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Forward flux sampling-type schemes for simulating rare events:
Efficiency analysis
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We analyze the efficiency of several simulation methods which we have recently proposed for
calculating rate constants for rare events in stochastic dynamical systems in or out of equilibrium.
We derive analytical expressions for the computational cost of using these methods and for the
statistical error in the final estimate of the rate constant for a given computational cost. These
expressions can be used to determine which method to use for a given problem, to optimize the
choice of parameters, and to evaluate the significance of the results obtained. We apply the
expressions to the two-dimensional nonequilibrium rare event problem proposed by Maier and Stein
�Phys. Rev. E 48, 931 �1993��. For this problem, our analysis gives accurate quantitative predictions
for the computational efficiency of the three methods. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2198827�
I. INTRODUCTION

Rare events are processes which happen rapidly, yet in-
frequently. Specialized techniques are required in order to
study these events using computer simulation. This is be-
cause, in “brute-force” simulations, the vast majority of the
computational effort is used in simulating the uninteresting
waiting periods between events, so that observing enough
events for a reliable statistical analysis is generally impos-
sible. The quantities of interest from the simulation point of
view are generally the rate constant for the rare transitions
between the initial and final states and the properties of the
transition path ensemble �TPE�, the �correctly weighted� col-
lection of transition trajectories. When computing these
quantities, it is very important to know the statistical error in
the calculated value and the likely cost of the computation.
In this paper, we derive approximate expressions for these
quantities for three rare event simulation methods which we
proposed in a recent publication.1 These expressions turn out
to be surprisingly accurate for simulations of a model rare
event problem. Our results allow us to quantify the compu-
tational efficiency of the three methods.

The three “forward flux sampling” �FFS�-type simula-
tion methods allow the computation of both the rate constant
and the transition paths for rare events in equilibrium or non-
equilibrium steady-state systems with stochastic dynamics.
In all three methods, a series of interfaces is defined between
the initial and final states. The rate constant is given by the
flux of trajectories crossing the first interface, multiplied by
the probability that these trajectories subsequently reach B.
The latter probability is computed by carrying out a series of
“trial” runs between successive interfaces; this procedure
also generates transition paths, which are chains of con-
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nected successful trial runs. The methods differ in the way
the trial runs are fired and the transition paths are generated.
In the FFS method, a collection of points is generated at the
first interface, and trial runs are used to propagate this col-
lection of points to subsequent interfaces, thus generating
many transition paths simultaneously. In the branched
growth �BG� method, a single point is generated at the first
interface and is used as the starting point for multiple trial
runs to the next interface. Each successful trial generates a
starting point for multiple trials to the following interface, so
that a “branching tree” of transition paths is generated. In the
Rosenbluth �RB� method, a single starting point is chosen at
the first interface. Multiple trial runs are carried out, but only
one successful trial is used to propagate the path to the next
interface; thus unbranched transition paths are generated. In
this method, a reweighting step is needed to ensure correctly
weighted transition paths. The BG and RB methods are both
inspired by techniques for sampling polymer configurations
�the pruned-enriched Rosenbluth method and the configura-
tional bias Monte Carlo method, respectively2�; one could
also imagine developing schemes based on more complex
polymer sampling methods such as recoil growth.2

A range of simulation techniques for rare events in soft
condensed matter systems is currently available. In Bennett-
Chandler-type methods, the rate constant is obtained via a
computation of a free energy barrier.2 In transition path sam-
pling �TPS�,3 transition trajectories �paths� are generated by
shooting forward and backward in time from already existing
paths and are then sampled using a Monte Carlo procedure.
The rate constant is obtained via the computation of a time
correlation function. Bennett-Chandler-type methods and
TPS are suitable for systems with stochastic or deterministic
dynamics, but they require knowledge of the steady-state
phase space density, which means that the system must be in
equilibrium. While the FFS-type methods are only suitable
for systems with stochastic dynamics, they do not require the

phase space density to be known and can therefore be used
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for nonequilibrium steady states not satisfying detailed bal-
ance. To our knowledge, the only other path sampling
method that is suitable for nonequilibrium systems is that
proposed recently by Crooks and Chandler,4 which adopts a
“TPS-type” methodology, generating new stochastic paths
from old paths by changing the random number history.

The origin of the efficiency of the FFS-type methods is
that they use a series of interfaces in phase space between the
initial and final states to divide the transition paths into a
series of connected “partial paths.” These partial paths are
generated in a ratchetlike manner; i.e., once a particular in-
terface has been reached, the system configuration is stored
and is used to initiate trial runs to the next interface. Many
other rare event techniques also use a series of interfaces in
phase space. In transition interface sampling5 �TIS� and par-
tial path transition interface sampling �PPTIS�,6 interfaces
are used to facilitate the generation of transition paths by a
TPS-like procedure. In milestoning,7 trajectories are gener-
ated between interfaces assuming a steady-state distribution
at each interface, while string methods8,9 use a series of
planes in phase space to allow a trajectory connecting the
initial and final states to relax to the minimum free energy
path. The advantages of the FFS-type methods over other
transition path and rate constant calculation methods are that
no assumptions are made about “loss of memory” during the
transition, no a priori knowledge is required of the steady-
state phase space density, and the rate constant is obtained in
a simple and straightforward way. We have recently become
aware that the BG method bears resemblance to the repeti-
tive simulation trials after reaching thresholds �RESTART�
method used for simulating telecommunications
networks10–12 �this approach was originally introduced by
Bayes13�. The efficiency of that method has also been
analyzed.11 A related method, known as weighted ensemble
Brownian dynamics, has been applied to protein association
reactions.14

The key aim of a rare event simulation technique is to
calculate the rate constant or, in some cases, obtain the TPE
with enhanced efficiency, compared to brute-force simula-
tions. However, quantifying the efficiency of a particular
simulation method is often difficult. Our aim in this paper is
to derive simple but accurate expressions for the computa-
tional cost and statistical accuracy of the three FFS-type
methods. We define the “efficiency” of the methods to be the
inverse of the product of the cost and the variance in the
calculated rate constant; our results then allow us to analyze
the efficiency of the methods in a systematic way. This defi-
nition of the efficiency appears to us to be the most natural
one; however, we do not expect the qualitative features of
our results to depend on the exact definition chosen. The
expressions for the cost and variance that we derive could
easily be inserted into a different formula for the efficiency.

From a practical point of view, we expect the expres-
sions for the computational cost and statistical accuracy de-
rived here to be of use to those carrying out simulations in
two ways. Firstly, when faced with a rare event problem, one
often has a limited amount of computer time available and
specific requirements as to the desired accuracy of the calcu-

lated rate constant. Analytical expressions for the cost and
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statistical accuracy would allow one to estimate, before be-
ginning the calculation, whether the desired accuracy can be
obtained within the available time and thus to make an in-
formed decision as to which, if any, method to use. Secondly,
after completing a rate constant calculation, one needs to
obtain error bars on the resulting value. This is especially
important for rare events, where both experimental and simu-
lation results can be highly inaccurate. In general, error esti-
mation requires the calculation to be repeated several times,
which is computationally expensive. However, if analytical
expressions were available for the statistical accuracy, in
terms of quantities which were already measured during the
rate constant calculation, one could obtain the error bars on
the predicted rate constant to within reasonable accuracy
without the need for lengthy additional calculations. In this
paper, we derive such analytical expressions.

Approximate expressions are derived for the cost, in
simulation steps, and for the variance in the calculated rate
constant for the three FFS-type methods. We initially treat
the simple case where all trials fired from a particular inter-
face have an equal probability of succeeding. We then move
on to the more realistic case where the probability of reach-
ing the next interface depends on the identity of the starting
point. To this end, we include in our calculations the “land-
scape variance,” the variance in the probability of reaching
the next interface due to the characteristic landscape for this
particular rare event problem. Our expressions are functions
of user-defined parameters, such as the number of trial runs
per point at a particular interface, as well as parameters char-
acterizing the rare event problem itself, such as the probabil-
ity that a trial run succeeds in reaching the next interface.

We analyze the efficiency of the three methods as a func-
tion of the parameters for a “generalized” model system. We
find that the optimum efficiency is similar for all three meth-
ods but that the effects of changing the parameter values are
very different for the three methods. In particular, the BG
method performs well only within a narrow range of param-
eter values, while the FFS and RB methods are more robust
to changes in the parameters. The RB method has a consis-
tently lower efficiency due to its acceptance/rejection step;
however, RB may be more suitable for applications where an
analysis of transition paths as well as rates is needed or
where storage of configurations is very expensive.

To test the accuracy of our predictions in the context of
a real simulation problem, we then apply the three FFS-type
methods to the two-dimensional nonequilibrium rare event
problem proposed by Maier and Stein.15–17 We measure the
computational cost of the methods and the variance in the
final value of the rate constant, and we compare these to the
cost and variance predicted by the expressions derived ear-
lier. We find that the expressions give remarkably good pre-
dictions both for the cost and the variance. This suggests that
the expressions can, indeed, be used to give accurate and
easy-to-calculate error estimates for real simulation prob-
lems.

In Sec. II, we briefly describe the three FFS-type meth-
ods. Expressions for the computational cost and for the sta-
tistical error in the calculated rate constant are derived in

Sec. III. In Sec. IV, these expressions are shown to be accu-
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rate for the two-dimensional nonequilibrium rare event prob-
lem proposed by Maier and Stein. Finally, we discuss our
conclusions in Sec. V.

II. BACKGROUND: FFS-TYPE METHODS

The FFS-type methods use the “effective positive flux”
expression for the rate constant, which was rigorously de-
rived by van Erp and co-workers.5,6,18–20 The rare event con-
sists of a transition between two regions of phase space, A�x�
and B�x�, where x denotes the coordinates of the phase space.
The transition occurs much faster than the average waiting
time in the A state. We assume that a parameter ��x� can be
defined, such that ���A in A and ���B in B. A series of
values of � ,�0 , . . . ,�n, are chosen such that �0��A, �n

��B, and �i��i+1. These must constitute a series of nonin-
tersecting surfaces in phase space, such that any transition
path leading from A to B passes through each surface in turn.
This is illustrated in Fig. 1.

