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We propose a Monte Carlo �MC� sampling algorithm to simulate systems of particles interacting via
very short-ranged discontinuous potentials. Such models are often used to describe protein solutions
or colloidal suspensions. Most normal MC algorithms fail for such systems because, at low
temperatures, they tend to get trapped in local potential-energy local minima due to the short range
of the pair potential. To circumvent this problem, we have devised a scheme that changes the
construction of trial moves in such a way that the potential-energy difference between initial and
final states drops out of the acceptance rule for the Monte Carlo trial moves. This approach allows
us to simulate systems with short-ranged attraction under conditions that were unreachable up to
now. © 2005 American Institute of Physics. �DOI: 10.1063/1.1931652�

INTRODUCTION

Simulations of molecular systems where the particles are
interacting via short-range potentials are interesting for two
reasons. On the one hand, these models can be used to de-
scribe systems of considerable practical importance, e.g.,
colloidal suspensions and protein solutions, where the con-
stituent particles attract each other strongly when they are
close to contact. On the other hand, the study of such models
is of interest in its own right, as it is clear that the shape of
the phase diagram of spherical particles depends strongly on
the range of the intermolecular forces.1–5 An example is the
existence of a metastable liquid-liquid transition in model
systems with short-ranged attractions.6–10 Strictly speaking,
the interaction between �macro� molecules in solution is not
given by an interaction potential, but by an interaction free
energy—the potential of mean force.11,12 Metastable liquid-
demixing transition has been observed experimentally in so-
lutions of globular proteins, and may play an important role
in the pathway for protein crystallization.13–17

In what follows, we focus on the simplest model for a
system with short-ranged attractive interactions, namely, the
square-well fluid. Before discussing our algorithm, it is use-
ful to analyze why simulations of square-well fluids with
short-ranged interactions are problematic. Consider a fluid of
particles with a hard-core diameter � and an attractive well
with depth � and width ��. The second virial coefficient of
such a fluid is given by

B2 =
2��3

3
�1 − �e�� − 1���1 + ��3 − 1�� , �1�

where �=1/kT. It is clear that, if the well is narrow ���1�,
the effect of attraction only becomes noticeable if exp����
�1. This is the “interesting” regime where, for instance,
liquid-liquid demixing can occur. However, the fact that
exp�����1 makes conventional Monte Carlo �MC� sam-

pling difficult. If two particles are within the range of the
attraction, the acceptance probability of a trial move that
moves the two particles outside that range becomes very
small �exp�−����. Similarly, the reverse move is unlikely
because the pair attraction is only active in a volume of order
��1. This problem becomes worse if we consider the inter-
action of a particle with n other particles. Then the relevant
Boltzmann factor is exp�n���, where n may be as large as
12. The net result is that “bond-breaking” moves are virtually
never accepted and “bond-making” moves are virtually never
attempted. This problem can be overcome by changing the
construction of the Markov chain in the Monte Carlo algo-
rithm. Before we explain this in more detail, let us once more
consider a system of square-well particles with a short-
ranged attraction with well depth �. Now consider that we
insert a trial particle in this system. Of the total volume V,
only a subvolume Va is accessible �i.e., free of hard-core
overlaps�. We can now decompose this volume in a part V0

where the trial particle does not interact with any other par-
ticle. A part V1 corresponds to all points where the trial par-
ticle interacts with only one other particle. Similarly, we can
define volumes V2 ,V3 , . . . ,Vn where a particle interacts with
1 ,2 , . . . ,n other particles. Of course, these different volumes
have different Boltzmann weights PB�n��Vnen��. If we can
somehow evaluate Vn, then we can perform a Monte Carlo
scheme where trial moves go from a random point in sub-
volume Vm to a random point in subvolume Vn. The prob-
ability to perform such a trial move is determined by the
ratio �Vmem��� / �Vnen���. This approach is at the basis of the
algorithm used in Refs. 1 and 2 to simulate adhesive hard
spheres �i.e., a square-well fluid in the limit �→0�. However,
the approach used in Refs. 1 and 2 is only valid for �→0.
Here we consider the general case where ��0. Several au-
thors have devised algorithms to improve the MC sampling
of systems with such short-ranged interactions.18,19 These
methods are based on biasing the attempt to perform bond-
breaking and bond-making moves, and recover detailed bal-
ance through the appropriate unbiasing factor in the accep-
tance criteria. In this manner Wierzchowski and Kofke19

a�Author to whom correspondence should be addressed. Fax: 	31-20-
6684106. Electronic mail: frenkel@amolf.nl

