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The nature of the melting transition in two dimensions is critically dependent on the core energy of dislocations.
In this paper, we report calculations of the core free energy and the core size of dislocations in two-dimensional
solids of systems interacting via square well, hard disk, andr-12 potentials. In all cases, we find that the
dislocation core free energy is such that, at the densities studied, the density of free dislocation density is
extremely low. We find that the core energies and core sizes are considerably smaller for ther-12 system
than for the other systems studied. This illustrates the fact that, for hard-core systems, elastic continuum
theory breaks down, even for relatively small strains.

1. Introduction

The debate about the nature of the melting transition in (quasi)
two-dimensional (2D) systems dates back to the seminal work
of Landau and Peierls, who showed that there is no long-range
positional order in 2D crystals (see, e.g., ref 1). In the early
1970s, Kosterlitz and Thouless suggested that melting in two
dimensions might proceed via a continuous dislocation-unbind-
ing transition.2 Subsequently, Halperin and Nelson3 argued that
the phase resulting after dislocation unbinding is not an isotropic
liquid, because it still has quasi-long-range bond-orientational
order. A second (disclination unbinding) transition is required
to obtain an isotropic liquid from the bond-ordered phase
(termed “hexatic” in ref 3). These predictions have stimulated
a great amount of experimental, theoretical, and numerical work
on melting in 2D systems, most recently reviewed by Glaser
and Clark4 and Strandburg.5 Experimental work on colloids and
smectic thermotropic liquid crystals has found evidence that
supports the dislocation unbinding theory. However, the veri-
fication of the original theoretical predictions by computer
simulation has been much more difficult than originally envis-
aged, because of the difficulty of investigating systems very
close to melting. The investigation of melting in two dimensions
still remains a very active research area, both experimentally
(in colloids,12-17 vortex flux lattices18,19and free-standing liquid-
crystalline films20) and numerically.6-11,21-27

One reason the debate about the nature of the 2D melting
transition is still continuing is that it is extremely difficult to
distinguish between a weak, first-order melting transition and
a continuous transition. The problem is that it is very hard to
determine if the point where a solid becomes unstable toward
dislocation unbinding is pre-empted by simple first-order
melting. And, even if it is, it is difficult to determine if that
melting transition directly transforms the system to an isotropic
liquid. One reason the picture is so unclear is that existing
theories for dislocation unbinding assume that the number of
defects in the solid at melting is low. However, in practice, it
seems that a solid that is close to melting contains many defects.
This is presumably related to the fact that the “core (free)

energy” of a dislocation is often rather low. In fact, there is
evidence28,29that no continuous dislocation-unbinding transition
is possible if the core (free) energy of a dislocation is less than
∼3kBT.

In this paper, we primarily focus on systems where no such
confusion exists: we consider a model solid that can become
unstable to dislocation unbinding far away from any first-order
melting curve. Such dislocation-unbinding transitions should
occur in 2D solids of particles with a short-range attraction or
a “shoulder-like” repulsion. These systems can undergo an
isostructural solid-solid transition, and, near the solid-solid
critical point, there should be a “pocket” in the phase diagram
where the hexatic phase is stable30 termination of a line of first-
order isostructural solid phase coexistence. The size and location
of the region is sensitively dependent on the range of attraction
of the pair potential. Because of the low dislocation density in
this unstable region, the resulting phase satisfies all the criteria
of a stable hexatic.30,31 Moreover, such systems are not purely
of theoretical interest, because there is experimental evidence
that short-range attraction or repulsions can favor the formation
of hexatic phases13-15,26The simulations of ref 30 showed that
the defect concentration in the solid, at the putative solid-hexatic
transition, was extremely low. This suggests that the core free
energy of dislocations is large, compared tokBT. In the present
paper, we show that this is indeed the case. In particular, we
compute the core free energy of a pair of dislocations for our
model systemsthe attractive square-well systemsand two other
model systems (namely, the hard disk solid and a system
interacting via a repulsiver-12 potential). To our knowledge,
this is the first time that the core free energy has been calculated
directly; previous calculations were based either on a quasi-
harmonic approximation that neglects part of the entropic
contribution to the dislocation free energy32 or the entropic
contribution was completely neglected.33 Our calculations give
a more quantitative indication of the dislocation density and
highlight the qualitative difference of systems with and without
a hard core. The very high defect core free energies calculated
for the square-well system indicate that it may be impossible
to directly observe free dislocations in a hexatic phase (of the
type studied) by computer simulation, at least on currently
available computers. However, this does not rule out the
experimental observation of hexatic phases induced by the same
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mechanism, because accessible experimental length scales can
be much greater than those of a simulation.

The remainder of the paper is divided as follows. First, we
give a brief resume´ of the dislocation unbinding theory of
melting and its main predictions. We then show how the
presence of a critical point in the solid phase can lead to
dislocation unbinding in the solid far from melting. We present
computer simulations to show that the area of unstable solid in
the phase diagram is sensitively dependent on the form of the
intermolecular potential. Finally, we explain, in some detail,
the procedure used to measure the core free energy of a
dislocation.

2. Dislocation Mediated Melting in Two Dimensions

The dislocation-unbinding theory of melting that was devel-
oped by Kosterlitz, Thouless, Halperin, Nelson, and Young (the
KTHNY theory), is based on the linear elasticity theory of an
isotropic medium. This encompasses all 2D, substrate-free
systems that crystallize in a triangular lattice. Because of the
6-fold symmetry, such lattices possess only two distinct elastic
constants.34 In two dimensions, there are only two types of
defects that can occur: dislocations and disclinations.35 Discli-
nations have a very severe effect on the lattice structure and,
consequently, a high free energy. Only dislocations are relevant
to melting in two dimensions. Kosterlitz and Thouless2 presented
a simple argument to explain why a solid should melt via a
dislocation-unbinding transition, based on the free energy of
an isolated dislocation. The energy of an isolated dislocation
calculated via continuum theory is

whereA is the size of the system,a is some characteristic size
of the dislocation,a0 is the lattice constant, andK is the
combination of Lame´ coefficients, given by

There are approximatelyA/(a0
2) locations for the dislocation;

therefore, entropy must have the formS ) kB ln[A/(a0
2)]. The

total free energy of a single dislocation is then given, within a
constant, by

WhenK/(16π) e kBT, dislocations proliferate and the transla-
tional order of the solid is destroyed. Kosterlitz and Thouless
calculated the effect of scalar-type dislocations on the solid
phase. The full vector nature of the dislocation interaction was
considered by Halperin and Nelson,3 and additional predictions
were made by Young.36

These treatments begin by considering the free energy of an
elastic solid described by a strain tensoruij:

λh andµj are the Lame´ elastic constants of the lattice, divided by
kBT and multiplied by a0

2, i.e., µj ) µa0
2/(kBT) and λh )

λa0
2/(kBT). Henceforth, we shall drop the overline and assume

that all elastic constants are expressed in these reduced units.

