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One of the key properties of biological molecules is that they can bind strongly to certain substrates yet
interact only weakly with the very large number of other molecules that they encounter. Using a simple lattice
model, we test several methods to design molecule-substrate binding specificity. We characterize the binding
free energy and binding energy as a function of the size of the interacting units. Our simulations indicate that
there exists a temperature window where specific binding is possible. Binding sites that have been designed to
interact quite strongly with specific substrates are unlikely to bind nonspecifically to other substrates. In other
words, the conflict between specific interactions between small numbers of biomolecules and weak, nonspe-
cific interaction with the rest need not be a very serious design constraint.
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I. INTRODUCTION

Biomolecules, such as proteins, tend to bind strongly to
specific binding sites in target molecules. In addition, the
binding needs to be selective: the molecules should bind
strongly to one, or a few, partners and weakly, if at all, with
all other biomolecules. The requirement that the binding
should be strong and specific imposes constraints on the de-
sign of the binding sites. In particular, it suggests that bind-
ing sites should have a shape that is complementary to that of
the substrate binding site and that its surface is patterned.
Often, the total interaction(free) energy can be approximated
as the sum of local intermolecular interactions that add co-
herently. In what follows, we focus on the role of the ener-
getic patterning of binding sites.

It is important to recall that, even if the local intermolecu-
lar interactions are effectively random, binding is still pos-
sible. To see this, consider a nonspecific interaction with an
associated binding energy that is the sum ofN terms. We
assume that the individual contributions are Gaussian distrib-
uted with a zero mean and variances2 [1–4]. The probability
P of having a binding energyE is given by

PsEd = s2pNs2d−1/2e−fE2/2Ns2g, s1d

whereN is the size(the number of interaction sites) of the
binding region. The probability to form a bond its deter-
mined by the Boltzmann factor exps−bEd corresponding to
the interaction energyE. Even if the average interaction en-
ergy is zero, two sufficiently large binding regions are still
likely to bind, as the average Boltzmann factor is given by

kexps− bEdl = expsNs2b2/2d.

This implies that for largeN, a truly random binding site is
not inert. The effect of a nonspecific(“random”) interaction
has been discussed in detail by Pandeet al. in the context of
a study of the freezing transition in heteropolymers[5]. Note
that the effective interaction strength due to random interac-
tions scales withN, just as is the case for the interaction
strength of specific(designed) interactions. However, the av-
erage strength per monomer is larger for designed specific
interactions and hence one might expect that for anyN one

can always find conditions where specific binding dominates.
But this argument ignores the fact that the spread in the
binding free energy for random sequences is proportional to
ÎN. Hence, for small enoughN there are, most likely, spe-
cific random sequences that bind at least as strongly as the
“designed” sequence. AsN increases,(ÎN/N decreases) this
becomes less of a problem.

The above discussion suggests that binding sites should
contain a sufficiently large number of monomeric units in
order to guarantee that a designed binding site binds signifi-
cantly stronger to a given template than a random binding
site. Yet the site should be sufficiently small that nonspecific
bonds can easily be disrupted by thermal fluctuations. One
might think that this could be achieved by designing the
individual site-site interactions to be small compared to the
thermal energykBT. However, the same site-site interactions
are responsible for the stability of the native state of the
protein. Hence, weakening these interactions(or, equiva-
lently, increasing the temperature) may result in denaturing
of the protein, rather than in more specific binding.

There is a distinction between the specificity and selectiv-
ity of binding [6]. In order to quantify selectivity, it would be
necessary to count the number of the substrate to which the
protein can bind. In the present paper, we do not attempt
such an exhaustive search(as this would be prohibitively
expensive for the model systems that we consider). However,
Gutin and Shakhnovich[7] showed, for a discrete version of
the random energy model(REM), that the probability of de-
generacy of the lowest-energy state decreases exponentially
as its energy is lowered. This suggests that the specificity that
we discuss below will, in most cases, also imply consider-
able selectivity.