THE JOURNAL OF CHEMICAL PHYSICS 122, 244106 �2005�

0021-9606/2005/122�24�/244106/8/$22.50 © 2005 American Institute of Physics122, 244106-1

Downloaded 07 Mar 2006 to 192.16.189.17. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1931652


constructed a bias move where the bias is used to determine
the probability of attempting to move a particle that does not
interact with any of each neighbors, to a trial position where
it is interacting with at least a single other particle, and vice
versa �possible interactions with more than one particles,
even overlaps accounted for, not in the trial probability, but
in the acceptance criterion�. These algorithms are simple and
of great practical use. However, they are applicable to a lim-
ited range of � values since the probability of selecting state
where a particle interacts with many neighbors tends to be
small, while its Boltzmann weight is large. Moves in and out
of such regions are unlikely. In the algorithm discussed
below, no such limitation exists. However, the price that
we pay is that we have to sacrifice the simplicity of the
algorithm.

APPROACH

Dod and Theodorou20 have developed a general algo-
rithm that yields a closed expression for the total volume and
the exposed area of a union of n spheres of arbitrary size,
delimited by a set of planes. In the present work, we extend
the algorithm of Ref. 20 to the calculation of the volume of
intersection and the volume of difference of spheres with
arbitrary size. The basic idea behind our approach is that we
can then use the inclusion–exclusion principle to compute all
the volumes �V0 ,V1 ,V2 , . . . ,V12�.

As with the evaluation of the union of spheres, the first
step is to decompose the problem into a problem of a single
sphere intersected by a set of planes. For every pair of over-
lapping spheres, a plane may be drawn perpendicular to the
line connecting the two sphere centers �Fig. 1�. When com-
puting the union of these spheres the plane removes a cup
from both spheres. In contrast, when evaluating the intersec-
tion of the same pair of spheres, we need to know the volume
of the cups. Finally, in the case of calculating the difference
of two spheres the cup of the first sphere should be removed
whereas for the subtracted sphere the cup remains and the
rest of the sphere is removed. Which part of the sphere will
be removed is defined by the direction of the normal vector
of the plane. According to the convention used by Dod and

Theodorou20 a plane removes the part of the sphere that lies
on the side pointed by the normal vector. Each of the two
spheres is given a copy of the plane of intersection, including
a unit normal vector directed so that it points out of the
remaining part of the sphere, as shown in Fig. 1. Note that
the unit vectors in the two spheres are pointing in opposite
directions in the case of union and intersection calculations
whereas in the case of calculating differences the unit vectors
are identical �Fig. 1�. In this way the spheres are completely
decoupled from each other and, therefore, can be analyzed
separately and, moreover, the same sphere can participate
simultaneously in an arbitrary number of union–intersection–
difference calculations with other spheres. This procedure is
repeated for all sphere pairs in the system. In addition, some
of the spheres in the system may be delimited by one or
more of the external planes defined in the problem statement
�see below�. Thus we only have to consider the truncation of
all spheres in the system by sets of planes. The calculation
then continues in exactly the same manner as in the case of
the union calculation.20 As in the case of the union calcula-
tion the method is exact for any arbitrary number of overlap-
ping sphere and sphere sizes and is only subject to numerical
precision.

In order to describe the proposed algorithm the follow-
ing function is introduced:

as the remaining volume of sphere Ii after slicing the sphere
with the n intersection planes formed by the intersection of
sphere Ii and each of the spheres Ij with normal vector equal
to rIi

−rIj
/‖rIi

−rIj
‖ �forming a cup�, and m intersection

planes formed by the intersection of sphere Ii and each of the
spheres Ik with normal vector equal to −�rIi

−rIk
� /‖rIi

−rIk
‖

�removing a cup�. For the sake of simplicity we shall refer to
the former ones as forming-a-cup �FC� planes, whereas the
latter as removing-a-cup �RM� planes. The Slice function
depends only on the position and radius of sphere Ii, and on
the intersecting planes of sphere Ii with the remaining
spheres. In this way the spheres are decoupled and the “trun-
cated” volume of each sphere can be calculated directly from
the analytical geometrical algorithm.20 For the Monte Carlo
algorithm, we only consider moves inside a small, cubic vol-
ume, the “trial box.” In our calculations, we also consider the
�possible� intersections of each sphere with the six bounding
planes of the trial box. For simplicity, we do not mention
these planes separately in what follows.