The rate constant kAB can be expressed as20

kAB =
�̄A,n

h̄A
=

�̄A,0

h̄A
P��n��0� . �1�

In Eq. �1�, hA is a history-dependent function describing
whether the system was more recently in A or in B: hA=1 if
the system was more recently in A than in B and hA=0
otherwise.5,18,20 The overbar denotes a time average. �A,j is
the flux of trajectories with hA=1 that cross � j for the first
time, i.e., those trajectories that cross � j, having been in A
more recently than any previous crossings of � j. P�� j ��i� is
the probability that a trajectory that comes from A and
crosses �i for the first time will subsequently reach � j before
returning to A: thus P��n ��0� is the probability that a trajec-
tory that leaves A and crosses �0 will subsequently reach B
before returning to A. Equation �1� states that the flux of
trajectories from A to B can be expressed as the flux leaving
A and crossing �0, multiplied by the probability that one of
these trajectories will subsequently arrive at B rather than
return to A. P��n ��0� can be expressed as the product of the
probabilities of reaching each successive interface from the

FIG. 1. Schematic illustration of the definition of regions A and B and the
interfaces �0 , . . . ,�n �Here, n=3�. Three transition paths are shown.
previous one without returning to A:
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P��n��0� = �
i=0

n−1

P��i+1��i� . �2�

For simplicity of notation, in what follows, we define PB

� P��n ��0�, pi� P��i+1 ��i�, qi�1− pi, and ���̄A,0 / h̄A. We
also use the superscript e to indicate an estimated value of a
particular quantity obtained from an FFS-type calculation.
Please note that this superscript is not meant to indicate to
any power.

Previously, we described in detail three different
approaches—the FFS, BG, and RB methods—to calculate
kAB based on expressions �1� and �2�.1,21 For completeness,
we briefly repeat the description here.

A. Forward flux sampling

In FFS, the flux � is measured using a free simulation in
the basin of attraction of region A. When the system leaves A
and crosses �0 for the first time �since leaving A�, its phase
space coordinates are stored and the run is continued. In this
way, a collection of N0 points at �0 is generated, after which
the simulation run is terminated.

The probabilities pi are then estimated using a trial run
procedure. Beginning with the collection of points at �0, a
large number M0 of trials are carried out. For each trial, a
point is selected at random from the collection at �0. This
point is used to initiate a simulation run, which is continued
until the system either crosses the next interface �1 or enters
A. If �1 is reached, the final point of the run is stored in a
new collection. After M0 trials, p0 is given by Ns

�0� /M0,
where Ns

�0� is the number of trials which reached �1. The
probability p1 is then estimated in the same way: the new
collection of points at �1 is used to initiate M1 trial runs to �2

�or back to A�, generating a new collection of points at �2,
and so on. Finally, the rate constant is obtained using Eqs. �1�
and �2�.

FFS generates transition paths according to their correct
weights in the TPE.1,21 In order to analyze these transition
paths, one begins with the collection of trial runs which ar-
rive at �B=�n from �n−1 and traces back the sequence of
connected partial paths which link them to region A. The
resulting transition paths are branched; i.e., a single point at
�0 can be the starting point of multiple transition paths.

B. The branched growth method

In the BG method, which was inspired by techniques for
polymer sampling,2,22,23 branched transition paths are gener-
ated one by one, rather than simultaneously, as in FFS. The
generation of each path begins with a single point at �0,
obtained using a simulation in the basin of attraction of A, as
in the FFS method. This point is used to initiate k0 trial runs,
which are continued until they either reach �1 or return to A.
Each of the Ns

�0� end points at �1 resulting from successful
trial runs becomes a starting point for k1 trial runs to �2 or
back to A. Each of the Ns

�1� successful trial runs to �2 initiates
k2 trials to �3, and so on until �n is reached. An estimate PB

e

of PB is obtained as the total number of branches that even-
e
tually reach �n, divided by the total possible number: PB
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=Ns
�n−1� /�i=0

n−1ki. If, at any interface, no trials were successful,
PB

e =0. To generate the next branching path, we obtain a new
starting point at �0 from the simulation in the basin of attrac-
tion of A. After many branching paths have been generated,
an average is taken over the PB

e values of all the paths. The
flux � is meanwhile obtained from the simulation run in
region A. The branched transition paths that are generated in
the BG method are correctly weighted members of the TPE.1

We note that the BG method bears resemblance to methods
developed for telecommunication networks10–12 and to a
method used for protein association.14

C. The Rosenbluth method

The RB path sampling method is related to the Rosen-
bluth scheme for sampling polymer configurations.2,24,25 The
RB method generates unbranched transition paths one at a
time. An initial point at �0 is obtained using a simulation in
the A basin, which is continued until the trajectory crosses �0

for the first time, as in the FFS and BG methods. This point
is used to initiate k0 trials, which are continued until they
either reach �1 or return to A. If Ns

�0��0 of these trials reach
�1, one successful trial is selected at random and its end
point at �1 is used to initiate k1 trials to �2 or back to A. Once
again a successful trial is chosen at random, and the process
is repeated until either no trials are successful or �n is
reached. The generation of the next path then begins with a
new point at �0, obtained using the simulation run in the A
basin.

The Rosenbluth method as outlined above does not,
however, generate paths according to their correct weights in
the TPE: for correct sampling, paths must be reweighted by a
“Rosenbluth factor.” The Rosenbluth factor for a partial path
from A up to interface i is given by

Wi = �
j=0

i−1

Ns
�j�. �3�

Note that the reweighting factor Wi depends on the number
of successful trials obtained at all the previous interfaces
while generating the path up to �i. The correct reweighting
can be achieved using a Metropolis-type acceptance/rejection
scheme,2 in which a newly generated path is either accepted
or rejected based on a comparison of its Rosenbluth factor
with that of a previously generated path. Ensemble averages
of any quantity of interest are then taken over all accepted
paths. Here, the quantity which we wish to calculate is the
probability pi that a trial run fired from �i will reach �i+1 for
each interface i. When we fire ki trial runs from �i, we obtain
an estimate for pi: pi

e�Ns
�i� /ki. We require the correctly

weighted ensemble average for pi
e at each interface i; we

note, however, that the same procedure could also be used to
calculate the ensemble average of any other property of the
ensemble of paths from �0 to �i.

From a practical point of view, each interface has asso-
ciated with it two values of Wi and pi

e. The first set of values
Wi

�n� and pi
e�n�, are associated with the transition path that is

currently being generated �the “new” path�. Wi
�n� depends on

the number of successful trials generated in creating this
e�n� �i�
transition path as far as �i, and pi �Ns /ki depends on the
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number of successful trials fired from the point at �i to �i+1.
The other set of values, Wi

�o� and pi
e�o�, are the “old” values

for this interface. These values correspond to the last “accep-
tance” event at this interface.

The recipe for obtaining kAB within the RB method is as
follows. Transition paths are generated as described above.
When the path generation procedure reaches �i, we calculate
the Rosenbluth factor Wi

�n� �using Eq. �3�� and we fire ki trial
runs to obtain pi

e�n��Ns
�i� /ki. We then calculate the ratio

Wi
�n� /Wi

�o�and draw a random number of 0�s�1. If s
�Wi

�n� /Wi
�o�, an acceptance event takes place. In this case,

the previous values of Wi
�o� and pi

e�o� are replaced by the
newly obtained values Wi

�n� and pi
e�n�. If, however, s

�Wi
�n� /Wi

�o�, a rejection occurs and Wi
�o� and pi

e�o� remain
unchanged for this interface. Regardless of the outcome of
the acceptance/rejection step, the accumulator for the prob-
ability pi

e is incremented by the current value of pi
e�o�. This

may be either a newly generated value �if an acceptance just
occurred� or an old value that may have been already added
to the accumulator several times �if several rejections have
happened in a row�. To proceed to the next interface, a suc-
cessful trial run is chosen out of those that have been newly
generated, and its end point at �i+1 is used as the starting
point for ki+1 trial runs to �i+2. A corresponding acceptance/
rejection step is then carried out at �i+1. We note that the old
values Wi

�o� and pi
e�o� for different interfaces need not corre-

spond to the same transition path. After many complete tran-
sition paths have been generated, kAB is obtained using Eq.
�1�, where an estimate of the flux � is calculated from the
simulation run in region A. A “pseudocode” corresponding to
the above procedure is given in our previous publication,1

together with a description of an alternative “waste
recycling”26 reweighting scheme. In this paper, however, we
shall consider only the Metropolis acceptance/rejection ap-
proach.

III. COMPUTATIONAL EFFICIENCY

In this section, we derive approximate expressions for
the computational efficiency of the three methods. Following
Mooij and Frenkel,27 we use the following definition for the
efficiency E

E =
1

CV
. �4�

In Eq. �4�, C represents the computational cost, which we
define to be the average number of simulation steps, per
initial point at �0. Denoting the mean �expectation value� of
variable u by E�u� and its variance by V�u�, we define V to
be the variance V�kAB

e � in the estimated value kAB
e of the rate

constant, per initial point at �0, divided by the square of the
expectation value E�kAB

e �:

V =
N0V�kAB

e �
�E�kAB

e ��2 = N0
V�kAB

e �
kAB

2 , �5�

where N0 is the number of starting points at �0 used in ob-
e e
taining the estimate kAB. The expectation value of kAB is, of
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course, the true rate constant: E�kAB
e �=kAB. The error bar for

kAB
e is given by kAB�V /N0.

A. Computational cost

We define the computational cost C of a particular
method to be the average number of simulation steps re-
quired by that method per starting point at �0. In making this
definition, we ignore any other contributions to the CPU
time, such as memory storage. To estimate the value of C, we
consider a generic system that makes a rare transition be-
tween states A and B. A parameter � and interfaces �0 , . . . ,�n

are chosen as in Sec. II.
There are two contributions to the cost C. The first is the

average cost R, in simulation steps, of generating one starting
point at �0. This is related to the flux � from the A region to
�0 by R=1/ ��dt�, where dt is the simulation time step.

