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Modeling flexible amphiphilic bilayers: A solvent-free
off-lattice Monte Carlo study
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We present a simple, implicit-solvent model for fluid bilayer membranes. The model was designed
to reproduce the elastic properties of real bilayer membranes. For this model, we observed the
solid-fluid transition and studied the in-plane diffusivity of the fluid phase. As a test, we compute the
elastic-bending and area-compressing moduli of fluid bilayer membranes. We find that the computed
elastic properties are consistent with the available experimental da&2@0® American Institute of
Physics [DOI: 10.1063/1.1927509

I. INTRODUCTION Though computationally cheap, these models tend to pro-

Nature uses lipid bilayer membranes to encapsulate anﬁiuce spurious lattice effects, especially for simulations of the

protect both cells and subcellular organefléghe mechani- uid membrane, because they fail to provide a reasonable
qucription of, for instance, small-scale diffusion and mo-

cal properties of these membranes are closely related to th% lar tilt22 In what foll heref ict the di
biological functions(see, e.g., Ref.)2 For this reason, there ecular tit= In wr at follows, we therefore restrict the dis-
gussion to off-lattice models.

is much interest in developing reliable computational model _ , . .
for bilayer membranes. In some cases, it is possible to use !N Particle-based membrane simulations, a large fraction
fully atomistic models. Unfortunately, with current comput- of the computational cost is related to the simulation of the

ers the applicability of fully atomistic models is mostly lim- (Many solvent particles. For this reason, it is attractive to
ited to studies of a few hundred lipids for a period of a few consider models that do not take the solvent into account
nanoseconds® In order to bridge the gap between simula- explicity—although the effect of the solvent on the mem-
tions and experiments that probe the structure and dynamidyane structure should of course be incorporated in the
of membranes on longer length and time scales, we ar@odel. Solvent-free models have been used to analyze the
forced to use simplified models, i.e., models that accoungquilibrium behavior of cell membranes for nearly
only for those degrees of freedom that are believed to b80 years>*However, in molecular simulations, such mod-
most essential for the observed phenomena. The simple€ts have a much shorter history. Drouéieal * performed a
models in this category are not particle based: they includéolvent-free molecular simulation of a membrane where the
tethered solid membrand§, tethered fluid membrand$,  solvent-lipid interaction was represented via a density-
and continuous elastic she&fs' Nonatomistic but particle- dependent multibody interaction between lipid molecules.
based models constitute the next step in coarse-gr&@@&yl  This was an important advance, as the length scale studied in
modeling of membranes. In these CG models, groups of athe simulations of Ref. 24 is difficult to reach in simulations
oms within the lipid molecules are replaced by coarsewith explicit solvent, even with modern computers. A more
grained particles. The lipid molecules are then represented @ophisticated version of this model was subsequently pro-
short chains of coarse-grained particles. During the past fewosed by Noguchi and Taka&.
years, a large number of such CG models have been devel- Recently, FaragS proposed an implicit-solvent model
oped to study monolayer membranes, bilayer membranesyhere the lipid molecules are represented by rigid trimers.
and vesicled”?®There are great variations in the CG lipid- This model assumed only pairwise additive interactions.
chain structure, the shape of the coarse-grained monomerBrannigan and Browi{ proposed yet another pair-potential-
the internal degrees of freedom of the lipids, and the effechased solvent-free model, in which the lipid molecule is
tive interactions between two particles, depending on thenodeled as a rigid rod that is capable of changing shape.
membrane properties that one aims to reproduce. Though these models are computationally very efficient, they
Closest to the fully atomistic models are off-lattice CG have not been particularly successful in reproducing the elas-
models with explicit solvent’**While these CG models are tic properties of real lipid membranes. The bending moduli
better suited for the simulation of large membranes than fullyof simulated bilayers are either smafe?® or much
atomistic models, they are still not exactly cheap and thigargef®?3than the experimental rangéin addition, as these
limits their applicability to the study of slow or large-scale models represent lipids as rigid chains, they are not sufficient
phenomena. One way to reduce the computational cost @br studying some mechanisms which are very sensitive to

