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We compute the equilibrium concentration of stacking faults and point defects in polydisperse
hard-sphere crystals. We find that, while the concentration of stacking faults remains similar to that
of monodisperse hard-sphere crystals, the concentration of vacancies decreases by about a factor of
2. Most strikingly, the concentration of interstitials in the maximally polydisperse crystal may be
some six orders of magnitude larger than in a monodisperse crystal. We show that this dramatic
increase in interstitial concentration is due to the increased probability of finding small particles and
that the small-particle tail of the particle size distribution is crucial for the interstitial concentration
in a colloidal crystal. ©2004 American Institute of Physics.@DOI: 10.1063/1.1667880#

I. INTRODUCTION

The experimental study of colloidal crystals is of interest
for at least two reasons. First of all, the possibility to design
the constituents of such crystals, allows us to gain insight
into the factors that determine the structure and kinetics of
formation of crystalline materials. In addition, colloidal crys-
tals are of interest because of their potential application as
photonic materials.1 To a first approximation, one might view
colloidal crystals as scale models of atomic crystals, but this
analogy is flawed for several reasons: First of all, the inter-
molecular forces between colloidal particles may be qualita-
tively different from those between atoms. Second, the dy-
namics of colloidal matter is intrinsically different from that
of atomic materials, due to the presence of a solvent. Finally,
unlike atomic materials, colloidal systems are never com-
pletely monodisperse. This polydispersity may have impor-
tant consequence for the phase behavior and structural prop-
erties of the colloidal crystals. In addition, polydispersity can
have an effect on the equilibrium concentration of~point!
defects in colloidal crystals. As defects may strongly influ-
ence the photonic properties of colloidal crystals, a better
understanding of the effect of polydispersity on defect con-
centrations, may also be of practical relevance for the design
of photonic crystals.

In the present paper, we describe a numerical study of
the effect of polydispersity on the concentration of stacking
faults, vacancies, and interstitials in hard-sphere colloidal
crystals.

II. SIMULATION METHODS

A. Semigrand canonical ensemble

To simulate the equilibrium properties of polydisperse
hard-sphere crystals, we used the semigrand canonical en-
semble method.2,3 For a system with continuous size poly-
dispersity, the free-energy functional of the semigrand ca-
nonical ensemble is given by

Y~N,P,T,s0$Dm%!5U2TS1PV1Nm~s0!

2NE ds@m~s!2m~s0!#p~s!, ~1!

whereN is the total number of particles in the system,P is
the pressure,T is the temperature, and the set$Dm% denotes
the differences betweenm~s!, the chemical potential of a
species with diameters, andm(s0), the chemical potential
of a ~otherwise arbitrary! reference species,Dm(s)[m(s)
2m(s0). As we are dealing with hard-core particles, we
choose our unit of energy to be equal tokBT. p(s) denotes
the probability of finding a particle with diameters. The set
of thermodynamic fields$Dm% act as control parameters that
determine the particle-size distribution. In the present work,
we assume a quadratic dependence ofDm~s! on s2s0 ,

b@m~s!2m~s0!#52~s2s0!2/2n, ~2!

whereb[1/kBT. The parametern determines the degree of
polydispersity. At infinite dilution, the size distribution is di-
rectly given byp(s)5c exp(2(s2s0)

2/2n). At finite con-
centrations, the size distribution cannot be inferred directly
from the functional form ofDm~s!. Both the average particle
diameter and the actual polydispersitys ~defined throughs2

[^s2&/^s&221) must be determined in the semigrand en-
semble simulations. Once the functional form ofDm~s! has
been specified, the semigrand partition functionJ is a func-
tion of N, P, T, n, ands0 ,

J~N,P,T,n,s0!5E dVE drNE dsN

3expS 2b@PV1U~r N,sN!#

2(
i

~s i2s0!2

2n D . ~3!