In what follows, we consider under what conditions we
can “design” a model substrate-binding site pair that binds
significantly stronger than the corresponding “random en-
ergy” pair, while maintaining the structural integrity of the
native state of the protein in solution. Hence, binding and
folding are both the consequence of the heterogeneous inter-
actions between monomeric units. To this end, we explore
the role of system size and temperature on the binding speci-
ficity in a model that mimics a general protein-substrate sys-
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tem. We consider two molecules, one of which(the “pro-
tein”) is free to move, while the other is kept fixed and acts
as the binding site of a substrate. We model the protein back-
bone as a linear, polypeptidelike heteropolymer living on a
lattice. We then design(“evolve”) the monomer sequence of
the molecules according to three different scenarios, that we
will refer to as OO, OR, and RR. First we consider the case
of cooperative design, where the sequence of both the sub-
strate and the ligand are evolved to increase the binding af-
finity. The second scenario is the model for a ligand that
evolves to bind a substrate with a sequence that has been
fixed a priori. The difference between model OO and OR
lies in the role of the substrate. In scenario OO, the binding
information is distributed over both protein and substrate:
this approach should result in a protein and substrate that
bind exclusively to each other. In the second approach, the
protein is designed to bind to a specific substrate which, in
its turn, can have multiple binding partners(low selectivity).
Case RR represents the case of a protein-substrate pair that
does not bind. This is the reference state that allows us to
define the specificity of the other two systems as a function
of the substrate size and temperature.

In the first part of this paper we describe the simulation
techniques that we used to design and study protein-substrate
interaction. We then discuss the binding of the two different
molecules on the same substrate. We conclude with a discus-
sion of the potential implications of this work.

II. MODELS AND METHODS

The system that we consider is a protein that is free to
move in a box with hard walls in the presence of a substrate
that is made of the same building blocks The box has a cubic
shape and a lateral size of 3 times the length of the protein.
The substrate is in the middle of the box. We model the chain
as a linear, polypeptidelike heteropolymer, living on a lattice,
with nearest-neighbor interactions. The conformational en-
ergy of the system is given by the following expression

E = Eintra + Einter = o
i

NC Fo
jÞi

NC

CijSij + o
j8Þi

NS

Cij 8Sij 8G , s2d

where the indicesi and j run over the residues of the protein,
while j8 runs over the elements of the substrate, andC is the
contact matrix, defined as

C = H1 if i is neighbor ofj ,

0 otherwise,
h s3d

while S is the interaction matrix. ForS we use the 20320
matrix determined by Miyazawa and Jernigan[8] on the ba-
sis of the observed frequency of contacts between each pair
of amino acids. It is important to notice that in Eq.(2) we do
not include the interactions between the amino acids in the
substrate. Although these interaction energies are, strictly
speaking, neither energies nor free energies, they do provide
a useful representation of the heterogeneity in the interac-
tions between different amino acids.

A. Design of the folding and binding properties

A given lattice polymer can form a large number of com-
pact conformations[2–4]. Obviously, every conformation is
characterized by a different contact map. Hence, the energy
of the polymer depends on its conformation. The mean-
field approximation for its entropy is[1,9]

SsEd = 5N ln g −
E2

2NsB
2 if E . Ec,

0 if E ø Ec,

h s4d

whereN is the number of elements in the chain,sB is the
standard deviation of the interaction matrix, andg is the
coordination number for fully compact structures on the lat-
tice. Ec is the(lower) crossing point of the parabola with the
abscissa,Ec=−NsB s2 ln gd1/2. When the sequence of an het-
eropolymer is designed in a target configuration, a low-
energy state is generated. If the energyEN of this state is
lower thanEc, then the system can fold in the target configu-
ration. In the following we refer to this lowest-energy state
as the native state of the heteropolymer. An important con-
dition that must be satisfied for a successful design is that the
homopolymers must be discarded. These particular se-
quences have highly degenerate ground states, which is not
compatible to the definition of the folded state of a protein.

In Ref. [10] we presented a strategy to design a lattice
protein in such a way that it will fold into a specific confor-
mation. The basic design moves are single point mutations.
As in the conventional Metropolis scheme, the acceptance of
trial moves depends on the ratio of the Boltzmann weights of
the new and old states. However, if this were the only crite-
rion, there would be a tendency to generate homopolymer
chains with a low energy, rather than chains that fold selec-
tively into the desired target structure. To ensure the neces-
sary heterogeneity, we impose the additional acceptance
criterion

Pacc= minH1, SNP
new

NP
old DkTpJ ,

whereTp is an arbitrary parameter that plays the role of a
temperature andNP is the number of permutations that are
possible for a given set of amino acids.NP is given by the
multinomial expression

Np =
N!