CG membrane simulations is the use of lattice motefs.  the flexibility of the lipid tails, e.g., the free-energy barrier of
defect formation in membranes, although they can reproduce

JElectronic mail: wang@amolf.nl some self-assembled or phase-transition phenofifefa.
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FIG. 1. lllustration of a coarse-grained surfactant molecule which has one
hydrophilic beadsolid) and two hydrophobic beadspen.
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To remedy these defects, while retaining the computa- 0.0 0.5 10, 1.5 2.0
tional simplicity of implicit-solvent models, we propose a rlp
water-implicit membrane model consisting of flexible, FIG. 2. Dependence of the multibody “hydrophobic” potential on the local
coarse-grained lipids. The remainder of this paper is orgadensity of hydrophobic tail beadsee text
nized as follows. In Sec. Il we describe the simulation
model. In Sec. Ill we present numerical simulations of the

phase behavior, fluidity, and membrane elasticity. We com- elks(p = 0.79 + U, p<0.75
pare our results with those of other simulations and with ~ Un,(p) = [ (1/p)*2-2(1/p)®+ 1], 0.75<p<1 (6)
experiment. Section IV contains concluding remarks and we 0 =1

comment on further developments.

wherep=p/p". To obtain a potential with a continuous de-
rivative, k; and U, are given the values of -415.21 and
Il. SIMULATION METHOD 21.332, respectively.
A. Potential model This multibody *“hydrophobic” potential expresses the
o ) ) _increase in free energy due to the contact of water molecules
Each amphiphile molecule is described as a flexiblgyith the hydrocarbon beads of the amphiphiles. As shown in
chain with three coarse-grained bedsee Fig. 1. One par-  Fig. 2, the critical local density’ represents the crossover

ticle is hydrophilic, the other two are hydrophobic. ~ point below which there is interaction between water mol-
Th(_a bonds _between the beads are r_epgesented by a finig&yles and the hydrophobic beads.

extensible nonlinear elastiENE) potentiat In principle, the total potential energy should be rotation-
ULd) = - tkd? Inf1 =T(d - do/dI2. 1 ally invariant. However, as we consider bilayers in a fixed

{0 2kl I{1 ~[( o/dsT'} @ geometry(z axis perpendicular to the bilayewe use a defi-

The angle-bending potential between two bonds is nition of the local density that is optimized for this geometry.

Up(6) = kp(1 - cosb), (2
pij= > h(|rei,j - rei’,j’|)y (7)

where 6 is the angle between subsequent bonds. Beads on

: ] . i7#i0,j #1
different molecules interact via a truncated Lennard-Jones

potential: . . . .
wherei andi’ represent moleculeg,andj’ represent hydro-
Un(r) = e (oy/r) 2= 2(a/r)® + U, (3)  phobic tail beadst =xi+Yj +a.zk, and
Uhh(r) = E[(O’hr/r)lz_ 2(o-hh/r)6 + Ucl]: (4) h( ) (O-hp/re)lz_ Z(Uhp/re)G +1 (8)
le) = 12 6, 5
(ohfre) = 2(0pre)° + 2
Un(r) = (/1) 2= 2018 + Ugq], (5) /T /T

wheret andh represent the tail and head beads, respectivelywhere the cutoff foih(re) is oy, h(re) is approximately the

The cutoffs for potentialy, Uy, andUy, are 2y, o1, and  number of hydrophobic particles in the ellipsoid sphgtfe

oy, respectively, which make attractive interactions exist+y2+a§22:oﬁp. Note that with this definition of the local

only between tail bead&l ., andU,, (respectively, 0.031 and density, the many-body potential is related to the choice of

1) are the amounts by which the potential is shifted at thehe coordinate frame. In general, this would be problematic.

cut-off distance. However, as long as we consider planar membranes that are
Water molecules are not taken into account explicitly.periodically continued in thay plane, say, the symmetry of