The second contribution to C is the cost of the trial run
procedure. We first consider the cost Ci of firing one trial run
from interface �i. The run is continued until it reaches either
the next interface �i+1 �with probability pi� or the boundary
�A of region A �with probability qi�. We make the assumption
that the average length �in simulation steps� of a trajectory
from interface �i to another interface � j is linearly propor-
tional to �� j −�i�, with a proportionality constant S. Ci is then
given by

Ci = S�pi��i+1 − �i� + qi��i − �A�� . �6�

The basis for the assumption of linearity in Eq. �6� is that we
suppose that the system undergoes a one-dimensional diffu-
sion along the � coordinate in the presence of a “drift force”
of a fixed magnitude. For an equilibrium system, the origin
of the drift force is the free energy barrier. Farkas and Fülöp
have presented analytical solutions28 for the mean time to
capture a particle undergoing a one-dimensional diffusion
with a constant drift force in the presence of two absorbing
boundaries. In Appendix A, we show how these results lead
to Eq. �6�. Equation �6� is shown to be valid for the two-
dimensional Maier-Stein problem in Sec. IV A �Fig. 7�.

1. Expressions for the cost

Given Eq. �6�, we can compute the average cost C per
starting point at �0 of the three methods.

In FFS, we make Mi trial runs from interface i and,
providing at least one of these is successful, we proceed to
the next interface i+1. In practice, Mi is expected to be large
enough that at least one trial run reaches �i+1. In this case,
the expected cost per starting point at �0 is

CFFS = R +
1

N0
	
i=0

n−1

MiCi. �7�

Defining ki such that ki�Mi /N0, Eq. �7� can be rewritten as

CFFS = R + 	
i=0

n−1

kiCi. �8�

If, however, Mi is small, we must take into account the pos-
sibility that none of the trial runs from �i reach �i+1. In this

case, the FFS procedure is terminated at interface i, and the
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cost is accordingly reduced. Since the probability of reaching
interface i�0 is � j=0

i−1�1−qj
Mj� �this is the probability that at

least one trial is successful at all interfaces j� i�, Eq. �8� is
replaced by

CFFS = R + k0C0 + 	
i=1

n−1 
kiCi�
j=0

i−1

�1 − qj
N0kj�� . �9�

Although the cost is reduced by failing to reach later inter-
faces, this of course results in a less accurate prediction of
the rate constant, since the terminated FFS calculation makes
no contribution to the estimate of pi for later interfaces. This
will be reflected in our expression for the statistical error in
Sec. III B.

We now turn to the BG method. Here, we generate a
branching tree of paths, with Ni points at interface i originat-
ing from a single point at �0. We fire ki trial runs for each of
these Ni points. The average value of Ni is

Ni = �
j=0

i−1

pjkj �i � 0� . �10�

Of course N0=1. The average cost per starting point at �0 is
therefore

CBG = R + 	
i=0

n−1

kiCiNi = R + k0C0 + 	
i=1

n−1 
kiCi�
j=0

i−1

pjkj� .

�11�

Finally, we come to the RB method. In this algorithm,
we generate unbranched paths by firing ki trials from inter-
face i, choosing one successful trial at random and proceed-
ing to interface i+1. If no trial runs are successful, we start
again with a new point at �0. The probability of reaching
interface i�0 is � j=0

i−1�1−qj
kj�. The cost of the RB method per

starting point at �0 is therefore

CRB = R + k0C0 + 	
i=1

n−1 
kiCi�
j=0

i−1

�1 − qj
kj�� . �12�

Once again, the “price” of failing to reach later interfaces
will be paid in the form of an increased variance in the cal-
culated rate constant. The effect of the Metropolis
acceptance/rejection step in the RB method appears only in
the variance in kAB

e �Sec. III B�, and not in the cost.

2. Illustration

For the purposes of illustration, let us consider a hypo-
thetical rare event problem for which �0=�A=0 and �n=�B

=1. We suppose that the interfaces are evenly spaced in �
and have equal values of pi, and that the firing parameter ki is
the same at each interface; i.e., �i= i /n, pi= PB

1/n �from Eq.
�2��, and ki=k. We also suppose that R=S, N0=1000, and
PB=10−8. The resulting values of the cost C obtained from
Eqs. �9�, �11�, and �12� are plotted in Figs. 2�a� and 2�b� as
functions of k and n. In the regime of small k or small n
�implying small p�, the BG and RB methods converge, while
the cost of the FFS method is higher. This is because, for BG
and RB, the probability of reaching later interfaces is low

and the cost is dominated by the trial runs fired from early
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interfaces. The FFS procedure is less likely to be terminated
at early interfaces �note the factor of 1−qi

N0ki in Eq. �9� as
opposed to 1−qi

ki in Eq. �12��, and is therefore more expen-
sive, per initial point at �0. In the regime of large k or large
n �implying large p�, a different scenario emerges. Here, the
BG method becomes by far the most expensive, with a cost
that increases dramatically with increasing k or n. This effect
is due to the rapidly increasing number of branches per start-
ing point at �0. In this regime, the FFS and RB methods
converge to the same cost, since Eqs. �9� and �12� become
equivalent when 1−qk�1−qN0k�1.

B. Statistical error

We now turn to the relative variance V in the estimated
value kAB

e of the rate constant per starting point at �0. kAB
e is

the product of the estimated flux through �0 and the esti-
mated probability of subsequently reaching B: kAB

e =�ePB
e

�Eq. �1��.
In this paper, we shall ignore the error in �e. �e is

obtained by carrying out a simulation run in the basin of
attraction of A and measuring the average number of simu-
lation steps between successive crossings of �0 �coming di-
rectly from A�. As long as �0 is positioned close enough to
the A region, the simulation run in A can be made long
enough to estimate � with high accuracy and with a compu-
tational cost that is minimal compared to the cost of estimat-
ing PB. We therefore obtain

V � N0
V�kAB

e �
�E�kAB

e ��2 � N0
�2V�PB

e �
��E�PB

e ��2 = N0
V�PB

e �
PB

2 . �13�

In Eq. �13�, we have used the general relation29

V�ax� = a2V�x� , �14�

where a is a constant.
In what follows, we shall make the important assump-

tion that the numbers Ns
�i� of successful trial runs at different

interfaces i are uncorrelated, i.e., if, during the generation of
a transition path, one is particularly successful or unsuccess-
ful at interface i, this will have no effect on the chances of
success at interface i+1. In reality, of course, there will be a
correlation between interfaces, especially if the interfaces are
closely spaced or the system dynamics have a large degree of
“memory.” We expect this assumption to be the major limit-
ing factor in the applicability of our results to real systems;
however, as we shall see in Sec. IV, the results are surpris-
ingly accurate for the two-dimensional Maier-Stein problem.

FIG. 2. Cost C /R for evenly spaced interfaces pi= p, ki=k, R=S, N0=1000,
and PB=10−8. �a� C /R as a function of k for n=5. �b� C /R as a function of
n for k=25.
We expect that the expressions derived here could be modi-
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fied to include the effects of correlations between interfaces;
for highly correlated systems this may prove necessary.

1. Expressions for the variance

The basis of our analysis is the fact that on firing ki trial
runs from interface i, the number of successful trials Ns

�i� is
binomially distributed,29 with mean

E�Ns
�i�� = kipi �15�

and variance

V�Ns
�i�� = kipiqi. �16�

For now, we assume that all trial runs fired from interface �i

have an equal probability pi of reaching �i+1. This assump-
tion will later be relaxed. We shall need to express the vari-
ance in PB

e in terms of the variance V�pi
e� in the estimated

values of pi at each interface. To do this, we recall that PB
e

=�i=0
n−1pi

e �Eq. �2��, and we make use of the following
relation:29

V�f�x,y, . . . �� = 
 �f

�x
�2

V�x� + 
 �f

�y
�2

V�y� + ¯ , �17�

where f�x ,y , . . . � is a function of multiple uncorrelated vari-
ables x ,y , . . . and the partial derivatives are evaluated with all
variables at their mean values. By “uncorrelated variables”
we mean that the covariance Cov�u ,��=0 for all pairs of
variables u and �. Identifying x ,y , . . . with pi

e , pi+1
e , . . . and

taking f�p0
e , . . . , pn−1

e �=�i=0
n−1pi

e, we find that �f /�pi
e

= �� j=0
n−1pj

e� / pi
e= PB

e / pi
e, so that

V�PB
e � = 	

i=0

n−1 
E
PB
e

pi
e ��2

V�pi
e� � PB

2	
i=0

n−1
V�pi

e�
pi

2 . �18�

We now use the above results to calculate V for the FFS
method. In this method, we begin with a collection of N0

points at �0. For each interface, pi
e is obtained by firing Mi

�N0ki trial runs: pi
e=Ns

�i� /Mi, where Ns
�i� is the number of

trials which reach �i+1. Using Eq. �14�, V�pi
e�=V�Ns

�i�� /Mi
2.

Using Eq. �16�, we find that V�Ns
�i��=Mipiqi. Noting also that

E�pi
e�= pi and using Eq. �18�, we obtain

VFFS�PB
e � = PB

2	
i=0

n−1
qi

piMi
=

PB
2

N0
	
i=0

n−1
qi

piki
, �19�

and from Eq. �13�

VFFS = 	
i=0

n−1
qi

piki
. �20�

As for the cost calculation, we have assumed that Mi is large
enough that there is always at least one trial run which
reaches the next interface. If this is not the case, we must
also take into account the possibility that interface i�0 may
not be reached. The probability of reaching interface i�0 is

i−1 Mj
� j=0�1−qj �, so that
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V�pi
e� =

piqi�1 − qi
Mi�

Mi� j=0
i �1 − qj

Mj�
. �21�

Equation �21� is written in this form so that for i=0, we
recover V�p0

e�= piqi /Mi. Equations �19� and �20� must then
be replaced by

VFFS�PB
e � = PB

2
	
i=0

n−1
qi�1 − qi

Mi�
piMi� j=0

i �1 − qj
Mj�� �22�

and

VFFS = 	
i=0

n−1
qi

piki

 1 − qi

N0ki

� j=0
i �1 − qj

N0kj�� . �23�

We now turn to the BG method. Here, we begin with a
single point at �0. From this point, we generate a branching
tree of paths connecting A to B. The value of PB is estimated
by

PB
e =

Ns
�n−1�

�i=0
n−1ki

, �24�

where Ns
�n−1� is the total number of trials reaching �n��B.

We denote the number of points in the branching tree at
interface i by Ni. For a given number Nn−1 of points at �n−1,
the total number of trials fired is Nn−1kn−1 and the variance in
Ns

�n−1� is V�Ns
�n−1� �Nn−1�=Nn−1kn−1pn−1qn−1 �using Eq. �16��.