The semigrand free energyY is related toJ through Y
52kBT ln J. To sample the configurations of the semigrand
ensemble, we use Metropolis-style Monte Carlo sampling of
all variables that characterize a given configuration of thea!Electronic mail: frenkel@amolf.nl
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N-particle system. In addition to the usual trial moves that
attempt to change the particle coordinates$rN% and the sys-
tem volumeV, there are trial moves to change the diameter
of a particle. As has been explained by Bolhuis and Kofke, it
is computationally more efficient to combine volume-
changing moves with particle resizing moves.3

To calculate the chemical potential of the reference spe-
cies, thermodynamic integration was used. As a reference
state, we took the monodisperse hard-sphere crystal near co-
existence, for which the free energy per particle is accurately
known.4 In order to compute the change in free energy with
P andn, we make use of the following thermodynamic rela-
tions:

S ]Y

]PD
N,T,s0 ,n

5V,

S ]Y

]n D
N,P,T,s0

5NE ds8 p~s8!
2~s82s0!2

2n2 . ~4!

The semigrand free energy of an ideal, noninteracting system
of polydisperse particles, is

Yid52kBT ln E dV exp~2bPV!E drN

3E dsNexpS 2(
i

~s i2s0!2

2n D
5Nm id~s0!5Gid2

NkBT

2
ln~2pn!. ~5!

We can now employ the following scheme to compute
mex(s0) by thermodynamic integration, using as input our
knowledge of the excess chemical potentialmex,0 of a mono-
disperse hard-sphere system at pressureP0 :

mex~s0!5mex,01
1

N E
P0

P

dP8K V2
~N11!kBT

P8 L
1

1

N E
0

n

dn8K 2( i~s i2s0!2

2n82 1
NkBT

2n8 L . ~6!

B. Interstitial concentration

The methods that we used to calculate the concentration
of point defects are similar to those discussed in Ref. 5. We
first consider the free energyYM ,nV ,nI

of a crystalline system
containingM lattice sites,nV vacancies, andnI interstitials.
The total number of particles in this system isN5M1nI

2nV . It is convenient to consider interstitials and vacancies
separately.

By analogy to the derivation of interstitial concentrations
in monodisperse systems,5 it is straightforward to show that
the concentration of interstitials (xI) is given by xI

'exp(2byI), whereyI is defined asyI5YM ,0,12YM11,0,0. It
is convenient to rewriteyI as

yI5YM ,0,12YM11,0,0

5YM ,0,12YM ,0,01YM ,0,02YM11,0,0

5YM ,0,12YM ,0,02@m id~s0!1mex~s0!#

5YM ,0,12@YM ,0,01m id~s0!#2mex~s0!5yadd2mex~s0!.

~7!

Hereyadd is the free energy difference between a system with
one interstitial and a perfect crystal plus one ideal~noninter-
acting! particle. The quantityYM11,0,0, the free energy of a
system withM11 lattice sites and no defects, is an abstract
quantity that does not necessarily correspond to a crystal
with realizable lattice in an orthorhombic simulation box; its
value is well-defined by virtue of the extensivity of free en-
ergy.

To calculateyadd, we simulate a crystal withM lattice
sites andM11 particles, of which particlej has a scaled
hard-core diameteras j . The diameter scaling parametera
can be varied during the simulation, so that we sample the
partition defined by

JM ,0,18 ~M11,P,T,s0 ,n!

5E
0

1

da JM ,0,1~M11,P,T,s0 ,n,a!, ~8!

where JM ,0,1(M11,P,T,n,s0 ,a) is defined as in Eq.~3!,
but with configurational energyU(r M,sM,as j ). We stress
that particle j differs from the other particles only in the
overlap criterion, not in the probability distribution that de-
termines diameter sampling: for the overlap criterion, the
particle radius of this particle isas, whereas its weight in
the Semigrand chemical potential distribution of Eq.~2! is
still determined bys.

During the simulation, we construct a histogram
P(auM11,P,T,n),

P~auM11,P,T,n!

5
*0

1da8 d~a2a8!JM ,0,1~M11,P,T,n,s0a!

JM ,0,18 ~M11,P,T,n,s0!
. ~9!

With this histogram we can calculate

ygrow52kBT ln
P~a51uM11,P,T,n,s0!

P~a50uM11,P,T,n,s0!
, ~10!

where ygrow is the reversible work needed to transform an
interacting point particle (a50) into a particle with a hard-
core diameters j ~corresponding toa51). In order to sample
the full range ofa values from 0 to 1, it is necessary to use
biased sampling. We employed multicanonical/umbrella
sampling6,7 to generateP(auM ,P,T,n,s0).

