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The nature of the melting transition in two dimensions is critically dependent on the core energy of dislocations.
In this paper, we report calculations of the core free energy and the core size of dislocations in two-dimensional
solids of systems interacting via square well, hard disk, iafd potentials. In all cases, we find that the
dislocation core free energy is such that, at the densities studied, the density of free dislocation density is
extremely low. We find that the core energies and core sizes are considerably smaller rfof? thgstem

than for the other systems studied. This illustrates the fact that, for hard-core systems, elastic continuum
theory breaks down, even for relatively small strains.

1. Introduction energy” of a dislocation is often rather low. In fact, there is
evidencé®2°that no continuous dislocation-unbinding transition

two-dimensional (2D) systems dates back to the seminal work is possible if the core (free) energy of a dislocation is less than
of Landau and Peierls, who showed that there is no Iong-rangewngT'. o
positional order in 2D crystals (see, e.g., ref 1). In the early N this paper, we primarily focus on systems where no such
1970s, Kosterlitz and Thouless suggested that melting in two confusion exists: we consider a model solid that can become
dimensions might proceed via a continuous dislocation-unbind- Unstable to dislocation unbinding far away from any first-order
ing transition? Subsequently, Halperin and Nel$argued that ~ Melting curve. Such dislocation-unbinding transitions should
the phase resulting after dislocation unbinding is not an isotropic occur in 2D solids of particles with a short-range attraction or
liquid, because it still has quasi-long-range bond-orientational & “shoulder-like” repulsion. These systems can undergo an
order. A second (disclination unbinding) transition is required isostructural solietsolid transition, and, near the sotfidolid
to obtain an isotropic liquid from the bond-ordered phase critical point, there should be a “pocket” in the phase diagram
(termed “hexatic” in ref 3). These predictions have stimulated Where the hexatic phase is steéBlermination of a line of first-
a great amount of experimental, theoretical, and numerical work order isostructural solid phase coexistence. The size and location
on melting in 2D systems, most recently reviewed by Glaser of the region is sensitively dependent on the range of attraction
and Clar# and Strandbur§ Experimental work on colloids and  of the pair potential. Because of the low dislocation density in
smectic thermotropic liquid crystals has found evidence that this unstable region, the resulting phase satisfies all the criteria
supports the dislocation unbinding theory. However, the veri- of a stable hexatié?3! Moreover, such systems are not purely
fication of the original theoretical predictions by computer of theoretical interest, because there is experimental evidence
simulation has been much more difficult than originally envis- that short-range attraction or repulsions can favor the formation
aged, because of the difficulty of investigating systems very of hexatic phasé& 1526 The simulations of ref 30 showed that
close to melting. The investigation of melting in two dimensions the defect concentration in the solid, at the putative solid-hexatic
still remains a very active research area, both experimentally transition, was extremely low. This suggests that the core free
(in colloids12-17 vortex flux latticed®°and free-standing liquid-  energy of dislocations is large, comparecgd. In the present
crystalline film£% and numerically. 112127 paper, we show that this is indeed the case. In particular, we
One reason the debate about the nature of the 2D meltingcompute the core free energy of a pair of dislocations for our
transition is still continuing is that it is extremely difficult to  model systemrthe attractive square-well systerand two other
distinguish between a weak, first-order melting transition and model systems (namely, the hard disk solid and a system
a continuous transition. The problem is that it is very hard to interacting via a repulsive12 potential). To our knowledge,
determine if the point where a solid becomes unstable toward this is the first time that the core free energy has been calculated
dislocation unbinding is pre-empted by simple first-order directly; previous calculations were based either on a quasi-
melting. And, even if it is, it is difficult to determine if that  harmonic approximation that neglects part of the entropic
melting transition directly transforms the system to an isotropic contribution to the dislocation free enefgyor the entropic
liquid. One reason the picture is so unclear is that existing contribution was completely neglect&Our calculations give
theories for dislocation unbinding assume that the number of a more quantitative indication of the dislocation density and
defects in the solid at melting is low. However, in practice, it highlight the qualitative difference of systems with and without
seems that a solid that is close to melting contains many defectsa hard core. The very high defect core free energies calculated
This is presumably related to the fact that the “core (free) for the square-well system indicate that it may be impossible
F——— —~ FR— F——— to directly observe free dislocations in a hexatic phase (of the
*Aﬁihgr toeviﬁgr%acl)sr?ggpon%gsnce' sr?oSIrc'Jsetr)]e a?gdsr((;asged. E-mail ad- type_ studied) by computer SImU|at.|On' at least on currently
dress: frenkel@amolf.nl. available computers. However, this does not rule out the
* Present address: Marconi Communications Ltd., Coventry, U.K. experimental observation of hexatic phases induced by the same
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mechanism, because accessible experimental length scales cam the presence of dislocations, the strain fielgd can be

be much greater than those of a simulation.

The remainder of the paper is divided as follows. First, we
give a brief resurheof the dislocation unbinding theory of
melting and its main predictions. We then show how the

expressed as the sum of a smoothly varying pay} that is
due to the phonon modes and a singular pafﬁg( that is due
to point dislocations:

presence of a critical point in the solid phase can lead to U = ¢ij + uﬁ"‘g (5)
dislocation unbinding in the solid far from melting. We present
computer simulations to show that the area of unstable solid in This causes the free energy to separate into three parts:
the phase diagram is sensitively dependent on the form of the
intermolecular potential. Finally, we explain, in some detail, T =G+ AR+ 7 (6)
the procedure used to measure the core free energy of a
dislocation. where 7, describes the smoothly varying strains,
. . . I . . T 5
2. Dislocation Mediated Melting in Two Dimensions Jo _ 1fﬂ(2ﬂ¢§ n M’Ek) %
The dislocation-unbinding theory of melting that was devel- keT 2 aé
oped by Kosterlitz, Thouless, Halperin, Nelson, and Young (the
KTHNY theory), is based on the linear elasticity theory of an and.7p is the contribution from the dislocations,
isotropic medium. This encompasses all 2D, substrate-free
systems that crystallize in a triangular lattice. Because of the T K g (ber)(bopery)
6-fold symmetry, such lattices possess only two distinct elastic —=——>|bbIn[=]-——— 8)
constants? In two dimensions, there are only two types of keT 8=, % fﬁ

defects that can occur: dislocations and disclinatfémiscli-
nations have a very severe effect on the lattice structure and,whereb; denotes the Burger’s vector (see below) of dislocation
consequently, a high free energy. Only dislocations are relevanti. The dislocation contribution to the free energy (eq 8) results
to melting in two dimensions. Kosterlitz and Thoufesgesented  from an integration of the strain field outside a contour of radius
a simple argument to explain why a solid should melt via a afrom the point dislocation. The strain field near a dislocation
dislocation-unbinding transition, based on the free energy of varies rapidly. In fact, at the dislocation itself, there is a
an isolated dislocation. The energy of an isolated dislocation discontinuity in the displacement field and near it, the lattice is
calculated via continuum theory is ill-defined, as are displacements from the latfieelet, the
contribution to the free energy that is due to the distortion of
K In(é) the lattice inside the radiwsis necessarily finite; it is assumed
167 a(z) to be a constant (at a given thermodynamic state point). As a
result, the dislocation cores yield a separate contribution to the
whereA is the size of the systera,is some characteristic size  free energy of the system. This contribution is called the core
of the dislocation,ap is the lattice constant, ani is the
combination of Lamecoefficients, given by
Aagu(u + 2)

free energy, 7
Tt

U )

EC
(7c=k?T§b? (9)

Dislocations are uniquely described by a Burger's vedtor
which is defined as the amount by which a Burger’s circuit (a
circuit that would close in a perfect triangular lattice) around
the dislocation fails to close. The Burger’s vector is measured
in units of the lattice spacing; the magnitude indicates the
strength of the dislocation. A suitable microscopic definition
of a Burger’s vector is discussed in Section 4.3.

