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Introduction

There are two distinct Monte Carlo (MC) methods to simu-

late the behavior of individual chain molecules: one is the

so-called ‘‘static’’ approach in which every MC step in-

volves the generation of a chain conformation from scratch.

To achieve proper Boltzmann sampling, different chain

conformations are given a different weight. The second,

‘‘dynamic’’ scheme, generates a Markov chain of states

such that every state is visited with a probability proportio-

nal to its Boltzmann weight. Consequently, every state that

is generated in a dynamic MC scheme, carries the same

weight. For the study of many-body systems, dynamic MC

sampling is usually the method of choice. However, in cer-

tain cases, e.g., in the generation of conformations of a

single polymer or model protein, static MC may be more

efficient. Sometimes the aim of a simulation is to obtain a

histogram that measures the probability distribution of all

possible states of the system, as a function of some order

parameter. In such cases, use of the dynamic MC approach

is straightforward, but the use of static MC schemes is more

subtle. The aim of the present paper is to illustrate

how multi-histogram methods can be fruitfully combined

with biased, static MC sampling. As an example, we

consider the computation of the force-extension curve of a

simple model polymer. Although the specific example that

we consider has been selected because of its simplicity, the

general problem of computing force-extension curves is

of considerable current interest, as more experimental

results on the stretching of synthetic polymers[1–4] and

Summary: We describe an approach to use multiple-
histogram methods in combination with static, biased Monte
Carlo simulations. To illustrate this, we computed the force-
extension curve of an athermal polymer from multiple
histograms constructed in a series of static Rosenbluth Monte
Carlo simulations. From the complete histogram of the dis-
tribution function of the end-to-end vectors of the polymer
chain, we can efficiently compute the polymer force-
extension curve.

Comparison of the stress-strain curves for the stress ensemble
(symbols) and the strain ensemble (lines). Results obtained
for N¼ 100, 200, 400, and 600. For small x, f(x)¼�F0(x)
was computed by aproximating F(x) by a second degree
polynomial and then taking the derivative. For large x,
f(x)¼�F0(x) was computed numerically.
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bio-macromolecules (RNA, DNA,[5–9] and pro-

teins[8,10–15]) become available.

Two basic strategies exist to study the deformation be-

havior of a single polymer chain: the stress ensemble, in

which one measures the elongation of a chain subjected to a

stretching force, and the strain ensemble, in which one

measures the internal retractive force of a chain at fixed

elongation. Various Metropolis Monte Carlo[16] approaches

have been used to simulate self-avoiding polymer chains

using both the stress ensemble[17–23] and the strain

ensemble.[21,24–26] These Monte Carlo simulations include

athermal chains and chains in good/bad solvents using dif-

ferent polymer models.

While the existing computational schemes are quite

adequate to simulate the force-extension curves of simple

polymers, histogram methods have the intrinsic advant-

age that they allow us to obtain much more information

than that of the simple stress-strain curve. Of course, given

a complete histogram of the probability distribution of

polymer end-to-end vectors, we can deduce the force-

extension curve. But, in addition, the same (or similar)

histograms may provide information about the free-energy

landscape of the chain molecule. To compute such a histo-

gram, one usually computes sub-histograms under different

conditions and then combines these sub-histograms into the

desired total histogram. The multiple histogram method

(MHM)[27] is a powerful method to construct improved

histograms from a set of related (less accurate) histograms.

The MHM was devised to combine unbiased data, and it

has been used to combine histograms generated by dy-

namic sampling methods.[28] Grassberger and Hsu[29] have

applied a multiple histogram approach to the particular

case of histograms obtained by the pruned-enriched

Rosenbluth sampling method (PERM).[30] In this paper,

we show how to extend the MHM so it can be used with

any set of weighted histograms. This extension makes

it possible to combine MHM calculations with static

sampling techniques, such as the Rosenbluth method[31]

and the PERM, in a consistent way. In our example, we use

a simple athermal lattice model for a polyethylene-like

polymer. By applying the biased MHM to a set of weight-

ed histograms generated using the plain Rosenbluth sampl-

ing method, we generate free energy profiles and study

the deformation behavior of our model polymer chain in

the stress and strain ensembles. We compare our results

with the scaling theory of de Gennes[32] and Pincus.[33]

Due to the nature of the biased MHM, the results of a

single simulation can also be used to predict the force-

extension curves at different temperatures. However, we do

not explore this possibility in the present paper.