As illustrated in Fig. 1 from the definition of the Slice
function it follows that

VA�B = Slice�A;���;�B�� + Slice�B;���;�A�� , �2�

VA�B = Slice�A;�B�;���� + Slice�B;�A�;���� , �3�

VA−B = Slice�A;���;�B�� − Slice�B;�A�;���� , �4�

VB−A = Slice�B;���;�A�� − Slice�A;�B�;���� . �5�

In the case where volume A is completely embedded in vol-
ume B it follows that

FIG. 1. Schematic representation of the reduction of the intersection–
difference–union calculation in a problem of intersecting spheres with
planes.
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VA�B = VB, Slice�A;���;B� = 0, Slice�B;���;A� = VB,

�6�

VA�B = VA, Slice�A;�B�;���� = VA, Slice�B;�A�;����

= 0. �7�

For the case of n spheres:

�8�

�9�

�10�

�11�

From Eqs. �2�–�11� is evident that by evaluating the
Slice function we are able to evaluate any arbitrary combi-
nation of unions, intersections, and differences between
fused spheres.

CONSTRUCTING A DISPLACEMENT MOVE
FOR THE SW SYSTEM, BASED ON THE
UNION–INTERSECTIONS–DIFFERENCES ALGORITHM

A crucial entity in the proposed sampling scheme is the
locus of points where a possible placement of a square-well
�SW� particle 
 will result in a specified interaction energy
with the rest of the SW particles of the system. The volume
of all points that result to the same energy level is calculated
as follows.

Starting from the old state we randomly select the par-
ticle 
 to be displaced. In contrast with the traditional dis-
placement move, our displacement is not centered on the old
position of the displaced particle but in a randomly selected
point within a box centered on the old position. Such a se-
lection of a trial box ensures that the displacement move
satisfies the detailed balance criteria as described in Appen-
dix A, by equalizing the probability of selecting the same
trial box from the old and the new state.

Since the new position of the particle could be any point
within the trial box, we should consider interaction of the

displaced particle with all particles whose distance from the
center of the trial box is smaller than the interaction distance
plus half the body-diagonal of the trial box.

For each particle i in the volume of interest, except the
displaced one, two spheres are considered. Both spheres have
the same center as particle i. The first sphere �“exclusion”
sphere, si

excl� has a radius equal to the sum of hard-core radii
of the original particle i and the displaced particle 
, as
defined in Eq. �12�. Whereas the second sphere �“interaction”
sphere, Si

inter� has a radius equal to the previous radius plus
the width of the attractive well defined in Eq. �13�.

Ri
excl =

�
 + �i

2
, �12�

Ri
inter =

��
 + ��i

2
, �13�

where ���1+��. Any attempt to move particle 
 to a point
inside an exclusion sphere will result in an infinite interac-
tion with the particle i. On the other hand moving particle 

to a point that belongs to the interaction sphere but not to the
exclusion sphere will result in an attractive interaction with
this particle. Finally, insertion of the particle 
 in any other
point of the test volume will result in no interaction between
particles 
 and i. Therefore the number of interactions, and
hence the interaction energy, for a given trial position of
particle 
, is determined by the number of distinct interac-
tion spheres to which this point belongs. The volume of
points resulting in only one interaction between the displaced
particle and the rest of the system is given by

V1 = �
i=1

N

�V�Si
inter−�si

excl�. . .�Sj�i
inter�. . .���B� , �14�

where B is the volume where the displacement of particle 

is attempted �the volume of the trial box in our case�, N is the
number of particles in the system for which Si

inter�B�0
�i.e., there are points in volume B where placing particle 

will result in interaction or overlap with particle i�, and j runs
on the subset of those particles for which at the same time
�Sj

inter�Si
inter��B�� defined as neighbors to particle i. �i.e.,

there may be points in volume B where placing particle 

will result in interaction with particles i and j�. The incorpo-
ration of any other particle, that does not satisfy the above
conditions have no contribution, on the other hand may in-
crease dramatically the computational cost.

Similarly the volume of points that will result in two
interactions is given by

V2 = �
i=1

N−1

�
j=i+1

N

�V��Si
inter�Sj

inter�−�si
excl�sj

excl. . .�Sk�i,j
inter �. . .���B� .