As eq 8 shows, the free energy of a dislocation pair diverges
logarithmically with the system size. In a system with many
dislocations, the dislocations screen each other and the free
energy is only finite if the constrairfi;b; = 0 is satisfied, i.e.,
dislocations are produced in pairs. In the theories of Halperin
and Nelson and Young, the effect of dislocation screening is to
renormalize the elastic constamtsi, andK. The contribution
of the dislocations to the elastic constants is calculated as a
power series iry = e &/(ksD),

A summary of the predictions of the theory are as follows:

(1) Dislocations unbind, forming a phase that Halperin and
Nelson called “hexatic”, at a temperatufe= T, when the
renormalized elastic constakgk(T) approaches Ifrom above
asT approaches the melting temperatiirgfrom below. This
is exactly the same result as the simple entropy/energy argument

)

There are approximatelW(aé) locations for the dislocation;
therefore, entropy must have the fo®= kg In[A/(acz,)]. The
total free energy of a single dislocation is then given, within a
constant, by

K A

T~ (E kBT) In(a—g) 3)
WhenK/(167) < kgT, dislocations proliferate and the transla-
tional order of the solid is destroyed. Kosterlitz and Thouless
calculated the effect of scalar-type dislocations on the solid
phase. The full vector nature of the dislocation interaction was
considered by Halperin and Nelsdand additional predictions
were made by Youngf

These treatments begin by considering the free energy of an
elastic solid described by a strain tensgr

7_ 1 d2r _ 2 7 2
PR éf%(zuuij + AUig) (4)

/ andj are the Lamelastic constants of the lattice, divided by
keT and multiplied by aj, i.e., i = uay(keT) and 1 = given by Kosterlitz and Thouless, but wikh renormalized.

ia(z)l(kBT). Henceforth, we shall drop the overline and assume (2) The hexatic phase-densitdensity correlation function
that all elastic constants are expressed in these reduced unitsdecays exponentially as the correlation lengthncreases,
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diverging asT approached,, from above: to search for two-stage melting and the hexatic phase. There is
absolute control over the experimental conditions, and parameter
[p(r)p(0)C~ ex;(— L) (10) space can be rigorously searched. The simulations are in two

&M dimensions-and, therefore, fastand systems of relatively large

. ) . spatial extent can be studied. However, despite the great amount
(3) The correlation of a bond orientational order parameter of work and computer time that have been invested in simulating
(We = €%, whered is the angle that suitably chosen nearest model systems, it has proven to be unexpectedly difficult to
neighbors make with a reference axis) decay algebraically abovegptain hard evidence for (or against) the existence of a hexatic

Tm, With 76 rapidly going to zero ag approached, from phase by computer simulation. The main reason for this
above: difficulty is that, near the transition region, the presence of
topological defects dramatically slows equilibration, which

[We(r)We(0)~ r 7D (11) makes it difficult to precisely identify any transition, be it first-

order or otherwise. There have recently been several large

(4) The hexatic phase melts via an unbinding of disclination simulations of 2D solids, only one of which found evidence
pairs to become an isotropic liquid (a free dislocation can be for a thermodynamically stable hexatic phase. Chen &t al.
considered as a bound pair of disclinations). We shall not studied a large Lennard-Jones system inNF& ensemble and
concern ourselves further with the disclination-unbinding transi- found evidence only for a metastable hexatic phase. Bagchi et
tion in this article. alidentified a stable hexatic phase in a large (64 000 particle)

The hexatic phase, then, has an exponential decay ofsimulation of a repulsive—12 potential, using a bicanonical
translational correlations, with a slow (algebraic) decay of bond- techniqué’ to accelerate the equilibration of defects. The range
angle correlations. The free energy contains an essentialof stability of this hexatic phase was quite narrowl(2% of
singularity at the transition, so there are no discontinuities in the accessible density range). Weber and ®anx FerfadeZ°
any thermodynamic function; in effect, the transition is the point studied large hard disk systems, with Weber and Marx finding
where dislocations start to become unbound. The concentrationevidence for a first-order transition with a very narrow coexist-
of free dislocations at this point is zero. ence region, whereas Fénuz et al. found a single continuous

All microscopic information about the solid is contained in  transition. However, even for a system as simple as hard disks,
the elastic constants of the material and the core energy of thethe situation is, even now, far from cle®r25.27
dislocation. The elastic constants measurefte-energycost There are alternatives to direct observation of the correlation
of imposing a given set of strains on the system. Even a hard fynctions that are characteristic of a hexatic phase. One may
particle system will exhibit an elastic response, because of the|gok at the elastic constants of the system and determine if the
entropy reduction of a distortion. solid is unstable, with respect to the KTHNY criterion (i.K.,

Itis important to realize that the two-stage melting mechanism < 165). If the solid is unstable to dislocation unbinding, then
does not prohibit the solid from melting before the solid becomes gpe may infer that an infinitely sized system will be hexatic.
unstable to dislocation unbinding. Only if the solid is thermo- This presupposes two things: (i) the system must be thermo-
dynamically stable at the dislocation proliferation instability will dynamically stable, and (i) the assumptions underlying the
the subtle dislocation unbinding result. Many other melting KTHNY theory should be satisfied (i.e., that the system should
scenarios have been proposed (for a review, see ref 4). Amongpe in a regime where the defect core energy is sufficiently high
these, the grain-boundary-melting scenarios have receivedsor the expansion in defect fugacity to be valid). Investigations
special attention. Fish&rfound that the spontaneous prolifera-  of the location of the hexatic phase, on the basis of elastic
tion of grain boundaries would be unfavorable, compared to constant measurements, conflict with the first argument. It seems
dislocation formation; however, a more detailed calculation by that the locus of the elastic constaat= 167 is depressingly
ChuP® suggested that if the core enerds)(were low enough  ¢lose to the point where the solid becomes unstable to first-
(<2.84gT), then melting would proceed via a (first-order) order melting3®-3°
proliferation of grain boundaries (although, strictly speaking, it |, this paper, we are concerned with hexatic phases that occur
is not meaningful to speak about the “mechanism” of a first- deep inside the solid phase, where there is less risk of

order phase transition). Grain boundaries completely destroy «niarference” from the regular melting transition.
the bond-orientational order of the system, so that no hexatic

phase occurs. For larger values of the core eneffy >
2.84gT), the transition becomes much more weakly first-order. 3. Hexatic Phase in Systems with Short-Range
Interestingly, these predictions were supported by a simulation Interactions
of the equivalent lattice Hamiltonian to eq 6 by Satayho
found that the melting transition is first-order for small core The effect of the range of attraction of a simple pairwise
energies and continuous for large core energies, with a crossoveadditive potential on the phase diagram has received much
betweenE, = 2.2&sT andE; = 3.28gT. Saito also observed  attention in recent yeaf8.Computer simulations, theory, and
that melting is caused by dislocation unbinding at high core experiments on colloidal suspensions have shown that the liquid
energies, whereas the formation of grain boundaries is observedphase is only stable if the range of attraction is greater than
at lower core energies. Therefore, it seems that the core energy~30% of the particle diameter. If the range of attraction
does indeed have an important role in determining the melting (measured in some suitable way) is too short, the liggas
behavior. critical point disappears. Recent work considered the effect of
There have also been many computer experiments that havereducing the range of the attractive portion of the potential even
examined melting in two dimensions. Many different systems further#! The surprising conclusion was that if the potential
have been investigated, including hard disks and power-law becomes sulfficiently short-ranged, a critical point would reap-
potentials (712, r=6, r=5 r=3, r~1, logarithmic, Yukawa, Len-  pear in the solid phase. The critical point separates two regions
nard-Jones and Week€handler-Andersen potentials). A  of solid, with identical structure but different density (see Figure
computer experiment initially might seem to be the ideal tool 1). The low(er)-density solid phase is stabilized by “free
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is given by
u(r) = oo (forO=<r <o) (13a)
=—¢ (foroc=r<o+9) (13b)
=0 (forr = o+ 0) (13c)
T whereo is the particle diameteg the well depth, and the

well width. Henceforth, we measure all temperatures in units
of ¢/kg and set the particle diameter to a value of 1. The
L S, S . simulations of ref 41 showed that sofidolid coexistence is
possible if the widthy of the square well is less than7% of
the particle diameter. For longer-range attraction, the triple-point
temperature becomes greater than the critical-point temperature
and the low-density solid disappears. For decreasinghe
solid—solid critical point moves to higher densities, whereas
the ratio of the triple-point temperature to the critical temperature
decreases. In the limit — 0, the critical density approaches
P that of regular close packing. By controlling the range of
Figure 1. Generic phase diagram for the isostructural sefidlid attraction §), we can choose the density at which the critical
transition in the ,T) plane. Low-density soli& coexists with a higher point occurs. This allows us to study systems arbitrarily deep
density solidS,, separated by a critical point (marked by a solid circle, inside the solid phase. A good estimate of where the critical
®). The triple point (marked by an open circlg), marks the pointof  noint occurs can be made by calculating the density at which
the coexistence off, S, and liquid (). Regions of two-phase  {ha gquare wells of adjacent particles that occupy the perfect
coexistence are shaded gray. . . .
lattice first overlap. Note that, because we are studying the

elastic properties of the solid near the critical point, we can
avoid any problems of thermodynamic instability; wherever the
bulk modulusB is positive, the system is stable.