n1!n2!n3!. . .
, s5d

whereN is the total number of monomers andn1, n2, etc., are
the number of amino acids of type 1,2,… . While sampling
the sequence space with a Monte Carlo scheme, we keep the
temperaturesTPd associated with this quantity high. In doing
so we generate a heterogeneous composition of amino acids.
The importance of sequence heterogeneity for the design of
specific structures is confirmed in our simulation, as it allows
us to design heteropolymer sequences that have a nondegen-
erate native state. There is another, subtler, meaning of the
“temperature” associated with the structural heterogeneity: it
also is meant to represent the constraint that a protein lives in
the presence of many other molecules to which it should not
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bind unspecifically. By increasing this temperature we make
it less likely that the protein will form an undesired, specific
bond to any of the other proteins in the system. During a
Monte Carlo run of several million cycles, a large number of
distinct sequences are generated. The sequenceS* with the
lowest energy is assumed to be the best candidate to fold into
the native state. The energy of a given lattice polymer de-
pends on its conformation.

Enative= o CijSij
* . s6d

In this work we use this scheme to design a protein-
substrate system with different binding properties. We start
by imposing the template configuration, which should give
information on the structure of the protein and on the desired
bound state(e.g., Fig. 1). From the mean-field expression for
the entropy in Eq.(4) we expect a wider distribution for the
protein-substrate system, compared to the one of an isolated
molecule. However, if the gap is still present, then the
folded-bound state should be the equilibrium configuration.
This condition does not exclude the case in which the inter-
action with the substrate is essential to keep the protein in the
native state. Because we want to focus only on the binding
properties regardless of the effect on the folding, we consider
only a system with more intramolecular than intermolecular

contacts—in other words, we use only compact proteins with
a large fraction of intermolecular interactions.

In order to design the monomer sequence for the three
different scenarios OO, OR, and RR we performed Monte
Carlo sampling on a range of monomeric sequences. For
each different scenario we applied the design process on a
different subset of residues. In particular for case OO we
include all the residues of both the protein and substrate,
while for the others the sampling is limited to the amino
acids of the protein, while the structure of the substrate is
fixed.

Of course, once we have generated candidate sequences
for the protein and substrate for the different cases, we
still need to test if they do indeed have the desired binding
properties.

B. Folding

To explore the possible conformations of the lattice poly-
mer, we use three basic Monte Carlo moves: corner flip,
crankshaft, and branch rotation. The corner flip involves a
rotation of 180° of a given particle about the line joining its
neighbors along the chain. The crankshaft move is a rotation
by 90° of two consecutive particles. A branch rotation is a
turn around a randomly chosen pivot particle of the whole
section starting from the pivot particle and going to the end
of the chain.

We explore the equilibrium properties of the system by
sampling the free energy as a function of two order param-
eters. The first is the number of native contacts(both in-
tramolecular and intermolecular) of the protein in a given
conformation

QsCd = o
i, j

N

Cij
s1dCij , s7d

whereCij
s1d is the contact map of the reference structure and

Cij is the contact map of the instantaneous configuration.
Only those contacts that belong to the reference structure
contribute a value +1 to the order parameter. Because the
number of native contacts includes the contacts with the sub-
strate of the reference state, this order parameter can be used
to compute the free-energy difference between the desired
bound state and unbound state. A second order parameterQs
allows us to study nonspecific binding. It is defined as the
total number of contacts, native or non-native, between the
chain and substrate. This order parameter is defined as

Qs = o
i

NC

o
j8

NS

Cij 8. s8d

Qs allows us to characterize the interaction between the pro-
tein and substrate, irrespective of binding geometry. The free
energy function the order parameterQ [Eq. (7)] is defined by

FsQd = − kT lnfPsQdg, s9d

whereFsQd is the free energy of the state with order param-
eter Q and PsQd is the histogram that measures the fre-
quency of occurrence of conformations with order parameter

FIG. 1. (Color online) Spatial arrangement of the 72 amino acid
chain with its 24 residues sub-strate, for scenario OO(a), scenario
OR (b), and scenario RR(c).
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Q. In practice, a direct(brute force) calculation of this his-
togram is not efficient, as the system tends to be trapped in
local minima, especially at low temperatures. To solve this
problem, we combined our sampling of chain conformations
with a parallel-tempering routine[11–15]. Using this ap-
proach(with 14 different temperature windows 2, 1, 0.5, 0.2,
0.175, 0.15, 0.125, 0.1, 0.08, 0.061) we can get efficient
sampling of the accessible free-energy landscape for the in-
dividual sequences.