In the presence of dislocations, the strain fielduij can be
expressed as the sum of a smoothly varying part (φij) that is
due to the phonon modes and a singular part (uij

sing) that is due
to point dislocations:

This causes the free energy to separate into three parts:

whereF0 describes the smoothly varying strains,

andFD is the contribution from the dislocations,

wherebi denotes the Burger’s vector (see below) of dislocation
i. The dislocation contribution to the free energy (eq 8) results
from an integration of the strain field outside a contour of radius
a from the point dislocation. The strain field near a dislocation
varies rapidly. In fact, at the dislocation itself, there is a
discontinuity in the displacement field and near it, the lattice is
ill-defined, as are displacements from the lattice.35 Yet, the
contribution to the free energy that is due to the distortion of
the lattice inside the radiusa is necessarily finite; it is assumed
to be a constant (at a given thermodynamic state point). As a
result, the dislocation cores yield a separate contribution to the
free energy of the system. This contribution is called the core
free energy,Fc:

Dislocations are uniquely described by a Burger’s vectorb,
which is defined as the amount by which a Burger’s circuit (a
circuit that would close in a perfect triangular lattice) around
the dislocation fails to close. The Burger’s vector is measured
in units of the lattice spacing; the magnitude indicates the
strength of the dislocation. A suitable microscopic definition
of a Burger’s vector is discussed in Section 4.3.

As eq 8 shows, the free energy of a dislocation pair diverges
logarithmically with the system size. In a system with many
dislocations, the dislocations screen each other and the free
energy is only finite if the constraint∑ibi ) 0 is satisfied, i.e.,
dislocations are produced in pairs. In the theories of Halperin
and Nelson and Young, the effect of dislocation screening is to
renormalize the elastic constantsµ, λ, andK. The contribution
of the dislocations to the elastic constants is calculated as a
power series iny ) e-Ec/(kBT).

A summary of the predictions of the theory are as follows:
(1) Dislocations unbind, forming a phase that Halperin and

Nelson called “hexatic”, at a temperatureT ) Tm when the
renormalized elastic constantKR(T) approaches 16π from above
asT approaches the melting temperatureTm from below. This
is exactly the same result as the simple entropy/energy argument
given by Kosterlitz and Thouless, but withK renormalized.

(2) The hexatic phase-density-density correlation function
decays exponentially as the correlation lengthê increases,

U ) K
16π

ln(A

a0
2) (1)

K )
4a0

2µ(µ + λ)

2µ + λ
(2)

F ≈ ( K
16π

- kBT) ln(A

a0
2) (3)

F
kBT

) 1
2∫d2r

a0
2
(2µjuij

2 + λhukk
2 ) (4)

uij ) φij + uij
sing (5)

F ) F0 + FD + Fc (6)

F0

kBT
) 1

2∫d2r

a0
2
(2µφij

2 + λφkk
2 ) (7)

FD

kBT
) -

K

8π
∑
r i*r j

[bi·bj ln(r ij

a0
) -

(bi·r ij)(bj·r ij)

r ij
2 ] (8)

Fc )
Ec

kBT
∑
bi

bi
2 (9)
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diverging asT approachesTm from above:

(3) The correlation of a bond orientational order parameter
(Ψ6 ) ei6θ, whereθ is the angle that suitably chosen nearest
neighbors make with a reference axis) decay algebraically above
Tm, with η6 rapidly going to zero asT approachesTm from
above:

(4) The hexatic phase melts via an unbinding of disclination
pairs to become an isotropic liquid (a free dislocation can be
considered as a bound pair of disclinations). We shall not
concern ourselves further with the disclination-unbinding transi-
tion in this article.

The hexatic phase, then, has an exponential decay of
translational correlations, with a slow (algebraic) decay of bond-
angle correlations. The free energy contains an essential
singularity at the transition, so there are no discontinuities in
any thermodynamic function; in effect, the transition is the point
where dislocations start to become unbound. The concentration
of free dislocations at this point is zero.

All microscopic information about the solid is contained in
the elastic constants of the material and the core energy of the
dislocation. The elastic constants measure thefree-energycost
of imposing a given set of strains on the system. Even a hard
particle system will exhibit an elastic response, because of the
entropy reduction of a distortion.

It is important to realize that the two-stage melting mechanism
does not prohibit the solid from melting before the solid becomes
unstable to dislocation unbinding. Only if the solid is thermo-
dynamically stable at the dislocation proliferation instability will
the subtle dislocation unbinding result. Many other melting
scenarios have been proposed (for a review, see ref 4). Among
these, the grain-boundary-melting scenarios have received
special attention. Fisher33 found that the spontaneous prolifera-
tion of grain boundaries would be unfavorable, compared to
dislocation formation; however, a more detailed calculation by
Chui28 suggested that if the core energy (Ec) were low enough
(<2.84kBT), then melting would proceed via a (first-order)
proliferation of grain boundaries (although, strictly speaking, it
is not meaningful to speak about the “mechanism” of a first-
order phase transition). Grain boundaries completely destroy
the bond-orientational order of the system, so that no hexatic
phase occurs. For larger values of the core energy (Ec >
2.84kBT), the transition becomes much more weakly first-order.
Interestingly, these predictions were supported by a simulation
of the equivalent lattice Hamiltonian to eq 6 by Saito,29 who
found that the melting transition is first-order for small core
energies and continuous for large core energies, with a crossover
betweenEc ) 2.28kBT andEc ) 3.28kBT. Saito also observed
that melting is caused by dislocation unbinding at high core
energies, whereas the formation of grain boundaries is observed
at lower core energies. Therefore, it seems that the core energy
does indeed have an important role in determining the melting
behavior.

There have also been many computer experiments that have
examined melting in two dimensions. Many different systems
have been investigated, including hard disks and power-law
potentials (r-12, r-6, r-5, r-3, r-1, logarithmic, Yukawa, Len-
nard-Jones and Weeks-Chandler-Andersen potentials). A
computer experiment initially might seem to be the ideal tool

to search for two-stage melting and the hexatic phase. There is
absolute control over the experimental conditions, and parameter
space can be rigorously searched. The simulations are in two
dimensionssand, therefore, fastsand systems of relatively large
spatial extent can be studied. However, despite the great amount
of work and computer time that have been invested in simulating
model systems, it has proven to be unexpectedly difficult to
obtain hard evidence for (or against) the existence of a hexatic
phase by computer simulation. The main reason for this
difficulty is that, near the transition region, the presence of
topological defects dramatically slows equilibration, which
makes it difficult to precisely identify any transition, be it first-
order or otherwise. There have recently been several large
simulations of 2D solids, only one of which found evidence
for a thermodynamically stable hexatic phase. Chen et al.8

studied a large Lennard-Jones system in theNPTensemble and
found evidence only for a metastable hexatic phase. Bagchi et
al.11 identified a stable hexatic phase in a large (64 000 particle)
simulation of a repulsiver-12 potential, using a bicanonical
technique37 to accelerate the equilibration of defects. The range
of stability of this hexatic phase was quite narrow (∼1.2% of
the accessible density range). Weber and Marx6 and Ferna´ndez10

studied large hard disk systems, with Weber and Marx finding
evidence for a first-order transition with a very narrow coexist-
ence region, whereas Ferna´ndez et al. found a single continuous
transition. However, even for a system as simple as hard disks,
the situation is, even now, far from clear.22-25,27

There are alternatives to direct observation of the correlation
functions that are characteristic of a hexatic phase. One may
look at the elastic constants of the system and determine if the
solid is unstable, with respect to the KTHNY criterion (i.e.,K
< 16π). If the solid is unstable to dislocation unbinding, then
one may infer that an infinitely sized system will be hexatic.
This presupposes two things: (i) the system must be thermo-
dynamically stable, and (ii) the assumptions underlying the
KTHNY theory should be satisfied (i.e., that the system should
be in a regime where the defect core energy is sufficiently high
for the expansion in defect fugacity to be valid). Investigations
of the location of the hexatic phase, on the basis of elastic
constant measurements, conflict with the first argument. It seems
that the locus of the elastic constantK ) 16π is depressingly
close to the point where the solid becomes unstable to first-
order melting.38,39

In this paper, we are concerned with hexatic phases that occur
deep inside the solid phase, where there is less risk of
“interference” from the regular melting transition.