We mimic the interaction between the water molecules andhe system has already been broken.

amphiphiles with a multibody potential that depends on the  All the parameters of the potential functions are given in

local density of the hydrophobic beads Table 1.
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TABLE |. Parameters of the potential functiors.denotes the spring constadt, the cutoff, andd, the bond
length of the FENE potentidEq. (1)]. The stiffness constark, is defined in Eq(2). The tail diametew, the
head bead diameter;, and the parameter of interaction between head and tail hege6.5 oy + 0y,,) are used

in the Lennard-Joned J) potentials of Eqs(3)<(5). p;, and py, denote, respectively, the critical local densities
of the first and second tail beads in E@). o,, and a, are potential parameters that are defined by (Bj.

ks/ € ds/ o do/ o ky/ € owlo ol o onlo le p:2 Onpl & Qe
100 0.2 1.0 10 1 1.1 1.05 10 17 1.9 2
B. Statistical ensemble images. The system size varied from 200 amphiphilic mol-

We performed Monte Carlo simulations in both the ecules for simulations of the phase behavior, to 1152 in stud-

NVTA, andNVTS ensembles is the number of molecules ies of the area-compressing elasticity and 2040 in simula-
V is the volume of the simulated system,is the tempera-’ ions of the ber_u_jmg elast|(_:|ty. In_every simulation, the
ture, A, is the projected area of the bilayer on teg plane, system was equilibrated during>x3L0° Monte Carlo(MC)
and X, is the lateral pressure of the bilayer. For tR&/T2 swelepsh. NVTA. simulati ith dth
simulations every Monte Carlo sweep includes the following nthe A simu atlo_ns, we eyt €r prepare the system
trial moves: (1) 3N displacements of a single bea@ N as a randonfthree-dimensiondBD) liquid] state or as a flat,

displacements of a single molecule, dBgla variation of the ordered bilayer membrane. When, kgT/e=2.0, the initial
State is a 3D liquid state, we find that the amphiphilic mol-
area trial move, the coordinates of the head beads ar%cUIeS spontaneously form several bilayer membranes—
changed, but all intramolecular distances and angles are ke ?metlmes with pore defects. When, at the same temperature,
constant. The trial moves are accepted or rejected accordi e initial state is flat, the equilibrated state is a fluctuating

to the standard Metropolis criterion with the effective Hamil- .u'd bilayer mgmbrane. In the remainder of this paper, we
tonian will always consider bilayer membranes that were formed by

equilibrating an ordered, flat membrane.

H=E-3A,-NB'In(A), 9) In what follows, we choose our energy and length scales
3 such that the model parameters correspond to those of typical
Bllayer membranes at room temperature. To this ekl
roughly has a value in the vicinity of 150 K, whiler
~5-8 A with this choice, kgT/e=2.0 corresponds to
room temperature, and the length of our model molecules is
in the range of 6—24 methyl groups. This covers the relevant
range of chain lengths for fatty acidéAs we will see later

C. Simulation details this model also leads to a reasonable value of area per lipid.

where B=kgT, and kg is Boltzmann’'s constant. Figure
shows the time evolutions of the area and the energy of th
membrane during AIVTS, simulation. The figure shows the
approach to equilibrium of both thgrojected area and the
internal energy of the system.

Periodic boundary conditions were used in the simula-
tions. Thez-axis length of the simulation box, which is the lll. RESULTS AND DISCUSSION
direction perpendicular to the membrane, is large enough t@ phase behavior
exclude interactions between the membrane and its periodif Solid-liaui .
. Solid-liquid transition

14 As a first step, we observed the solid-liquid transition of
I a tensionless membrarn® =0). Figure 4 shows the melting
12| of the solid phase upon increasing the temperature.
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FIG. 4. Snapshots of the temperature dependence of the structure of a small
FIG. 3. Temporal evolution of the arga) and energy(b) per molecule  membrane during VTS simulation at zero lateral pressure. Frgay to
during a Monte Carlo simulation akzT/e=0.8, =0 (dark, and X (c): kgT/€=0.1,0.3,2.0, which schematically show how the solid membrane
=2¢/ o2 (light), respectively. melts into liquid with an increase of temperature.
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FIG. 6. Temperature dependence of the lateral diffusion of surfactant mol-
FIG. 5. Temperature dependence of the bond-order parameter of the surfagz jes in membranes at zero lateral pressure.

tant head groups at zero lateral pressure.