The remainder of this paper is organized as follows. In

the Section Chain Elasticity and Free-Energy Profiles, we

introduce the stress and strain ensembles and we show

how histograms can be used to study the elastic properties

of chain molecules in both ensembles. In the Section

Multiple Histogram Method for Biased Sampling, we show

how to apply the multiple histogram method to a set of

weighted histograms. In the Section Application, we des-

cribe our case study, an athermal polyethylene chain model.

The practical implementation is discussed in the Section

Implementation Issues. And in the Section Results and

Discussion, we discuss the results obtained for our ather-

mal polyethylene chain and compare them with the rele-

vant theoretical predictions.

Chain Elasticity and Free-Energy Profiles

We consider a polymer model for which the potential

energy of a single conformation, a, is given by U(a). Let

x¼ x(a) be the x component of the end-to-end vector of a

chain configuration. (From here onwards, we use x to denote

an specific value and x(a) to denote the function.) The

histogram of the distribution function of x is defined as

pðxÞ ¼
Ð
d½x � xðaÞ�e�bUðaÞdaÐ

e�bUðaÞda
ð1Þ

Here, d is the Dirac delta; b ¼ 1=ðkbTÞ; kb is the Boltzmann

constant; and T is the absolute temperature. A Landau

free energy F(x) as a function of x can be defined as

FðxÞ ¼ �kbT lnðpðxÞÞ ð2Þ

In the strain ensemble, one wants to measure the retractive

force, f(x), acting on the ends of a chain for which the x

component of the end-to-end distance is fixed. This force

corresponds to the derivative of the Landau free energy,

F(x)

f ðxÞ ¼ � d

dx
FðxÞ ¼ kbT

d

dx
lnðpðxÞÞ ð3Þ

In the constant-stress ensemble, the elongation of the

chain is allowed to fluctuate, while the applied force f is

kept constant. If a force of magnitude f is applied along

the x-direction, then the average elongation is given by

xh if¼
Ð

xðaÞe�bUf ðaÞdaÐ
e�bUf ðaÞda

ð4Þ

where

Uf ðaÞ ¼ UðaÞ � f xðaÞ ð5Þ

is the total potential energy of the system.

As the chain elongation fluctuates, we can define the

probability distribution of chain extensions pf (x):

pf ðxÞ ¼
1

Zf

ð
d½x � xðaÞ�e�bUf ðaÞda ð6Þ

where

Zf ¼
ð

e�bUf ðaÞda ð7Þ
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As we expectð
xpf ðxÞdx ¼

ð
x

1

Zf

ð
d½x � xðaÞ�e�bUf ðaÞda

� �
dx

¼ 1

Zf

ð ð
xd½x � xðaÞ�dx

� �
e�bUf ðaÞda

¼ 1

Zf

ð
xðaÞe�bUf ðaÞda ¼ xh if ð8Þ

Knowledge of any distribution function pi(x)

corresponding to a force fi can be used to com-

pute any other histogram pj(x) corresponding to a

force fj:

pjðxÞ ¼
1

Zj

ð
d½x � xðaÞ�e�bUjðaÞda

¼ 1

Zj

Zi

Zi

ð
d½x � xðaÞ�e�bUjðaÞebfixðaÞ�bfixðaÞda

¼ e�bðfix�fjxÞZi

Zj

ð
d½x � xðaÞ� e�bUiðaÞ

Zi

da

¼ e�bðfix�fjxÞpiðxÞ
Zi

Zj

ð9Þ

In theory, an accurate estimate of pi and of the nor-

malization constants Zi and Zj can be used to study the

deformation behavior of a polymer chain in both the

stress and strain ensembles: in the constant-strain en-

semble, by computing f(x), cf. Equation (3) and in the

constant-stress ensemble, by computing xh ifi, cf. Equa-

tion (8) and (9). In practice, obtaining accurate estimates

is not straightforward.

It is not necessary to have estimates of both Zi and Zj

to compute the ratio Zj/Zi. Since

Zj

Zi

¼ 1

Zi

ð
e�bðfixðaÞ�fjxðaÞÞe�bUiðaÞda

¼ he�bðfixðaÞ�fjxðaÞÞii ð10Þ

we can use an estimate of e�bðfixðaÞ�fjxðaÞÞ
� �

fi
instead.