Instead of direct examination of thedislocation unbinding, we
chose to identify unstable regions of the solid by calculating

volume” entropy, which is the same mechanism that stabilizes
a hard sphere solid; the high-density solid is stabilized energeti-
cally. Bolhuis and Frenkel studied two systems by computer

Sm&u'tit'oﬂ: tge squarle-wellt SOIP m\t(wok and thrfe (tj_wrl]gnstlr(])ns, the elastic constamt. The dislocation concentration is strongly
an € hard-core pius aftracive vukawa potential in three dependent on density; therefore, we expect that the dislocations
d!mgn3|ons. The results for all systems were qualitatively concentration will be very low, because the selablid critical
similar, .and .subs'equent the.o.retlcal work mqllcates th"’.‘t the point occurs at densities that are significantly greater than the
megh_anlsm IS quite ge“efa'v 1.e., any attractive POt.e““a' of hard-disk melting density. To determine the valuekgfwe
suff|c‘:2e£13tly short range will display a critical point in the  poeqeq 1o calculate the elastic constanendA as a function
solid.*= o i o . of density and temperature. Calculation of elastic constants
What are the implications of a critical point in the solid phase equires knowledge of the pressure tensor, which is best obtained
for the dlslocatlon-medlgted melting tht_aory? A central prediction using a molecular dynamics simulation. We used the technique
of the KTHNY theory is that the solid becomes unstable t0 nigneered by Alder and Wainwrightaugmented by a collision
dislocation unbinding when the elastic constanKis= 16r. list handling technique that is similar to that described by

The bulk modulus vanishes at the critical point and can be made Rapapor® to obtain an algorithm that scalessn, N, where
arbitrarily small by approaching the critical point. Re-expressing N is the number of particles in the simulation. Constant
eq 2 in terms of the 2D bulk moduluB & 4 + «) and shear  temperature was maintained using velocity scaling. To check
modulusy, near the critical point, we have that the program was working correctly, state points were

calculated usingdVT Monte CarloNPTMonte Carlo, andNVT
K= AuB 45(1 _B + ) (12) Molecular Dynamics. Identical thermodynamic properties were

+B u obtained with all these techniques.

Because our primary intent was to compute the elastic

As we shall seey is not strongly affected by a sokesolid constants, most simulations were performed on a relatively small
critical point. Hence, there will be a finite region around the system of 224 particles in a box with a size ratio of Mz
critical point whereK is dominated by the bulk moduliand Two well-widths were chosend = 0.03 and 0.06, in units of

is less than 16. The solid will, necessarily, become unstable

to dislocation unbinding. This mechanism for the formation of 3 1. calculation of the Bulk Modulus B. The bulk modulus
a hexatic phase is very similar to one proposed by Toner andp = ;, + 1 is given by

Prost in the context of the formation of an induced nematic

phase in the vicinity of a Smecti€Smectic critical point4 P

Recently, Chen and Nelson showed that the presence of an Ising- B= p(a_p) (14)

like first-order phase transition in the solid does not interfere

with the dislocation-unbinding mechanist. where the pressur is related to the trace of the stress tensor
We have performed computer simulations to map out the ° throughP = —%,%4. The reduced density is defined py

region in the phase diagram that is unstable to dislocation = No%/A, whereA is the system area and the number of
unbinding. We studied the 2D attractive square-well model, particles in the system. To determine the bulk modulus, the
because the phase diagram of this system is known from thepressure tensa#”’ was measured as a function of the reduced
work of Bolhuis and Frenkeft The pair potential in this model  densityp and temperatur& on a grid surrounding the solid
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Figure 2. Measured equations of state for the square-well solid, and
the fitted results, fo = 0.06. The different lines from the top of the
figure correspond to the reduced temperatures-0087 in steps of
0.01. The critical point is visible & ~ 0.895,p ~ 1.046. Pressure is
measured in units ofo~2, density in units ofo2.

TABLE 1: Fitting Parameters for the Pressure of a 2D
Square-Well Fluid with 6 = 0.06

Fitting Parameter for Pressure

q p=0 p=1 p=2 p=3 p=4
0 69.24  —25.90 3.00 -0.127  -0.0001
1 -116.34 44.00 -423  -0.079 0.006
2 5452  —19.70 1.74  —-0.0017  —0.004

aSee text.

TABLE 2: Fitting Parameters for the Pressure of a 2D
Square-Well Fluid with 6 = 0.03

Fitting Parameter for Pressure

q p=0 p=1 p=2 p=3 p=4

0 56013 11638 —895.42 30.2159 -0.3774

1 127520 —26497 2039.02 —68.82 0.8599

2  —72495 15065 —1159 39.13 —0.489
aSee text.

solid critical point. Densities were varied in increments of
0.0025, and temperatures were varied in units of 0.01.

J. Phys. Chem. B, Vol. 108, No. 21, 2008711

TABLE 3: Fitting Parameters for the Shear Modulus of a
2D Square-Well Fluid with 6 = 0.06

Fitting Parameter for Shear Modulus

q p=0 p=1 p=2 p=3 p=4

0 —1911.30 803.73 —119.58 7.272 -0.14
1 2203.56 —954.76 149.98 —9.871 0.231

aSee text.

TABLE 4: Fitting Parameters for the Shear Modulus of a
2D Square-Well Fluid with § = 0.03*

Fitting Parameter for Shear Modulus

q p=0 p=1 p=2 p=3 p=4

0 —50882 10555 —775.191 23.8183 —0.2567

1 52482 —10833 791 —24.081 0.2589
3 See text.

measured at a finite value of the strain can be related to first-
order isothermal elastic constaru’I#) at zero strain by

cW— _ (%)(1 +eo AL+ (16)

wheree is the matrix of deformations aréddenotes its transpose.
A and A’ respectively denote the area and transformed area of
the system, which are identical under shear deformation. The
Lame coefficient,u = Cyyyxy, is then obtained by a linear fit of
C)%,) VS €y, the applied shear strain. The size of the applied
shear must be chosen carefully. It must be sufficiently large
that it produces a measurable response in the pressure tensor,
but sufficiently small that the response produced is linear. Also,
it must be small enough that no shear flow occurs during the
simulation. The shear strain applied in any simulation was never
more than 0.5%, and no evidence of shear flow was observed
in the simulations. In practice, it is more important to obtain an
accurate estimate of the bulk modulus in the critical region,
because: remains high far from the melting line and increases
monotonically as the density increases. The shear elastic constant
was calculated for a similar (though coarser) grid of points in
the (p,T) plane. Densities were varied in increments of 0.005,
and temperatures were varied in units of 0.01. The shear
modulus was fitted in the same way as the pressure. The fitted
coefficients are tabulated in Tables @ € 0.06) and 4 ¢ =
0.03).

3.3. Results Having obtained the bulk and shear moduli as
a function of temperature and density near the critical point, it

The pressure, as a function of temperature, was first reducedis & simple matter to evaluakeand delineate the region where

by the close-packed densipf = p/pcp and then fitted to a
polynomial in p*/(1 — p*) and a simple power series in the
temperature, i.e.,

P(o*,T) = i iaquq( i )p (15)
p=0 = 1-p*

An example of the equations of state and the fitdor 0.06

K < 16m.