However, the situation is complicated by the fact that Nn−1

itself varies; in fact, Nn−1 is simply the number of successful
trial runs reaching �n−1 from �n−2, and in general

Ni = Ns
�i−1� �i � 0� . �25�

At this point, we need to calculate the variance in a
quantity Y which is conditional upon the value of another
quantity X. Here, and several times in the rest of the paper,
we will use the general relation

V�Y� = E�V�Y�X�� + V�E�Y�X�� , �26�

where the mean and variance on the right-hand side of Eq.
�26� are taken over the distribution of values of X. Since
E�Ns

�n−1� �Nn−1�=Nn−1kn−1pn−1,

V�E�Ns
�n−1��Nn−1�� = kn−1

2 pn−1
2 V�Nn−1� = kn−1

2 pn−1
2 V�Ns

�n−2��

�27�

�using Eqs. �14� and �25��. We also know that

E�V�Ns
�n−1��Nn−1�� = kn−1pn−1qn−1E�Nn−1�

= kn−1pn−1qn−1�
i=0

n−2

kipi, �28�

since E�Ni�=� j=0
i−1kjpj so that

V�Ns
�n−1�� = qn−1�

i=0

n−1

kipi + kn−1
2 pn−1

2 V�Ns
�n−2�� . �29�
Using the same arguments, we can generalize Eq. �29� to
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V�Ns
�i�� = qi�

j=0

i

kjpj + ki
2pi

2V�Ns
�i−1�� �i � 0�

�30�
V�Ns

�i�� = qikipi �i = 0� .

Using Eq. �30�, we can solve Eq. �29� recursively to obtain
V�Ns

�n−1��. Using Eqs. �24� and �14�, we then arrive at the
variance in the estimated value of PB:

VBG�PB
e � =

PB
2

N0
	
i=0

n−1
qi

� j=0
i pjkj

, �31�

where we have divided by N0 to account for the fact that PB
e

is calculated by averaging results over N0 starting points at
�0. We then obtain from Eq. �13�

VBG = 	
i=0

n−1
qi

� j=0
i pjkj

. �32�

Finally, let us derive the equivalent expression for the
RB method. Here, we again use Eq. �18�. If we ignore for the
moment the effect of the acceptance rejection step, we can
use Eqs. �16� and �14� to obtain an expression for the vari-
ance in pi

e:

VRB�pi
e� =

piqi

N0ki

�1 − qi
ki�

� j=0
i �1 − qj

kj�
, �33�

where we have taken into account the fact that the probabil-
ity of reaching interface i�0 is � j=0

i−1�1−qj
kj� and that the pi

e

value is averaged over N0 separate path generations. Equa-
tion �33� is very similar to the FFS result �Eq. �21��.

The Metropolis acceptance/rejection step �described in
Sec. II� increases the variance in pi

e. On reaching interface i,
we fire ki trials and obtain an estimate pi

e,�n�=Ns
�i� /ki. We

either accept or reject this estimate. If we reject, pi
e,�n� makes

no contribution to the average value of pi
e; instead, the pre-

viously accepted estimate, pi
e,�o�, is added to the average,

even though pi
e,�o� was already added to the average in the

previous acceptance/rejection step. If, instead, we accept
pi

e,�n�, it makes a contribution to pi
e, and, if the subsequent

estimates happen to be rejected, it may repeat this contribu-
tion multiple times. The final estimate, pi

e, is therefore an
average over all the values of Ns

�i� /ki that were generated,
weighted by the number of times Q that each of these values
contributed to pi

e:

pi
e =

	l=1
Ng

�i�
Ql�Ns

�i�/ki�l

Ng
�i� , �34�

where the sum is over all generated Ns
�i� /ki values and Ng

�i� is
the total number of these. In fact,

Ng
�i� = N0

� j=0
i �1 − qj

kj�
�1 − qi

ki�
�35�

since the number of times we fire trials from �i is simply the
number of times we begin a path generation from �0 and
succeed in reaching �i. Using Eq. �14�, the variance pi

e is

then
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V�pi
e� =

	l=1
Ng

�i�
Ql

2V�Ns
�i�/ki�l

�Ng
�i��2 =

V�Ns
�i��

ki
2�Ng

�i��2	
l=1

Ng
�i�

Ql
2 �36�

�assuming that the distributions of the stochastic variables Ql

and �Ns
�i��l are uncorrelated�. Equation �36� is equivalent to

V�pi
e� =

V�Ns
�i��

ki
2Ng

�i� 	
Q=0

�

Q2P�Q� =
piqi

kiNg
�i� 	

Q=0

�

Q2P�Q� . �37�

In order to find the distribution P�Q�, we define a new vari-
able �i. �i is the probability that we accept a newly generated
estimate pi

e,�n�=Ns
�i� /ki. P�Q� is then

P�Q� = �1 − �i�, Q = 0,

�38�
P�Q� = �i

2�1 − �i�Q−1, Q � 0.

Equation �38� can be understood as follows: Q=0 corre-
sponds to a pi

e,�n� value that is generated but is immediately
rejected and therefore contributes zero times to the average.
This occurs with probability 1−�i. Q�0 corresponds to a
pi

e,�n� value that is generated and accepted �with probability
�i�; the next Q−1 values that are generated are rejected �with
probability �1−�i�Q−1�, then finally a new value is generated
which is accepted �with probability �i�, so that the original
value ceases to contribute to the average. The distribution
�38� has the property that30

	
Q=0

�

Q2P�Q� =
2 − �i

�i
, �39�

so that Eq. �37� for the variance in pi
e per point at �i becomes

V�pi
e� =

piqi

kiNg
�i�
2 − �i

�i
� . �40�

Using Eq. �35�, we obtain

VRB�pi
e� =

piqi

N0ki

 �2 − �i�

�i
� �1 − qi

ki�
� j=0

i �1 − qj
kj�

. �41�

Compared to Eq. �33�, we see that the effect of the
acceptance/rejection step is to multiply V�pi

e� by a factor of
�2−�i� /�i. Using Eq. �18�, the relative variance in PB

e is

VRB�PB
e �

PB
2 =

1

N0
	
i=0

n−1
qi

piki

�2 − �i�
�i

�1 − qi
ki�

� j=0
i �1 − qj

kj�
, �42�

so that using Eq. �13�,

VRB = 	
i=0

n−1
qi

piki

�2 − �i�
�i

�1 − qi
ki�

� j=0
i �1 − qj

kj�
. �43�

We show in Appendix B that the acceptance probability �i

for i�0 �note that �0=1� can be approximated as

�i =
1

2
−

��

4

2 erf
	i

2
� − 1� �i � 0� , �44�

where erf�x� is the error function erf�x�= �2/����0
xe−t2dt and
	i is given by
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	i
2 = 	

j=0

i−1 
 �1 − qj
kj�qj

kjpj
− qj

kj� . �45�

Equations �44� and �45� can be substituted into Eq. �43� to
give a complete expression for the relative variance in the
estimated rate constant for the RB method.

2. Illustration

Returning to the hypothetical rare event problem with
evenly spaced interfaces introduced above, Fig. 3 shows V as
a function of k �for n=5� and of n �for k=25� for pi= p
= PB

1/n, ki=k, N0=1000, and PB=10−8. The circles show the
limiting form 	i=0

n−1qi / �piki�, which is in good agreement with
the FFS results, since 1−qN0k�1. For small k or small n
�small p�, the RB and BG results tend to converge, since the
probability of reaching later interfaces is small and the re-
sults are dominated by the early interfaces. In this regime,
the FFS method gives the smallest variance, since the chance
of terminating the trial run procedure at early interfaces is
lower than for the other methods.

It is interesting to compare expressions �23�, �32�, and
�43�. All three expressions are of the form

V = 	
i=0

n−1
qi

pikiXi
. �46�

However, Xi takes different forms for the three methods:

Xi
FFS =

� j=0
i �1 − qj

N0kj�
�1 − qi

N0ki�
, �47�

Xi
BG = �

j=0

i−1

pjkj , �48�

and

Xi
RB =

�i

�2 − �i�
� j=0

i �1 − qj
kj�

�1 − qi
ki�

. �49�

We note that Xi
FFS�Xi

RB, so that VFFS is always less than VRB,
even for �i=1. Both Xi

FFS and Xi
RB are always less than unity:

VFFS approaches the limiting form 	i=0
n−1qi / �piki� from above

as ki increases �in fact, in Fig. 3�a� it takes this form for all k�
and VRB approaches 	i=0

n−1�2−�i�qi / �piki�i�. For the BG
method, however, Xi

BG can increase indefinitely as ki in-
creases, so that this method produces the smallest variance

FIG. 3. Relative variance V, for pi= p, ki=k, and PB=10−8. The circles show
the function 	i=0

n−1qi / �piki�. �a� V as a function of k for n=5. �b� V as a
function of n for k=25.
for large ki, as in Fig. 3�a�. However, compared with Fig. 2,
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we see that this is also the regime in which the BG method
becomes very expensive.

3. Landscape variance

So far in our analysis, we have assumed that all the
points at interface �i have the same pi value, i.e., on firing a
trial run to �i+1 we have the same probability of success, no
matter which point at �i we start from. In reality, this is not
the case; we expect that there will be a distribution of pi

values among the points at each interface �i. We call the
variance of this distribution the landscape variance Ui at in-
terface i, and we expect it to make a contribution to the
variance in PB

e . We now extend our analysis to include the
potentially important effect of the landscape variance.

Let us suppose that each point j at �i has an associated
probability pi

�j� that a trial run fired from that point will reach
�i+1. The distribution of pi

�j� values encountered during the
rate constant calculation has mean E�pi

�j��= pi and variance
V�pi

�j���Ui. Of course, the values of Ui depend on the num-
ber and placement of the interfaces.

In Appendix C, we rederive expressions for the relative
variance in the estimated rate constant, taking into account
the landscape variance. The final results are

VFFS = 	
i=0

n−1 �
 qi

piki
+

UiN0

pi
2Ni


1 −
1

N0ki
��



�1 − qi

N0ki�
� j=0

i �1 − qj
N0kj�� , �50�

where Ni=N0ki−1pi−1 for i�0 and Ni=N0 for i=0.