10°8_107 2 gy i imula-
We use a two-dimensional hexagonal bond-order param= 10 —10 cn?/s.” Strictly speaking, Monte Carlo simula

eter to quantify the lateral order-disorder transition of a pi-tlons do not provide d}’”am'ca' information. However, if we
layer membran&® assume that the algorithm can adequately reproduce the dif-

, fusive motion of the lipid molecules then, by using the de-
= [(€°7)], (100 fined length scale~5—8 A, we can relate the experimental
and simulated diffusion coefficients to obtain an estimate of
the Monte Carlo “time.” We find that, depending on the map-
ping, one MC sweep roughly corresponds to a time interval
between 10 and 10% s. In what follows, we will not con-

whereq;; is the angle between(i,j) and a fixed reference
axis in thex-y plane,r,(i,j) is the in-plane vector between
head beads and j, and the average is over all nearest-
neighbor pairg andj. _ :
Upon increasing the temperature, the membrane appea?éder_‘W""’"T“(:""I phenomena. . . e

to go through a continuous order-disorder transitiee Figure 7 shows the two-dimensional radial distribution
Figs. 4 and & The profile of the bond-order parameter indi- func_non g(ryy)- Inseectlon of thl§ radla_l ¢stnbuno_n function
cates that the melting temperature of our model membrane &onﬁrms that, forT" > 0.8, the bilayer is in the fluid phase.
kgT/€<0.5, which in our units corresponds to 75 K.

2. Plane fluidity B. Elastic properties

The lipid bilayer at room temperatufggT/e=2.0) ap- 1+ Landau free energy

pears to be in a fluid phase characterized by rapid lateral on |ength scales larger than its thickness, membranes
diffusion of the model lipids. Typical experimental values for can pe viewed as a continuous elastic sheet. To lowest order

the order of Lum?/s? The two-dimensional in-plane diffu- of such a flexible membrane is of the following form:

sion is defined as

Ar.)? 1 N F:fdA[’y+2K(H—C)2+K K], (12
D,y=m A% < im S ax)ze ay?, (D AT
t—oo 4t t—oo 4Nti=l
where y is the surface tensior is the surface area of the
where membraneg, is the bending modulus, ang; is the saddle-
(A%)2 ={[X(t) = X,(H)] = [%(0) = X1 (O) ]}2, splay modulus. The quantitieg, H, andG are,_respectively,
the spontaneous, the mean, and the Gaussian curvatures.

2 2
(Ay)*={lyi() = ym®] = [yi(0) — ym(0)]}*,
. TABLE II. Temperature dependence of in-plane “diffusion coefficients” of
wherex, andyn, denote the coordinates of the center of MASKrfactant molecules in a membrane at zero lateral pressure.

of the system. Figure 6 shows the results of the numerical
simulations at different temperatures. The diffusion coeffi- kgT/e D,,(10°° ¢2/MC sweep
cients, i.e., the slopes of the best linear fits to the computed

3 3

data in Fig. 6, are given in Table II. 025 272021000008 10
. e . . 2.0 2.7606:+0.0007
Experimental diffusion coefficients in the solidr ge) 2.0 4.5482+0 0005
phase, the translational diffusion coefficient ranges between 50 6.7588+0.0014

Dyy~101-10 cn?/s, while in the fluid phaseD,,
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25
20
151+
’:z- FIG. 8. A snapshot of &VTA, simulation of a membrane with 2040 mol-
S ecules akgT/e=2.0.
10
2
K= heyhyy =2, (22
05} and
~ 1.2 2
dA= dxdyf 1 +3(hZ+h?)], (23)
0.0 &= 1 \ 1 \ I . I . 1
o] 1 2 3 4 5 6 1.0 )
o A=ns [ dozen), (24)
Ap
FIG. 7. In-plane radial distributions of the fluid membranes at two different . . .
temperatures. The lateral pressEeijs zero. vvlhereAp is the projected area of the membrane in xhg
plane.