Figure 3 shows the phase diagram for= 0.03. The phase
diagram for this well width has been reproduced from the data
presented in ref 41. Our data has been scaled so that the critical
points occur at the same density and temperature. The critical
temperature and density for the two well widths studied were
T. = 0.885 ando. = 1.01, respectively, fod = 0.03 andT; =
0.895 andp. = 1.046, respectively, fod = 0.06.

The region where the solid is unstable to dislocation unbind-

is shown in Figure 2. Tables 1 and 2 show the fit parameters ing has been shaded black, and the dislocation unbinding is

for the pressure for the two different square-well widths<
0.06 in Table 1 an@d = 0.03 in Table 2). Having obtained the
pressure, it is a simple matter to obtain the bulk mod@uxy
differentiation.

3.2. Calculation of the Shear Modulusu. The shear elastic

localized to the region immediately surrounding the critical
point. Figure 4 shows the phase diagram do+ 0.06. Here,
the critical point is much closer to the melting line, and the
triple-point temperature is much closer to the critical temperature
Te. The lower critical density fow = 0.06 causes the bulk

constant 4) was measured by imposing a small shear deforma- modulusB to be a much more slowly increasing function of

tion exy on the system and measuring the response in the off-

density than is the case for= 0.03. The system is “softer”

diagonal elements of the pressure tensor. The pressure tensoand the region of unstable solid extends over a much larger
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1.00 . . relatively short, since there was no need to equilibrate defect
structures. Even for a system of 16 184 particles with 0.06,
simulations showed that, at the critical point, the density of
unbound dislocations is negligible. The low concentration of
0.80 defects is, in fact, the prime feature that makes the present model
a suitable candidate for exhibiting a true dislocation-unbinding
transition, because it indicates that the dislocation core energy
must be very large. In fact, by decreasiigand moving the

T o solid—solid transition to higher densities, the core enekgy

can be made arbitrarily large.

Because there are, in practice, no defects in the system studied
by simulation, the elastic constants that we measure are the
0.70 | 1 “bare” or “unrenormalized” elastic constants of the Kostetlitz
Thouless theory. However, these represent an upper bound to
the true, renormalized elastic constants of the infinite system.

First, increasing the system size will reduce the elastic constants

080 o ey oz o a2 measured for the 224-particle system; longer-wavelength phonons

p will “soften” the system. This effect can easily be observed by
Figure 3. Phase diagram for the two-dimensional (2D) square-well measuring the pressure along an isotherm of a system of twice
system withd = 0.03. The region of unstable solid around the selid  the linear extent of the 224-particle system. Second, and more
solid critical point (the hexatic region) is shaded black. Regions of importantly, the presence of defectdways renormalizesK
two-phase coexistence are shaded gray. The density and temperaturdownward. This is particularly obvious in that portion of the
are e>_<presse_d in units 2 ande/kg, r_espgctively._ At this high d_ensity, phase diagram where we find to be less than 6 In an
the critical point is far from the _njeltlng I_|ne confining the hexatic region infinite system, such values df are renormalized to zero.
to a small area around the critical point. Hence, the range of stability of the hexatic phase will be larger
. than that which follows from the present simulations. To see
| the physical manifestation of the hexatic phase, i.e., a power-
] law decay of orientational correlations, we need to simulate a
] system that is large enough to have unbound dislocation pairs.
| A calculation of the defect core energy will help us gain a better

understanding of the system sizes needed to see a hexatic phase.

4. Calculation of the Defect-Core Free Energy

. The density of the hexatic phase near a sefidlid critical

1 point can be high, compared to the density of the solid at the

' normal melting curve. This, coupled with the fact that the
particle has a hard core, implies a very low dislocation density
in the hexatic phase. In terms of the KTHNY theory, the
dislocation fugacity is extremely small. We believe that the
dislocation density may be so low in such a phase that we cannot

0.80 . . observe it directly by simulation, at least using current comput-

0.95 1.00 105 ers. However, this by no means excludes experimental observa-

P tion of such hexatic phases. A calculation of the dislocation
Figure 4. Phase diagram for the 2D square-well system witk- core free energy will allow us to estimate the dislocation-pair

0.06. The region of unstable solid around the seBdlid critical point  jensity, as well as allowing quantitative comparison between
(the hexatic region) is shaded black. Regions of two-phase coexistence

are shaded gray. Units are as given in Figure 3. At this valuk tfe different model potentlals.. . .
critical temperature is near the triple-point temperature, causing the ~We stress that the Hamiltonian (eq 6) isee energybecause
hexatic region to extend as far as the melting line. it contains an explicit sum over all the degrees of freedom (the

strain components) of the system. Several authors have reported
region around the critical point. The effect of the approaching calculations of the dislocation coenergy Fisher, Halperin,
melting line is clearly visible. To the left of the critical point, and Morf? calculated the dislocation core energy of a system
the bulk modulus is approximately constant, when compared of electrons(~* potential) and Joos and Duesbery for a system
to the rapid decrease of the shear modulusith decreasing of Lennard-Jones particléd.Such calculations neglect the
density. This reduces the value kftoward unstable values as  entropic contributions to the core energy and, therefore, focus
the melting curve is approached. There is no evidence that theon the zero-temperature properties of the dislocation. Hoover
hexatic in this region melts via a disclination-unbinding mech- and Ladd calculated the core energy for a system with a
anism. Rather, our simulations suggest that the hexatic phasepiecewise linear force law, as well as the entropy using a quasi-
undergoes a strong first-order transition to the isotropic fluid. harmonic approximatio?? One only needs to consider a hard
However, it should be stressed that we have not studied thedisk solid, in whichall elastic properties arise from entropy
system-size dependence of the transition, nor have we performedalone to see that the entropic contributions cannot always be
a finite-size scaling analysis. neglected, nor be approximated using a quasi-harmonic tech-

For such small systems, at high density, the defect density nique.

in our simulations was always zero. This greatly facilitated the ~ We follow the recipe of Fisher et &k.to calculate the core
numerical calculations, because the simulations could be free energy. A system is created with two dislocations with

0.90 +
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Burger's vectors of unit strength; and b,, separated by a  We refer the reader to refs 32 and 33 for more details. The
distance;,, with by = —b,. The free-energy difference between result is
this system and a reference system with no dislocations is then
measured. According to linear elasticity theory, this free-energy 7 (r) = F,(r) + FZO[Fr(R - —-FR)]+
2|

difference is
1

- —iGr _
F By, by P NV, T) = Z(N, V, T) = LL y;o(e DR (20

:7defect_|_ A{/;—elastic_i_ 2Ec (17) . .
where the real part of the sum is given by

The quantity7 defects the contribution to the elastic free energy F(r) =

of the defects. Itis not given simply by eq 8, because the defect ) 2

interacts with a_II_ its periodip image_s, bec_ause of the periodic K] _ b—[El(arz) +lno+y]— (b'? exp(—arz) (1)
boundary conditions used in the simulation. The sum of the 4| 2 r

interactions of one defect with all its periodic images is only _ ) o )
conditionally convergent, and Ewald summation must be used. Where Ei(x) = —Ei(—X) is the exponential integral and is
The termA. 7 elasticis a measure of the difference between the Euler's constant. Thé&-space component of the sum is given

elastic free energy of the system with and without a defect, and by

2E. is the core free energy of the two dislocations, which is the (ol

quantity we wish to calculate. In this formulation, the core free F (k) = ﬁ[ M} 4ol —b?% + (b-k)z(l + i)
energy has no dependence on the defect separation. This should 4n K2 K 4
hold if there is no interaction between defect cores. However, (22)

in a simulation, if the dislocations are too close, they will interact )

and the core free energy will be dependent on the dislocation With the choice ofo = z/(LLy), both sums converge equally
separation. If the dislocations approach each other too closely,rap'dly' With the elastic cons.taKt being known, itis a simple
they can even annihilate each other. Therefore, to measure thdnatter to calculate the sum in eq 20. . .