VBG = 	
i=0

n−1 
 kiqipi + Ui�ki
2 − ki�

kipi� j=0
i pjkj

� �51�

and

VRB = 	
i=0

n−1 �
 qi

piki
+

Ui

pi
2
1 −

1

ki
��


 
 �2 − �i�
�i

� �1 − qi
ki�

� j=0
i �1 − qj

kj�� . �52�

Comparing Eqs. �50�–�52� to their equivalent forms
without a landscape variance, ��23�, �32�, and �43��, we see
that for each interface the “binomial” terms of the form
piqi /ki are now supplemented by additional terms describing
the landscape variance. In the limit of very large ki, V no
longer tends towards zero. Instead, as ki→� �for all i�, the
FFS and BG expressions �50� and �51� tend towards the con-
stant value U0 / p0

2, while the RB expression �52� tends to-
wards 	i=0

n−1Ui / pi
2. While the binomial contribution to the

variance can be reduced by firing many trial runs per point,
the landscape contribution can only be reduced by sampling
many points. In the FFS and BG methods, branching paths
are generated. For very large ki, each point at �0 generates
many points at subsequent interfaces, so that only U0 re-
mains in Eqs. �50� and �51� as ki→�. In the RB method,

however, paths are not branched, so that each point at �0
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corresponds to, at most, one point at each subsequent inter-
face. In this case, as ki→�, all the Ui values continue to
contribute to V.

In Fig. 4, we revisit the simple model problem of Figs. 2
and 3, adding in the effects of the landscape variance. We
take Ui to be the same for all interfaces: Ui=U. We choose,
somewhat arbitrarily, U= p2 /n or U=5p2 /n. These turn out
to be quite realistic values for the Maier-Stein system dis-
cussed in Sec. IV. Figure 4 shows the relative variance V �as
in Fig. 3� calculated with U=5p2 /n �upper curves�, U
= p2 /n �middle curves�, and U=0 �lower curves�. Although
the landscape variance does not change the general trend that
V decreases as k or N increases, it does have the qualitative
effect that V no longer tends towards zero �as discussed
above�. Depending on the value of U, the quantitative effects
of the landscape contribution can be significant, especially as
k or N becomes large.

C. Efficiency

Having calculated the computational cost and the statis-
tical accuracy of the three methods, we are now in a position
to assess their overall computational efficiency, as defined by
Eq. �4�. Figure 5 shows the efficiency of the three methods as
a function of k �Fig. 5�a�� and of n �Fig. 5�b�� for the simple
model case of Figs. 2–4. Note the altered scale on the n axis
in comparison to Figs. 2 and 3. For each method, the upper
curve shows the results without the landscape contribution to
the variance �U=0�, and the lower curve includes a land-
scape contribution of U= p2 /n.

Firstly, we note that the optimum values of E are of the
same order of magnitude for all three methods, although E is
consistently lower for RB, due to the acceptance/rejection
step. However, the dependence of the efficiency on the pa-

FIG. 4. Relative variance V in kAB
e , as predicted by Eqs. �50�–�52�, for the

model problem of Figs. 2 and 3 with PB=10−8 and Ui=U. The upper curves
in each group correspond to U=5p2 /n, the middle curves to U= p2 /n, and
the lower curves to U=0. �a� V as a function of k, keeping n=5. �b� V as a
function of n, keeping k=25.

FIG. 5. Efficiency E, calculated using Eq. �4�, for the simple model of Figs.
2–4. For each method, results are plotted with U= p2 /n �lower curves� and
U=0 �upper curves�. �a� E as a function of k for n=5. �b� E as a function of

n for k=25.
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rameter values k and n is very different for the three meth-
ods. For the BG method, the efficiency shows a pronounced
peak both as a function of k and of n. Although for an opti-
mum choice of parameters, this method can be the most ef-
ficient, its performance is highly sensitive to the choice of
parameters, decreasing sharply for nonoptimal values of k or
n. The FFS and RB methods are much less parameter sensi-
tive; in fact, as long as k or n is not too small, the choice of
parameters appears to be not at all critical for these methods.
In general, Fig. 5 seems to indicate that the method of choice
is FFS, since this method is highly robust to changes in the
parameters, is the most efficient method at small k or n, and
remains efficient as k and n become large. However, this
interpretation must be treated with care, since several impor-
tant factors are not included in the analysis leading to Fig. 5.
Firstly, our analysis does not include the effects of correla-
tions between interfaces. This has the effect that neither the
FFS or the RB method shows a maximum in efficiency as a
function of n in Fig. 5�b�. In our simple model, one can
always gain more information by sampling at more closely
spaced interfaces; however, in reality, correlations between
interfaces are likely to make very closely spaced interfaces
computationally inefficient. Another important factor to be
considered is the fact that both the FFS and BG methods
generate branched transition paths. In FFS, in fact, an effect
analogous to a “genetic drift” means that if the number of
points in the collections at the interfaces is small enough to
be of the order of the number of interfaces, then all the paths
that finally reach B can be expected to originate from a small
number of initial points at �0. If there is memory loss, i.e., no
correlations between interfaces, this may be unimportant.
However, if the history of the paths is important, then the RB
method may be the method of choice, since this generates
independent, unbranched paths. Furthermore, the RB method
requires much less storage of system configurations than FFS
�for which a whole collection of points must be stored in
memory at each interface�; for some systems, this may be a
significant factor in the computational cost.

Figure 5 also shows the effects of the landscape variance
on the efficiency of the three methods. Including the land-
scape variance always decreases the efficiency but produces
rather few qualitative effects for this simple model problem.
It is interesting to note, however, that in Fig. 5�a� both the
FFS and RB methods show a maximum in efficiency as a
function of k only when the landscape contribution is in-
cluded. When the landscape contribution is not considered,
the equations predict that arbitrarily high accuracy can be
obtained by firing an infinitely large number of trials from a
single point. In this example, we took the landscape variance
to be the same for all interfaces: Ui=U. However, one can
easily imagine that for some systems, there is much greater
variation among transition paths when they are close to the A
basin, while for others, paths tend to diverge as they ap-
proach B. In the former case, we can expect the RB and BG
methods to have an advantage relative to FFS because in
these methods, relatively more points are sampled at early
interfaces �since the probability of failing to complete a tran-

sition path is higher�. Conversely, if the landscape variance is
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very large close to the B basin, the BG method may be ad-
vantageous, since it samples many points at later interfaces
due to its branching tree of paths.

IV. THE MAIER-STEIN SYSTEM

In this section, we test the expressions derived in Sec. III
for a real rare event simulation problem. As our test case, we
simulate the two-dimensional nonequilibrium rare event
problem proposed by Maier and Stein.15–17 This system has
been extensively studied both theoretically and
experimentally15–17,31,32 and was also used by Crooks and
Chandler4 as a test case for their nonequilibrium rare event
method. We hope that the conclusions obtained for this sys-
tem will also prove to be applicable to more computationally
intensive rare event problems.

The Maier-Stein system consists of a single particle
moving with overdamped Langevin dynamics in a two-
dimensional force field. The position vector �x1 ,x2� of the
particle satisfies the stochastic differential equation

ẋi = f i�x� + �i�t� , �53�

where the force field f= �f1 , f2� is given by

f = �x1 − x1
3 − �x1x2

2 − 
x2�1 + x1
2�� �54�

and the stochastic force �= ��1 ,�2� satisfies

��i�t�� = 0, ��i�t + ��� j�t�� = ���t − ���ij . �55�

This system is bistable, with stable points at �±1,0� and a
saddle point at �0,0�. If ��
, the force field f cannot be
expressed as the gradient of a potential. In this case, the
system is intrinsically out of equilibrium and does not satisfy
detailed balance. The parameter � controls the magnitude of
the stochastic force acting on the particle. For ��0, the sys-
tem makes stochastic transitions between the two stable
states, at a rate which decreases as � decreases. Figure 6
shows a typical trajectory generated by a brute-force simula-
tion. Here, and in the rest of this section, we use �=6.67,

=2.0 �following Crooks and Chandler4�, and �=0.1. Equa-
tion �53� is integrated numerically with a time step �t
=0.02.33 For our calculations using the FFS-type methods,
we define ��x�=x1, �A��0=−0.7, and �B��n=0.7.

A. Measuring the parameters

In order to test the expressions of Sec. III, we must mea-

FIG. 6. Typical trajectory for a brute-force simulation of the Maier-Stein
system, with �=6.67, 
=2, and �=0.1.
sure the cost parameters R and S, the probability PB of reach-
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ing B and, for a given set of n interfaces, the probabilities
�pi�, and the landscape variance values �Ui�. For most of our
calculations, we used n=7, and the interfaces were posi-
tioned as listed in Table I. For the results of Figs. 8�b�, 9�b�,
and 11�b�, where n was varied, we kept the interfaces evenly
spaced between �0=−0.7 and �n=0.7. R, the cost of gener-
ating an initial point at �0, was measured using a simulation
in region A to be R=590±50 steps. In these calculations,
points at �0 were collected upon every tenth crossing of �0

from A. To measure S �the proportionality constant in Eq.
�6��, we carried out a FFS run, measuring the average length
�in simulation steps� of successful and unsuccessful trials
from each interface. The results are shown in Fig. 7. Here,
the filled circles show the average lengths, in simulation
steps, of successful trials from interface �i �plotted on the x
axis� to �i+1=�i+0.2. Since ��i−� j�=0.2 for all these trials,
Eq. �6� predicts that all the filled circles should have the
same average trial length. The open circles show the average
length of unsuccessful trials, which begin at �i and end at
�A=−0.7, so that ��i−� j�=�i+0.7. Equation �6� predicts that
all the open circles should lie on a straight line. Combining
all the data, we obtain an average value of S=131 steps. This
value is used to plot the solid lines in Fig. 7. The very good
agreement that is observed between the solid lines and the
circles implies that the drift-diffusion approximation �Eq.
�6�� is reasonable for this problem. The most significant de-
viation occurs for the successful trial runs between �=−0.7
and �=−0.5; these are unexpectedly short, perhaps because
the drift force is weaker in this region.

TABLE I. Positions of the interfaces and measured values of �pi� and �Ui�
for the Maier-Stein problem.