To obtain the total interstitial free energyyadd we must
still add the free energy change associated with the transfor-
mation of a noninteracting particle into an interacting point
particle. This free energy change is determined by the ratio
of the volumes accessible to the two types of particles,

yadd2ygrow52kBT ln
^Vacc&

V
52kBT ln^12h&, ~11!
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whereVacc is the volume accessible to the point particle and
h denotes the volume fraction of the defect-free hard-sphere
crystal. It is not necessary to confine the interstitial to a par-
ticular Wigner–Seitz cell, as interstitials diffuse quickly
through the system. If this were not the case, both the scaled
and the unscaled particle would have to be confined to a
particular Wigner–Seitz cell~or even, to one particular inter-
stitial cavity!.

C. Vacancy concentration

For the vacancies, we can get for the concentrationxV

'exp(2byV) ~see Ref. 5!, with yV5YM11,1,02YM ,0,0 and
introduce the analogous free energy toyadd,

yV5YM11,1,02YM ,0,0

5YM11,1,02YM11,0,01YM11,0,02YM ,0,0

5YM11,1,02YM11,0,01m~s0!

5YM11,1,02YM11,0,01m id~s0!1mex~s0!

52~YM11,0,02@YM11,1,01m id~s0!# !1mex~s0!

52yrem1mex~s0!. ~12!

In this case,yrem is the free energy difference between a
perfect crystal and a crystal with one vacancy plus a nonin-
teracting particle.

If we assume that we can sample a system which can
switch one particle between being a normal particle (b
5bn) and a noninteracting particle (b5bi), we can intro-
duce the equilibrium probabilityP(buM ,P,T,n,s0),

yrem52kBT ln
P~bnuM ,P,T,n,s0!

P~bi uM ,P,T,n,s0!

52kBT ln
^p~bi→bn!&

^p~bn→bi !&
, ~13!

where^p(bi→bn)& is the mean transition probability from
b5bi to b5bn . Because a real particle can always switch to
a noninteracting particle, we can reduce the expression for
yrem to

yrem52kBT ln^p~bi→bn!&. ~14!

Now ^p(bi→bn)&, the transition probability from a state of
a system with a vacancy and a noninteracting particle to a
perfect crystal, is related to the probabilityPins for the inser-
tion of a ~normal polydisperse! particle into the vacancy,

2kBT ln^p~bi→bn!&52kBT~ ln Pins!. ~15!

In practice, the simulation will consist of a collection of
M21 normal particles and one ideal polydisperse particle
which we keep in the Wigner–Seitz cell of the tracked va-
cancy. We then do multicanonical sampling, biasing on the
number of overlaps that the ideal particle would create if it
would be switched to a real particle, and getPins from the
probability to create zero overlaps. This scheme is essentially
identical to that of Bennett and Alder,8 save for the multica-
nonical sampling.

III. RESULTS

The simulations to calculate the point defect concentra-
tion were done at various points along the melting line of
polydisperse hard-sphere crystals, as taken from Ref. 3. The
points chosen give a polydispersity of approximately 1.5%,
3%, 5%, and 5.8%. The latter value corresponds to the maxi-
mum polydispersity attainable with the chemical potential
difference function used. Here, the polydispersitys is defined
as the normalized second moment of the particle diameter
distribution

s[
A^s2&2^s&2

^s&
. ~16!

All simulations were performed on 256~61! particle sys-
tems~a cubic fcc 43434 lattice!; a simulation of a larger
system in the monodisperse case in Ref. 5 shows that this
particle number is sufficient for the required accuracy. For
the ~interstitial! calculation of ygrow, the P(auM11,P,T)
histograms were divided into five windows for which simu-
lations were run in parallel. The multicanonical biasing
weights were generated starting with the weights for the
monodisperse case and took 10–80 runs of 43105 MC
sweeps~Monte Carlo cycles per particle! per CPU to con-
verge. The final results were obtained using typically 80 runs

TABLE I. Results for the vacancy and interstitial concentration for the polydisperse hard-sphere system. The interstitial concentration for the monodisperse
case was taken from Ref. 5. All free energies are in units ofkBT and the pressure is inkBT/s0