3. Hexatic Phase in Systems with Short-Range
Interactions

The effect of the range of attraction of a simple pairwise
additive potential on the phase diagram has received much
attention in recent years.40 Computer simulations, theory, and
experiments on colloidal suspensions have shown that the liquid
phase is only stable if the range of attraction is greater than
∼30% of the particle diameter. If the range of attraction
(measured in some suitable way) is too short, the liquid-gas
critical point disappears. Recent work considered the effect of
reducing the range of the attractive portion of the potential even
further.41 The surprising conclusion was that if the potential
becomes sufficiently short-ranged, a critical point would reap-
pear in the solid phase. The critical point separates two regions
of solid, with identical structure but different density (see Figure
1). The low(er)-density solid phase is stabilized by “free

〈F(r)F(0)〉 ≈ exp(- r
ê(T)) (10)

〈Ψ6(r)Ψ6(0)〉 ≈ r-η6(T) (11)
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volume” entropy, which is the same mechanism that stabilizes
a hard sphere solid; the high-density solid is stabilized energeti-
cally. Bolhuis and Frenkel studied two systems by computer
simulation: the square-well solid in two and three dimensions,
and the hard-core plus attractive Yukawa potential in three
dimensions. The results for all systems were qualitatively
similar, and subsequent theoretical work indicates that the
mechanism is quite general; i.e., any attractive potential of
sufficiently short range will display a critical point in the
solid.42,43

What are the implications of a critical point in the solid phase
for the dislocation-mediated melting theory? A central prediction
of the KTHNY theory is that the solid becomes unstable to
dislocation unbinding when the elastic constant isK ) 16π.
The bulk modulus vanishes at the critical point and can be made
arbitrarily small by approaching the critical point. Re-expressing
eq 2 in terms of the 2D bulk modulus (B ) λ + µ) and shear
modulusµ, near the critical point, we have

As we shall see,µ is not strongly affected by a solid-solid
critical point. Hence, there will be a finite region around the
critical point whereK is dominated by the bulk modulusB and
is less than 16π. The solid will, necessarily, become unstable
to dislocation unbinding. This mechanism for the formation of
a hexatic phase is very similar to one proposed by Toner and
Prost in the context of the formation of an induced nematic
phase in the vicinity of a Smectic-Smectic critical point.44

Recently, Chen and Nelson showed that the presence of an Ising-
like first-order phase transition in the solid does not interfere
with the dislocation-unbinding mechanism.31

We have performed computer simulations to map out the
region in the phase diagram that is unstable to dislocation
unbinding. We studied the 2D attractive square-well model,
because the phase diagram of this system is known from the
work of Bolhuis and Frenkel.41 The pair potential in this model

is given by

whereσ is the particle diameter,ε the well depth, andδ the
well width. Henceforth, we measure all temperatures in units
of ε/kB and set the particle diameter to a value of 1. The
simulations of ref 41 showed that solid-solid coexistence is
possible if the widthδ of the square well is less than∼7% of
the particle diameter. For longer-range attraction, the triple-point
temperature becomes greater than the critical-point temperature
and the low-density solid disappears. For decreasingδ, the
solid-solid critical point moves to higher densities, whereas
the ratio of the triple-point temperature to the critical temperature
decreases. In the limitδ f 0, the critical density approaches
that of regular close packing. By controlling the range of
attraction (δ), we can choose the density at which the critical
point occurs. This allows us to study systems arbitrarily deep
inside the solid phase. A good estimate of where the critical
point occurs can be made by calculating the density at which
the square wells of adjacent particles that occupy the perfect
lattice first overlap. Note that, because we are studying the
elastic properties of the solid near the critical point, we can
avoid any problems of thermodynamic instability; wherever the
bulk modulusB is positive, the system is stable.

Instead of direct examination of thedislocation unbinding, we
chose to identify unstable regions of the solid by calculating
the elastic constantK. The dislocation concentration is strongly
dependent on density; therefore, we expect that the dislocations
concentration will be very low, because the solid-solid critical
point occurs at densities that are significantly greater than the
hard-disk melting density. To determine the value ofK, we
needed to calculate the elastic constantsµ andλ as a function
of density and temperature. Calculation of elastic constants
requires knowledge of the pressure tensor, which is best obtained
using a molecular dynamics simulation. We used the technique
pioneered by Alder and Wainwright,45 augmented by a collision
list handling technique that is similar to that described by
Rapaport46 to obtain an algorithm that scales asN ln2 N, where
N is the number of particles in the simulation. Constant
temperature was maintained using velocity scaling. To check
that the program was working correctly, state points were
calculated usingNVTMonte Carlo,NPTMonte Carlo, andNVT
Molecular Dynamics. Identical thermodynamic properties were
obtained with all these techniques.

Because our primary intent was to compute the elastic
constants, most simulations were performed on a relatively small
system of 224 particles in a box with a size ratio of 14:8x3.
Two well-widths were chosen:δ ) 0.03 and 0.06, in units of
σ.

3.1. Calculation of the Bulk ModulusB. The bulk modulus
B ) µ + λ is given by

where the pressureP is related to the trace of the stress tensor
P throughP ) -1/2Pkk. The reduced density is defined byF
) Nσ2/A, whereA is the system area andN the number of
particles in the system. To determine the bulk modulus, the
pressure tensorP was measured as a function of the reduced
densityF and temperatureT on a grid surrounding the solid-

Figure 1. Generic phase diagram for the isostructural solid-solid
transition in the (F,T) plane. Low-density solidSI coexists with a higher
density solidSII , separated by a critical point (marked by a solid circle,
b). The triple point (marked by an open circle,O), marks the point of
the coexistence ofSI, SII , and liquid (L). Regions of two-phase
coexistence are shaded gray.

K ) 4µB
µ + B

≈ 4B(1 - B
µ

+ ...) (12)

V(r) ) ∞ (for 0 e r < σ) (13a)

) -ε (for σ e r < σ + δ) (13b)

) 0 (for r g σ + δ) (13c)

B ) F(∂P
∂F) (14)
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solid critical point. Densities were varied in increments of
0.0025, and temperatures were varied in units of 0.01.

The pressure, as a function of temperature, was first reduced
by the close-packed densityF* ) F/Fcp and then fitted to a
polynomial in F*/(1 - F*) and a simple power series in the
temperature, i.e.,

An example of the equations of state and the fit forδ ) 0.06
is shown in Figure 2. Tables 1 and 2 show the fit parameters
for the pressure for the two different square-well widths (δ )
0.06 in Table 1 andδ ) 0.03 in Table 2). Having obtained the
pressure, it is a simple matter to obtain the bulk modulusB by
differentiation.