Multiple Histogram Method for
Biased Sampling

Multiple Histogram Method

Suppose that we have obtained the estimates HiðxÞ and ẐZi

corresponding to the histograms pi(x) and the normali-

zation constants Zi of a set of chain systems subjected

to the potential energy Ui, for i ¼ 0; 1; . . . ;N. We want to

combine those estimates in order to obtain an improved

estimate for a certain pj(x) with j 2 ½0; 1; . . . ;N�. By

Equation (9),

pjðxÞ ¼ e�bðfix�fjxÞpiðxÞ
Zi

Zj

� e�bðfix�fjxÞHiðxÞ
ẐZi

ẐZj

ð11Þ

Since in practice Equation (11) gives very poor results,

we construct our estimator by making a linear combination

of the pi’s:[27]

pjðxÞ � pest
j ðxÞ ¼

XN

i¼0

aiðxÞe�bðfix�fjxÞHiðxÞ
ẐZi

ẐZj

ð12Þ

Here, the ai’s are weights subjected to the condition thatP
i ai ¼ 1. As in the unbiased method, we can use the Lag-

range multipliers method to choose the ai’s in such a way

that the variance, Varðpest
j ðxÞÞ, is minimal. In this case,

aiðxÞ ¼
e2bðfix�fjxÞ

Var HiðxÞẐZi

ẐZj

� �PN
k¼0

e2bðfkx�fjxÞ

Var HkðxÞẐZk

ẐZj

� � ð13Þ

if we assume that VarðHiðxÞẐZi

ẐZj
Þ are independent. From

here on, our method differs from the original approach. The

histograms obtained by a biased sampling method are

weighted histograms, and therefore, we cannot use the usual

statistical estimators to estimate VarðHiðxÞẐZi=ẐZjÞ. Instead,

we need estimators that account for the bias. But, first of

all, we need to derive expressions for the estimates HiðxÞ
and ẐZi.

Alternatively, if we want to estimate pl(x) for a force

fl, that is not in the set of simulated histograms, we need to

compute estimates for e�bðfixðaÞ�flxðaÞÞ
� �

i
, because estimates

of Zl will not be available. Expressions for these estimates

can be derived in the same way as for the estimates Hi(x).

Estimators of Hi(x) and ẐZi

A biased sampling method generates the same sample space

of the system in study, but with a different density distri-

bution function. To account for this difference, we need to

introduce a weighting function, which is proportional to

the ratio between the desired probability and the sampling

probability.

The problem can be described as follows. Given a set

of values Xi;1 ¼ xðai;1Þ;Xi;2 ¼ xðai;2Þ; . . . ;Xi;Mi
¼ xðai;Mi

Þ
corresponding to a set of Mi chain configurations ai;1;
ai;2; :::; ai;Mi

generated according to a certain biased proba-

bility si (in our case the Rosenbluth probability), we want to

estimate pi(x) with respect to another probability pi (in our

case the Boltzmann probability) defined by

piðaÞ ¼
~ppiðaÞÐ
~ppiðaÞda

¼ 1

Zi

~ppiðaÞ ð14Þ

where ~ppi is a given unnormalized probability.
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Now we define the weights:

wiðaÞ ¼ ci

~ppiðaÞ
siðaÞ

¼ ciZi

piðaÞ
siðaÞ

ð15Þ

where ci is an arbitrary constant.

The expected value of wi with respect to si, Esi
ðwiÞ, is

Esi
ðwiÞ ¼

ð
ciZi

piðaÞ
siðaÞ

siðaÞda ¼ ciZi ð16Þ

Consequently, if for each configuration, ai;j, we compute

the weight Wi;j ¼ wiðai;jÞ, we can estimate Zi using

ẐZi ¼
1

ci

Wi ¼
1

ciMi

XMi

k¼1

Wi;k ð17Þ

A histogram, pi, can be estimated from a sample gene-

rated according to the probability, si, as follows. First note

that

piðxÞ ¼
Ð
d½x � xðaÞ� ~ppiðaÞdaÐ

~ppiðaÞda
¼
Ð
d½x � xðaÞ�~ppiðaÞ

siðaÞsiðaÞdaÐ ~ppiðaÞ
siðaÞsiðaÞda

¼
1
ci

Ð
d½x � xðaÞ�wiðaÞsiðaÞda

1
ci

Ð
wiðaÞsiðaÞda

¼ Esi
d½x � xðaÞ�wiðaÞð Þ

Esi
ðwiðaÞÞ

ð18Þ

To define an estimator for Esi
d½x � xðaÞ�wiðaÞð Þ, we have

to replace d by its integral over the interval ½x; x þ DxÞ, with

Dx small enough:ð
d½x�xðaÞ�wiðaÞsiðaÞda

� 1

Dx

ðxþDx

x

ð
d½x0 � xðaÞ�wiðaÞsiðaÞdadx0

¼ 1

Dx

ð
Lx;DxðxðaÞÞwiðaÞsiðaÞda;