�15�

For the general case of n interactions the corresponding vol-
ume is calculated as the sum of all possible combinations of
the difference between the intersection of n interaction
spheres �Si�

inter� of particle i�, �� �1,n� and the union of the
corresponding exclusion spheres si�

excl and the m common
neighboring interaction sphere, �Sk

inter�. The corresponding
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expressions for Vn with n=2,3 , . . ., are rather unwieldy and
are given in Appendix B.

Having evaluated the volume of all possible levels Vn we
select to place the displaced particle to one of them accord-
ing to the Boltzmann weighted probability given by

P�n� =
Vn

*e−��−n�

�i=0
12 Vi

*e−��−i� . �16�

Having selected the energy level according to Eq. �16�,
we have to select one of the combinations of n particles with
which the displaced particle should interact. In order to do so
we keep a list of all nonzero volumes V�I ,n� for our calcu-
lation and select one of them given by

P�I,n� =
V�I,n�

�V�I,n�
. �17�

For each one of the n selected particles the boxes that bound
the interaction spheres of those particles are defined. Trial
insertions of the displaced molecule are attempted in the box
formed by the intersection of the interaction boxes and the
initial trial volume. The first trial position that satisfies the
condition of interacting with only the n selected particles is
selected as the new position for the displaced particle. In
Appendix A we demonstrate that the proposed scheme satis-
fies detailed balance. In Appendix B we briefly summarize
the procedure to calculate the volume of all possible levels
�Vn�.

SIMULATION DETAILS

Several numerical studies have been performed on the
SW model in the past.21–24 The parameters �, �, and � deter-
mine the phase diagram of the system. Because of the
corresponding-states principle, all systems with the same
value of �� /�� have equivalent phase diagrams. By changing
the range of interaction �, we can go from the van der Waals
limit ��=
� to the adhesive sphere limit ��=0�. Most of the
previous simulation studies focused on square-well widths
that were considered to be typical for simple liquids.21–24

However, in order to model complex liquids �colloids and
protein solutions�, it is important to have efficient schemes to
simulate SW fluids with short-ranged attraction. With con-
ventional MC schemes, it is, however, difficult to equilibrate
systems at the conditions of vapor liquid equilibrium for val-
ues of ��0.125. Below, we show that, with the present
method, we can sample systems with very small values of �.

In our approach we generate a Markov chain of configu-
rations by exhaustive enumeration of all possible interaction
states in the vicinity of the old configuration. We always
accept one of these trial states according to its Boltzmann
weight. To this end, we employ the scheme described above.
For the case of a one-component system, we refer to the
interaction energy level of the displaced particle as the num-
ber of interactions of that particle i with the rest of the sys-
tem �� j�i

N uij /−��.

RESULTS AND DISCUSSION

As a first test, we used the analytical evaluation of the
volumes that correspond to n-particle interactions, to com-
pute the excess chemical potential of a square-well fluid,
using a modification of the Widom particle-insertion
method.25 In the normal Widom scheme, the excess chemical
potential is estimated by performing a large number of vir-
tual trial insertions of a test particle in a given volume of the
fluid. The chemical potential is then computed using

�ex = − kBT ln	e−��U
 , �18�

where �U is the potential energy of the test particle at its
randomly chosen test position. With the present scheme we
can do better, because for any given subvolume V, and for
any configuration of the system, we can estimate the contri-
bution to 	exp�−��U�
,

e−��U = �
n=0

12 �Vn

V
�en��. �19�

This method works well, even for very short-ranged attrac-
tions, where the volumes Vn become very small for larger n.
Rather than comparing the result averaged over many con-
figurations of the system, we compared the analytical result
for a few specific configurations with the result that was
obtained with the conventional scheme, using 500�106 trial
insertions. For both schemes, we considered the same test
volume with a size of 1.96�3. The three configurations used
for the comparison of the accessible volumes presented in
Fig. 2 were generated at T*=0.4 and �*=0.723 for a system
of 108 SW particles with �=0.05. The computational cost for
the 500�106 trial insertions �tins� is three orders of magni-
tude higher than the computational cost �ta� of the exact ana-
lytical solution. We are not proposing to use the present
scheme as a general method to compute chemical potentials
because the computation of 	exp�−��U�
 will require sam-
pling many configurations using as test volume the total vol-
ume of the system and not a subvolume as in our test case

FIG. 2. Comparison between the analytical evaluation of the accessible
volume for the insertion of a SW particle in a specific interaction levels in a
box of length 1.251�, using the proposed analytical method �filled symbols�
and 500�106 trial “ghost” insertions �open symbols�. Three attempted
moves are shown for the displacement of a SW particle in a system of 108
SW particles of �=1.05, T*=0.4, and �*=0.723. Interaction level −1 repre-
sents the case where the placement of a SW particle will result in an overlap.
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and then the advantage of the analytical method is lost �ex-
cept for ��1�.