. ) ) In this paper, only one kind of lipid molecules is used
When a tensionless membrane with afgds deformed 44 hence the membrane is symmetric, from which it follows
(stretched or compress)edts_surface tension changes. To inat ¢o is zero. As we do not change the topology of the
lowest order in the deformation: membrane, the saddle-splay free enerfyAxcK, vields a
A-A, constant contribution that is included in the reference free
(13)  energy,F,. From Eqgs.(21)—(24), we can express the change

Y= Ka

Ao in free energy due to the changes in area and curvature as
where k, is the compressibility modulus, defined as (Ap+ 1/2prdxd)4 V h|2 = Ay)?
= Kp
a 2A,
Kp = Aoa_;/ . (14) 1 1
+—ch dxd;<1+—|Vh|2>|V2h|2. (25)
The change in free energy of the membrane is then given by 2 "Ja, 2
(A-Ay)? Omitting all terms@(h®), we have
f ’ydA: KAW. (15) (A —A0)2 A —AO
F=kp—" + Ky f dxdy V h?
The total free energy of the deformed membrane is 2o 2o Ap
A-Ay? 1 2h[2
Fo g AT, f A2 (H -0+ kK], (16) + ke f dxdy{Vh|2. (26)
2Ag Ap
Using the Monge parametrization, we can write We can define a surface tension associated with the change in
the projected surface area,
r=[xy.h(xy], (17) _
Yo= a2 20, (27)
and we have P Ay
(1+ h>2<)hyy+ (1+ hi)hxx_ 2hh/h,, ) then the free energy of the membrane can be written as
= 1 (18
2V(1+h2+h?)3
(L +h+hy) F=Ly(A-Ag) + iy [ dxay VP
A
2 P
= Dy~ Ty (19 .
(1+hZ+h2)? + 3K f dxdyV2h[2. (28)
AP
dA=dxdy(1 +hZ+h))Y2 (20)

For a membrane with a small curvaturg,<1, h,<1, the 2. Bending modulus

mean and Gaussian curvatures and the area can be approxi- We compute the bending elasticity of our model mem-
mately written as branes in botNVTA, and NVTE MC ensembles. We con-
1 sidered square membranes consisting of 2040 molecules.
H = 3(hethyy), (21) Figure 8 shows a snapshot of the membrane.
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Equation (28) is expected to be valid only on length TABLE lll. Bending moduli of membranes &T/e=2.0 from theNVTA,
scales where continuum theory applies On Iength SCak%'mulations. The number of the molecules in the membrane is 2040. Simu-
smaller than the thickness of the men;branes protrusiolations were performed for two different membrane deformations. The com-

. ) . Buted values fok, are very nearly the same.
modes will dominate the undulatory motion of membranes

