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We present a simple, implicit-solvent model for fluid bilayer membranes. The model was designed
to reproduce the elastic properties of real bilayer membranes. For this model, we observed the
solid-fluid transition and studied the in-plane diffusivity of the fluid phase. As a test, we compute the
elastic-bending and area-compressing moduli of fluid bilayer membranes. We find that the computed
elastic properties are consistent with the available experimental data. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1927509g

I. INTRODUCTION

Nature uses lipid bilayer membranes to encapsulate and
protect both cells and subcellular organelles.1 The mechani-
cal properties of these membranes are closely related to their
biological functionsssee, e.g., Ref. 2d. For this reason, there
is much interest in developing reliable computational models
for bilayer membranes. In some cases, it is possible to use
fully atomistic models. Unfortunately, with current comput-
ers the applicability of fully atomistic models is mostly lim-
ited to studies of a few hundred lipids for a period of a few
nanoseconds.3,4 In order to bridge the gap between simula-
tions and experiments that probe the structure and dynamics
of membranes on longer length and time scales, we are
forced to use simplified models, i.e., models that account
only for those degrees of freedom that are believed to be
most essential for the observed phenomena. The simplest
models in this category are not particle based: they include
tethered solid membranes,5,6 tethered fluid membranes,7,8

and continuous elastic sheets.9–11 Nonatomistic but particle-
based models constitute the next step in coarse-grainedsCGd
modeling of membranes. In these CG models, groups of at-
oms within the lipid molecules are replaced by coarse-
grained particles. The lipid molecules are then represented as
short chains of coarse-grained particles. During the past few
years, a large number of such CG models have been devel-
oped to study monolayer membranes, bilayer membranes,
and vesicles.12–28There are great variations in the CG lipid-
chain structure, the shape of the coarse-grained monomers,
the internal degrees of freedom of the lipids, and the effec-
tive interactions between two particles, depending on the
membrane properties that one aims to reproduce.

Closest to the fully atomistic models are off-lattice CG
models with explicit solvent.12–21While these CG models are
better suited for the simulation of large membranes than fully
atomistic models, they are still not exactly cheap and this
limits their applicability to the study of slow or large-scale
phenomena. One way to reduce the computational cost of
CG membrane simulations is the use of lattice models.22,23

Though computationally cheap, these models tend to pro-
duce spurious lattice effects, especially for simulations of the
fluid membrane, because they fail to provide a reasonable
description of, for instance, small-scale diffusion and mo-
lecular tilt.22 In what follows, we therefore restrict the dis-
cussion to off-lattice models.

In particle-based membrane simulations, a large fraction
of the computational cost is related to the simulation of the
smanyd solvent particles. For this reason, it is attractive to
consider models that do not take the solvent into account
explicitly—although the effect of the solvent on the mem-
brane structure should of course be incorporated in the
model. Solvent-free models have been used to analyze the
equilibrium behavior of cell membranes for nearly
30 years.29–33However, in molecular simulations, such mod-
els have a much shorter history. Drouffeet al.24 performed a
solvent-free molecular simulation of a membrane where the
solvent-lipid interaction was represented via a density-
dependent multibody interaction between lipid molecules.
This was an important advance, as the length scale studied in
the simulations of Ref. 24 is difficult to reach in simulations
with explicit solvent, even with modern computers. A more
sophisticated version of this model was subsequently pro-
posed by Noguchi and Takasu.25

Recently, Farago26 proposed an implicit-solvent model
where the lipid molecules are represented by rigid trimers.
This model assumed only pairwise additive interactions.
Brannigan and Brown27 proposed yet another pair-potential-
based solvent-free model, in which the lipid molecule is
modeled as a rigid rod that is capable of changing shape.
Though these models are computationally very efficient, they
have not been particularly successful in reproducing the elas-
tic properties of real lipid membranes. The bending moduli
of simulated bilayers are either smaller24,25 or much
larger26,28than the experimental range.34 In addition, as these
models represent lipids as rigid chains, they are not sufficient
for studying some mechanisms which are very sensitive to
the flexibility of the lipid tails, e.g., the free-energy barrier of
defect formation in membranes, although they can reproduce
some self-assembled or phase-transition phenomena.24–27adElectronic mail: wang@amolf.nl
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To remedy these defects, while retaining the computa-
tional simplicity of implicit-solvent models, we propose a
water-implicit membrane model consisting of flexible,
coarse-grained lipids. The remainder of this paper is orga-
nized as follows. In Sec. II we describe the simulation
model. In Sec. III we present numerical simulations of the
phase behavior, fluidity, and membrane elasticity. We com-
pare our results with those of other simulations and with
experiment. Section IV contains concluding remarks and we
comment on further developments.