In Figs. 3–5 we show that the proposed algorithm yields
the same results as the conventional Metropolis sampling, in
a regime where we can still use the latter. The simulations
were performed in the canonical �constant-NVT� ensemble
and all results are presented in reduced units.26 We consid-
ered a system of 108 SW particles with �=0.05, T*=0.37,
and �*=0.542. At this temperature and density to guarantee
the conventional MC scheme still yields reliable results to
which we can compare our results. In Fig. 3 we show a
comparison of the radial distribution function g�r� as com-
puted with the present scheme and with the standard MC
method. As can be seen in the figure, the present method
reproduces the results of the conventional MC scheme. In
Fig. 4, we used the two schemes to compute energy histo-
grams for the same model system. Again, we find good
agreement with conventional MC sampling.

The advantage of our analytical evaluation of the inter-
action volumes over the use of trial insertions is not only
that, for a given configuration of the particles, we obtain the
exact answer but also that it sometimes leads to drastic sav-
ings in CPU time. This is the case when the interaction vol-

ume is small, as is the case for SW particles with short-
ranged interactions. The advantage is particularly
pronounced at low temperatures.

Whether or not the present scheme advantageous de-
pends strongly on the simulation conditions. The reason is
that, in contrast with the usual MC method, the CPU cost of
the proposed algorithm depends strongly on the average en-
ergy of the system and on the size of the trial box where the
insertions are performed. Depending on the conditions, one
step of the proposed method may be equivalent to hundreds
of random displacement moves. Figure 5 shows an illustra-
tion of the computational efficiency of the present scheme
for a system of 108 SW particles with �=0.005, T*=0.225,
and �*=0.6625. Figure 5 compares the computational effi-
ciency in terms of the mean square of the statistical error s of
the potential energy times the CPU consumption �s2tCPU�,
divided by the efficiency of conventional MC sampling �
=s2t /sMet

2 tMet, where the maximum displacement length was
adjusted during the equilibration period in order to yield

30% acceptance. The statistical uncertainty s of the poten-
tial energy was estimated from the variance in the block
averages. Concluding we argue that with the appropriate
choice of parameters �mainly the size of the displacement
box �� the proposed method became much more efficient
than the random displacement in low temperatures and
higher densities. The figure shows that with an appropriate
choice of parameters �in particular, the size of the displace-
ment box� the proposed method can be much more efficient
than random sampling, in particular, at low temperatures and
high densities. These conditions are relevant for the study of
�metastable� liquid-liquid equilibria. In a separate publication
we show how the efficiency of the present scheme can be
increased even more by combining it with a scheme that
includes the contributions of rejected trial moves in the sam-
pling of averages.27
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APPENDIX A: DETAILED BALANCE DERIVATION

The detailed balance condition implies that the following
equation should be satisfied in any attempt to move from the
old state o to the new state n:26

N�o� � 
�o → n� � acc�o → n�

= N�n� � 
�n → o� � acc�n → o� , �A1�

where N�i� is proportional to the probability of finding the
system in state i, 
�i→ j� is the probability of attempting to
go from state i to state j and is usually referred to as the
underlying matrix of the Markov chain, and acc�i→ j� is the
probability of accepting the move from state i to state j. In
the original Metropolis scheme, 
 is chosen to be symmetri-
cal whereas the acceptance criteria are chosen in a way to
satisfy Eq. �A1�. The proposed scheme is based on contract-
ing the 
�i→ j� in a way that the resulting acceptance prob-
ability acc�i→ j� is always 1. From Eq. �A1� it follows that
the above statement can be expressed as


�o → n�

�n → o�

=
N�n�
N�o�

. �A2�

In the case of the canonical ensemble the right-hand side of
Eq. �A2� results on the ratio of the Boltzmann factors of the
new and old states, where U is the potential energy of the
system on N particles, and u is the interaction energy of the
displaced particle with the rest �in reduced units for one-
component system�,—u is equal to the number of interac-
tions that the displaced particle has �i.e., number of neigh-
bors whose center-to-center distance is closer than ���.

