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We report Monte Carlo simulations of a lattice-polymer model that can account for both polymer
crystallization and liquid—liquid demixing in solutions of semiflexible homopolymers. In our model,
neighboring polymer segments can have isotropic interactions that affect demixing, and anisotropic
interactions that are responsible for freezing. However, our simulations show that the isotropic
interactions also have a noticeable effect on the freezing curve, as do the anisotropic interactions on
demixing. As the relative strength of the isotropic interactions is reduced, the liquid—liquid
demixing transition disappears below the freezing curve. A simple extended Flory—Huggins theory
accounts quite well for the phase behavior observed in the simulation)38 American Institute

of Physics. [DOI: 10.1063/1.1572462

I. INTRODUCTION tionships of mixtures containing crystallizable polymers,
which has been the subject of much experimental research

Lattice models of polymer solutions are widely used be-dating back to Richard¥.
cause of their simplicity and computational conveniehde. When thel. —S phase-transition curve intersects thel
When modeling a polymer solution, the polymer chain occu-coexistence curve, both curves are terminated at the resulting
pies consecutive sites on the lattice, each site correspondingple point. Below the triple point, the fluid phase may phase
to the size of one chain unit, while the remaining sites corseparate into a dilute solution and a dense crystalline phase,
respond to solvent. as depicted in Fig. 1. This combination bf-L demixing

The use of lattice models for polymer solutions datesand crystallization is often referred to as “monotectic” be-
back to the work of Meyet.Flory* and Huggind showed  havior and has been observed in many experim@rfste
how, using a mean-field approximation, the lattice modetrhe morphology of polymer crystallites appears to be sensi-
yielded a powerful tool to predict the solution properties oftjve to the result of thermodynamic competition on coolthg.
flexible®** and semiflexiblé polymers. Various refinements special attention has been focused on the monotectic triple
to the Flory—HuggingF—H) model have been proposed by a point. The kinetic competition betwedn-L demixing and
number of authorgsee, e.g., Refs. 436F—H style models  crystallization on cooling in the vicinity of this triple point is
can account for liquid—liquidl(—L) phase separations with an jmportant issue for sol-gel transiton and membrane
an upper critical solution temperature driven by the site-topreparation®=2° On cooling through the triple point,—L
site mixing pair interactions in polymer solutions—however, phase separation is expected to occur before crystallization,
they are ill suited to describe polymer crystallization, i-e-athough both phase transitions have the same equilibrium
liquid—solid (L—S) phase transitions. This limitation is not temperatureé! As a consequence, the density modulation
due to any intrinsic drawback of polymer lattice models asproduced during the early stage bfL demixing may be
such, but to the specific choice for the polymer interactiong,gzen by subsequent crystallizati#hSuch frozen-in den-
in the original F-H theory. In fact, the factors that lead t0sjty modulations can be a practical way to control the meta-
polymer crystgllization, ie., interactions_that favor compactsiahle morphology of polymer gels and membranes through
packing and stiffness of the polymer chains can be account&@lermally induced processes. Therefore, the ability to predict
for in a lattice model by introducing anisotropic interactionsphase diagrams of the type shown in Fig. 1 could be of
between adjacent polymer borfi€learly, in real polymer  onsiderable practical importance.
solutions, both crystallization and phase separation can occur |, thjs article, we study the interplay of polymer crystal-
upon cooling. While lattice models for polymer solutions can|ization andL —L demixing using both mean-field theories
account for both types of phase transitions, most theoreticalny pmonte CarldMC) simulations of simple lattice models.
and simulation studies have focused on one transition or thg, particular, we pay attention to the shift of the crystalliza-
other, and less attention has been paid to their interplay. Sugfyn andL—L demixing curves in the phase diagrams due to
interplay may change the pathway of a phase transttioh s interplay.
and hence determine the complex structure—property rela-  The remainder of this article is organized as follows:

After an introductory description of the simulation tech-
dElectronic mail: frenkel@amolf.nl niques, we compare the simulation results with the relevant
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the parameteB describes the energy penalty for creating a
monomer-solvent contact. The total change in potential en-

Liquid ; . . )
qu ergy associated with a MC trial move is

g Triple poing AE  E,Ac+E,Ap+BAm
o L-S — =
Gé_ > kBT kBT
[H] .7 »
— e \\‘ _ Ep B EC
= AC+ApE—C+AmE—C kB—T, (1)