II. SIMULATION METHOD

A. Potential model

Each amphiphile molecule is described as a flexible
chain with three coarse-grained beadsssee Fig. 1d. One par-
ticle is hydrophilic, the other two are hydrophobic.

The bonds between the beads are represented by a finite
extensible nonlinear elasticsFENEd potential13

Ussdd = − 1
2ksds

2 lnh1 − fsd − d0d/dsg2j. s1d

The angle-bending potential between two bonds is

Ubsud = kbs1 − cosud, s2d

where u is the angle between subsequent bonds. Beads on
different molecules interact via a truncated Lennard-Jones
potential:

Uttsrd = efsstt/rd12 − 2sstt/rd6 + Uc0g, s3d

Uhhsrd = efsshh/rd12 − 2sshh/rd6 + Uc1g, s4d

Uthsrd = efssth/rd12 − 2ssth/rd6 + Uc1g, s5d

wheret andh represent the tail and head beads, respectively.
The cutoffs for potentialUtt, Uhh, andUth are 2stt, shh, and
sth, respectively, which make attractive interactions exist
only between tail beads.Uc0 andUc1 srespectively, 0.031 and
1d are the amounts by which the potential is shifted at the
cut-off distance.

Water molecules are not taken into account explicitly.
We mimic the interaction between the water molecules and
amphiphiles with a multibody potential that depends on the
local density of the hydrophobic beads

Uhpsr̃d = 5efkr̃sr̃ − 0.75d + U0g, r̃ , 0.75

efs1/r̃d12 − 2s1/r̃d6 + 1g, 0.75ø r̃ , 1

0, r̃ ù 1,
6 s6d

where r̃=r /r* . To obtain a potential with a continuous de-
rivative, kr̃ and U0 are given the values of −415.21 and
21.332, respectively.

This multibody “hydrophobic” potential expresses the
increase in free energy due to the contact of water molecules
with the hydrocarbon beads of the amphiphiles. As shown in
Fig. 2, the critical local densityr* represents the crossover
point below which there is interaction between water mol-
ecules and the hydrophobic beads.

In principle, the total potential energy should be rotation-
ally invariant. However, as we consider bilayers in a fixed
geometrysz axis perpendicular to the bilayerd, we use a defi-
nition of the local density that is optimized for this geometry.

ri,j = o
i8Þi,j8Þ1

hsur ei,j − r ei8,j8ud, s7d

wherei andi8 represent molecules,j and j8 represent hydro-
phobic tail beads,r e=xi +yj +aezk, and

hsred =
sshp/red12 − 2sshp/red6 + 1

sshp/red12 − 2sshp/red6 + 2
, s8d

where the cutoff forhsred is shp. hsred is approximately the
number of hydrophobic particles in the ellipsoid spherex2

+y2+ae
2z2=shp

2 . Note that with this definition of the local
density, the many-body potential is related to the choice of
the coordinate frame. In general, this would be problematic.
However, as long as we consider planar membranes that are
periodically continued in thexy plane, say, the symmetry of
the system has already been broken.

All the parameters of the potential functions are given in
Table I.

FIG. 1. Illustration of a coarse-grained surfactant molecule which has one
hydrophilic beadssolidd and two hydrophobic beadssopend.

FIG. 2. Dependence of the multibody “hydrophobic” potential on the local
density of hydrophobic tail beadsssee textd.
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B. Statistical ensemble

We performed Monte Carlo simulations in both the
NVTAp andNVTS ensembles.N is the number of molecules,
V is the volume of the simulated system,T is the tempera-
ture,Ap is the projected area of the bilayer on thex-y plane,
and S is the lateral pressure of the bilayer. For theNVTS
simulations every Monte Carlo sweep includes the following
trial moves: s1d 3N displacements of a single bead,s2d N
displacements of a single molecule, ands3d a variation of the
area of the simulation box at constant total volume. For the
area trial move, the coordinates of the head beads are
changed, but all intramolecular distances and angles are kept
constant. The trial moves are accepted or rejected according
to the standard Metropolis criterion with the effective Hamil-
tonian

H = E − SAp − Nb−1 lnsApd, s9d

where b=kBT, and kB is Boltzmann’s constant. Figure 3
shows the time evolutions of the area and the energy of the
membrane during aNVTS simulation. The figure shows the
approach to equilibrium of both thesprojectedd area and the
internal energy of the system.