core free energy, a series of measurements must be made with 42 C_Zorrectlon due_ to Unrelaxe_d Shear StramEquatl_on .
increasing dislocation separations. At sufficiently large separa- 17 implies that there is a Qecoupllng between the contribution
tions, the core free energy will become independent. his to the free energy from dislocations (eq 8) and the smoothly

is the core free energy. A measure of the core size can be varying ph_onon mOdeS (eq_ 7)- Th_us,_ there should be. no
obtained from the distance at which this occurs. difference in the linear elastic contribution of a system with

i i . and without dislocations. However, the pair of dislocations
Each stage of the calculation will be outlined below. Note jnoqyces an additional strain that cannot be relaxed in the
that we must measure the free energy of a system constrainedjmyjation due to the periodic boundary conditions. This
to have a constant pair of equal and opposite Burger’s vectors, jnrelaxed strain is

which is a nontrivial problem, because the dislocations attract
each other and would become ultimately annihilated. Therefore,
we need some mechanism of identifying and constraining
dislocations in the lattice. First, we will address the right-hand
side of eq 17, which represent the contributions to the free wher(_aeij i§ the Levi-Civita symbol. This results in an additional
energy from continuum theory (see refs 32 and 33). Subse-contribution to the free energy of
quently, we examine the techniques used to calculate the free

b2(

1
U = E(biejkrk + beyry) (23)

energy of a system that contains two dislocations. A7 elastic _ 1

4.1. Ewald Summation of Defect EnergiesThe dislocation
free energy (eq 8) is infinitely long-ranged. In a system with
periodic boundary conditions, every dislocation interacts with
all its periodic images. The total energy (per periodic block size

r2
LXLy) (24)

4.3. Free-Energy Calculation with an Imposed Burger’s
Vector. We wish to calculate the free energy of a system with

Lx, Ly) of an infinite array of dislocation pairs with Burger’s
vectors+b and —b at separatiom is given by

;:7_d6fectl') — Fgefectr) + ;OFgefectR _ r) _ FSEfeckR) (18)
2|

where the sum is totalled over &= (I«L, lyLy), wherel, and
ly are integers and

K
Foeelr) :a_nz beb; In 19)

=y

(ﬁ) B (brry)(byry)

a, ra

two equal and opposite Burger’s vectors at a fixed separation.
Therefore, we need to be able to locate, characterize, and confine
defects in our simulations and, subsequently, measure their free
energy. We can locate and characterize defects using a
combination of two techniques: Voronoi analysis and Burger’'s
vector construction. We confine dislocations by fixing the
magnitude of each dislocation’s Burger's vector, and we
measure the free energy of the system by a thermodynamic
integration procedure.

4.4. Burger's Vector Construction. In continuum elastic
theory, a Burger’s vector is defined by integrating the displace-
ment field around a closed curve in the medium:

— _ 40U
b=—¢7_ds (25)

The sum can be made periodic by Ewald summation, in which
the summation is split into two parts: a short-range part, which If the integral is nonzero, the curve contains a dislocation of
is summed in real space, and a long-range part that is summedstrengthb. We define the Burger’s vector in a similar manner
in reciprocal space, both of which converge equally rapidly. for a system made of particles. A circuit is taken, passing only
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O 0o 0 oo 0 o0 0 0 o o © circuit has been reached,is rotated in the positive sense by
7r/3. If the circuit is complete, the Burger’s vector is calculated.
O 0 Otherwise, the process is continued from step 4, which has been
discussed previously.
O 0 o Note that the definition of a dislocation by a Burger’s vector
is a collective property of a large group of atoms, namely all
those contained within the circuit, whereas the Voronoi con-
0 o struction yields a microscopic, local definition of the defect
structure that is based purely on coordination number. In the
O Voronoi picture, a dislocation can be identified with a pair of
neighboring atoms with imperfect coordination. One of the pair
O has five neighbors, and the other has seven. Figure 5 shows
this configuration with its associated Burger’s vector. This
O should be considered to be the “ground state” of a dislocation;
there are, of course, many different configurations of five, seven,
O and other coordination numbers that can describe a dislocation.
Therefore, given a particular Voronoi tiling, it can be very
difficult to identify where point defects are actually located,
without using a Burger’s vector construction to separate those
groups that have no overall Burger’s vector from those whose
0O 0 0o ¢« Burger’s vectors are well-defined. For this reason, we prefer to
use a Burger’s vector description of a dislocation, because it
o © 0 0 O © imposes no particular coordination state on the system that we
o 0 o o0 0O are simulating.
Figure 5. An isolated dislocation in a triangular lattice, identified by 4.5. Defect Creation.Pairs of defects are created along the
Voronoi and Burger's vector constructions. The Voronoi polyhedra are gjide direction by applying a displacement fielgx,y) to a

shown for all particles that have imperfect (i.e., different than 6-fold) - - - _
coordination. The 57-coordinated pair characterizing the simplest perfect Iattlpe of Coordlna_tes §ca|ed o lie between(—0.5,
0.5). The displacement field is of the form

isolated dislocation is clearly visible. A Burger’s vector is shown with

a path length of five steps. The path contains a single dislocation of
strength one lattice unit, i.elp = (=1/2, —+/3/2) in Cartesian ulx, y) = +k(1 — 2y)f(x) (y> 0) (26a)
coordinates, if the Burger’s vector path is taken counterclockwise. — K1+ 2 (y<0) (26b)

0O 0O O 0 ©
0O 0 0 0 0 0o

O O 0O © C o0 0

through regions of perfect lattice. For our purposes, we use a
Voronoi construction to define what constitutes a perfect lattice.
If this circuit fails to close, the circuit contains a dislocation,
the Burger’s vector of which is the vector joining the starting
and end points of the circuit (see Figure 5). In practice, because
we will be required to define a Burger’s vector dynamically
during the course of a simulation, we need to be more specific
about precisely how the circuit is taken. In the simulations
described below, we used the following procedure to calculate
a Burger’s vector:

(1) The length of each side of the circuit is chosen, in units
of ap, the lattice spacing. A particle is chosen to be the starting
point of the circuit and an initiavalking direction g, is chosen

wherek is a suitably chosen constant afifg) is some concave
function symmetric about = 0 that vanishes at= —0.5, 0.5
(e.g., sin[k + 0.5)7]). The energy of the configuration generated
in this fashion is then minimized by the steepest descents, using
anr~" potential to provide a starting configuration for subse-
guent simulations. Voronoi analysis showed that the resulting
configuration contained two fiveseven-coordinated dislocations
separated along the glide direction by a distance sf L,/2,
wherelLy is the size of the simulation box in thedirection.
This corresponds to two Burger’'s vectdis= (+1,0) at the
given separation. Using this starting configuration in a standard
Monte Carlo simulation, the defects annihilate each other after
. L . a few hundred simulation cycles. To generate configurations
along one Of.the lattice dlrectlon.s. We o_lenqte the current location with different dislocation separations, configurations before
on the circuit to be.thee.st partple which is Iocgted. a,t"_ ) annihilation were recorded and analyzed for the defect separa-

(2) The test particle is examined to determine if it is in a oy To identify the location and separation of the dislocations,
region of perfect lattice, i.e., if the particle has exactly six e Burger's vector was calculated as described previously, using
neighborsj, identified by a Voronoi analysis. If it is not, the  gyery particle as the initial starting particle. Particle coordinates
attempt at constructing a Burger’s vector is abandoned. that produced (1,0) and(L,0) were separately averaged to

(3) Denote the set of vectors that join the test particle to its obtain the center of mass for each type of dislocation. The
six neighbors by;;. The possible locations for the next step of particle closest to the center of mass of each dislocation was
the walk are determined by forming the inner product of the chosen to be the starting point for determining the Burger’s
current walking directiorg with{r;}. The particle that corre-  vector in the subsequent calculations to measure the free energy.
sponds to the maximum value of cgs= §-fj; is chosen to be  Note that the center of mass of the dislocation as described does
the next step in the path (i.e., the new test particle), providing not correspond to the actual center of mass of the dislocation,
that cosp > V/3/2; that is, the chosen direction is closer to the because it includes a constant offset vector that translates the
current walking direction than to any other lattice direction. If starting point to the center of the hexagonal path used to
this criterion cannot be satisfied, the attempt at constructing a determine the Burger’s vector.
Burger's vector is abandoned. 4.6. Monte Carlo Simulations at a Constant Burger’s