3.2. Calculation of the Shear Modulusµ. The shear elastic
constant (µ) was measured by imposing a small shear deforma-
tion εxy on the system and measuring the response in the off-
diagonal elements of the pressure tensor. The pressure tensor

measured at a finite value of the strain can be related to first-
order isothermal elastic constantsCij

(1) at zero strain by47

whereε is the matrix of deformations andε̃ denotes its transpose.
A andA′ respectively denote the area and transformed area of
the system, which are identical under shear deformation. The
Lamécoefficient,µ ) Cxyxy, is then obtained by a linear fit of
Cxy

(1) vs εxy, the applied shear strain. The size of the applied
shear must be chosen carefully. It must be sufficiently large
that it produces a measurable response in the pressure tensor,
but sufficiently small that the response produced is linear. Also,
it must be small enough that no shear flow occurs during the
simulation. The shear strain applied in any simulation was never
more than 0.5%, and no evidence of shear flow was observed
in the simulations. In practice, it is more important to obtain an
accurate estimate of the bulk modulus in the critical region,
becauseµ remains high far from the melting line and increases
monotonically as the density increases. The shear elastic constant
was calculated for a similar (though coarser) grid of points in
the (F,T) plane. Densities were varied in increments of 0.005,
and temperatures were varied in units of 0.01. The shear
modulus was fitted in the same way as the pressure. The fitted
coefficients are tabulated in Tables 3 (δ ) 0.06) and 4 (δ )
0.03).

3.3. Results.Having obtained the bulk and shear moduli as
a function of temperature and density near the critical point, it
is a simple matter to evaluateK and delineate the region where
K < 16π.

Figure 3 shows the phase diagram forδ ) 0.03. The phase
diagram for this well width has been reproduced from the data
presented in ref 41. Our data has been scaled so that the critical
points occur at the same density and temperature. The critical
temperature and density for the two well widths studied were
Tc ) 0.885 andFc ) 1.01, respectively, forδ ) 0.03 andTc )
0.895 andFc ) 1.046, respectively, forδ ) 0.06.

The region where the solid is unstable to dislocation unbind-
ing has been shaded black, and the dislocation unbinding is
localized to the region immediately surrounding the critical
point. Figure 4 shows the phase diagram forδ ) 0.06. Here,
the critical point is much closer to the melting line, and the
triple-point temperature is much closer to the critical temperature
Tc. The lower critical density forδ ) 0.06 causes the bulk
modulusB to be a much more slowly increasing function of
density than is the case forδ ) 0.03. The system is “softer”
and the region of unstable solid extends over a much larger

Figure 2. Measured equations of state for the square-well solid, and
the fitted results, forδ ) 0.06. The different lines from the top of the
figure correspond to the reduced temperatures 0.98-0.87 in steps of
0.01. The critical point is visible atT ≈ 0.895,F ≈ 1.046. Pressure is
measured in units ofεσ-2, density in units ofσ-2.

TABLE 1: Fitting Parameters for the Pressure of a 2D
Square-Well Fluid with δ ) 0.06a

Fitting Parameter for Pressure

q p ) 0 p ) 1 p ) 2 p ) 3 p ) 4

0 69.24 -25.90 3.00 -0.127 -0.0001
1 -116.34 44.00 -4.23 -0.079 0.006
2 54.52 -19.70 1.74 -0.0017 -0.004

a See text.

TABLE 2: Fitting Parameters for the Pressure of a 2D
Square-Well Fluid with δ ) 0.03a

Fitting Parameter for Pressure

q p ) 0 p ) 1 p ) 2 p ) 3 p ) 4

0 56013 11638 -895.42 30.2159 -0.3774
1 127520 -26497 2039.02 -68.82 0.8599
2 -72495 15065 -1159 39.13 -0.489

a See text.

P(F*,T) ) ∑
p)0

4

∑
q)0

2

apqT
q( F*

1 - F*)p

(15)

TABLE 3: Fitting Parameters for the Shear Modulus of a
2D Square-Well Fluid with δ ) 0.06a

Fitting Parameter for Shear Modulus

q p ) 0 p ) 1 p ) 2 p ) 3 p ) 4

0 -1911.30 803.73 -119.58 7.272 -0.14
1 2203.56 -954.76 149.98 -9.871 0.231

a See text.

TABLE 4: Fitting Parameters for the Shear Modulus of a
2D Square-Well Fluid with δ ) 0.03a

Fitting Parameter for Shear Modulus

q p ) 0 p ) 1 p ) 2 p ) 3 p ) 4

0 -50882 10555 -775.191 23.8183 -0.2567
1 52482 -10833 791 -24.081 0.2589

a See text.

C(1) ) - (A′
A)(1 + ε)-1P(1 + ε̃)-1 (16)
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region around the critical point. The effect of the approaching
melting line is clearly visible. To the left of the critical point,
the bulk modulusB is approximately constant, when compared
to the rapid decrease of the shear modulusµ with decreasing
density. This reduces the value ofK toward unstable values as
the melting curve is approached. There is no evidence that the
hexatic in this region melts via a disclination-unbinding mech-
anism. Rather, our simulations suggest that the hexatic phase
undergoes a strong first-order transition to the isotropic fluid.
However, it should be stressed that we have not studied the
system-size dependence of the transition, nor have we performed
a finite-size scaling analysis.

For such small systems, at high density, the defect density
in our simulations was always zero. This greatly facilitated the
numerical calculations, because the simulations could be

relatively short, since there was no need to equilibrate defect
structures. Even for a system of 16 184 particles withδ ) 0.06,
simulations showed that, at the critical point, the density of
unbound dislocations is negligible. The low concentration of
defects is, in fact, the prime feature that makes the present model
a suitable candidate for exhibiting a true dislocation-unbinding
transition, because it indicates that the dislocation core energy
must be very large. In fact, by decreasingδ and moving the
solid-solid transition to higher densities, the core energyEc

can be made arbitrarily large.
Because there are, in practice, no defects in the system studied

by simulation, the elastic constants that we measure are the
“bare” or “unrenormalized” elastic constants of the Kosterlitz-
Thouless theory. However, these represent an upper bound to
the true, renormalized elastic constants of the infinite system.
First, increasing the system size will reduce the elastic constants
measured for the 224-particle system; longer-wavelength phonons
will “soften” the system. This effect can easily be observed by
measuring the pressure along an isotherm of a system of twice
the linear extent of the 224-particle system. Second, and more
importantly, the presence of defectsalways renormalizesK
downward. This is particularly obvious in that portion of the
phase diagram where we findK to be less than 16π. In an
infinite system, such values ofK are renormalized to zero.
Hence, the range of stability of the hexatic phase will be larger
than that which follows from the present simulations. To see
the physical manifestation of the hexatic phase, i.e., a power-
law decay of orientational correlations, we need to simulate a
system that is large enough to have unbound dislocation pairs.
A calculation of the defect core energy will help us gain a better
understanding of the system sizes needed to see a hexatic phase.