C. Simulation details

Periodic boundary conditions were used in the simula-
tions. Thez-axis length of the simulation box, which is the
direction perpendicular to the membrane, is large enough to
exclude interactions between the membrane and its periodic

images. The system size varied from 200 amphiphilic mol-
ecules for simulations of the phase behavior, to 1152 in stud-
ies of the area-compressing elasticity and 2040 in simula-
tions of the bending elasticity. In every simulation, the
system was equilibrated during 33105 Monte CarlosMCd
sweeps.

In theNVTAp simulations, we either prepared the system
as a randomfthree-dimensionals3Dd liquidg state or as a flat,
ordered bilayer membrane. When, atkBT/e=2.0, the initial
state is a 3D liquid state, we find that the amphiphilic mol-
ecules spontaneously form several bilayer membranes—
sometimes with pore defects. When, at the same temperature,
the initial state is flat, the equilibrated state is a fluctuating
liquid bilayer membrane. In the remainder of this paper, we
will always consider bilayer membranes that were formed by
equilibrating an ordered, flat membrane.

In what follows, we choose our energy and length scales
such that the model parameters correspond to those of typical
bilayer membranes at room temperature. To this end,e /kB

roughly has a value in the vicinity of 150 K, whiles
,5–8 Å.14 With this choice, kBT/e=2.0 corresponds to
room temperature, and the length of our model molecules is
in the range of 6–24 methyl groups. This covers the relevant
range of chain lengths for fatty acids.14 As we will see later
this model also leads to a reasonable value of area per lipid.

III. RESULTS AND DISCUSSION

A. Phase behavior

1. Solid-liquid transition

As a first step, we observed the solid-liquid transition of
a tensionless membranesS=0d. Figure 4 shows the melting
of the solid phase upon increasing the temperature.

TABLE I. Parameters of the potential functions.ks denotes the spring constant,ds the cutoff, andd0 the bond
length of the FENE potentialfEq. s1dg. The stiffness constantkb is defined in Eq.s2d. The tail diameterstt, the
head bead diameterstt, and the parameter of interaction between head and tail beadssth=0.5sstt+shhd are used
in the Lennard-JonessLJd potentials of Eqs.s3d–s5d. rt1

* andrt2
* denote, respectively, the critical local densities

of the first and second tail beads in Eq.s6d. shp andae are potential parameters that are defined by Eq.s8d.

ks/e ds/s d0/s kb/e stt /s shh/s sth/s rt1
* rt2

* shp/s ae

100 0.2 1.0 10 1 1.1 1.05 10 17 1.9 Î2

FIG. 3. Temporal evolution of the areasad and energysbd per molecule
during a Monte Carlo simulation atkBT/e=0.8, S=0 sdarkd, and S
=2e /s2 slightd, respectively.

FIG. 4. Snapshots of the temperature dependence of the structure of a small
membrane during aNVTS simulation at zero lateral pressure. Fromsad to
scd: kBT/e=0.1,0.3,2.0, which schematically show how the solid membrane
melts into liquid with an increase of temperature.
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We use a two-dimensional hexagonal bond-order param-
eter to quantify the lateral order-disorder transition of a bi-
layer membrane:28

c6 = ukei6ai jlu, s10d

whereai j is the angle betweenr xysi , jd and a fixed reference
axis in thex-y plane,r xysi , jd is the in-plane vector between
head beadsi and j , and the average is over all nearest-
neighbor pairsi and j .

Upon increasing the temperature, the membrane appears
to go through a continuous order-disorder transitionssee
Figs. 4 and 5d. The profile of the bond-order parameter indi-
cates that the melting temperature of our model membrane is
kBT/e,0.5, which in our units corresponds to 75 K.