N�n�
N�o�

=
e−�U�n�

e−�U�o� = e−��U�n�−U�o�� = e−��u�n�−u�o��. �A3�

The proposed displacement moves consist of the following
steps:

�a� First the particle that is about to move is selected at
random over the N possible particles. A box of volume
Vtest=�3 and center at the center of the old position of
the displaced particle is considered.

�b� Within this volume a point is selected at random in
order to be the center of a new box with equal volume.
In this volume the analytical calculation described in
the text is performed resulting to the volumes of points
that potentially can result in any given number of in-
teractions between the displaced particle and the N−1
particles in the system.

�c� As discussed in the text we choose one of those levels
according to Eq. �16�.

�d� Finally we chose one combination �I� of interaction
particles according to Eq. �17�.

�e� We evaluate the parallelepiped box that forms from the
union of the boxes enscribing those particles and select
the first point in this parallelepiped box that satisfies
the condition of belonging to the preselected energy
level interaction with the combination �I� from step �d�.

According to the above procedure the underlying matrix of
the Markov chain 
 is given by the following:


�o → n� =
1

N
�

1

Vtest
�

Vn
*e−�u�n�

�i=0

 Vi

*e−�u�i� �
V�In,n�

Vn

�
1

V�In,n�
, �A4a�


�n → o� =
1

N
�

1

Vtest
�

Vo
*e−�u�o�

�i=0

 Vi

*e−�u�i� �
V�Io,o�

Vo

�
1

V�Io,o�
. �A4b�

From Eqs. �A3�, �A4a�, and �A4b� it follows �A5� thus �A2�
is satisfied and so forth the proposed scheme obeys the con-
dition of �super� detailed balance condition.


�o → n�

�n → o�

=
e−�u�n�/�i=0


 Vi
*e−�u�i�

e−�u�o�/�i=0

 Vi

*e−�u�i� = e−��u�n�−u�o�� =
N�n�
N�o�

.

�A5�

Note that since the volumes of different energy levels are a
function of the trial box, step �b� is crucial in satisfying that
the volumes in the forward and the reverse move correspond
to the same box and therefore Eq. �A5� is valid.

APPENDIX B: PROCEDURE TO CALCULATE THE
VOLUMES OF ALL INTERACTION LEVELS

The magnitude of the volume where a test interacts with
n other particles is calculated as the sum of all possible com-
binations of the difference between the intersection of n in-
teraction spheres �Si�

inter� of particle i� ,�� �1,n� and the union
of the corresponding exclusion spheres si�

excl and the m com-
mon neighboring interaction sphere �Sk

inter�, where a particle
k has nonzero contribution in the calculation only if it is
“neighbor” to all particles i� , ∀�� �1,n� particles thus sat-
isfy the following:

���
�=1

n

Si�
inter� � Sk

inter� � B � � , �B1�
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Vn = �
i1=1

N−�n−1�

¯ �
i��i�−1,. . .

N−�n−��

¯ �
in�in−1,. . .

N

�V���
�=1
n Si�

inter�−���
�=1
n si�

excl����k=1
m Sk�i�

inter ����B� . �B2�

Taking into account that the exclusion spheres are completely embedded in the corresponding interaction spheres, the accu-
mulated volume of Eq. �B2� can be rewritten based on Eq. �11� as

�B3�

where i��1���n� denotes one of the n particles with which
the displaced particle will interact in the volume given by
Eq. �B3�. For a given i�, the index � denotes one of the
remaining n−1 particles with ���.

In Fig. 6 we present a schematic representation of V3 in
a two-dimensional test case. It should be noted that, for a
given energy level n, terms from the first sum on the right-
hand side of Eq. �B3� are frequently identical to terms of the
third sum of the next energy level n+1. By the appropriate
bookkeeping of the calculated volumes the computational
cost is greatly reduced.

It is possible to further reduce the computational cost, if
in Eq. �B3�, one substitutes the exclusion radius instead of
the “interacting” �i.e., substituting Sk

inter with sk
excl�, for the m

“neighboring” spheres then the resulting volume is the vol-
ume that can lead to at least n interactions. We use this
information in the case of n=1 to find the total volume that a
given sphere can contribute to all energy levels. In the pro-

cess of our calculation we accumulate the volume of each
sphere to a given energy level. When the cumulative volume
reaches the volume described above, this sphere can appear
only as a neighboring sphere. We note that the order of in-
vestigating the different energy levels has a significant effect
on the computational cost.