4. Calculation of the Defect-Core Free Energy

The density of the hexatic phase near a solid-solid critical
point can be high, compared to the density of the solid at the
normal melting curve. This, coupled with the fact that the
particle has a hard core, implies a very low dislocation density
in the hexatic phase. In terms of the KTHNY theory, the
dislocation fugacity is extremely small. We believe that the
dislocation density may be so low in such a phase that we cannot
observe it directly by simulation, at least using current comput-
ers. However, this by no means excludes experimental observa-
tion of such hexatic phases. A calculation of the dislocation
core free energy will allow us to estimate the dislocation-pair
density, as well as allowing quantitative comparison between
different model potentials.

We stress that the Hamiltonian (eq 6) is afree energy, because
it contains an explicit sum over all the degrees of freedom (the
strain components) of the system. Several authors have reported
calculations of the dislocation coreenergy. Fisher, Halperin,
and Morf33 calculated the dislocation core energy of a system
of electrons (r-1 potential) and Joos and Duesbery for a system
of Lennard-Jones particles.48 Such calculations neglect the
entropic contributions to the core energy and, therefore, focus
on the zero-temperature properties of the dislocation. Hoover
and Ladd calculated the core energy for a system with a
piecewise linear force law, as well as the entropy using a quasi-
harmonic approximation.32 One only needs to consider a hard
disk solid, in whichall elastic properties arise from entropy
alone to see that the entropic contributions cannot always be
neglected, nor be approximated using a quasi-harmonic tech-
nique.

We follow the recipe of Fisher et al.33 to calculate the core
free energy. A system is created with two dislocations with

Figure 3. Phase diagram for the two-dimensional (2D) square-well
system withδ ) 0.03. The region of unstable solid around the solid-
solid critical point (the hexatic region) is shaded black. Regions of
two-phase coexistence are shaded gray. The density and temperature
are expressed in unitsσ-2 andε/kB, respectively. At this high density,
the critical point is far from the melting line confining the hexatic region
to a small area around the critical point.

Figure 4. Phase diagram for the 2D square-well system withδ )
0.06. The region of unstable solid around the solid-solid critical point
(the hexatic region) is shaded black. Regions of two-phase coexistence
are shaded gray. Units are as given in Figure 3. At this value ofδ, the
critical temperature is near the triple-point temperature, causing the
hexatic region to extend as far as the melting line.
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Burger’s vectors of unit strengthb1 and b2, separated by a
distancer12, with b1 ) -b2. The free-energy difference between
this system and a reference system with no dislocations is then
measured. According to linear elasticity theory, this free-energy
difference is

The quantityF defectis the contribution to the elastic free energy
of the defects. It is not given simply by eq 8, because the defect
interacts with all its periodic images, because of the periodic
boundary conditions used in the simulation. The sum of the
interactions of one defect with all its periodic images is only
conditionally convergent, and Ewald summation must be used.
The term∆F elastic is a measure of the difference between the
elastic free energy of the system with and without a defect, and
2Ec is the core free energy of the two dislocations, which is the
quantity we wish to calculate. In this formulation, the core free
energy has no dependence on the defect separation. This should
hold if there is no interaction between defect cores. However,
in a simulation, if the dislocations are too close, they will interact
and the core free energy will be dependent on the dislocation
separation. If the dislocations approach each other too closely,
they can even annihilate each other. Therefore, to measure the
core free energy, a series of measurements must be made with
increasing dislocation separations. At sufficiently large separa-
tions, the core free energy will become independent ofr; this
is the core free energy. A measure of the core size can be
obtained from the distance at which this occurs.

Each stage of the calculation will be outlined below. Note
that we must measure the free energy of a system constrained
to have a constant pair of equal and opposite Burger’s vectors,
which is a nontrivial problem, because the dislocations attract
each other and would become ultimately annihilated. Therefore,
we need some mechanism of identifying and constraining
dislocations in the lattice. First, we will address the right-hand
side of eq 17, which represent the contributions to the free
energy from continuum theory (see refs 32 and 33). Subse-
quently, we examine the techniques used to calculate the free
energy of a system that contains two dislocations.

4.1. Ewald Summation of Defect Energies.The dislocation
free energy (eq 8) is infinitely long-ranged. In a system with
periodic boundary conditions, every dislocation interacts with
all its periodic images. The total energy (per periodic block size
Lx, Ly) of an infinite array of dislocation pairs with Burger’s
vectors+b and-b at separationr is given by

where the sum is totalled over allR ) (lxLx, lyLy), wherelx and
ly are integers and

The sum can be made periodic by Ewald summation, in which
the summation is split into two parts: a short-range part, which
is summed in real space, and a long-range part that is summed
in reciprocal space, both of which converge equally rapidly.

We refer the reader to refs 32 and 33 for more details. The
result is

where the real part of the sum is given by

whereE1(x) ) -Ei(-x) is the exponential integral andγ is
Euler’s constant. Thek-space component of the sum is given
by

With the choice ofR ) π/(LxLy), both sums converge equally
rapidly. With the elastic constantK being known, it is a simple
matter to calculate the sum in eq 20.

4.2. Correction due to Unrelaxed Shear Strain.Equation
17 implies that there is a decoupling between the contribution
to the free energy from dislocations (eq 8) and the smoothly
varying phonon modes (eq 7). Thus, there should be no
difference in the linear elastic contribution of a system with
and without dislocations. However, the pair of dislocations
introduces an additional strain that cannot be relaxed in the
simulation due to the periodic boundary conditions. This
unrelaxed strain is

whereεij is the Levi-Civita symbol. This results in an additional
contribution to the free energy of

4.3. Free-Energy Calculation with an Imposed Burger’s
Vector. We wish to calculate the free energy of a system with
two equal and opposite Burger’s vectors at a fixed separation.
Therefore, we need to be able to locate, characterize, and confine
defects in our simulations and, subsequently, measure their free
energy. We can locate and characterize defects using a
combination of two techniques: Voronoi analysis and Burger’s
vector construction. We confine dislocations by fixing the
magnitude of each dislocation’s Burger’s vector, and we
measure the free energy of the system by a thermodynamic
integration procedure.

4.4. Burger’s Vector Construction. In continuum elastic
theory, a Burger’s vector is defined by integrating the displace-
ment field around a closed curve in the medium:

If the integral is nonzero, the curve contains a dislocation of
strengthb. We define the Burger’s vector in a similar manner
for a system made of particles. A circuit is taken, passing only

F (b1, b2, r12, N, V, T) - F (N, V, T) )

F defect+ ∆F elastic+ 2Ec (17)

F defect(r) ) F0
defect(r) + ∑

R*0

F0
defect(R - r) - F0

defect(R) (18)

F0
defect(r) )

K

8π
∑
r i*r j

[bi·bj ln(r ij

a0
) -

(bi·r ij)(bj·r ij)

r ij
2 ] (19)

Fdefect(r) ) Fr(r) + ∑
R*0

[Fr(R - r) - Fr(R)] +

1

LxLy
∑
G*0

(e-iG·r - 1)Fk(G) (20)

Fr(r) )

K
4π{- b2

2
[E1(Rr2) + ln R + γ] - [(b·r)2

r2 ] exp(-Rr2)} (21)

Fk(k) ) K
4π{exp[-k2/(4R)]

k2 }4π[-b2 + (b·k)2(1

k2
+ 1

4R)]
(22)

uij ) 1
2
(biεjkrk + bjεikrk) (23)

∆F elastic) 1
2

µb2( r2

LxLy
) (24)

b ) - I
∂u
∂s

ds (25)
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through regions of perfect lattice. For our purposes, we use a
Voronoi construction to define what constitutes a perfect lattice.
If this circuit fails to close, the circuit contains a dislocation,
the Burger’s vector of which is the vector joining the starting
and end points of the circuit (see Figure 5). In practice, because
we will be required to define a Burger’s vector dynamically
during the course of a simulation, we need to be more specific
about precisely how the circuit is taken. In the simulations
described below, we used the following procedure to calculate
a Burger’s vector:

(1) The length of each side of the circuit is chosen, in units
of a0, the lattice spacing. A particle is chosen to be the starting
point of the circuit and an initialwalking direction, ĝ, is chosen
along one of the lattice directions. We denote the current location
on the circuit to be thetest particle, which is located atr i.

