrophoresis,24 which predicts that
the electrophoretic velocity of particles with the same zeta
potential (the electrostatic potential at contact) is indepen-
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FIG. 12. Normalized reduction in the velocity of a sedimenting highly
charged disk at infinite dilution both for transverse (spheres) and longitudi-
nal (squares) motions as a function of its double layer thickness. The dashed
curve corresponds to the theoretical prediction for a sedimenting sphere of
equal charge and surface area. (a) p=5 and (b) p=10. Lines joining the
simulation points are drawn as a guide to the eye. Disks and spheres have a
valency Z=100, which correspond to a surface charge 0=0.45 for the disk
with p=5 and to ¢=0.13 for the disk with p=10. In subfigure (b) we also
show the same simulation for a disk surface charge 0=0.40 for the disk with
p=10 in transverse (+) and longitudinal (X) sedimentations. Lines joining
the simulation points are drawn as a guide to the eye.

dent of the particle shape if ka— . However, the deviation
from this Smoluchowski limit appears confined at narrower
double layers for longitudinal motion; hence, the shape af-
fects significantly the sedimentation velocity of suspended
particles. Moreover, in the case of asymmetric objects, the
orientation of the particle also affects the velocity. For both
longitudinal and transverse sedimentations, the electrokinetic
coupling of a disk is always smaller than the decrease for an
equivalent sphere. One can clearly see that the decrease in
velocity for longitudinal motion is smaller than for trans-
verse motion.

In the high-charge regime we use the same quantity, 0‘21,
to assess the role of shape, although we know that the Booth
theory fails in this case. In Figs. 12(a) and 12(b) we show cg,
again for two aspect ratios. In the thin diffuse-layer limit, our
data are consistent with Smoluchowski’s theory, and we ob-
serve again a departure from the results for a sphere upon
increasing the width of the electric double layer. The maxi-
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mum effect is observed for electric-double-layer widths of
the order of the largest linear dimension of the object, and,
again, the decrease for longitudinal motion is smaller than
for transverse motion. This is consistent with the intuitive
picture that the hydrodynamic shape of a disk becomes more
isotropic upon increasing its charge.

By comparing Figs. 12(a) and 12(b), the reader might
conclude that the reduction in sedimentation velocity is
higher for the disk with a smaller aspect ratio. However, one
should bear in mind that the two disks have the same valency
and therefore very different surface charges o,.5=3.4
X 7)=19- To show how much the surface charge affects c,, we
show ¢, for the disk with p=10 also at Z=300. Even though
the surface charge of this disk is still lower than the surface
charge for the other disk, the electrokinetic effect is already
more pronounced.

An illuminating way of displaying the relevance of
shape for sedimentation is to consider what the effective
Stokes radius of a sedimenting disk is. In Fig. 13 we show
the effective Stokes radius [R = F/(67r5U)], where F is the
magnitude of the external force acting on the disk. For small
charges, the effective radius depends weakly on the width of
the double layer and is larger for the transverse motion, as
can be expected. At high charges the behavior is qualitatively
different since R,y depends on the width of the double layer
for A\p/a<<2. For larger A\p/a it tends to level off. As the
diffuse layer broadens, the effective size that characterizes
the sphere and the disk in longitudinal motion tend to con-
verge, leading to a same effective shape for wide layers.

The physical origin of this effect is already implicit in
Figs. 9 and 10. These figures show the velocity fields around
the disk for both orientations. Different flow fields develop
around the sedimenting disk for low and high surface
charges. The flow profiles look more isotropic for high Z;
therefore, one might expect that for high Z, the friction co-
efficients of a disk approach that of a sphere with the same Z.
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VIIl. DISCUSSION

In this paper we have presented simulations of the sedi-
mentation of an array of charged disks. We have treated the
electrolyte at the Poisson-Boltzmann level, while we have
incorporated the relevant hydrodynamic couplings between
the solvent and the dissolved electrolyte. Using the lattice-
Boltzmann method we have modeled highly charged colloids
and arbitrary xa values, which greatly expands the parameter
range that can be covered.

Since no exact analytical expressions exist for the sedi-
mentation velocity of isolated neutral disks and finite thick-
ness, we have first checked the performance of our method
by validating the sedimentation of neutral disks using ap-
proximate expressions that become exact for infinitesimally
thin disks. Such a computation has provided us with values
for the sedimentation velocities of uncharged disks, which
are needed for the subsequent analysis.

In order to clarify the role of electrohydrodynamic cou-
pling and the relevance of shape, we have performed a sys-
tematic study to assess the role of shape, volume fraction,
charge, and ionic strength on the sedimentation velocity. We
find that in the linearized Debye-Hiickel regime, the sedi-
mentation velocity has the same functional dependence on
volume fraction and surface charge as that for spheres, al-
though with different amplitudes. This deviation should be
accounted for when using diffusivity measurements of disks
to infer the effective charge of colloids, and this work repre-
sents, to our knowledge, the first results where the sedimen-
tation velocity is computed systematically. So far experimen-
tal findings could only be compared with the theory for
weakly charged spheres,22 which can lead to numerical errors
in the estimates of their effective charges. At fixed xa, we
have studied the surface charge dependence of the disk sedi-
mentation velocity, from which we have observed that in the
high-charge regime, the accumulation of charge near the disk
surface layer decreases the effect of electrokinetic coupling
on the sedimentation velocity and also shows that such ac-
cumulation becomes more relevant as the disk becomes more
anisotropic.

We have shown that the geometrical anisotropies of neu-
tral disks are reduced by the presence of the electric double
layer, especially for highly charged disks. In fact, we have
seen that when the double layer is exposed to larger veloci-

J. Chem. Phys. 124, 124903 (2006)

ties, the reduction in sedimentation velocity is larger. Hence,
this mechanism tends to generate a more symmetric disk
response, as can be effectively characterized in terms of an
effective disk radius which becomes less sensitive to shape
details as the charge increases.
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