Interface �i pi Ui

0 −0.7 0.1144±0.0001 0.00350±0.00003
1 −0.5 0.2651±0.0002 0.00368±0.00008
2 −0.3 0.3834±0.0002 0.0031±0.0003
3 −0.1 0.5633±0.0003 0.0021±0.0002
4 0.1 0.7702±0.0003 0.0008±0.0001
5 0.3 0.9152±0.0002 0.0003±0.0001
6 0.5 0.9747±0.0002 0.00005±0.00002

FIG. 7. Costs of trial runs between interfaces for the Maier-Stein system.
The average lengths, in simulation steps, of “successful” trials �to �i+1� are
shown as filled circles. For these trials, � j =�i+0.2 and ��i−� j�=0.2. The
average lengths of “unsuccessful” trials �to �A=−0.7� are shown as open
circles. For these trials, ��i−� j�=�i+0.7. The solid lines show the linear

approximation �Eq. �6��, with S=131.
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Using FFS, we obtained PB= �4.501±0.007�
10−3. The
values of �pi� were also measured �using FFS� and are given
in Table I. The landscape variance �Ui� was measured using
the procedure described in Appendix D. After generating a
correctly weighted collection of points at interface �i �for
example, using FFS�, one fires ki trials from each point j and
records the number of successes Ns

�i� � j. One then calculates
the variance among points V�Ns

�i��. The intrinsic variance is
given by

Ui =
V�Ns

�i��/ki − piqi

ki − 1
. �56�

Table I shows that for this problem Ui / pi
2 is rather small �a

maximum of 0.27 for interface 0�, indicating that the land-
scape variance is unlikely to have important effects in this
case. However, this may not be the case for more complex
systems in higher dimensions.

B. Testing the expressions

We now measure directly the cost, in simulation steps,
the error in the calculated rate constant, and thus the effi-
ciency of the three methods, for the Maier-Stein problem,
and compare our simulation results to the predictions of Sec.
III. For each method, simulations were carried out in a series
of blocks. For FFS, a block consists of a complete FFS cal-
culation with N0 starting points. For the RB and BG meth-
ods, a block consists of N0 starting points at �0. Each block
produces a result PB

e for the probability of reaching B. To
find V�PB

e �, we calculate the variance between blocks:

V�PB
e � = �PB

e �2 − �PB
e �2, �57�

where the overbar denotes an average over the blocks. The
cost C per starting point at �0 is the average number of simu-
lation steps per block, divided by N0.

Figure 8 shows a comparison between the simulation
values of C and the theoretical predictions �Eqs. �9�, �11�, and
�12�� for the three methods as a function of k �Fig. 8�a�� and
of n �Fig. 8�b��. In these calculations, the same value of k
was used for all interfaces: ki=k for all i. To obtain the data
in Fig. 8�b�, we used interfaces which were evenly spaced in

FIG. 8. Predicted and measured values of C for the Maier-Stein problem, as
described in Sec. IV. The lines show the theoretical predictions for the FFS
�solid line�, BG �dotted line�, and RB �dashed line� methods. The symbols
show the simulation results. Circles: FFS method, squares: BG method, and
triangles: RB method �with Metropolis acceptance/rejection�. Simulation re-
sults were obtained with 400 blocks of N0=1000 starting points for FFS and
2000 starting points per block for BG and RB. �a� C as a function of k for
n=7. �b� C as a function of n for k=3 for evenly spaced interfaces.
� and a fixed value k=3. We observe a remarkably good
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agreement between the predicted and observed values for the
cost, verifying that at least for this problem, Eqs. �9�, �11�,
and �12� are very accurate.

The predicted and measured values of V are shown in
Fig. 9 for all three methods. Agreement is again excellent,
showing that the approximations of Sec. III B are justified, at
least for this problem. The landscape contribution to V is
included in Fig. 9 for panel �a� but not for �b�. In Fig. 10, we
show the effect of neglecting this contribution �note the al-
tered scales on both axes�. Although the landscape contribu-
tion is small for this problem, it becomes significant for large
k as the binomial contribution decreases.

The efficiency E is plotted in Fig. 11. Excellent agree-
ment is obtained between simulation and theory. It is also
interesting to note that the trends in E as a function of k are
qualitatively very similar to those obtained for the model
problem of Fig. 5. The BG method shows high efficiency
only within a relatively narrow range of parameter values,
while the FFS and RB methods are much more robust to
changes in the parameters. The RB method is consistently
less efficient than FFS due to the acceptance/rejection step.
As the number of interfaces n becomes large, we would ex-
pect the correlations between interfaces �which are not in-
cluded in our analysis� to have a greater effect and the the-
oretical predictions to become less accurate. This effect is
observed to a certain extent: the efficiency of FFS, for ex-
ample, decreases relative to the predicted value as n in-
creases. However, this is not a dramatic effect, and, in fact,
even on increasing n further as far as 100 interfaces, we find

FIG. 9. Predicted and measured values of V for the Maier-Stein problem.
The lines show the theoretical predictions for the FFS �solid line�, BG �dot-
ted line�, and RB �dashed line� methods. The symbols show the simulation
results. Circles: FFS method, squares: BG method, and triangles: RB
method �with Metropolis acceptance/rejection�. Simulation results were ob-
tained with 400 blocks of N0=1000 starting points for FFS and 2000 starting
points per block for BG and RB. Interfaces were evenly spaced between
�A=−0.7 and �B=0.7. �a� V as a function of k for n=7. �b� V as a function
of n for k=3. In �b�, the landscape contribution is not included in the theo-
retical calculation.

FIG. 10. Predicted and measured values of V for the Maier-Stein problem
for the FFS method. Solid line: Eq. �50� �with the landscape variance�,

dotted line: Eq. �23� �no landscape variance�, and circles: simulation results.
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a decrease of only a few percent in the efficiency of FFS. It
seems, therefore, that for FFS, at least, one can use any num-
ber n of interfaces, as long as n is not too small or so large
that memory requirements become the limiting factor.

The remarkable agreement between the theoretical pre-
dictions and the simulation results shown in Figs. 8, 9, and
11, perhaps reflects the simplicity of the Maier-Stein prob-
lem. The main assumption for the calculation of V—that the
sampling of pi at different interfaces is uncorrelated—seems
to be well justified in this case. We would expect our theo-
retical predictions to be less accurate for more complex prob-
lems, perhaps with strong correlations between interfaces. In
fact, on investigating the two examples presented in our pre-
vious paper1—the flipping of a genetic switch and the trans-
location of a polymer through a pore—we find that the quan-
titative estimates of both the cost and the variance can differ
by a factor of about 10 from the theoretical predictions. Even
with this caveat, however, we believe that the expressions in
Sec. III will prove to be of practical use for a wide range of
rare event simulation problems.

V. DISCUSSION

In this paper, we have derived simple analytical expres-
sions for the computational cost of the three FFS-type rare
event simulation methods and the statistical accuracy of the
resulting estimate of the rate constant. The expressions were
found to be in remarkably good agreement with simulation
results for the two-dimensional nonequilibrium rare event
problem proposed by Maier and Stein.15–17

Our analysis allows us to draw some general conclusions
about the relative merits of the three FFS-type methods.
Firstly, the optimum efficiencies of the methods are all of the
same order of magnitude, at least for the simple test problem
studied here. However, the methods show very different sen-
sitivities to the choice of parameters. The branched growth
method in particular is highly sensitive, performing well only
for a narrow range of parameter values. Within this range,
however, it performs well in comparison to the other meth-
ods. The FFS method is the most robust to changes in the
parameters, performing consistently well, even for parameter
values where the other methods are very inefficient. The

FIG. 11. Predicted and measured efficiency E for the Maier-Stein system.
The lines show the theoretical predictions for the FFS �solid line�, BG �dot-
ted line�, and RB �dashed line� methods. The symbols show the simulation
results. Circles: FFS method, squares: BG method, and triangles: RB
method �with Metropolis acceptance/rejection�. Simulation results were ob-
tained with 400 blocks. For FFS, each block had N0=1000 starting points,
and for BG and RB each blocks had 2000 starting points. Interfaces were
evenly spaced. �a� E vs k for n=7. �b� E vs n for k=3. No landscape
contribution to V is included in panel b.
Rosenbluth method is lower in efficiency than the others, as
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a consequence of the Metropolis acceptance/rejection step
which is required in order to obtain paths with the correct
weights in the transition path ensemble.

These observations provide a useful guide for choosing a
rate constant calculation method. In general, unless one has a
very good idea of the optimum parameters, the BG method
carries a risk of being low in efficiency. Of course, strategies
could be envisaged to overcome this problem; for example,
one could imagine terminating a certain percentage of the
branches to avoid the high cost of sampling later interfaces.
The analysis used here could easily be extended to predict
the likely success of such approaches. The RB method ap-
pears from this analysis to be of relatively low efficiency.
However, that is not to say that one should not use the
Rosenbluth method. On the contrary, this is the only method
which generates unbranched paths, making it highly suitable
for situations where one wishes to analyze the paths in order
to study the transition mechanism. The RB and BG methods
also require much less storage of system configurations than
FFS �for which all Ni points at interface i must be stored in
memory�, making them potentially suitable for large sys-
tems. As a general conclusion, however, the results of this
paper show that the FFS method is highly robust to param-
eter changes and is probably the method of choice for calcu-
lations of the rate constant where effects such as the storage
of many configurations in memory are not important.

These results also suggest possible strategies for choos-
ing the parameters for the three methods. One approach
would be to use the analytical expressions derived here in an
optimization scheme for finding �ki�, ��i�, and n. This is
likely to be useful for the BG method but may be less essen-
tial for the FFS and RB methods, where the choice of param-
eters is much less critical. Furthermore, we expect that the
predictions of the cost and statistical error derived here will
be also useful for assessing, before beginning a calculation,
which method to use and, indeed, whether to proceed at all.
Some preliminary calculation would be needed in order to
obtain rough estimates for R, S, PB, �pi�, and �if required�
�Ui�. These preliminary calculations are expected to be much
cheaper than a full simulation. While the expressions for the
cost and variance will be less accurate if only rough esti-
mates for the parameters are available, we expect the results
to be nevertheless accurate enough to be of use. Finally, the
expressions for V can be used, after a rate constant calcula-
tion has been completed, to obtain error bars on the calcu-
lated value of kAB. In this case, the values of PB and �pi� are
known. The intrinsic variances �Ui� can also be easily ob-
tained during the rate constant calculation, as explained in
Appendix D. These values can be substituted into the expres-
sions to obtain a reliable estimate of the statistical error in
the resulting rate constant.