(2) The test particle is examined to determine if it is in a
region of perfect lattice, i.e., if the particle has exactly six
neighbors,j, identified by a Voronoi analysis. If it is not, the
attempt at constructing a Burger’s vector is abandoned.

(3) Denote the set of vectors that join the test particle to its
six neighbors byrij. The possible locations for the next step of
the walk are determined by forming the inner product of the
current walking directionĝ with{rij}. The particle that corre-
sponds to the maximum value of cosφ ) ĝ‚r̂ ij is chosen to be
the next step in the path (i.e., the new test particle), providing
that cosφ > x3/2; that is, the chosen direction is closer to the
current walking direction than to any other lattice direction. If
this criterion cannot be satisfied, the attempt at constructing a
Burger’s vector is abandoned.

(4) One step of the walk has been completed. We now must
repeat the procedure for the next step of the walk, starting from
the new test particle. If the end of one side of the hexagonal

circuit has been reached,ĝ is rotated in the positive sense by
π/3. If the circuit is complete, the Burger’s vector is calculated.
Otherwise, the process is continued from step 4, which has been
discussed previously.

Note that the definition of a dislocation by a Burger’s vector
is a collective property of a large group of atoms, namely all
those contained within the circuit, whereas the Voronoi con-
struction yields a microscopic, local definition of the defect
structure that is based purely on coordination number. In the
Voronoi picture, a dislocation can be identified with a pair of
neighboring atoms with imperfect coordination. One of the pair
has five neighbors, and the other has seven. Figure 5 shows
this configuration with its associated Burger’s vector. This
should be considered to be the “ground state” of a dislocation;
there are, of course, many different configurations of five, seven,
and other coordination numbers that can describe a dislocation.
Therefore, given a particular Voronoi tiling, it can be very
difficult to identify where point defects are actually located,
without using a Burger’s vector construction to separate those
groups that have no overall Burger’s vector from those whose
Burger’s vectors are well-defined. For this reason, we prefer to
use a Burger’s vector description of a dislocation, because it
imposes no particular coordination state on the system that we
are simulating.

4.5. Defect Creation.Pairs of defects are created along the
glide direction by applying a displacement fieldu(x,y) to a
perfect lattice of coordinates scaled to lie betweenx, y ∈(-0.5,
0.5). The displacement field is of the form

wherek is a suitably chosen constant andf(x) is some concave
function symmetric aboutx ) 0 that vanishes atx ) -0.5, 0.5
(e.g., sin[(x + 0.5)π]). The energy of the configuration generated
in this fashion is then minimized by the steepest descents, using
an r-n potential to provide a starting configuration for subse-
quent simulations. Voronoi analysis showed that the resulting
configuration contained two five-seven-coordinated dislocations
separated along the glide direction by a distance ofr ≈ Lx/2,
whereLx is the size of the simulation box in thex-direction.
This corresponds to two Burger’s vectorsb ) ((1,0) at the
given separation. Using this starting configuration in a standard
Monte Carlo simulation, the defects annihilate each other after
a few hundred simulation cycles. To generate configurations
with different dislocation separations, configurations before
annihilation were recorded and analyzed for the defect separa-
tion. To identify the location and separation of the dislocations,
the Burger’s vector was calculated as described previously, using
every particle as the initial starting particle. Particle coordinates
that produced (1,0) and (-1,0) were separately averaged to
obtain the center of mass for each type of dislocation. The
particle closest to the center of mass of each dislocation was
chosen to be the starting point for determining the Burger’s
vector in the subsequent calculations to measure the free energy.
Note that the center of mass of the dislocation as described does
not correspond to the actual center of mass of the dislocation,
because it includes a constant offset vector that translates the
starting point to the center of the hexagonal path used to
determine the Burger’s vector.

4.6. Monte Carlo Simulations at a Constant Burger’s
Vector. To maintain a fixed value of the Burger’s vector during
a Monte Carlo simulation, we use the following technique. At
regular intervals (once every Monte Carlo cycle, where one cycle

Figure 5. An isolated dislocation in a triangular lattice, identified by
Voronoi and Burger’s vector constructions. The Voronoi polyhedra are
shown for all particles that have imperfect (i.e., different than 6-fold)
coordination. The 5-7-coordinated pair characterizing the simplest
isolated dislocation is clearly visible. A Burger’s vector is shown with
a path length of five steps. The path contains a single dislocation of
strength one lattice unit, i.e.,b ) (-1/2, - x3/2) in Cartesian
coordinates, if the Burger’s vector path is taken counterclockwise.

u(x, y) ) +k(1 - 2y)f(x) (y > 0) (26a)

) -k(1 + 2y)f(x) (y < 0) (26b)
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equals one move per particle), the entire configuration of the
system is saved. Before saving the system, the Burger’s vector
is recalculated, using the stored initial starting points identified
previously. If the Burger’s vector has changed, the previous
sequence of standard Metropolis Monte Carlo moves is rejected,
and the system is restored to the previous saved configuration.
The Burger’s vector only changes slowly, and using this staged
Monte Carlo technique, only needs to be recalculated infre-
quently. We find that the acceptance rate of cycles is∼50%,
depending on the density and type of system being investigated.
The size of the path determining the Burger’s vector determines
the degree of constraint of the dislocation. If a very large path
is used (of size six or more lattice units per side), the dislocations
move toward each other (because of their mutual attraction)
until they are confined the “wall” of the surrounding Burger’s
vector. To minimize this effect, the smallest possible Burger’s
vector was used, of three units per side, so that the dislocation
was very tightly constrained and did not move during the
simulation. During the course of the simulation, it was interest-
ing to note the relaxation of the lattice surrounding the
dislocations. Grain boundaries and bound dislocation pairs were
formed, which screened the strong attraction of the dislocations.