and Eq.(28) breaks down. In order to use E(R8) to get Al (34.91)2 (35.702
bending elasticity, when we map the membrane on a discrete
grid, we choosé\g, the number of grid points in each direc- Yoo IkaT _O'Sfo'l 0'5i+0'1
tion, such that mesh size=L/Ng is larger than the mem- ';C”;‘ZT 318362:3%1 31729'3;8'309
brane’s thickness, wherelL is the side length of the mem- « RN RN
branes. The local height of the membrane is defined as the
mean value of the heights of the two monolayers inside a dhdh 12l 12e-FF T
grid cell. The height of the individual monolayers is defined (2 2, = JJ9Mde g€ keT
as the cell-averaged height of the centers of mass of the e Jdhydhe " Yolal? + clql*
hydrophilic head groups. The discrete form of E2Q) is (33)
F= %'Yp(Ap_ Ay + IZE [%'}’p| \% hr|2+ %Kc|vzhr|2]a (29 and
n 1 _ ')’p|q|2+Kc|Q|4
o (13hgldnaT keT 34
where n=ni+nj (n,n,=-n,...,-1,0,1,...0,, N al /NAT B
=[Ng/2], andn,=[(Ng—1)/2]), andr =In. Using a discrete |n the N3 T ensemble,
Fourier transform, we have T
2 2 — B
[ ‘ (g = yp|277n/L|2+ Kc|277n/L|4>NET. (39
hy==-2 he", (30)
L q WhenZX=0, we can assumg,— 0, and we have
ke T(L nsT(3-0)
and 2| |2 o R
(Il nsT(z=0 2] (36)
hr=|[2 hqe—iq-r' (31) Figure 9 shows the thermal-fluctuation spectrums of the
g

where q is the two-dimensional wave vector, i.eq
=2mn/L. In Fourier space, the Landau free energy is

|2
F=22 plaP + a9y + A=A, (32)
q

In the NAJT ensemble,

25
20F
=
\4
=
__15p 5
£
=
v
T 10t
Yo
05}
0.0 L
0.0 0.1 0.2 0.3 0.4

2 2
lgl°o

membranes for two simulations in theA, T ensemble. Equa-
tion (34) is valid only for thermal fluctuations in the small
wave-vector range. Fitting these data to E84), we ob-
tained the bending modulus of the membranes, as shown in
Table Ill. The average head-group separation between the
two membrane layersy., is also shown in Table Ill. Figure

10 shows the thermal-fluctuation spectrum of the membranes
in theNET(X=0) ensemble. Fitting the data in Fig. 10 to Eq.

10° T T

4

o

2,
<Pl [">1
3,

\ . g
0 ove Qe% o o |

-
(=]

©
A |

10" b———— e
0.1 1

|27m|2<L4>'1’za'2

FIG. 9. Fluctuation spectrum of the membrane height at a constant projectelelG. 10. Fluctuation spectrum of the membrane height at vanishing surface
area. The inset shows the spectrums with a vertically logarithmic coordinateension. The drawn curve is the best fit of E86) to the computed thermal

The projected areagy, are, respectively(34.910)? (circle) and (35.70r)?
(squarg. The drawn curves are best fits of E§4) to the computed thermal
fluctuations in the small wave-vector range.

fluctuations in the small wave-vector range. At large wave vectors, the fluc-
tuation spectrum is dominated by the “white” noise due to uncorrelated
protrusions.
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(36), we obtainedk.=12.8+1.(gT, which is consistent with
the data frorNA,T simulations. The bending moduli of typi-
cal biological membranes have values in the range of ;g0 W
10—28<BT.34 Our numerical estimates fot, fall within this N
range. We note that the membranes generated by the prese 650

model appear to be more flexible than those obtained in the . 5=0 1.0F .
solvent-free simulations of Refs. 26 and 27. g 80T o reod2sk | o~
:(a 550 _ + r=025k T/ ) ,:bmo,s L «
3. Compressibility/stretching elasticity I = 0'375k"7;/” % .
500 |~ Z=05kT/ 0.0k
In experiments, the compressibility/stretching moduli of L[+ z=1.0k,T/F I S —
membranesi,, are obtained from the measured relation be- 450 - 700 7<2£>, , 40
tween the apparent ared,, of vesicles and the applied i
tension>* In simulations, Feller and Pasforderived esti- 4005 ' xIo ' PR ' 3x10°
mates fork, not only from relation between tension and MC sweeps
surface area, but also from the area fluctuations of the mem-
branes: FIG. 11. Projected areas as functions of time KO/ TS simulations. The

inset shows the profile of lateral pressure vs statistical projected area, where

_ KeT(ADNST 37 the line gives the best linear fit to the computed data.