Throughout our analysis, we have made the important
assumption that the order parameter � has already been de-
fined. In fact, choosing a good order parameter is an impor-
tant part of the rare event simulation procedure. Although the
expected value of the rate constant does not depend on the
definition of �, a poor choice of � could affect the efficiency
with which this value is obtained. One could imagine a

scheme in which the order parameter is tested and optimized
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on the fly, using the efficiency expressions derived here as
optimization criteria. This approach could be applied to all
the variants of the FFS algorithm. We note, however, that the
relative efficiencies of the different FFS-type algorithms are
not expected to depend strongly on the precise choice of the
order parameter.

In this work, we provide a way to compare the efficiency
of the three FFS-type methods. It would also be very useful
to compare their efficiency to that of other methods, such as
the method of Crooks and Chandler4 for nonequilibrium rare
event problems, or TPS �Ref. 3� or transition interface
sampling5,20 �TIS� for equilibrium problems. We have carried
out preliminary calculations using the Crooks-Chandler
method for the Maier-Stein system. We find that the value of
the rate constant is in agreement with that of the FFS-type
methods, but that the FFS-type methods are much more ef-
ficient. However, a thorough comparison would require a
detailed investigation, optimizing the parameter choices of
all the methods. We therefore leave this to a future study.

In conclusion, we have presented expressions for the
computational cost and statistical accuracy of three recently
introduced rare event simulation methods. We believe that
the expressions presented here will be valuable in using these
methods to compute rate constants and in evaluating the re-
sults of such computations.
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APPENDIX A: COST OF TRIAL RUNS

In order to estimate the cost of a trial run, we assume
that the system undergoes one-dimensional diffusion along
the � coordinate, with a constant drift velocity �the origin of
which is a force due to the “free energy barrier”�. The prob-
lem is then equivalent to that of a particle which undergoes
diffusion with drift along the x axis after being released be-
tween two absorbing boundaries. We are interested in the
mean time �← or �→ that the particle takes to be captured at
the left or right boundary, given that it is eventually captured
at that particular boundary. Farkas and Fülöp have studied
the problem of one-dimensional diffusion with drift between
two absorbing boundaries.28 They give analytical expressions
for the probabilities n← and n→ that the particle is absorbed
at the left and right boundaries, respectively, and the rates of
absorption j← and j→ at the left and right boundaries, respec-
tively. The mean first passage time � is the average time
before the particle is absorbed at one of the boundaries:

� = �
0

�

t�j← + j→�dt . �A1�

To compute �← and �→, we require integrals similar to Eq.

�A1� but including only events where the particle reaches the

o AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



194111-14 Allen, Frenkel, and ten Wolde J. Chem. Phys. 124, 194111 �2006�
desired boundary. The integrals must also be normalized by
the probability of reaching that boundary:

�← =
�0

�tj←dt

n←
, �→ =

�0
�tj→dt

n→
. �A2�

Carrying out the integrals �A2� using the expressions of Far-
kas and Fülöp for j←, j→, n←, and n→ �Eqs. �3�–�5�� of their
paper28�, we arrive at

�← =
L

�

coth
 L�

2D
� − �1 − ��coth
 �1 − ��L�

2D
�� ,

�A3�

�→ =
L

�

coth
 L�

2D
� − � coth
�L�

2D
�� ,

where � is the drift velocity, D is the diffusion constant, the
absorbing boundaries are at x=0 and x=L, and the particle is
released at x=�L at time t. In the limit that the drift velocity
is large, cosh�L� / �2D��→1 and �← and �→ are reduced to

�← =
�L

�
, �→ =

�1 − ��L
�

. �A4�

In this case, the average time for a particle to be captured at
a specified boundary is linearly proportional to the distance
between the starting point of the particle and that boundary,
and the proportionality constant is the same for particles
moving against or with the drift velocity. It is therefore ap-
propriate to approximate the cost of a trial run between �i

and � j by S�� j −�i�, as in Eq. �6�.

APPENDIX B: ACCEPTANCE PROBABILITY FOR THE
RB METHOD

This section is concerned with the Metropolis
acceptance/rejection step in the Rosenbluth method. We de-
rive the approximate expression �44� for the probability �i

that a newly generated estimate pi
e�n�=Ns

�i� /ki for the prob-
ability pi is accepted. Upon reaching interface i, we calculate
the Rosenbluth factor Wi

�n�=� j=0
i−1Ns

�j� corresponding to the
newly generated path leading to interface i. We compare this
to the Rosenbluth factor Wi

�o� corresponding to the previous
path to have been accepted at interface i. Acceptance occurs
if the ratio Zi�Wi

�n� /Wi
�o� is greater than a random number

0�s�1. If we know the distribution function P�Zi�, the ac-
ceptance probability is given by

�i = �
0

1

ds�
s

�

dZiP�Zi� . �B1�

We would therefore like to calculate P�Zi�� P�Wi
�n� /Wi

�o��.
To obtain this, we require the distribution functions for both
Wi

�n� and Wi
�o�. We begin with Wi

�n�, which we can write as

log�Wi
�n�� = 	

j=0

i−1

log�Ns
�j�� . �B2�

We assume that the log�Ns
�j�� for each interface j are indepen-

dent variables �i.e., that the sampling at different interfaces is
uncorrelated�. Since we are adding many independent vari-

29
ables, we apply the central limit theorem to Eq. �B2�. In the
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limit of a large number of interfaces, the distribution of
yi

�n�=log�Wi
�n�� is

p�yi
�n�� =

1

	i
�2�

exp
−
�yi

�n� − 
i�2

2	i
2 � , �B3�

where


i = 	
j=0

i−1

E�log Ns
�j�� �B4�

and

	i
2 = 	

j=0

i−1

V�log Ns
�j�� . �B5�

The expectation value E�log Ns
�j�� can be found approxi-

mately by performing a Taylor expansion of log Ns
�j� about

E�Ns
�j�� to give

log Ns
�j� � log E�Ns

�j�� +
�Ns

�j� − E�Ns
�j���

E�Ns
�j��

−
1

2

�Ns
�j� − E�Ns

�j���2

E�Ns
�j��2 . �B6�

Taking the expectation value of Eq. �B6�, we obtain

E�log Ns
�j�� � log E�Ns

�j�� −
V�Ns

�j��
2E�Ns

�j��2 . �B7�

Using the variance relation �17�, we find that

V�log Ns
�j�� �

1

E�Ns
�j��2V�Ns

�j�� . �B8�

We now need to know E�Ns
�j�� and V�Ns

�j��. On firing ki trials
from interface i, we know that the number of successes fol-
lows a binomial distribution. However, the variable Ns

�j� in
Eqs. �B13� and �B14� refers to the number of successes at
interface j, given that we know that the path subsequently
reached interface i� j. We therefore know that Ns

�j��0, so
that

p�Ns
�j�� =

1

�1 − qj
kj�

kj!

�kj − Ns
�j��!�Ns

�j��!
pj

Ns
�j�

qj
kj−Ns

�j�
, �B9�

so that

E�Ns
�j�� =

kjpj

�1 − qj
kj�

, �B10�

E�Ns
�j�2

� =
�kjpjqj + kj

2pj
2�

�1 − qj
kj�

, �B11�

and

V�Ns
�j�� =

��1 − qj
kj�kjpjqj − kj

2pj
2qj

kj�
�1 − qj

kj�2
. �B12�
Substituting �B10� and �B12� into �B7� and �B8�, we obtain
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E�log Ns
�j�� � log
 kjpj

1 − qj
kj
� −

1

2

 �1 − qj

kj�qj

kjpj
− qjj

k� �B13�

and

V�log Ns
�j�� �

qj�1 − qj
kj�

kjpj
− qj

kj . �B14�

Substituting �B13� and �B14�, in turn, into �B4� and �B5�
leads to


i = 	
j=0

i−1

log
 kjpj

�1 − qj
kj�� −

1

2

 �1 − qj

kj�qj

kjpj
− qj

kj� �B15�

and

	i
2 = 	

j=0

i−1
qj�1 − qj

kj�
kjpj

− qj
kj . �B16�

Finally, the distribution function f�Wi� for the Rosenbluth
factor of the newly generated path can be found by making
the change of variables Wi=exp�yi

�n�� in Eq. �B3� to give

f�Wi� =
1

	i
�2�


 1

Wi
�exp
−

�log�Wi� − 
i�2

2	i
2 � . �B17�

We now turn to the distribution function g�Wi� for the Rosen-
bluth factor Wi

�o� of the previous path to have been accepted
at interface i. Wi

�o� does not follow the same distribution as
Wi

�n� because the “previous” path has survived at least one
round of acceptance/rejection. We know that the acceptance/
rejection procedure reweights paths by a factor proportional
to the Rosenbluth factor �see Sec. II C�; so if we assume that
Wi

�o� has been “fully” reweighted �note that this is an ap-
proximation�, we can say that

g�Wi� �
Wif�Wi�

�0
�W�f�W��dW�

. �B18�

The denominator of Eq. �B18� ensures that g�Wi� is properly
normalized. Substituting �B18� into �B17�, we find that

g�Wi� =
1

I

1
�2�	i

exp
−
�log�Wi� − 
i�2

2	i
2 � , �B19�

where

I = �
0

�

Wif�Wi�dWi = exp

i +
	i

2

2
� . �B20�

Armed with Eqs. �B17� and �B19�, we can now find the
distribution function P�Zi� for the ratio Zi�Wi

�n� /Wi
�o�. This

is given by

P�Zi� = �
0

� �
0

�

dWidWi�g�Wi�f�Wi���
Wi�

Wi
− Zi� . �B21�

Changing the variable of the second integral to Zi�=Wi� /Wi,

we obtain
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P�Zi� = �
0

� �
0

�

dWidZi�Wig�Wi�f�Zi�Wi���Zi� − Zi�

= �
0

�

dWiWig�Wi�f�ZiWi� . �B22�

Substituting �B17� and �B19� into �B22�, we obtain

P�Zi� =
1

2�	i
2IZi

�
0

�

dWi


exp
−
�log�Wi� − 
i�2 + �log�ZiWi� − 
i�2

2	i
2 � .