2. Plane fluidity

The lipid bilayer at room temperatureskBT/e=2.0d ap-
pears to be in a fluid phase characterized by rapid lateral
diffusion of the model lipids. Typical experimental values for
the in-plane diffusion coefficient in a fluid membrane are of
the order of 1mm2/s.2 The two-dimensional in-plane diffu-
sion is defined as

Dxy = lim
t→`

sDrxyd2

4t
= lim

t→`

1

4Ntoi=1

N

fsDxid2 + sDyid2g, s11d

where

sDxid2 = hfxistd − xmstdg − fxis0d − xms0dgj2,

sDyid2 = hfyistd − ymstdg − fyis0d − yms0dgj2,

wherexm andym denote the coordinates of the center of mass
of the system. Figure 6 shows the results of the numerical
simulations at different temperatures. The diffusion coeffi-
cients, i.e., the slopes of the best linear fits to the computed
data in Fig. 6, are given in Table II.

Experimental diffusion coefficients in the solidsor geld
phase, the translational diffusion coefficient ranges between
Dxy,10−11–10−16 cm2/s, while in the fluid phase,Dxy

,10−8–10−7 cm2/s.2 Strictly speaking, Monte Carlo simula-
tions do not provide dynamical information. However, if we
assume that the algorithm can adequately reproduce the dif-
fusive motion of the lipid molecules then, by using the de-
fined length scales,5–8 Å, we can relate the experimental
and simulated diffusion coefficients to obtain an estimate of
the Monte Carlo “time.” We find that, depending on the map-
ping, one MC sweep roughly corresponds to a time interval
between 10−13 and 10−11 s. In what follows, we will not con-
sider dynamical phenomena.

Figure 7 shows the two-dimensional radial distribution
functiongsrxyd. Inspection of this radial distribution function
confirms that, forT* .0.8, the bilayer is in the fluid phase.

B. Elastic properties

1. Landau free energy

On length scales larger than its thickness, membranes
can be viewed as a continuous elastic sheet. To lowest order
in the deformations, the coarse-grainedsLandaud free energy
of such a flexible membrane is of the following form:

F =E dAfg + 2kcsH − c0d2 + kGKg, s12d

whereg is the surface tension,A is the surface area of the
membrane,kc is the bending modulus, andkG is the saddle-
splay modulus. The quantitiesc0, H, andG are, respectively,
the spontaneous, the mean, and the Gaussian curvatures.

FIG. 5. Temperature dependence of the bond-order parameter of the surfac-
tant head groups at zero lateral pressure.

FIG. 6. Temperature dependence of the lateral diffusion of surfactant mol-
ecules in membranes at zero lateral pressure.

TABLE II. Temperature dependence of in-plane “diffusion coefficients” of
surfactant molecules in a membrane at zero lateral pressure.

kBT/e Dxys10−5 s2/MC sweepd

0.25 2.7201310−3±0.0008310−3

2.0 2.7606±0.0007
3.0 4.5482±0.0005
5.0 6.7588±0.0014
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When a tensionless membrane with areaA0 is deformed
sstretched or compressedd, its surface tension changes. To
lowest order in the deformation:

g = kA
A − A0

A0
, s13d

wherekA is the compressibility modulus, defined as

kA = A0
]g

]A
. s14d

The change in free energy of the membrane is then given by

E gdA= kA
sA − A0d2

2A0
. s15d

The total free energy of the deformed membrane is

F = kA
sA − A0d2

2A0
+E dAf2kcsH − c0d2 + kGKg. s16d

Using the Monge parametrization, we can write

r = fx,y,hsx,ydg, s17d

and we have

H =
s1 + hx

2dhyy + s1 + hy
2dhxx − 2hxhyhxy

2Îs1 + hx
2 + hy

2d3
, s18d

K =
hxxhyy − hxy

2

s1 + hx
2 + hy

2d2 , s19d

dA= dxdys1 + hx
2 + hy

2d1/2. s20d

For a membrane with a small curvature,hx!1, hy!1, the
mean and Gaussian curvatures and the area can be approxi-
mately written as

H < 1
2shxx + hyyd, s21d

K < hxxhyy − hxy
2 , s22d

and

dA< dxdyf1 + 1
2shx

2 + hy
2dg , s23d

A < Ap +E
Ap

1
2shx

2 + hy
2d, s24d

whereAp is the projected area of the membrane in thex-y
plane.