Kpa — 2 y
<5Ap>N2T . . .
. . N 2 results as we are likely to underestimate the magnitude of the
where; Ap is the projected area, and&Ap)NET_(AQN_ET fluctuations. Table IV lists our estimates for the average pro-
~(Ap)sT- F'EI|I§r ;nd I;’astor pbszrvedfthat the fluctuatl?]n ®Xjected areas, root-mean-squatens fluctuations inA,, and
pression yielded rather noisy data fap. Moreover, the  ine corresponding compressibility moduli obtained by using
value for «x, thus estimated was more than four times IargerEq. (37) for each of theS >0 simulations. These computa-
than the one obtained in “mechanical” measurements. In thgons ead to an average value of compressibility moduli as
presgn_t paper, we calculated area compre53|blllty/_stretch|ngA: 13+ X;T/ 02, which is somewhat smaller than the value
elasticity of m_embranes through both mechanical and,, Eq. (38). The slopedS/dA, is also obtained by roughly
thermal-fluctuational measures. _ fitting the lateral stress as a linear function of the projected
~ Taking the values ofy, obtained from theN\VTA, sSimu-  4163"in Fig. 11, which leads tas / 9A,=0.023+0.00KT.
lations (see Table Il and inserting it into Eq(27), we find  \we did not compute the lateral pressure profile in our simu-

that lations. Although this is feasible in principle, the presence of
Kka=17.9 % 4.0T/0?, (38) many-body forces in our model makes this nontrivial. How-
ever, since membranes in quite long MC simulations are ex-
and pected to be in force equilibrium, we can assube y,.
Ay = 1240 + 302, (39 According to Eq.(27), we have
wherek, is compressibility modulus, andl, is the saturated ﬁ _ Kka (41)
area of the membrane with 2040 moleculeskgil/e=2.0. A, Ay

Typical experimental data concerning the area per molecule | ) )
at zero tension range from about 0.596°nior dimyristoyl Using the value ofA, in Eqg. (40_)' we ther_l obtainx,
phosphatidylchoping(DMPC) to 0.725 nm for diolcoyl :16i3kBT_/02' We note that th? d|ffer_ent estimates fex,
phosphatidylcholine(DOPQ.36 Using the length scaler though noisy, are not mutually inconsistent.

~5-8 A, the zero tension area per lipid of our simulation " expfrim_ents, Ka~229-265mN/m  at room
model is about 0.304—0.778 Rmwhich covers the experi- temperaturé. Using the length scale ~5-8 A, the typical

mental range. Assuming that the membrane area is extensiv‘é),(perlmental values fok, are 14—4@5T/o” at room tem-

we can estimaté, for the N=1152 system at the same tem- peratulre.KA of our simulations roughly lies in the experi-
perature to be mental range.

= +
Ag= 1701+ 167 (40 TABLE IV. Mean values and rms fluctuations for the projected area calcu-

In addition, we performetlVTS, MC simulations to estimate 'a‘e‘:] fofr t‘;‘e 300 (I’Oto C',VIC Swgelos OfF?a‘“'ZEZSimUI'a“OI” ‘”;?“”‘blfium- -

. . ach o e simulatea membpranes nhas molecules. e values O e
xa. The number of molecules in the simulated memb,ranegompressibiIity/stretching modulus were calculated by using(&g).
was chosen to be 1152. We performed a rather long simula=
tion (300 000 MC cyclesto equilibrate the membrane fora — s/k.T/0? (Al o? (A o kal (kgT/ ?)

given value of the applied tension. The temporal evolution of

the projected surface area of the membrane in equilibrium is 8'225 ;‘l)gzg 563';)54 65 11;).;)59

shown in Fig. 11. Large fluctuations are observed in all ) : : .
More importantly, the ti le of the fluctuations is ~ 0>'° 725.68 57.30 12.67

cases. More importantly, the time scale of the fluctuations is 5 oo caa e

not short compared to the length of the simulations. Under 10 742.07 48.55 1529
these circumstances, E®7) is not expected to yield reliable
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