(4) One step of the walk has been completed. We now must Vector. To maintain a fixed value of the Burger’s vector during
repeat the procedure for the next step of the walk, starting from a Monte Carlo simulation, we use the following technique. At
the new test particle. If the end of one side of the hexagonal regular intervals (once every Monte Carlo cycle, where one cycle
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equals one move per particle), the entire configuration of the where 7 HP denotes the free energy of the square-well system
system is saved. Before saving the system, the Burger’s vector(a. = 1, y = 0), 7 "D denotes that of the hard-disk system (

is recalculated, using the stored initial starting points identified = y = 0), andLl..[4,,,=0) denotes an ensemble average sampled
previously. If the Burger's vector has changed, the previous using the potential at the indicated valuesxaindy. Similarly,
sequence of standard Metropolis Monte Carlo moves is rejected,the free-energy difference between the hard-disk solid and a
and the system is restored to the previous saved configuration.hard-disk solid strongly coupled to an Einstein lattice is

The Burger’s vector only changes slowly, and using this staged

Monte Carlo technique, only needs to be recalculated infre- A7 "5y = 7",y — 7P

quently. We find that the acceptance rate of cycles %%,

depending on the density and type of system being investigated. = ymaxdyDZ(ri — riO)ZQFo ) (30)

The size of the path determining the Burger’s vector determines 0 T v

the degree of constraint of the dislocation. If a very large path

is used (of size six or more lattice units per side), the dislocations If the coupling ymax is very strong, the particles are bound
move toward each other (because of their mutual attraction) extremely tightly to their lattice positions and rarely feel the
until they are confined the “wall” of the surrounding Burger’s hard-disk potential of their neighbors. The free-energy difference
vector. To minimize this effect, the smallest possible Burger's between this strongly coupled system and the reference system
vector was used, of three units per side, so that the dislocation” & is simply

was very tightly constrained and did not move during the

simulation. During the course of the simulation, it was interest- A7 V8 = 7%y ) — 7" (109 (31a)
ing to note the relaxation of the lattice surrounding the _ o
dislocations. Grain boundaries and bound dislocation pairs were = kg T Intexp[=pU(a =0,y = yp)]L (31D)

formed, which screened the strong attraction of the dislocations. . . .
4.7. Free-Energy Calculation. Using the Monte Carlo where the average is “umbrella-sampled”, using the harmonic

technique outlined previously, the free energy of a system that Ptential only. By evaluating these integrals using a series of
contains dislocations can be calculated using thermodynamicSimulations, the free-energy difference between the square-well
integration. By modifying the pair potential, a reversible path system and the reference system can be calculated (and, hence,
can be constructed between the solid that contains dislocationdN® absolute free energy of the square-well system).

and a reference system of known free energy. We choose the | N€re is one additional important point that has not yet been
reference system to be a harmonic, or Einstein, solid, where Mentioned. The thermodynamic integration to the Einstein
each particle is bound to its lattice site by a harmonic potefftial,  Crystal must be performed in a system with a fixed center of

By increasing the strength of the coupling to the harmonic solid, Mass. Without this constraint, the mean-square displacement
the system can be made to freeze into a state in which theWould become on the order af (whereL is the box length)

harmonic potential dominates. To reduce the square-well solid @7 — 0, in which case the integrand of eq 30 would be sharply
to a harmonic solid, it was first necessary to reduce the systemPeaked_amU”Q* =0, .adversely aﬁectlng the accuracy of.the
to a hard-disk solid, because the presence of the nearby-solid integration. The detqns o_f performm_g a s_lmulatlon_at a fixed
solid critical point causes rapid variations in the square-well CENter of mass are given in ref 49. With this constraint, the free
energy as the system is frozen. The modified interaction €N€rgy of the Einstein solid o particles in a volumev
potential of the system is becomes

Uy) = SIUP + a9 +5 5 -2 @7) TEy) = ke TN — 1) |n(ﬁﬂy) +kgT In(%) (32)
1<] ]

. P . 5. Free-E Calculation Result
The hard-disk part of the potentigl'® is always left switched ree-=nergy Lalcliation Results

on; a controls the effective square-well potentialSQ andy The defect-core free energy was measured at one single state
represents the coupling to the Einstein lattice positién point for three different systems: the short-range attractive
Whena = y = 0, the system interacts via a hard-disk potential; Square-well system just above the sel@blid critical point, the

with o = 1,y = 0, the system interacts via the full square-well €quivalent hard-disk system, and, for comparison, a system
potential; and wher = 0, y = 0, the hard-disk solid interacts  interacting via ar~*2 repulsive power potential (i.e., the pair
with a harmonic solid with a coupling constant To define potential isU(r) = (o/r)!9). The state point chosen for the
the Einstein potential, it is necessary to have a reference lattice Square-well systenp(= 1.046,T = 0.9, and = 0.06) is inside

For the systems that contain dislocations, the reference latticethe unstable regime, as determined by KTHNY theory. How-

was measured in a simulation with an unmodified square-well €ver, because of finite system size and the absence of (natural)
potential, with the mean positions defining. Using the dislocations, the elastic constants are still nonzero. The hard-

identity disk core energies were obtained at the same density, as were
those of ther—12 system, which was simulated at a reduced
X2 0T temperatureffe = 1).36 All systems simulated contained 1024

T(X) — T(x) = % dX& (28) particles. The elastic constants for the square-well system were

recomputed for the 1024 particle system at the state point that

the free-energy difference between two states characterized byvas simulated. The elastic constants for the hard-disk solid were

X can be measured. By settingto zero and varyingr, we computed using procedures that were identical to those described
obtain the difference between the square-well and hard-disk for the square-well solid (noted previously) and show good
solids, namely agreement with previous calculatiottsor ther 12 system, the

KTHNY constantK was taken from the paper of Broughton,
Gilmer, and Week$? and the shear moduluk obtained by

~—#HD _ »~SQ_ HD _ 1 SQ
A7 =T s = ﬂ) dalU (y=0) (29) linearly interpolating between two values measured=t1.06
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TABLE 5: Contributions to the Core Free Energy of a Square-Well System withd = 0.06 atT = 0.9 andp = 1.048

defect
separation AT HOIN AT HOEN TEIN AT UMBIN ol AT Shear EX
0.00 —2.3005(4) 6.212(2) 10.890 <104 0.00 0.00 0.0Q: 0
4.48 —2.3260(3) 6.165(2) 10.890 <10 0.86 1.12 10.®3
6.44 —2.3297(3) 6.153(3) 10.890 <104 1.45 231 12.9 4
8.51 —2.3313(3) 6.149(3) 10.890 <10 1.86 4.03 13.5:4
11.37 —2.3381(2) 6.134(2) 10.890 <104 2.18 7.20 16.0+ 3
14.52 —2.3399(4) 6.128(3) 10.890 <104 2.33 11.42 15514
15.49 —2.3393(9) 6.125(2) 10.890 <10 2.35 13.35 16.53
aFor a definition of the meanings of the symbols used in the table, see eqs 33 and 34.
TABLE 6: Contributions to the Core Free Energy of a 100.0 ,
Hard-Disk System atp = 1.046
defect ©—@ Square Well
separation A7 HDVEIN  FEIN AFUMBIN 7Dl A 7Shear  EHS 800 | g gDk ]

0.00 6.212(2) 10.890 <104 0.00 0.00 0.06t0
4.48 6.165(2) 10.890 <10+ 15.6 191 1533
6.44 6.153(3) 10.890 <10* 26.4 394 1454

60.0 i
8.51 6.149(3) 10.890 <104 33.7 6.90 11.8:4

11.37 6.134(2) 10.890 <104 39.7 12.3 13.9:3 w
14.52 6.128(3) 10.890 <10* 425 20.1 11.4-4 <
15.49 6.125(2) 10.890 <10* 42.8 22.9 11.4:3 400 | 1