where Lx;Dx is defined by

Lx;DxðyÞ ¼
1; if x � y < x þ Dx

0; otherwise

�
ð19Þ

Note that Lx;DxðyÞ ¼ h½ðx þ DxÞ � y� � h½x � y�, where h

is the step function. The estimator for pi(x) is thus

HiðxÞ ¼
Lx;DxðXiÞWi

DxWi

¼
PMi

k¼1 Lx;DxðXi;kÞWi;k

Dx
PMi

k¼1 Wi;k

ð20Þ

Such estimators are not unbiased, i.e., their expected

values are not equal to the respective pi, but their error is

of the order of 1/Mi, whereas their standard deviations are

of the order of 1=
ffiffiffiffiffiffi
Mi

p
. Thus, for large Mi, the bias is

negligible compared to the standard error of the estimator

and we can use it without problem.[34]

Estimating VarðHiðxÞẐZi=ẐZjÞ Using the d-Method

Now that we derived explicit formulas for the Hi(x)’s

and the Zi’s, we can find an estimator for

VarðHiðxÞẐZi=ẐZjÞ, thus completing the theoretical part. First

we observe that

HiðxÞ
ẐZi

ẐZj

¼ Lx;DxðXiÞWi

DxWi

1
ci

Wi

1
cj

Wj

¼ cj

ciDx

Lx;DxðXiÞWi

DxWj

ð21Þ

Now,

Var
cj

ciDx

Lx;DxðXiÞWi

Wj

 !
¼

c2
j

c2
i Dx2

Var
Lx;DxðXiÞWi

Wj

 !

The variance of a ratio can be computed approximately

using the d-method (mentioned in ref.,[35] chapters 4 and 7)

i.e., approximating the ratio by its first-order Taylor

expansion:

where S2
Wj

, S2
Lx;DxðXiÞWi

and SLx;DxðXiÞWi;Wj
are the usual vari-

ance and covariance estimators. Note that, if j¼ 1, then

CovðLx;DxðXiÞWi;WjÞ ¼ 0.

Application

To illustrate our method, we simulated athermal, self-

avoiding polyethylene chains. In our model, a polyethylene

chain is the trace of a self-avoiding walk restricted to

a tetrahedral grid and the following geometric con-

ditions: Given an overall arbitrary orientation, defined

by the position of the first 3 particles, each new bond can be

in one of the three possible states: trans, gaucheþ, and

Var
Lx;DxðXiÞWi

Wj

 !
� 1

EðWjÞ2

EðLx;DxðXiÞWiÞ2

EðWjÞ2
VarðWjÞ þ VarðLx;DxðXiÞWiÞ � 2

EðLx;DxðXiÞWiÞ
EðWjÞ

CovðLx;DxðXiÞWi;WjÞ
 !

� 1

Wj
2
Mi

Lx;DxðXiÞWi

2

Wj
2

S2
Wj

þ S2
Lx;DxðXiÞWi

� 2
Lx;DxðXiÞWi

Wj

SLx;DxðXiÞWi;Wj

 !
ð22Þ
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gauche-, with f angles of 0, 120, and �1208, respectively;

here, f is the angle between the bond and its projection on

the plane formed by the two previous bonds. The self-

avoidance condition implies the following potential

energy:

UðaÞ ¼ 1 if rj ¼ rk; 8j 6¼ k with j; k 2 f0; . . . ;N � 1g
0 otherwise

�
ð23Þ

where a is a chain configuration, rj is the position of

its j-th particle, and N is the number of particles in

the chain. We want to use the Rosenbluth sampling

scheme to make a sample of chains submitted to an

external force, f, that is being applied in the x direction.

In this case, the density distribution function of the

system is

pf ¼
e�bUf ðaÞ

Zf

We construct each chain step by step by placing one particle

after another. The position of the next particle is chosen

respecting the chain geometry and according to a

probability sf 6¼ pf in the following way:

1. Place particle 0 in the origin of the coordinates system.

2. for particles j¼ 1 to N � 1 do
. Look for sites neighbor to particle j � 1 that are free.