3, with the errors in the last digit~s! shown in parentheses. Here,
n is the polydispersity control parameter@see Eq.~2!#, h is the packing fraction,̂s& is the mean packing fraction,s is the polydispersity, as defined in Eq.~16!,
^s I&/^s& is the mean interstitial size relative to the mean particle size,Pins is the particle insertion probability@see Eq.~15!#, ygrow is the free energy associated
with growing an interstitial@see Eq.~10!#, xV is the vacancy concentration, andxI is the interstitial concentration.

n 0 0.000 25 0.001 0.004 0.0056
P 11.7 12.08 13.56 26.9 82.6

h 0.543 29 0.545 22~8! 0.546 41~6! 0.557 26~6! 0.569 97~6!
^s& 1 0.992 0.967 0.815 0.589
s 0 0.015 562~3! 0.029 974~7! 0.052 13~3! 0.057 55~5!
mex 17.071 17.418 18.308 24.350 37.516
mex(^s&) 17.1 16.9 17.8 20.1 22.5
^s I&/^s& 1 0.986 0.950 0.845 0.782
2 ln Pins 7.92~1! 8.098~9! 8.77~2! 13.68~4! 26.1~2!
ygrow 32.2~1! 30.8~2! 29.5~2! 40.5~1!
xV 1.10(2)31024 9.55(9)31025 8.3(2)31025 4.6(2)31025 5(1)31025

xI 2.7(4)31028 1.6(2)31027 1.7(3)31026 2.4(5)31023 2.1(2)31022
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of 43105 sweeps per CPU. In the case of vacancies there
was one window for which about 20 runs of 13106 sweeps
were needed to equilibrate the weights after which about 40
runs of similar length were done for the final results. The
equilibrium concentration of the two types of point vacancies
as a function of different polydispersities is shown in Table I
and Fig. 1.

The values ofmex(s0), required for both the vacancy
and interstitial concentration, were calculated using thermo-
dynamic integration using the free energy differentials of Eq.
~4!. Integration was done along theP–n points shown in
Table I, with 20 steps between each step and 13106 averag-
ing sweeps per step.

IV. DISCUSSION

The simulation results show a dramatic increase in the
interstitial concentration with increasing polydispersity,
while the vacancy concentration remains roughly similar
over the full range of polydispersities. The increase in inter-
stitial concentration can be attributed to the size of the inter-
stitials: if the particle size distribution has nonzero width, the
interstitials are smaller than the mean particle size in the
crystal, as is shown in Fig. 2.

This size difference between interstitials and the sur-
rounding crystal is not an artifact of the simulation method:

although the trial moves used in semigrand-canonical simu-
lations are unphysical, the resulting size distribution of inter-
stitials is real. The non-Gaussian particle size distribution in
the crystal should be interpreted as a result of fractionation3,9

of the coexisting fluid~with the same pressure and polydis-
persity control parametern!.

The size distribution of the coexisting fluid is shown in
Fig. 3. For small particle sizes, its value is slightly higher
than the normal distribution, but at the peak of the interstitial
size distribution, the difference in concentration is no more
than 7%. To a first approximation, the interstitial concentra-
tion in a crystal that has formed from a fluid in which the
particle size distribution is exactly Gaussian, should be lower
by the same amount.

It must be noted, however, that once the crystalline
phase starts occupying a sizable fraction of the system vol-
ume the size distribution will change and the interstitial con-
centration will probably be lower. However, the exact size
distribution in the crystalline phase is difficult to predict; the
size distribution of the fluid itself will change as a result of
the growth of the crystalline phase, and because of the high
polydispersity of the coexisting fluid, the crystalline phase
may be composed of several crystallites, each of which will
have its own size distribution.

The influence of the small particles on the interstitial
concentration can be illustrated by looking at the free energy
of formation of a vacancy as a function of size. If we define
a partial interstitial concentrationxI(s), we can, as in Eq.
~7!, express it in terms of the free energy of formationf I(s)
and the chemical potential:

xI~s!5exp~2b@ f I~s!2mex~s!#!. ~17!

Assuming that the total interstitial concentration is the inte-
gral of the partial concentrations:

xI5E
0

`

ds xI~s! ~18!

we can extractf I(s), the free energy associated with creat-
ing an interstitial of sizes, because we know the chemical

FIG. 1. Point defect concentration~x! versus polydispersity~s!.