In this paper, only one kind of lipid molecules is used
and hence the membrane is symmetric, from which it follows
that c0 is zero. As we do not change the topology of the
membrane, the saddle-splay free energy,edAkGK, yields a
constant contribution that is included in the reference free
energy,F0. From Eqs.s21d–s24d, we can express the change
in free energy due to the changes in area and curvature as

F = kA

sAp + 1/2eAp
dxdyu ¹ hu2 − A0d2

2A0

+
1

2
kcE

Ap

dxdyS1 +
1

2
u ¹ hu2Du¹2hu2. s25d

Omitting all termsOsh3d, we have

F = kA
sAp − A0d2

2A0
+ kA

Ap − A0

2A0
E

Ap

dxdyu ¹ hu2

+
1

2
kcE

Ap

dxdyu¹2hu2. s26d

We can define a surface tension associated with the change in
the projected surface area,

gp = kA
Ap − A0

A0
, s27d

then the free energy of the membrane can be written as

F = 1
2gpsAp − A0d + 1

2gpE
Ap

dxdyu ¹ hu2

+ 1
2kcE

Ap

dxdyu¹2hu2. s28d

2. Bending modulus

We compute the bending elasticity of our model mem-
branes in bothNVTAp and NVTS MC ensembles. We con-
sidered square membranes consisting of 2040 molecules.
Figure 8 shows a snapshot of the membrane.

FIG. 7. In-plane radial distributions of the fluid membranes at two different
temperatures. The lateral pressure,S, is zero.

FIG. 8. A snapshot of aNVTAp simulation of a membrane with 2040 mol-
ecules atkBT/e=2.0.
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Equation s28d is expected to be valid only on length
scales where continuum theory applies. On length scales
smaller than the thickness of the membranes, protrusion
modes will dominate the undulatory motion of membranes
and Eq.s28d breaks down. In order to use Eq.s28d to get
bending elasticity, when we map the membrane on a discrete
grid, we chooseNG, the number of grid points in each direc-
tion, such that mesh sizel =L /NG is larger than the mem-
brane’s thicknessh, whereL is the side length of the mem-
branes. The local height of the membrane is defined as the
mean value of the heights of the two monolayers inside a
grid cell. The height of the individual monolayers is defined
as the cell-averaged height of the centers of mass of the
hydrophilic head groups. The discrete form of Eq.s28d is

F = 1
2gpsAp − A0d + l2o

n
f 1

2gpu ¹ hr u2 + 1
2kcu¹2hr u2g , s29d

where n=nxi +nyj snx,ny=−nl , . . . ,−1,0,1, . . . ,nr, nl

=fNG/2g, andnr =fsNG−1d /2gd, and r = ln. Using a discrete
Fourier transform, we have

hq =
l

L
o
n

hre
iq·r , s30d

and

hr =
l

L
o
q

hqe−iq·r , s31d

where q is the two-dimensional wave vector, i.e.,q
=2pn /L. In Fourier space, the Landau free energy is

F =
l2

2o
q

sgpuqu2 + kcuqu4duhqu2 +
gp

2
sAp − A0d. s32d

In the NApT ensemble,

kl2uhqu2lNApT =
eedhqdhq

* l2uhqu2e−bF

eedhqdhq
* e−bF =

kBT

gpuqu2 + kcuqu4
,

s33d

and

1

kl2uhqu2lNApT
=

gpuqu2 + kcuqu4

kBT
. s34d

In the NST ensemble,

kl2uhqu2lNST =K kBT

gpu2pn/Lu2 + kcu2pn/Lu4LNST

. s35d

WhenS=0, we can assumegp→0, and we have

kl2uhqu2lNSTsS=0d .
kBTkL4lNSTsS=0d

kcu2pnu4
. s36d

Figure 9 shows the thermal-fluctuation spectrums of the
membranes for two simulations in theNApT ensemble. Equa-
tion s34d is valid only for thermal fluctuations in the small
wave-vector range. Fitting these data to Eq.s34d, we ob-
tained the bending modulus of the membranes, as shown in
Table III. The average head-group separation between the
two membrane layers,hcc, is also shown in Table III. Figure
10 shows the thermal-fluctuation spectrum of the membranes
in theNSTsS=0d ensemble. Fitting the data in Fig. 10 to Eq.