�B23�

This integral can be carried out analytically30 to give

P�Zi� =
exp�− 	i

2/4�

2	iZi
��

exp
−
�log Zi�2

4	i
2 −

log Zi

2
� . �B24�

We are now finally in a position to calculate the acceptance
probability �i using Eq. �B1�. Substituting Eq. �B24� into
�B1� and integrating over Zi, we obtain34

�i =
1

2
�

0

1

ds
1 −
��

2
erf
	i

2
+

log s

2	i
��

=
1

2
−

��

4

2 erf
	i

2
� − 1� , �B25�

where erf�x� is the error function: erf�x�= �2/����0
xe−t2dt.

Although Eq. �B25� is a simple and convenient expres-
sion for the acceptance probability �i, its derivation required
several approximations. We have therefore tested the validity
of Eq. �B25�. We first carried out a “simulated simulation,”
in which we defined a series of N=15 interfaces, each with
the same value of pi= p=10−6/15, and simulated the Rosen-
bluth calculation, each time drawing a random number to
determine the outcome of a given “trial run,” for a given
number of trial runs ki=k taken to be the same for all inter-
faces. We measured the acceptance probabilities at each in-
terface after 2
106 Rosenbluth “path generations” and com-
pared these to Eq. �B25�. The results are shown in Fig. 12�a�
for k=2, k=5, and k=8. The agreement with the simulation
is very reasonable. To compare with real simulation results,

FIG. 12. �a� “Simulated” and predicted acceptance probabilities �i for inter-
faces 0� i�14 for the “simulated simulation” described in the text, for k
=2,5 ,8. �b� Simulated and predicted values of �i for 0� i�6 for the Maier-
Stein problem of Sec. 4, for k=2,5 ,8. In both plots, solid lines represent
predicted values for k=2, dotted lines, k=5, and dashed lines, k=8. Symbols
represent simulation results: circles: k=2, squares: k=5, and triangles: k
=8.
we also measured the acceptance probabilities �i for the RB
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simulations of the Maier-Stein system described in Sec. IV.
The results are compared with the predictions of Eq. �B25� in
Fig. 12�b�. Again, quite good agreement is obtained.

APPENDIX C: THE EFFECTS OF LANDSCAPE
VARIANCE

In this section, we include the effects of the “landscape
variance” in our expressions for the relative variance V of
PB

e . The result will be that expressions �23�, �32�, and �43�
are transformed into �50�–�52�. As described in Sec. III, we
suppose that point j at interface �i has probability pi

�j� that a
trial run fired from it will reach �i+1, rather than �A. The
variance in the pi

�j� values for points at �i �sampled according
to their expected occurrence in the trial run firing procedure�
is the landscape variance Ui.

If we choose a particular point j, fire ki trial runs and
measure the number of successes Ns

�i�, we expect to obtain a
mean value E�Ns

�i� � j�=kipi
�j� and a variance V�Ns

�i� � j�
=kipi

�j�qi
�j� �in analogy with Eqs. �15� and �16��. We now av-

erage over many points j at interface �i using the general
variance relation �26�:

V�Ns
�i�� = E�V�Ns

�i��j�� + V�E�Ns
�i��j��

= E�kipi
�j�qi

�j�� + V�kipi
�j�� , �C1�

where the mean and the variance are taken over the distribu-
tion of points j. Since E�pi

�j�qi
�j��=E�pi

�j�− �pi
�j��2�=E�pi

�j��
−E��pi

�j��2� and Ui=E��pi
�j��2�− �E�pi

�j���2, we can deduce that
E�kipi

�j�qi
�j��=ki�pi− pi

2−Ui�=ki�piqi−Ui�. Using Eq. �14�, we
have V�kipi

�j��=ki
2V�pi

�j��=ki
2Ui, so that

V�Ns
�i�� = kipiqi + Uiki

2
1 −
1

ki
� . �C2�

This first term on the right-hand side of Eq. �C2� corresponds
to Eq. �16�: the binomial contribution arising from the lim-
ited number of trial runs per point. The second term is an
extra contribution due to the landscape variance.

We now repeat the derivations of Sec. III B, simply re-
placing Eq. �16� by Eq. �C2�. We begin with the RB method,
for which Eq. �41� becomes

VRB�pi
e� = 
 1

N0
�
 piqi

ki
+ Ui
1 −

1

ki
��


 
 �2 − �i�
�i

� �1 − qi
ki�

� j=0
i �1 − qj

kj�
�C3�

and Eq. �43� is replaced by Eq. �52�:

VRB = 	
i=0

n−1 �
 qi

piki
+

Ui

pi
2
1 −

1

ki
��


 
 �2 − �i�
�i

� �1 − qi
ki�

� j=0
i �1 − qj

kj�� .
For the BG method, Eq. �30� is replaced by
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V�Ns
�i�� = �kipiqi + Ui�ki

2 − ki���
j=0

i−1

kjpj

+ ki
2pi

2V�Ns
�i−1�� �i � 0�

�C4�
V�Ns

�i�� = kipiqi + Ui�ki
2 − ki� �i = 0�

and Eq. �32� becomes Eq. �51�

VBG = 	
i=0

n−1 
 kiqipi + Ui�ki
2 − ki�

kipi� j=0
i pjkj

� .

For the FFS method, the situation is slightly more com-
plicated because the number of trials fired from point j at
interface i is not fixed. We make Mi trials from the Ni points
at �i, each time selecting a starting point at random �so that
the probability a particular point is chosen is 1 /Ni�. Since we
no longer assume that all points at interface i are identical,
we must now take into account the distribution of the num-
ber of times mj that point j is selected. This is, in fact, a
multinomial distribution,29,35 which has an average E�mj�
=Mi /Ni and a variance V�mj�=Mi�1/Ni�1−1/Ni��. Let us
now do a “thought experiment” in which we first decide how
many trials will be fired from each point; i.e., we fix the set
of values �mj� �of course, 	 jmj =Mi�. We then fire these trials
and measure the total number Ns

tot which reach �i+1. The
expectation value for Ns

tot is

E�Ns
tot��mj�� = 	

j

mjpi
j = Mipi, �C5�

and the variance is found using Eq. �C2�, with ki replaced by
mj, and summing over all j:

V�Ns
tot��mj�� = 	

j

�mjpiqi + Ui�mj
2 − mj�� . �C6�

We now imagine that we average the results over many sets
of values �mj�. Using the general relation �26�, we obtain:

V�Ns
tot� = V�E�Ns

tot��mj��� + E�V�Ns
tot��mj���

= V�Mipi� + E
Mipiqi + Ui	
j

mj
2 − UiMi�

= Mipiqi + Ui�NiE�mj
2� − Mi� . �C7�

Here, the variance and expectation are with respect to the
distribution of �mj� values. The last line follows from the fact
that V�Mipi�=0 as both Mi and pi are constants with respect
to changes in �mj�. Since V�mj�=Mi�1/Ni�1−1/Ni��
=E�mj

2�−E�mj�2, we find that E�mj
2�= �Mi /Ni��1−1/Ni�

+Mi
2 /Ni

2. Substituting this into Eq. �C7�, we obtain

V�Ns
tot� = Mipiqi +

Ui

Ni
�Mi

2 − �Mi�� . �C8�

Since pi
e=Ns

tot /Mi, we must divide Eq. �C8� by Mi
2 to obtain

V�pi
e�FFS:

V�pi
e�FFS =

piqi

Mi
+

Ui

Ni

1 −

1

Mi
� . �C9�
This leads to
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VFFS = N0	
i=0

n−1 �
 qi

piMi
+

Ui

pi
2Ni


1 −
1

Mi
��



�1 − qi

Mi�
� j=0

i �1 − qj
Mj�� , �C10�

where Ni=Mi−1pi−1 for i�0 and Ni=N0 for i=0. Rewriting
in terms of ki�Mi /N0, we obtain Eq. �50�:

VFFS = 	
i=0

n−1 �
 qi

piki
+

UiN0

pi
2Ni


1 −
1

N0ki
��



�1 − qi

N0ki�
� j=0

i �1 − qj
N0kj�� .

APPENDIX D: MEASURING THE INTRINSIC
VARIANCE

In this section, we describe a simple and computation-
ally cheap procedure for measuring the landscape variance
parameters Ui. Given a correctly weighted collection of Ni

points at interface �i �obtained, for example, using FFS�, we
could fire an extremely large number k of trial runs from
each point and measure the variance V�Ns

�i�� among points in
the values of Ns

�i,j�, where Ns
�i,j� denotes the number of suc-

cessful trials from point j:

Ui = V�pi� =
V�Ns

�i��
k2

=
1

k2�	
j=1

Ni Ns
�i, j�2

Ni
− 
	

j=1

Ni Ns
�i,j�

Ni
�2� �k → �� . �D1�

This is likely to be an expensive procedure. Fortunately,
however, it is not necessary to fire a very large number of
trial runs from each point. Instead, we make use of expres-
sion �C2�, which can be written as

Ui =
kV�pi

e� − piqi

k − 1
=

1

�k − 1�
V�Ns
�i��

k
− piqi� , �D2�

where the expression now holds for any value of k. In the
limit that k→�, Eq. �D2� is reduced to �D1�. As a practical
procedure, therefore, we generate a collection of Ni points at
interface i �using, for example, FFS� and fire k trials from
each point �k does not have to be a large number�. For each

FIG. 13. V�Ns
�0�� /k2 �solid line� and �1/ �k−1�� �V�Ns

�0�� /k− p0q0� �dashed
line�, as functions of k=M0 /N0, calculated using FFS as described in Ap-
pendix D, for the Maier-Stein problem of Sec. IV with 10 000 points at the
first interface � =−0.7.
0
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point j, we record the number of successful trials Ns
�i,j�. The

variance V�Ns
�i�� of these values is inserted into Eq. �D2� to

give a value for Ui. Figure 13 shows the results of this pro-
cedure for the Maier-Stein problem of Sec. IV. For the first
interface ��0=−0.7�, Ui was calculated using Eq. �D2�, using
k trials for each of 10 000 points collected at �0. The solid
line is the measured value of V�Ns

�i�� /k2, while the dashed
line is the value of Ui obtained from Eq. �D2�. The two lines
converge, of course, for large values of k. Figure 13 shows
that accurate results for Ui can be obtained using Eq. �D2�,
using only a small number of trial runs per point.
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