4.7. Free-Energy Calculation. Using the Monte Carlo
technique outlined previously, the free energy of a system that
contains dislocations can be calculated using thermodynamic
integration. By modifying the pair potential, a reversible path
can be constructed between the solid that contains dislocations
and a reference system of known free energy. We choose the
reference system to be a harmonic, or Einstein, solid, where
each particle is bound to its lattice site by a harmonic potential.49

By increasing the strength of the coupling to the harmonic solid,
the system can be made to freeze into a state in which the
harmonic potential dominates. To reduce the square-well solid
to a harmonic solid, it was first necessary to reduce the system
to a hard-disk solid, because the presence of the nearby solid-
solid critical point causes rapid variations in the square-well
energy as the system is frozen. The modified interaction
potential of the system is

The hard-disk part of the potentialUHD is always left switched
on; R controls the effective square-well potential,USQ, andγ
represents the coupling to the Einstein lattice positionr i

0.
WhenR ) γ ) 0, the system interacts via a hard-disk potential;
with R ) 1, γ ) 0, the system interacts via the full square-well
potential; and whenR ) 0, γ * 0, the hard-disk solid interacts
with a harmonic solid with a coupling constantγ. To define
the Einstein potential, it is necessary to have a reference lattice.
For the systems that contain dislocations, the reference lattice
was measured in a simulation with an unmodified square-well
potential, with the mean positions definingr i

0. Using the
identity

the free-energy difference between two states characterized by
x can be measured. By settingγ to zero and varyingR, we
obtain the difference between the square-well and hard-disk
solids, namely

whereF HD denotes the free energy of the square-well system
(R ) 1, γ ) 0), F HD denotes that of the hard-disk system (R
) γ ) 0), and〈...〉(R,γ)0) denotes an ensemble average sampled
using the potential at the indicated values ofR andγ. Similarly,
the free-energy difference between the hard-disk solid and a
hard-disk solid strongly coupled to an Einstein lattice is

If the coupling γmax is very strong, the particles are bound
extremely tightly to their lattice positions and rarely feel the
hard-disk potential of their neighbors. The free-energy difference
between this strongly coupled system and the reference system
F E is simply

where the average is “umbrella-sampled”, using the harmonic
potential only. By evaluating these integrals using a series of
simulations, the free-energy difference between the square-well
system and the reference system can be calculated (and, hence,
the absolute free energy of the square-well system).

There is one additional important point that has not yet been
mentioned. The thermodynamic integration to the Einstein
crystal must be performed in a system with a fixed center of
mass. Without this constraint, the mean-square displacement
would become on the order ofL2 (whereL is the box length)
asγ f 0, in which case the integrand of eq 30 would be sharply
peaked aroundγ ) 0, adversely affecting the accuracy of the
integration. The details of performing a simulation at a fixed
center of mass are given in ref 49. With this constraint, the free
energy of the Einstein solid ofN particles in a volumeV
becomes

5. Free-Energy Calculation Results

The defect-core free energy was measured at one single state
point for three different systems: the short-range attractive
square-well system just above the solid-solid critical point, the
equivalent hard-disk system, and, for comparison, a system
interacting via ar-12 repulsive power potential (i.e., the pair
potential isU(r) ) ε(σ/r)12). The state point chosen for the
square-well system (F ) 1.046,T ) 0.9, andδ ) 0.06) is inside
the unstable regime, as determined by KTHNY theory. How-
ever, because of finite system size and the absence of (natural)
dislocations, the elastic constants are still nonzero. The hard-
disk core energies were obtained at the same density, as were
those of ther-12 system, which was simulated at a reduced
temperature (âε ) 1).36 All systems simulated contained 1024
particles. The elastic constants for the square-well system were
recomputed for the 1024 particle system at the state point that
was simulated. The elastic constants for the hard-disk solid were
computed using procedures that were identical to those described
for the square-well solid (noted previously) and show good
agreement with previous calculations.50 For ther-12 system, the
KTHNY constantK was taken from the paper of Broughton,
Gilmer, and Weeks,38 and the shear modulusλ obtained by
linearly interpolating between two values measured atF ) 1.06

∆F HD+E(γmax) ) F HD+E(γmax) - F HD

) ∫0

γmaxdγ〈∑
i

(r i - r i
0)2〉(R)0,γ) (30)

∆F UMB ) F E(γmax) - F HD+E(γmax) (31a)

) kBT ln〈exp[-âU(R ) 0,γ ) γmax)]〉 (31b)

F E(γ) ) kBT(N - 1) ln( π
âγ) + kBT ln(NV) (32)U(R,γ) ) ∑

i<j

[UHD + RUSQ] + γ∑
i

(r i - r i
0)2 (27)

F (x2) - F (x1) ) ∫x1

x2 dx
∂F
∂x

(28)

∆F HD ) F SQ - F HD ) ∫0

1
dR〈USQ〉(R,γ)0) (29)
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and F ) 1.02 was taken from the paper of Zollweg, Chester,
and Leung.51 Initial configurations that correspond to defect
separations of∼4, 6, 8, 11, 14, and 16 lattice spacings were
generated. For each initial configuration, the defect free energy
was computed. Tables 5, 6, and 7 summarize the results for the
square well, the hard disk, and ther-12 potential, respectively.
The quantities∆F HD (which is the free-energy difference of
the hard-disk and square-well system),∆F HD+E (which is the
free-energy difference between the hard disk and strongly
coupled harmonic solid),F E (which is the reference free
energy), and∆F UMB (which represents the difference between
the strongly coupled particles and the reference system) are all
in units of free energy per particle. The quantities calculated
using continuum theorysF Dislocation, which is the Ewald
summed dislocation free energy, and∆F Shear, which is the shear
correctionsare free energies per repeated periodic system.
Hence, the absolute free energy is calculated, per particle, as

and the core free energy is calculated as

For the square-well system, the integral∆F HD was sampled

by varying R between (0,1) in steps of 0.1. The integral
∆F HD+E was sampled, for the square-well and hard-disk
system, with the set of pointsγ ) 0, γ ) ∑i)1,12ei, and the
equivalently named∆F R12+E for ther-12 system was sampled
with the setγ ) 0, γ ) ∑i)1,10ei.

The difference in the free energy of the dislocation and
reference systems is shown in Figure 6. The core free energy is
shown in Figure 7. The errors shown in the core energy are
entirely due to the uncertainty in the determination of the free
energy of the defect and reference systems. The defect-core
energy is determined from the difference of two similarly sized
quantities; the free energies of the defect and reference systems,
where the difference is only slightly larger than the noise. The
error in the free energy per particle remains approximately
constant with increasing system size; however, the defect-core
free energy is spread over more particles. Therefore, estimating
the defect-core free energy by this technique is limited to a
narrow range of system sizes: those large enough to support a
defect, and those small enough that the dislocation free energy
is not lost in the noise. We found that doubling the number of
particles to 2304 (48× 24 unit cells), significantly worsened
the results, whereas the range of dislocation separation available
in a system of 576 particles (24× 12 unit cells) was insufficient
to observe clear trends in the defect free energies as a function
of r. Nevertheless, the defect core energies show clear systematic
trends. Near a dislocation, there are large strain gradients;
locally, the system is very deformed. The core energy is

TABLE 5: Contributions to the Core Free Energy of a Square-Well System withδ ) 0.06 atT ) 0.9 and G ) 1.046a

defect
separation ∆F HD/N ∆F HD+E/N F E/N ∆F UMB/N F Disl ∆F Shear Ec

SQ

0.00 -2.3005(4) 6.212(2) 10.890 <10-4 0.00 0.00 0.00( 0
4.48 -2.3260(3) 6.165(2) 10.890 <10-4 0.86 1.12 10.1( 3
6.44 -2.3297(3) 6.153(3) 10.890 <10-4 1.45 2.31 12.9( 4
8.51 -2.3313(3) 6.149(3) 10.890 <10-4 1.86 4.03 13.5( 4

11.37 -2.3381(2) 6.134(2) 10.890 <10-4 2.18 7.20 16.0( 3
14.52 -2.3399(4) 6.128(3) 10.890 <10-4 2.33 11.42 15.5( 4
15.49 -2.3393(9) 6.125(2) 10.890 <10-4 2.35 13.35 16.5( 3

a For a definition of the meanings of the symbols used in the table, see eqs 33 and 34.