TABLE III. Bending moduli of membranes atkBT/e=2.0 from theNVTAp

simulations. The number of the molecules in the membrane is 2040. Simu-
lations were performed for two different membrane deformations. The com-
puted values forkc are very nearly the same.

Ap/s2 s34.91d2 s35.70d2

gps
2/kBT −0.3±0.1 0.5±0.1

kc/kBT 13.1±1.1 12.9±0.6
hcc/s 3.805±0.01 3.790±0.009

FIG. 9. Fluctuation spectrum of the membrane height at a constant projected
area. The inset shows the spectrums with a vertically logarithmic coordinate.
The projected areas,Ap, are, respectively,s34.91sd2 scircled and s35.70sd2

ssquared. The drawn curves are best fits of Eq.s34d to the computed thermal
fluctuations in the small wave-vector range.

FIG. 10. Fluctuation spectrum of the membrane height at vanishing surface
tension. The drawn curve is the best fit of Eq.s36d to the computed thermal
fluctuations in the small wave-vector range. At large wave vectors, the fluc-
tuation spectrum is dominated by the “white” noise due to uncorrelated
protrusions.
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s36d, we obtainedkc=12.8±1.0kBT, which is consistent with
the data fromNApT simulations. The bending moduli of typi-
cal biological membranes have values in the range of
10–28kBT.34 Our numerical estimates forkc fall within this
range. We note that the membranes generated by the present
model appear to be more flexible than those obtained in the
solvent-free simulations of Refs. 26 and 27.

3. Compressibility/stretching elasticity

In experiments, the compressibility/stretching moduli of
membranes,kA, are obtained from the measured relation be-
tween the apparent area,Ap, of vesicles and the applied
tension.34 In simulations, Feller and Pastor35 derived esti-
mates forkA not only from relation between tension and
surface area, but also from the area fluctuations of the mem-
branes:

kA =
kBTkAplNST

kdAp
2lNST

, s37d

where Ap is the projected area, andkdAp
2lNST=kAp

2lNST

−kAplNST
2 . Feller and Pastor observed that the fluctuation ex-

pression yielded rather noisy data forkA. Moreover, the
value forkA thus estimated was more than four times larger
than the one obtained in “mechanical” measurements. In the
present paper, we calculated area compressibility/stretching
elasticity of membranes through both mechanical and
thermal-fluctuational measures.

Taking the values ofgp obtained from theNVTAp simu-
lations ssee Table IIId and inserting it into Eq.s27d, we find
that

kA = 17.9 ± 4.0kBT/s2, s38d

and

A0 = 1240 ± 30s2, s39d

wherekA is compressibility modulus, andA0 is the saturated
area of the membrane with 2040 molecules atkBT/e=2.0.
Typical experimental data concerning the area per molecule
at zero tension range from about 0.596 nm2 for dimyristoyl
phosphatidylchopinesDMPCd to 0.725 nm2 for diolcoyl
phosphatidylcholinesDOPCd.36 Using the length scales
,5–8 Å, the zero tension area per lipid of our simulation
model is about 0.304–0.778 nm2, which covers the experi-
mental range. Assuming that the membrane area is extensive,
we can estimateA0 for theN=1152 system at the same tem-
perature to be

A0 = 701 ± 16s2. s40d

In addition, we performedNVTS MC simulations to estimate
kA. The number of molecules in the simulated membranes
was chosen to be 1152. We performed a rather long simula-
tion s300 000 MC cyclesd to equilibrate the membrane for a
given value of the applied tension. The temporal evolution of
the projected surface area of the membrane in equilibrium is
shown in Fig. 11. Large fluctuations are observed in all
cases. More importantly, the time scale of the fluctuations is
not short compared to the length of the simulations. Under
these circumstances, Eq.s37d is not expected to yield reliable

results as we are likely to underestimate the magnitude of the
fluctuations. Table IV lists our estimates for the average pro-
jected areas, root-mean-squaredsrmsd fluctuations inAp, and
the corresponding compressibility moduli obtained by using
Eq. s37d for each of theS.0 simulations. These computa-
tions lead to an average value of compressibility moduli as
kA=13±2kBT/s2, which is somewhat smaller than the value
in Eq. s38d. The slope]S /]Ap is also obtained by roughly
fitting the lateral stress as a linear function of the projected
area in Fig. 11, which leads to]S /]Ap=0.023±0.004kBT.
We did not compute the lateral pressure profile in our simu-
lations. Although this is feasible in principle, the presence of
many-body forces in our model makes this nontrivial. How-
ever, since membranes in quite long MC simulations are ex-
pected to be in force equilibrium, we can assumeS<gp.
According to Eq.s27d, we have