However, we could not get the complete sampling of the
free energy for all possible value ofQ. To achieve this, we
combined the normal parallel tempering with umbrella sam-
pling of the polymer free-energy landscape[16–18]. In these
simulations, we bias the sampling with respect to the order
parameter such that all relevant conformations occur with
approximately equal frequencies. We then bias the sampling
of a particular value of the order parameter by imposing a
bias potential that is opposite and(approximately) equal to

TABLE I. Sequences designed in the three different evolutionary scenarios and for the different protein-substrate sizes. The parameters
used where, the design temperaturebD=20 and the permutation temperaturebP=24 in the range. Each letter represents a different amino
acid (Ref. [5]). The letters in bold are the amino acids of the substrate.

Size Scenario Sequence TF

27 OO YDCFRPIDGWRLQEMCKPNECWKNVEM
GSLYQFCTH

0.2-0.5

27 OR RQGCRDMDHIKWRELFKQSEVIKTMEL
YHYNGCNFP

0.2-0.5

27 RR MDSCRWLDCQKIMEFGKWMENQKWAER
HVPWYFKTP

0.2-0.5

72 NDCALCKNREFIDMKDPEWRVMRGYDWVQMKQREWRL

OO FKDNECIACKNPECTLCKYHEFIQMKDPEWPVMKH 0.2-0.5

GTFVTYHYSDWSLGHQNTGIACSS

72 CNQSLRECMKDIFREWWHQGARNPFNDVGREMMKDG

OR LREWCKQISPECAKQSLPESMKQIGREWFKDTAHNF 0.2-0.5

YCTWTYHMPVPLFHDVYKVITYNC

72 GEQGDRKFLEQRNFKIIEMNSWHAIDMSNWKLLEMN

RR DPKICEQRGPRFCDQADPKCLEMHQWKVIEMNSWRL 0.2-0.5

YCTWTYHMPVPLFHDVYKVITYNC

75 NDMRPCDWKNIEMRCIDFKLAEGRLFQFKGIEMRLC

OO DWKLNEMRCYQWKNSDMPPCQWKSIEMRCVQFKLG 0.2-0.5

EFPV VQGSTVTGSAHTWHAYDAHCYTWHY

75 NDGWSHMGRDREFWHCQFKDAELPCCQVKAREIPCY

OR MLKQTEFWHSMFRGADVWSYMLKAPEIWPCMLKQV 0.2-0.5

EVPC CYIYQHGGSNEMIKDKTTFTDRNNN

75 NMQESAKRWNIMDEACKRFLHGQDHCRPGYIFQECT

RR KRWLNMDEASKRWNAMDESTKRWSIMQEGCKPFLH 0.2-0.5

GQDC WTYHMPVPLFHDVYKVITYNCVIFE

98 YCMRDQFIRREWCHLCMKDDLGRKEWCINCMKEDG

IRKEWFNIGMREDLVSKEWFLNFMKEDAGRKEWCN

OO VCMKEDTIRREWCVYCMKDQLGPSQWCP 0.2-0.5

PCPYTPGLTTSVYYIAFQSHIGTYHPHANFPQHS

ALTQSMVNATFQHNV

98 IWSKICDQCLEDMLNWRHFCFPCFEEMNAWKKGDY

VRGEDMTHWRHSPVAQSDDMYAWKKGDAPSGEEM

OR ANWKKFCQHCLEEMNIWRKICYSCLEQMA 0.2-0.5

FNGTLTRRQYVTVIQYPFMCLRGYKVPCIFNQTT

PHDTRSIRYHPWHWV

98 GMSIHQAYPELDWGNMKIKQHGREFEWNVMKCKD

FASECEFLAMNCRSSASDCDWAVMKCKDAGRECE

RR WVNMKCKQTYPELEWNGMRIKQHIPDLDWF 0.2-0.5

FNGTLTRRQYVTVIQYPFMCLRGYKVPCIFNQT

TPHDTRSIRYHPWHWV

I. COLUZZA AND D. FRENKEL PHYSICAL REVIEW E70, 051917(2004)

051917-4



the free energy associated with that order parameter. As this
free energy is not knowna priori, the biasing potential is
constructed iteratively. A more detailed description of this
scheme is given in the Appendix.