. if there are free sites then
choose one of them with probability

ebf ðxj�xj�1ÞPKj

k¼1 ebf ðxðjÞ
k
�xj�1Þ

where Kj is the number of free sites when placing the j-th

particle and x
ðjÞ
k is the x component corresponding to a

free site k.

. or else
Reinitialize the construction (go to step 1).

The probability sf (a) of generating a certain self-

avoiding configuration a by the Rosenbluth sampling is

sf ðaÞ ¼
YN�1

j¼1

ebf ðxj�xj�1ÞPKj

k¼1 ebf ðxðjÞ
k
�xj�1Þ

¼
QN�1

j¼1 ebf ðxj�xj�1ÞQN�1
j¼1

PKj

k¼1 ebf ðxðjÞ
k
�xj�1Þ

¼
ebf
PN�1

j¼1 ðxj � xj�1ÞQN�1
j¼1

PKj

k¼1 ebf ðx
ðjÞ
k
�xj�1Þ

¼ ebfxðaÞQN�1
j¼1

PKj

k¼1 ebf ðx
ðjÞ
k
�xj�1Þ

ð24Þ

which gives the following weighting function:

wf ðaÞ ¼
1

cf

YN�1

j¼1

XKj

k¼1

ebf ðxðjÞ
k
�xj�1Þ / pf ðaÞ

sf ðaÞ
ð25Þ

The prefactor, 1/cf, is needed to prevent overflow in the

computation of weights, mainly in cases where the number

of particles is large.

Implementation Issues

Our implementation has two separate parts. The first part

uses the Rosenbluth sampling to construct a sample of Mi

chains of length N subjected to a chosen potential energy,

Ui, corresponding to a external force fi. The program per-

forms the simulation for the longest desired length and

also stores the results for the desired intermediate chain

lengths. The second part gathers the data generated in

various instances of the first part (for different fi) and cons-

tructs the desired histograms.

Chain Construction

A simple way to build a tetrahedral grid is by using a cubic

grid as basis and restricting the random walk to a tetrahedral

grid (a description is given by Cifra and Bleha[36]).

To minimize the time of searching for self-intersections,

it is easiest to use a lattice with linear dimensions larger than

the total chain length. However, this approach is wasteful

in computer storage. We, therefore, employ a hashing data

structure, where we ‘‘project’’ the coordinates of all parti-

cles into a smaller box. The positions of the particles are

stored using a cell index method mentioned in ref.,[37]

chapter 5.3. This is done as follows: a cubic region of edge

of length L ¼ k � l is divided into k3 smaller cubic cells of

edge of length l. A cell numbered ncell stores all particles

with coordinates (x, y, z) such that

ncell ¼ ix � k2 þ iy � k þ iz ð26Þ

where

ia ¼ a

l

j k
mod k; for a ¼ x; y; z ð27Þ

Consequently, particles with very different real coordi-

nates may be stored in the same cell. Hence, within one cell,

it is necessary to distinguish particles that have different

coordinates from those that would physically overlap.

Because we do keep track of the real {x, y, z}-coordinates

of all particles, the test for overlap is straightforward. The

advantage of the current scheme is that the number of parti-

cles within one cell can be kept small, whereas the memory

requirements for storage are modest. In our experience, for

chains sizes up to 1 000, the choice of k¼ 16 (which is much

smaller than the typical lattice size that would be needed

when using periodic boundary conditions) hardly ever

leads to more than 1 or 2 particles in a cell. It is

straightforward to extend this scheme to the off-lattice

case.
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Multiple Histogram

To achieve better results, we have made some modifica-

tions to the described method. First, we have made use of

the symmetry of the problem: a potential energy Uf ¼ U0þ
f � x is symmetric to Uf ¼ U0 � f � x; by using this property,

we choose only positive forces and get results for both

positive and negative forces.

Furthermore, we have added an acceptance parameter.

We discard X entries with less than a percentage of the

maximum number of entries in a bin. In this way, we can

filter out the least reliable entries, which could lead to a

wrong computation of weights ai(X).