FIG. 2. Normalized size distribution for total system and for the interstitials
at polydispersities of 3.0%~left, n50.001) and 5.8%~right, n50.0056).

FIG. 3. Particle size distribution of the fluid coexisting with the highest
polydispersity solid~solid line, n50.0056, s50.058). The dashed line
shows a normal distribution with the same first and second moment. The
inset shows the probability distribution relative to the normal distribution.
The vertical arrows mark the mean particle diameter of interstitials at the
current polydispersity.
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potential distribution and the partial interstitial concentration.
The values forf I(s) at the polydispersities from Table I are
shown in Fig. 4. To be able to compare values off I(s) over
a large range ofs/^s&, the values forxI(s) in this figure
were obtained by fitting the values from the simulations with
locally skewed Gaussians,

xI~s!'a exp@2b~s2^s I&!22c~s2^s I&!3#. ~19!

The fits work very well for the values ofs which have been
sampled during the simulation, and should yield meaningful
results for the range shown in Fig. 4.

The similarity in slopes and actual values of the
f I(s/^s&) curves is striking; it means that, for the full range
of polydispersities at which a crystal is stable, the partial
interstitial concentration depends on the chemical potential
distribution and an interstitial free energy which seems to be
only weakly dependent on the polydispersity,

f I S s

^s& D52kS 1

2

s

^s&
2r 0D 2

2 f I
0, ~20!

with k5741kBT/s0
2, r 050.338s0 , and f I

0511.3kBT as fit-
ted parameters from the points in Fig. 4. Although the form
of this equation was taken from the analytical estimate for
the interstitial concentration of Ref. 5, which gives physical
meanings to the values ofk andr 0 and has reasonable agree-
ment for r 0 , we stress that, here,k and r 0 are simply fit
parameters.

Becausef I(s/^s&) hardly depends on the width and,
presumably, the shape of the particle size distribution, the
small particle tail of the particle size distribution becomes
crucial: those particles have the lowestf I(s/^s&) and will
form the most important contribution to the interstitial con-
centration. For example, at the near-Gaussian polydispersity
of s55.2%, obtained by settingn50.004, practically all
particles with diameter smaller than 75% of the mean par-
ticle radius are interstitials. This implies that the polydisper-
sity, as measured by the second moment of the particle size
distribution in the liquid, isnot a good predictor for the in-
terstitial concentration in the solid. Thetail of the particle
size distribution in the liquid is hard to measure, yet it is
all-important for the interstitial concentration.

In the case of vacancies, similar considerations apply in
a slightly different form; the vacancy concentration depends
on the chemical potential and the free energy of removing a
particle while keeping its lattice site. As argued above, they
both stay relatively constant at melting for increasing poly-
dispersities which causes the concentration of vacancies to
remain roughly similar.

To get an estimate for the interstitial concentration of a
colloidal crystal in a suspension, the solelys-dependent ex-
pression of Eq.~20! must be combined with an estimate for
the chemical potential distributionmex(s), which, in the
more conventional ensembles of the experimental situation,
does not only depend on the density and the mean particle
size, but also on the subsequent moment of the particle size
distribution, the polydispersity.9–11An estimate for the abso-
lute values of the chemical potential distribution can be ob-
tained by combining Eq.~2! and the results of Table I.

In summary, we have shown that for polydisperse hard-
sphere crystals along the melting curve, the interstitial con-
centration increases dramatically~going up to 2%! while the
vacancy concentration remains relatively constant. This can
be attributed to the fact that, with increasing polydispersity,
there is an increasing probability of finding a particle small
enough to have an appreciable probability of fitting in a hole
of the underlying crystalline lattice.

This finding has practical implication for the preparation
of colloidal crystals from slightly polydisperse solutions. As
the presence of interstitials may affect the optical properties
of colloidal crystals, it is important to control their concen-
tration. The present calculations show that the interstitial
concentration depends sensitively on thetail of the size dis-
tribution in the liquid phase. Hence, the polydispersity as
such does not provide a reliable criterion to predict intersti-
tial concentrations. Rather, it will be necessary to have an
accurate representation of the functional form of the tail of
the particle-size distribution~in particular, on the small-s
side!.
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