III. RESULTS

To study the dependence of the binding specificity on sys-
tem size and temperature, we consider a set of four different
proteins with corresponding substrates. Each system was de-
signed to reproduce the conditions of the three scenarios OO,
OR, and RR. In order to design the first case we compute
sequences of amino acids for the protein bound to the sub-
strate, as shown in Fig. 1(a) for a protein with 72 residues
and a substrate with 24 amino acids. In this case the design
program will optimize the sequence to minimize the energy

of the contacts within the chain and between chain and sub-
strate. For the case OR, we impose the same target configu-
ration as before, but we limit the optimization to the amino
acids of the protein, and we assign a random sequence to the
substrate. The final scenario is for nonspecific binding; this is
achieved in two ways. First, we design a protein simply to
fold into a given native structure, with no optimization of the
substrate-binding energy. Second, we expose the protein
form the OO and OR scenario to a random substrate without
further design. It is important to stress that in the design of
the OO and OR, the intramolecular bonds are optimized to-
gether with the intermolecular ones. In this way, we are able
to construct model proteins that have the same internal struc-
ture both in the bound and unbound states. However, it is
also possible to design structures that change upon binding.
In Table I, we list the amino-acid sequences that were the
result of the design procedure described above.

FIG. 2. (Color online) Plots of
the free energyFsQd of the se-
quences OO(cooperative evolu-
tion) (a) and RR (independent
evolution) (b), as a function of the
number of native contactsQ [Eq.
(7)], at T=0.15. States that touch
the substrate(squares) have been
plotted separately from those that
do not (circles). The curve corre-
sponding to the touching states is
longer, because in teh definition of
the order parameter we take into
account also the native contacts
with the substrate. All data were
obtained with a combined parallel
tempering and sampling
simulation.
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Free-energy calculations

As a first check, we verified that the generated sequences
do indeed fold into the respective target structure. We show
only the calculation of the binding free energy for a proteins
consisting of 72 monomers(Fig. 1) as an example. In par-
ticular we consider the sequence OO(both protein and sub-
strate optimized) and the sequence RR, where the protein
sequence has been optimized to fold, but not to bind to a
substrate, which has a random sequence. In Fig. 2 we plot
the free energy of the sequences OO and RR, as function of
the number of native contacts defined in Eq.(7). In each plot
we distinguish between conformations that do and do not
touch the substrate. As is to be expected(see Fig. 2), the
binding free energy is much larger in the case where both the
binding site and substrate have been optimized(OO), com-
pared to the RR scenario. Moreover, in the case of the ran-
dom interactions(RR), the free-energy minimum is reached
before all contacts with the substrate are satisfied. To char-
acterize the system in this regime, we computed the free
energyFsQ,Qsd as a function of both the number of native
contacts and the number of nonspecific contacts with the
substrate[see Eq.(8)]. This should allow us to discriminate
between configurations that are specifically and nonspecifi-
cally bound to the substrate. In Figs. 3(a) and 3(b) we plot
FsQ,Qsd for OO and RR, respectively. The “funnel” shape of
the surface in Fig. 3(a) demonstrates that the sequence OO
does fold and sticks to the substrate in the designed way. In
contrast, the free-energy surface for the sequence RR is flat
at the bottom of the slope. This indicates that, in this case,
the folded protein does not have a unique bound state with
significant binding free energy. So much so that the pre-
sumed target state is not even favorable from a free-energy
point of view. For the other sequences that we studied we
found that, in every case, the design process(OO, OR, and
RR) determined a similar free-energy landscape. The OR
scenario(not shown in the figures) resulted in a free-energy
landscape similar to that obtained in the OO case, but the
binding strength was less. It is important to notice that in all
scenarios the free chain retains the native intramolecular con-
tacts, even in the unbound state. In[19] is presented a dif-
ferent situation where the substrate is able induce conforma-
tional changes.

Next, we consider the dependence of the binding strength
on the size of the binding site. In Fig. 4(a) we plot the bind-
ing energy as a function of the size of the substrate for the
three scenarios(OO, OR, and RR). The error bars represent
the spread of the random interactions given in Eq.(1) around
the mean value(calculated at two sigma). From the interac-
tion matrix that we used, we get a mean interaction energy of
around zero[8]. The figure shows that there is a significant
gap (more than 2s) between the binding energy in the case
of designed binding sites compared to that of the purely ran-
dom case of the designed energies and boundaries of the
distribution. The gap is large enough to guarantee that the
designed binding is energetically favorable compared to the
random case, even for the smallest substrate. As expected,
the binding specificity increases with the substrate size.