The computations involved in combining the various

histograms contain the factor

Ci;jðxÞ ¼
ci

cj

e�bðfi�fjÞx ð28Þ

which can easily lead to overflow. To prevent this (to a cer-

tain extent), for each entry of the histogram, we choose a

force, fm, the smallest force for which that entry has enough

hits, and factor Cj,m out of the computation. Resulting in

the following expression for pest
j

pest
j ðxÞ ¼ Cj;mðxÞ

1

Dx

XN

i¼0

ai
*ðxÞCm;iðxÞe�bðfm�fiÞx Lx;DxðXiÞWi

DxWj

ð29Þ

where

ai
�ðxÞ ¼

C2
i;mðxÞ=Var

Lx;DxðXiÞWi

Wj

� �
PN

k¼0 C2
k;mðxÞ=Var

Lx;DxðXkÞWk

Wj

� �h i ð30Þ

Results and Discussion

In the present work, we simulated chains with up to

600 particles. For each chain size N, we made a set of

simulation runs for various external forces varying from

0 to 7 in kbT units. For each run, we generated a total of

107 sample chains. Histogram bins containing less than

0.1% of the maximum number of entries in a bin where

ignored.

As shown in Figure 1, the histograms obtained by the

simple Rosenbluth sampling are greatly improved with

the application of the multiple histogram method (without

the need of extra simulation time). Apart from an overall

reduction of the noise, this improvement is more apparent

in the wings of the histograms, that are not adequately

sampled by the simple Rosenbluth sampling. Even though

the results of the combined Rosenbluth-MHM are much

better, the histograms are still noisy (mainly for longer

chains). With this noise, it becomes hard to compute the

rectractive force, f ðxÞ ¼ �F0ðxÞ, numerically. To circum-

vent this problem, we approximate F(x) for small x by a

second degree polynomial and compute the derivative of the

outer of F(x) numerically by fitting straight lines to conse-

cutive segments of points. The gradient of each straight

line was taken as the estimate of the derivative of F(x) at

the mid-point of the segment.

Figure 2 shows the stress-stain curves obtained using the

combined Rosenbluth-MH method in the constant-stress

ensemble. The stress ensemble results agree with scaling

theory,[32,33] mainly for small forces, where the prefactor

1=3 matches very well. In the finite extensibility regime,

the curve reaches a plateau which is indicative of the maxi-

mal elongation of the chain. In the constant-strain ensemble

(Figure 3), the behavior of the strong force and finite exten-

sibility regimes are similar to that of the respective regimes

in the stress ensemble. However, in the small force regime,

the difference in the fluctuation properties of the stress

and strain ensembles shows up as considerable finite-size

effects.[38,39] At larger extensions, where the histograms

become much more strongly peaked, fluctuations, and

thereby finite-size effects, are much less important and both

sets of simulations converge towards the predicted theoreti-

cal curve as N!1.

Conclusions

In this paper, we have shown how to adapt the multiple

histogram method to be used together with the Rosenbluth

sampling. We have tested our approach by studying the

elastic properties of self-avoiding chains in a tetrahedral

lattice both for the stress ensemble and for the strain

ensemble.

Figure 1. Comparison of the plain Rosenbluth sampling (sym-
bols) and the combined Rosenbluth-MHM (solid lines). Results
obtained for N¼ 100, 200, and 600. The histograms, p(X)

(Figure 1a), and the free energies, F(X) (Figure 1b), were

computed as functions of the reduced strain, X ¼ x=
ffiffiffiffiffiffiffiffiffiffi
R2

0

� �q
,

where R2
0

� �
, the average end-to-end distance of an unperturbed

chain, was estimated during the simulation. The inset in Figure 1b
shows that the plain Rosenbluth sampling does not give results
for large X.
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The combined Rosenbluth-MHM is an efficient method

to study the elastic properties of single chains, because one

simulation set can provide results both in the stress and

stain ensembles, for chains of all sizes up to a maximum

size. Furthermore, it is also possible to obtain results for a

range of temperatures using the same techniques described

here.

Our test case showed that the histograms computed using

the combined Rosenbluth-MHM are much better than ones

computed using the simple Rosenbluth sampling, mainly

in the case of strongly stretched chains where the simple

Rosenbluth does not produce results at all.

We find that the stress-strain curves for the stress ensem-

ble agree well with the predictions of scaling theory.[32,33]

For the constant-strain ensemble, the agreement with theory

is also good, except at small chains at small extensions,

where finite-size effect take place.
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1982.
[25] M. Wittkop, S. Kreitmeier, D. Göritz, J. Chem. Soc., Faraday
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