TABLE 6: Contributions to the Core Free Energy of a
Hard-Disk System at G ) 1.046a

defect
separation ∆F HD+E/N F E/N ∆F UMB/N F Disl ∆F Shear Ec

HS

0.00 6.212(2) 10.890 <10-4 0.00 0.00 0.00( 0
4.48 6.165(2) 10.890 <10-4 15.6 1.91 15.3( 3
6.44 6.153(3) 10.890 <10-4 26.4 3.94 14.5( 4
8.51 6.149(3) 10.890 <10-4 33.7 6.90 11.8( 4

11.37 6.134(2) 10.890 <10-4 39.7 12.3 13.9( 3
14.52 6.128(3) 10.890 <10-4 42.5 20.1 11.4( 4
15.49 6.125(2) 10.890 <10-4 42.8 22.9 11.4( 3

a For a definition of the meanings of the symbols used in the table,
see eqs 33 and 34.

TABLE 7: Contributions to the Core Free Energy of an r-12

System atT ) 1.0 and G ) 1.046a

defect
separation∆F R12+E/N F E/N ∆F UMB/N F Disl ∆F Shear Ec

R12

0.00 5.488(2) 8.847 1.670 0.00 0.000 0.00( 0
4.48 5.492(2) 8.847 1.686 2.939 0.267 5.2( 3
6.44 5.485(3) 8.847 1.683 4.967 0.550 5.9( 3
8.51 5.488(2) 8.847 1.684 6.340 0.961 4.4( 3

11.37 5.486(2) 8.847 1.688 7.454 1.717 6.4( 3
14.52 5.508(2) 8.847 1.704 7.9903 2.801 1.9( 3
15.49 5.498(3) 8.847 1.698 8.044 3.185 4.0( 4

a For a definition of the meanings of the symbols used in the table,
see eqs 33 and 34.

F (b1, b2, r12, N, V, T) )

F E + ∆F HD -∆F HD+E - ∆F UMB (33)

Ec ) 1
2
[N(F (b1, b2, r12, N, V, T) - F (N, V, T)) -

F Dislocation- F Shear] (34)

Figure 6. Free-energy difference of systems with and without
dislocations at a separationr. The three systems are as follows: the
square-well system withδ ) 0.06 atT ) 0.9 andF ) 1.046, near the
critical point of the solid-solid transition; the equivalent hard-disk
system at the same density; and anr-12 system at the same density
with a temperature ofT ) 1. The defect core energies are given in
units ofkBT/ε, and the defect separation is given in units of the lattice
spacinga0.
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determined by how the system relaxes these strain gradients.
In a hard-core system, strain can only be relaxed within the
confines of surrounding hard cores. The strain is transmitted a
large distance, and the free energy increases because of the extra
confinement of many particles. For ther-12 system, the system
can relax strains by locally increasing the potential energy, which
leads to a smaller defect core with a lower free energy. For the
square-well system, the core energy is dominated by the free-
energy difference of the dislocation and reference systems.
BecauseK is so small, the smoothly varying contribution from
the dislocations is rather insignificant. The contribution from
the unrelaxed shear indicates that, althoughK is small, the shear
modulusλ is still relatively large. For the hard-disk system,K
is very large and much of the free-energy difference is accounted
for by the linear elastic dislocation and shear free energy. In
this sense, the hard-disk system is described better by linear
elastic theory in this distance regime than the square-well
system. Ther-12 system, on the other hand, seems to show no
systematic increase of the free-energy difference or core energy
pastr ) 5 lattice units. The core size is smaller, as is the core
free energy, compared to the systems that possess a hard core.
Therefore, it is much easier to create defects in this system.

We see that, for the square-well system, at a point where the
elastic constantK indicates the solid will become unstable to
dislocation unbinding, the defect-core free energy is extremely
high. Therefore, it is valid to apply the Halperin and Nelson
theory, which relies upon an expansion in the parametery )
exp[-Ec/(kBT)] in this region of the phase diagram. This is the
reason that we feel justified in calling our unstable region a
“hexatic” phase. Other systems that fulfill the criteria for
instability (i.e.,K < 16π) may not have a sufficiently high core
energy for the theory of Halperin and Nelson to be strictly valid
in this regime. The value of the core energy gives an indication
of the defect density in the system; it is very difficult for the
system to have a fluctuation of the size∼15kBT. Fisher et al.
calculated the defect density by assuming that pairs of defects
form diatomic molecules that do not interact with each other.

The density of dislocation pairs per simulation box (Fbox) then
is33

whereZ(K) is the internal partition function of a dislocation
pair:

The quantityrmin is a measure of the “core size” of a dislocation,
and I0 is a modified Bessel function.Z(K) is of O(1) if K ≈
16π; therefore,Fbox ≈ exp[-2Ec/(kBT)]. Therefore, the defect-
pair density for the square-well system is e-30 (i.e., extremely
small). This presupposes that the effect of finite system size on
the core free-energy calculation is negligible. As discussed
previously, a finite size scaling analysis of the dislocation core
free energy would be impractical, because of the technical
difficulties of measuring the core free energy in larger systems.
Examination of Figure 7 shows that, for the square-well system,
the independence of the core energy of the dislocation separation
is not clear. The measured core free energy is an upper bound
on the true, system-size-independent, core free energy; the effect
of a small system is to force a rapid decay of strains around a
dislocation, so that the strained lattice can be accommodated
in the periodic cell. Increasing the system size reduces these
strain gradients toward values that are adequately described by
eq 18 and, hence, reduces the amount of free energy that must
be accounted for by the dislocation core. In any case, the density
of dislocations predicted by our simulations is extremely low.
Even in an experiment, the possibility of observing spontaneous
dislocation nucleation in an equivalent square-well colloid
system (for instance, a colloid-polymer mixture) would be
remote. However, we should expect the core energy of disloca-
tions to decrease rapidly with density. Hence, for a system with
a wider attractive well, which has a solid-solid transition close
to the melting line, free dislocations are much more likely to
be found in experiments.

6. Conclusions

We have shown that the presence of an isostructural critical
point in the two-dimensional solid phase can result in disloca-
tion-unbinding instability, in a region that is guaranteed to be
otherwise thermodynamically stable. Because of the very high
core free energy in this region, which is principally due to the
presence of the harsh repulsion between particles, the system
will become hexatic at sufficiently large system sizes. Calcula-
tion of the defect free energy of three systemssthe square-well
solid near the solid-solid critical point, the hard-disk solid at
the same density, and anr-12 solidsshows that the presence of
a harsh repulsion significantly increases the core free energy,
resulting in a much lower defect concentration for a given
density.
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