@ For a definition of the meanings of the symbols used in the table,
see egs 33 and 34.
200 | .
TABLE 7: Contributions to the Core Free Energy of an r=12
System atT = 1.0 andp = 1.046

defect 0.0 : !
separation A7 RIZFEIN 7EIN AFUMB/N 7Disl A grshear gRIZ 0.0 5.0 , 10.0 15.0
0.00 5.488(2) 8.847 1.670 0.00 0.000 060
4.48 5.492(2) 8.847 1.686 2939 0267 &3 Figure 6. Free-energy difference of systems with and without
6.44 5.485(3) 8.847 1.683 4.967 0550 53 dislocations at a separation The three systems are as follows: the
8.51 5.488(2) 8.847 1684 6.340 0961 448 square-well system with = 0.06 atT = 0.9 andp = 1.046, near the
11.37 5.486(2) 8.847 1688 7.454 1717 &8 critical point of the solid-solid transition; the equivalent hard-disk
14.52 5.508(2) 8.847 1.704 7.9903 2.801 %8 system at the same density; and raf? system at the same density
15.49 5498(3) 8.847 1698 8.044 3185 4@ with a temperature of = 1. The defect core energies are given in
2 For a definition of the meanings of the symbols used in the table, units_okaT/e, and the defect separation is given in units of the lattice
see egs 33 and 34. spacingdo.

andp = 1.02 was taken from the paper of Zollweg, Chester, . ) )
and LeungP?! Initial configurations that correspond to defect byﬁ"mg‘g o between (0,1) in steps of 0.1. The |ntegr_al
separations of-4, 6, 8, 11, 14, and 16 lattice spacings were 27 was sampled, for the square-well and hard-disk
generated. For each initial configuration, the defect free energy SYStEM. with the set o;lgoént)s = 0’_1’2= 2i=11#, and the
was computed. Tables 5, 6, and 7 summarize the results for the€quivalently named.7 for ther~* system was sampled
square well, the hard disk, and the'2 potential, respectively. ~ With the sety =0,y = 3i-11¢.
The quantitiesA. 7 HP (which is the free-energy difference of The difference in the free energy of the dislocation and
the hard-disk and square-well system)7 HP+E (which is the reference systems is shown in Figure 6. The core free energy is
free-energy difference between the hard disk and strongly shown in Figure 7. The errors shown in the core energy are
coupled harmonic solid),7 € (which is the reference free entirely due to the uncertainty in the determination of the free
energy), and\.7 YMB (which represents the difference between energy of the defect and reference systems. The defect-core
the strongly coupled particles and the reference system) are allenergy is determined from the difference of two similarly sized
in units of free energy per particle. The quantities calculated quantities; the free energies of the defect and reference systems,
using continuum theory. 7 Dislocation \which is the Ewald where the difference is only slightly larger than the noise. The
summed dislocation free energy, ahd7 Shear which is the shear ~ error in the free energy per particle remains approximately
correction—are free energies per repeated periodic system. constant with ianeaSing system size; however, the defect-core
Hence, the absolute free energy is calculated, per particle, asifee energy is spread over more particles. Therefore, estimating
the defect-core free energy by this technique is limited to a

F(by, by, 1, NV, T) = narrow range of system sizes: those large enough to support a
—E —HD _ A —~HD+E _ A —~UMB defect, and those small enough that the dislocation free energy
AT A7 A7 (33) is not lost in the noise. We found that doubling the number of

and the core free energy is calculated as particles to 2304 (48« 24 unit cells), significantly worsened
the results, whereas the range of dislocation separation available

_1 - _ in a system of 576 particles (24 12 unit cells) was insufficient
Ee = SIN(7 (by, b, 112 NV, T) = 7 (N, V, T)) to observe clear trends in the defect free energies as a function
7 Dislocation _ 7-Sheaj 34 of r. Nevertheless, the defect core energies show clear systematic

trends. Near a dislocation, there are large strain gradients;
For the square-well system, the integnal7 "P was sampled locally, the system is very deformed. The core energy is
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Figure 7. Plots of the defect core energies versus the dislocation
separation for three different systems: the square-well systemdwith
= 0.06 atT = 0.9 andp = 1.046 near the critical point of the sotid
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The density of dislocation pairs per simulation b@&°{) then
iS33

box _ _ %
o ex QT Z(K) (35)

where Z(K) is the internal partition function of a dislocation

pair:
2
exp{ In(aLO) - (br? ]]
_ 4«7‘[«/:_3 F min 2-Ki(4m) K K
~ Kin — 2(§) '0(5) ex‘{%)

The quantityryin is @ measure of the “core size” of a dislocation,
andly is a modified Bessel functiorZ(K) is of O(1) if K ~

16m; therefore p°°% ~ exp[—2EJ/(ksT)]. Therefore, the defect-
pair density for the square-well system i°&(i.e., extremely
small). This presupposes that the effect of finite system size on

K

il 4

dr

Z(K) - 3 I <I'min A

(36)

solid transition, the equivalent hard-disk system at the same density, the core free-energy calculation is negligible. As discussed

and anr~12 system at the same density with a temperaturé ef 1.
The defect core energies are given in unitskgf/e, and the defect
separation is given in units of the lattice spaceg The results are
presented for a simulation of a system of 1024 particles.

previously, a finite size scaling analysis of the dislocation core
free energy would be impractical, because of the technical
difficulties of measuring the core free energy in larger systems.
Examination of Figure 7 shows that, for the square-well system,
the independence of the core energy of the dislocation separation
is not clear. The measured core free energy is an upper bound

determined by how the system relaxes these strain gradientson the true, system-size-independent, core free energy; the effect
In a hard-core system, strain can only be relaxed within the of 3 small system is to force a rapid decay of strains around a
confines of Surrounding hard cores. The strain is transmitted adis|ocati0n’ so that the strained lattice can be accommodated
large distance, and the free energy increases because of the exti@ the periodic cell. Increasing the system size reduces these
confinement of many particles. For the'? system, the system  strain gradients toward values that are adequately described by
can relax strains by locally increasing the potential energy, which eq 18 and, hence, reduces the amount of free energy that must
leads to a smaller defect core with a lower free energy. For the be accounted for by the dislocation core. In any case, the density
square-well system, the core energy is dominated by the free-of dislocations predicted by our simulations is extremely low.
energy difference of the dislocation and reference systems.Even in an experiment, the possibility of observing spontaneous

BecauseK is so small, the smoothly varying contribution from
the dislocations is rather insignificant. The contribution from
the unrelaxed shear indicates that, althokgh small, the shear

dislocation nucleation in an equivalent square-well colloid
system (for instance, a colloiehbolymer mixture) would be
remote. However, we should expect the core energy of disloca-

modulusi is still relatively large. For the hard-disk systek1,  tions to decrease rapidly with density. Hence, for a system with
is very large and much of the free-energy difference is accounteda wider attractive well, which has a sofigolid transition close

for by the linear elastic dislocation and shear free energy. In to the melting line, free dislocations are much more likely to
this sense, the hard-disk system is described better by linearbe found in experiments.

elastic theory in this distance regime than the square-well

system. Thea~12 system, on the other hand, seems to show no 6. Conclusions

systematic increase of the free-energy difference or core energy
pastr = 5 lattice units. The core size is smaller, as is the core

free energy, compared to the systems that possess a hard corg,,_ nhinding instability, in a region that is guaranteed to be

Therefore, it is much easier to create defects in this system. otherwise thermodynamically stable. Because of the very high
We see that, for the square-well system, at a point where thecore free energy in this region, which is principally due to the
elastic constanK indicates the solid will become unstable to presence of the harsh repu]sion between partidesy the System

dislocation unbinding, the defect-core free energy is extremely will become hexatic at sufficiently large system sizes. Calcula-
high. Therefore, it is valid to apply the Halperin and Nelson tion of the defect free energy of three systerttse square-well
theory, which relies upon an expansion in the paramgter solid near the soligtsolid critical point, the hard-disk solid at
exp[—Ed/(ksT)] in this region of the phase diagram. This is the  the same density, and an2 solid—shows that the presence of
reason that we feel justified in calling our unstable region a a harsh repulsion significantly increases the core free energy,
“hexatic” phase. Other systems that fulfill the criteria for resulting in a much lower defect concentration for a given
instability (i.e.,K < 167) may not have a sufficiently high core  density.

energy for the theory of Halperin and Nelson to be strictly valid
in this regime. The value of the core energy gives an indication
of the defect density in the system; it is very difficult for the reading of this manuscript. This work is part of the research
system to have a fluctuation of the sizel5kgT. Fisher et al. program of the Foundation for Fundamental Research of Matter
calculated the defect density by assuming that pairs of defects(FOM) and is supported financially by The Netherlands
form diatomic molecules that do not interact with each other. Organization for Scientific Research (NWO). P.B. acknowledges

We have shown that the presence of an isostructural critical
oint in the two-dimensional solid phase can result in disloca-

Acknowledgment. We thank Angelo Cacciuto for a critical



6718 J. Phys. Chem. B, Vol. 108, No. 21, 2004

NATO/EPSRC for support and the FOM Institute for its
hospitality during his stay.