Below, we briefly summarize the procedure to calculate
the volume corresponding to n interactions according to
Eq. �B2�:

�1� First we identify and label the particles for which the
intersection of the interaction sphere and the box of
interest may be nonzero �Si

inter�B�0�.
�2� The next step is to find all possible combinations of

particles that may result in the desirable number of in-
teractions n. In order to do so we loop recursively over
all labeled particles, and find the combinations that re-
sult in a cluster of at least n particles that satisfy the
condition that the center-to-center distance between
each particle and each of the i particle is less than the
sum of the interacting radius of the two particles. This
condition is less strict than Eq. �B1�. Since it is much
cheaper than the condition of Eq. �B1� it is applied in
an early state, in order to reduce the overall number of
particles used in the calculation. Multiple counting is
avoided by appropriate bookkeeping. At this point we
have came up with a list of combinations of n particles
and their m “neighbors” that may contribute to the vol-
ume of interest. Note that only a very small part of
them will result in nonzero contribution.

�3� For every combination in the above list the contribution
to the sum of Eq. �B2� is evaluated according to
Eq. �B3�.

For each one of the n particles i the first two terms of Eq.
�B3� are being evaluated.

�a� The first term of Eq. �B3� requires that the sphere i has

FIG. 6. A schematic representation of volume �V3� of points where the
placement of an additional particle will result in three interactions �with
particles A, B, and D as is evaluated by Eq. �B3� in a two-dimensional test.
For the notation see text.
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the interacting radius Ri
inter defined by Eq. �13�, and has

been sliced by

i. n−1, FC planes, formed by the intersection of
sphere Si

inter and the n−1 spheres in the list �having
also their interacting radius defined by Eq. �13�
Sj

inter, ∀j� �1,n�� i�.
ii. n−1 RM planes, formed by the intersection of

sphere Si
inter and the n−1 spheres in the list �having

their exclusion radius defined by Eq. �12� sj
excl,

∀j� �1,n�� i�.
iii. m, RM planes, formed by the intersection of sphere

Si
inter and the m neighboring spheres in the list

�having their interacting radius defined by Eq. �13�
Sk

inter, ∀k� �1,m��.

�b� The second term of Eq. �B3� requires that the sphere
si

excl has been sliced by

i. n−1, FC planes, formed by the intersection of
sphere si

excl and the n−1 spheres in the list �having
also the interacting radius defined by Eq. �13� Sj

inter,
∀j� �1,n�� i�.

ii. n−1, RM planes, formed by the intersection of
sphere si

excl and the n−1 spheres in the list �having
the exclusion radius defined by Eq. �12� sj

excl, ∀j
� �1,n�� i�.

iii. m, RM planes, formed by the intersection of sphere
si

excl and the m neighboring spheres in the list �hav-
ing the interacting radius defined by Eq. �13� Sk

inter,
∀k� �1,m��.

�c� The third term of Eq. �B3� has to be evaluated for each
one of the m neighboring spheres Sk

inter. This term re-
quires that the sphere Sk

inter has the interacting radius
Ri

inter defined by Eq. �13�, and has been sliced by

i. n, FC planes, formed by the intersection of sphere
Sk

inter and the n spheres in the list �having also the
interacting radius defined by Eq. �13�, Sj

inter, ∀j
� �1,n��.

ii. n, RM planes, formed by the intersection of sphere
Sk

inter and the n spheres in the list �having the ex-
clusion radius defined by Eq. �12�, sj

excl, ∀j
� �1,n��.

iii. m−1, RM planes, formed by the intersection of
sphere Sk

inter and the m−1 neighboring spheres in

the list �having the interacting radius defined by
Eq. �12� Sj

inter, ∀j� �1,n��.

In order to speed up the calculations the first term is evalu-
ated. If it turns out to be zero then no further calculation is
required for this combination of n particles since the other
two terms have to be also zero. Confining the calculation to
a box requires that all spheres should be sliced by the bound-
ary planes of the box. This procedure is followed for all
energy levels n from 1 to 14, �or more efficiently from 14 to
1� and the volume of points that correspond to no interaction
is calculated from the difference between the total volume of
the box and the volume of all energy levels. We used as a
maximum energy levels 14 since for infinitely short-ranged
interactions we know that the maximum value is 12.
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