As mentioned in the Introduction, the presence of an en-
ergy gap between specific and nonspecific binding is not a

sufficient condition to guarantee specific binding at any
given temperature. To ensure specific binding of a given pro-
tein, there should exist a range of temperatures that are low
enough to ensure that the designed protein structure is stable,
yet high enough to guarantee that random(nonspecific) in-
teractions are not strong enough to cause spurious bindings.
As discussed in the Introduction, it is nota priori obvious
that such a temperature window always exists. However, in
the present case, it appears possible to satisfy this condition.
Figure 4(b) shows the free-energy difference between the
bound and unbound states of the chain in the native confor-
mation for the cases OO, OR, and RR. As can be seen from
the figure, the binding free energies behave more or less as
the binding energies. In particular, a significant gap between
specific and nonspecific bonding is maintained. This holds
both for the case where both protein and substrate have been
optimized and even for the case where only the protein has
been optimized.

FIG. 3. (Color online) Plots of the free-energy landscape
FsQ,Qsd of the sequences OO(evolution for binding) (a) and RR
(random interaction) (b), as a function of the number of native
contactsQ [Eq. (7)] and the number of contact with the substrate
Qs, 8, at T=0.15. The flat end of the slope in the second plot
indicates that each bound state is equivalent in free energy to the
unbound states, while in the first plot the funnel shape demonstrates
that the cooperative evolved sequence has a clear free-energy ad-
vantage in the specific bind. The line separated from the surface
represents the states that are not touching the substratesQs=0d, and
the gap is caused by the poor sampling of the intermediate states.
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Clearly, the model used in the present study is highly
simplified. Apart from the fact that we used a rather crude
lattice model for the protein, we only considered the effect of
binding energy on binding specificity. In reality, steric effects
are at least as important and should be taken into account in
any more realistic study. It would therefore be unwise to try
to apply design calculations of the type described above to
real protein systems. Nevertheless, some of the conclusions
that we reach are likely to survive the transition to a more
realistic model. First of all, the existence of a temperature
window where specific binding is possible is also expected in
models that take steric repulsion into account. Second(and
interestingly), the present calculations suggest that binding
sites that interact quite strongly with specific substrates are
unlikely to bind nonspecifically to other substrates. In other
words, the conflict between specific interactions between
small numbers of biomolecules and a weak, nonspecific in-
teraction with all the rest need not be a serious design con-
straint. This latter statement should be qualified: as the num-
ber of distinct species increases, so does the probability that

at least one pair of molecules will, by accident, have a
strong, nonspecific interaction. This will then result in an
additional evolutionary pressure to keep nonspecific protein-
protein interactions weak.

We note that the design of specific binding sites also plays
a role in experimental schemes to detect specific proteins
[20]. In this case a clear differentiation of the binding affinity
between a substrate and proteins in solution is essential to
isolate a particular molecule. As before, this implies a tem-
perature window in which nonspecific bonds can be dis-
rupted by thermal fluctuations, while the proteins themselves
and the specific bonds that they form are still stable.
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APPENDIX

Umbrella sampling and parallel tempering. Umbrella
sampling is a method that speeds up the sampling of a rug-
ged free-energy landscape by effectively flattening it. A
simple way to flatten the landscape is to add a biasing po-
tential to the normal Hamiltonian. To estimate this biasing
potential we use an iterative method. During the simulation
we sample the probabilityPsQd of finding a conformation
with order parameterQ [Eq. (7)]. After a specified number of
steps we calculate the new biasing potentialW with the re-
cursive equation

WisQ,Td = Wi−1sQ,Td − K ln PsQ,Td, W0sQ,Td = 0,

sA1d

where the indexi indicates the iteration andK is a constant
which we set to 0.5. Once we have the new biasing potential

we add it to the energy in the acceptance criterion of every
move. The potentialW depends on the instantaneous struc-
ture of the system via the order parameterQ, but it also
depends on the temperature. This temperature dependence is
important when we combine umbrella sampling with parallel
tempering. Each temperature has its own biasing potential.
The acceptance rule for a temperature swapping move in the
parallel tempering algorithm is then

Pacc= minheDbDE+DW,1j,

DW= WsQi,Tjd − WsQj,Tjd + WsQj,Tid − WsQi,Tid,

sA2d

where i and j are replica indices. A similar procedure has
recently been used in a paper by Falleret al. [21].
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