References and Notes

(1) Peierls, RSurprises in Theoretical PhysicBrinceton University
Press: Princeton, NJ, 1979.
(2) Kosterlitz, J. M.; Thouless, D. J. Phys. C1972 5, L124;1973
6, 1181.
(3) Halperin, B. I.; Nelson, D. RPhys. Re. Lett.1978 41, 121. Nelson,
D. R.; Halperin, B. I.Phys. Re. B 1979 19, 2457.
(4) For arecent review, see: Glaser, M. A.; Clark, N.A&lo. Chem.
Phys.1993 83, 543 and references therein.
(5) Strandburg, K. J., EdBond-Orientational Order in Condensed
Matter SystemsSpringer: New York, 1992.
(6) Weber, H.; Marx, DEurophys. Lett1994 27, 593.
(7) Kusner, R. E.; Mann, J. A;; Kerins, J.; Dahm, A.Rhys. Re.
Lett. 1994 73, 3113.
(8) Chen, K.; Kaplan, T.; Mostoller, MPhys. Re. Lett. 1995 74,
4019.
(9) Morales, J. J.; Velasco, E.; Toxvaerd,ys. Re. E 1994 50,
2844.
(10) Ferriadez, J. F.; Alonso, J.; Stankiewicz Rhys. Re. Lett. 1995
75, 3477.
(11) Bagchi, K.; Andersen, H. C.; Swope, Whys. Re. Lett. 1996
76, 255.

(12) Murray, C. A. Faceting in Bond-Oriented Glasses and Quasicrystals

(Chapter 4). InBond-Orientational Order in Condensed Matter Systems
Strandburg, K. J., Ed.; Springer: New York, 1992; pp +215.

(13) Marcus, A. H.; Rice, S. APhys. Re. Lett.1996 77, 2577-2580.

(14) Marcus, A. H.; Rice, S. APhys. Re. E 1997, 55, 637-656.

(15) Zangi, R.; Rice, S. APhys. Re. E 1998 58, 7529-7544.

(16) Zahn, K.; Maret, GPhys. Re. Lett. 200Q 85, 3656-3659.

(17) Zahn, K.; Wille, A.; Maret, G.; Sengupta, S.; Nielaba,Fhys.
Rev. Lett. 2003 90, 155506.

(18) Grier, D. G.; Murray, C. A.; Bolle, C. APhys. Re. Lett. 1991,
66, 2270-2273.

(19) Murray, C. A.; Gammel, P. L.; Bishop, D.Bhys. Re. Lett.199Q
64, 2312-2315.

(20) Huang, C. C. Experimental Studies of Melting and Hexatic Order

in Two-Dimensional Colloidal Suspensions (Chapter 3)Btmd-Orienta-
tional Order in Condensed Matter SystenStrandburg, K. J., Ed,;
Springer: New York, 1992; pp 78136.

(21) Somer, F. L., Jr,; Canright, G. S.; Kaplan, T.; Chen, K.; Mostoller,

M. Phys. Re. Lett. 1997 79, 3431-3434.
(22) Jaster, APhys. Re. E 1999 59, 2594-2602.
(23) Sengupta, S.; Nielaba, P.; Binder,Rys. Re. E200Q 61, 6294~
6301.

Bladon and Frenkel

(24) Binder, K.; Sengupta, S.; Nielaba, P.Phys. Condens. Matter
2002 14, 2323-2333.

(25) Bates, M. A.; Frenkel, DPhys. Re. E 200Q 61, 5223-5227.

(26) Chekmarev, D. S.; Oxtoby, D. W.; Rice, S.Rhys. Re. E 2001,
63, 051502.

(27) Jaster, AJ. Europhys. Lett1998 42, 277—281.

(28) Chui, S. T.Phys. Re. B 1982 28, 178.

(29) Saito, Y.Phys. Re. B 1982 26, 6239.

(30) Bladon, P.; Frenkel, CPhys. Re. Lett. 1995 74, 2519.

(31) Chou, T.; Nelson, D. RPhys. Re. E 1996 53, 2560-2570.

(32) Ladd, A. J. C.; Hoover, W. Ghys. Re. B 1982 26, 5469.

(33) Fisher, D. S.; Halperin, B. I.; Morf, RRhys. Re. B 1979 20, 4692.

(34) Landau, L. D.; Lifshitz, E. M.Theory of Elasticity Pergamon
Press: New York, 1970.

(35) Nabarro, F. R. NTheory of DislocationsClarendon: Oxford, U.K.,
1967.

(36) Young, A. P.Phys. Re. B 1979 19, 1855.

(37) Swope, W. C.; Andersen, H. G. Chem. Phys1995 102 2851.

(38) Broughton, J. Q.; Gilmer, G. H.; Weeks, J.Phys. Re. B 1982
25, 4651.

(39) Allen, M. P.; Frenkel, D.; Gignac, WI. Chem. Phys1983 78,
4206.

(40) Hagen, M. H. J.; Frenkel, Ol. Chem. Phys1994 101, 4093.
Mederos, L.; Navascues, G. Chem. Physl994 101, 9841. llett, S. M,;
Orrock, A.; McPoon, W. C. K.; Pusey, P. Rhys. Re. E 1995 51, 1344.
Coussaert, T.; Baus, MPhys. Re. E 1995 52, 862. Gilvillegas, A.; Vega,
C.; Delrio, F.; Malijevsky, A.Mol. Phys.1995 86, 857.

(41) Bolhuis, P.; Frenkel, DPhys. Re. Lett. 1994 72, 2211. Bolhuis,
P.; Hagen, M.; Frenkel, DPhys. Re. E 1994 50, 4880.

(42) Daanoun, A.; Tejero, C. F.; Baus, Rhys. Re. Lett. 1994 73,
752; Daanoun, A.; Tejero, C. F.; Lekkerkerker, H. N. W.; Baus,R¥lys.
Rev. E 1994 50, 2913.

(43) Likos, C. N.; Neneth, Zs. T.; Laven, H.J. Phys. Condens. Matter
1994 6, 10965.

(44) Prost, J.; Toner, Phys. Re. A 1987, 36, 5008.

(45) Alder, B. J.; Wainwright, T. EJ. Chem. Phys1959 31, 459.

(46) Rapaport, D. CJ. Comput. Phys198Q 34, 184.

(47) See, for example: Frenkel, D. 8imple Molecular Systems at Very
High Density Polian, A., Loubeyre, P., Boccara, N., Eds.; Plenum: New
York, 1988.

(48) Joos, B.; Duesbery, M. £hys. Re. Lett. 1985 55, 1997.

(49) Frenkel, D.; Ladd, A. J. Cl. Chem. Phys1984 81, 3188.

(50) Wojciechowski, K. W.; Branka, A. CPhys. Lett. A1988 134
314.

(51) Zollweg, J. A.; Chester, G. V.; Leung, P. \Whys. Re. B 1989
39, 9518.

(52) Zollweg, J. A.; Chester, G. \Phys. Re. B 1992 46, 11186.