]S

]Ap
<

kA

A0
. s41d

Using the value ofA0 in Eq. s40d, we then obtainkA

=16±3kBT/s2. We note that the different estimates forkA,
though noisy, are not mutually inconsistent.

In experiments, kA,229–265 mN/m at room
temperature.34 Using the length scales,5–8 Å, the typical
experimental values forkA are 14–40kBT/s2 at room tem-
perature.kA of our simulations roughly lies in the experi-
mental range.

FIG. 11. Projected areas as functions of time forNVTS simulations. The
inset shows the profile of lateral pressure vs statistical projected area, where
the line gives the best linear fit to the computed data.

TABLE IV. Mean values and rms fluctuations for the projected area calcu-
lated for the 300 000 MC sweeps of eachNVTS simulation in equilibrium.
Each of the simulated membranes has 1152 molecules. The values of the
compressibility/stretching modulus were calculated by using Eq.s37d.

S / skBT/s2d kApl /s2 kdAp
2l /s4 kA/ skBT/s2d

0.125 703.75 64.024 65 10.99
0.25 713.10 50.74 14.05
0.375 725.68 57.30 12.67
0.5 725.12 53.31 13.60
1.0 742.07 48.55 15.29
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4. Elastic ratio

Evans and Rawicz proposed thatkc,kAh2, whereh is
the membrane thickness.37 This qualitative relation between
kc andkA was also obtained by a scaling analysis based on
the molecular theory of chain packing.2 The elastic ratio is
defined asb=kAh2/kc. The value ofb is model-dependent.
For instance, for a polymer-brush bilayer, where two mono-
layers are held together by hydrophobic interactions, the the-
oretical analysis of Ref. 34 predictsb=24. For an unbounded
isotropic-elastic bilayer, where the two monolayers can slide
freely against each other,34,38 the expected value ofb is b
=48, and for a pair of isotropic layers that cannot slide with
respect to each otherb=12.34

Experimental data on membrane elasticity indicate that
typical values of the elastic ratio,b, are 20–30.34 An early
solvent-explicit CG molecular simulation gaveb<48.38 A
recent molecular simulation yieldedb<24.16

In our model, the thickness of the membraneh is deter-
mined by the packing of hydrocarbon chains. It is therefore
reasonable to identifyh with the distancehcc between hydro-
carbon head groups. From the data in Secs. III B 2 and
III B 3, we obtain b=15–25 for the simulated membranes,
which is, again in the typical experimental range. Compari-
son between our numerical results and the theoretical analy-
sis of Ref. 34 suggests that our model membranes behave not
unlike polymer-brush bilayers.

IV. CONCLUSIONS

This paper explores the properties of a simple, solvent-
free coarse-grained model for flexible bilayer membranes. In
the model, the amphiphilic molecules are described as flex-
ible three-bead chains, and the solvent molecules are elimi-
nated by compensating the interaction between the solvent
and amphiphilic molecules with a multibody potential which
depends on the density of hydrophobic tail beads.

For the modeled membrane, the solid phase only exists
at low temperatureskBT/e,0.5d. At higher temperatures, the
bilayer membrane is in a two-dimensionals2Dd liquid state.
Comparison of the simulated lateral diffusion coefficient of
fluid bilayer membranes with the corresponding experimen-
tal data allows us to identify an effective time interval to a
single MC cycle.

From the thermal fluctuation spectrum of membranes
with constant projected areas and from the lateral stress-
strain relation, we have extracted the bending modulus, the
area stretching/compressibility modulus, and the elastic ratio
between them. In spite of its great simplicity, the present
solvent-free coarse-grained model yields a surprisingly good
description of the elastic properties of fluid membranes, as
studied in the experiments and in fully atomistic simulations.

In future work, we aim to study the properties of defects
in these membranes.
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