whereAc denotes the net change in the number of kirnkg,
is the change in the number of nonparallel adjacent bonds,
Polymer volume fraction and Am measures the change in the number of monomer—
FIG. 1. Schematic phase diagram of a binary mixture with a conventionaﬁOIVent contactskg is the_ Boltzmann Con_Stam ar_ﬁ is the
monotectic triple point. temperature. As shown in E@l), three dimensionless pa-
rameters control the acceptance probability of MC trial
moves:B/E, is the term that dominates the-L demixing
theoretical predictions for the—L phase separation curve temperature but has no effect at all on the freezing of the
without prior disorder—order phase transition on cooling.pure polymer system. In contrasi,/E. completely deter-
Next, we discuss the simulations and mean-field calculatiomines the freezing temperature of the pure polymer system,
of the L—S curves and its thermodynamic competition with but it has only a slight effect on the demixing temperature. In
L—L demixing. fact, from Eq.(6) herein, it follows that, the critical demixing
temperature is approximately a factorgphigher in the case
E,=0 andB+#0 than in the case where the valuesBoand
E, are interchanged. In what followE,/(kgT) is used as a
In our MC simulations, we used a single-site-jumping measure of théinverse temperature of the system. H; is
microrelaxation model with local sliding diffusiéhto model  much larger tharB and Ep. the polymer chains behave as
the time evolution of self- and mutually avoiding polymers almost rigid rods. In contrast, iIE;=0, the polymers are
in a cubic lattice with periodic boundary conditions. In this fully flexible. In what follows, we choseéE,/E.=1 as a
model, monomer displacements are allowed along both thealue typical for semiflexible chains. The choice of the value
cubic axes and théody and facgediagonals, so the coordi- of B/E. (and thereby thé —L demixing regionis discussed
nation number of each site includes all the neighboring sitef the following sections. In our simulations, we lowered the
along the main axes and the diagonals, ang=$6+8+12  temperature by increasing the valueEf/(kgT) from zero
=26. The single-site-jumping model with either kink gen-in steps of 0.002. At each step, the total number of trial
eration or end-to-end sliding diffusion was first proposed bymoves was 500 MC cycles, where one MC cycle is defined
Larson et al?* The kink-generation algorithm was subse- as one trial move per monomer. The first 400 MC cycles at
quently developed into the bond-fluctuation motfei®A hy-  each temperature were discarded for equilibration, after
brid model combining kink generation and sliding diffusion which samples were taken once per MC cycle, to compute
into one mode of chain motion was suggested by Lu andverage values. This process corresponds to a slow cooling
Yang?’ The present hybrid model considers sliding-diffusion of the sample system.
moves that are terminated by smoothing out the nearest kink The most direct way to establish the equilibrium phase
conformation along the chaffi,in accord with de Gennes’s diagram of this model system would be to compute the free
picture of defect diffusion along the ch&lt has been veri- energy of all phases. Here, we follow a different route: We
fied that this model correctly reproduces both static and dyattempt to locate the equilibrium phase-transition tempera-
namic scalings of short polymers in the nfelt. tures during the dynamic cooling process. However, rapid
In our simulations, we consider systems containing acooling may lead to a significant supercooling mainly due to
number of 32-unit polymer chains. The polymers reside in ahe presence of a free-energy barrier for homogeneous nucle-
cubic box with 32 lattice sites. The polymer concentration ation. This is particularly true in dilute solutions and small
was varied by changing the number of polymers in the simusystems. In order to identify the correct equilibrium coexist-
lation box. MC sampling was performed using the Metropo-ence curves in a dynamic cooling scheme, supercooling
lis method. Three energetic parameters were used to modshould be eliminated as much as possible. To this end, we
the intra- and intermolecular interactions of the polymersintroduced one solid layer of terraced substrate formed by
The first parameteE. measures the energy penalty associ-extended chains, as shown in Figa2 These terraces can
ated with having two noncollinear consecutive borfds induce heterogeneous nucleation with a very small free-
“kink” ) along the chain; it is a measure of the rigidity of energy barrier. On such a large, terraced substrate, layer-by-
chains. The second paramekgy measures the energy differ- layer crystal growth can take place directly, thereby obviat-
ence between a pair of parallel and nonparallel polymeing the need for homogeneous nucleation. In order to
bonds in adjacent nonbonded positioks. favors the com-  increase the accuracy of the method near the onset of the
pact packing of parallel chain molecules in a crystal. Finally,phase transition, we monitored the properties of the system

II. SIMULATION TECHNIQUES
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FIG. 2. Effect of a terraced substrate on the onset of crystallization upon cooling. The figures shown were obtained for a solution of model pblymers wit
lengthr =32, at a volume fractiorp=0.0625, withE,/E.=1 andB/E.=0. (a) Snapshot of an athermal sample system containing one layer of terraced
substrate formed by extended chains, that are not included in the polymer volume fraction. Viewing along the extendéh) ddismsler-parameter cooling

curves for the sample systems with a terraced substrate on c@stilig line) and under the absence of a seed on codlitaghed ling The arrow indicates

the onset of phase transitioft) Substrate-size dependence of the onset of crystallization on co@inginite-size scaling of the onset of crystallization on

cooling for the sample systems with denoted concentrations. All error bars are smaller than the symbols. The segments are drawn as a guide for the eyes.

during successive blocks of 500 MC cycles. If, during such ghase transitions are based on the averaged results of five
block, we found evidence for the onset of a phase transitionndependent cooling processes characterized by the same en-
we kept the temperature constant for a number of subsequeatgy parameters, but different seeds for the random-number

blocks, until no further drift in the system properties wasgeneration.
observed. As can be seen from Fig(1®, the presence of a terraced

On cooling, the degree of order in the sample system casubstrate significantly decreases the kinetic delay on cooling
be traced by the Flory “disorder” parameter, defined as thefor polymer crystallization from a dilute solution. The onset
mean fraction of noncollinear connections of two consecu-of crystallization induced by the terraced substrate becomes
tive bonds along the chains. On the cubic lattice, where 24nsensitive to the number of steps on the substrate when this
out of 25 directions for the connection to the next bond arenumber is larger than 8, see FigcR One might expect that
noncollinear, the high-temperature limit of the disorder pa-more steps on the substrate would cause the substrate to ad-
rameter is 0.96. The degree of demixing of the system can bgorb more chains. The fact that the phase-transition tempera-
monitored by tracing the value of a “mixing” parameter, ture becomes insensitive to the number of sig@se, and in
defined as the mean fraction of the sites around a chain unityhat follows, we use 32 stepssuggests that pretransitional
that are occupied by solvent. Our estimates of the onsets @dsorption has a negligible effect on the apparent phase-
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transition temperature. In contrast, if no “template” is
present, the onset of crystallization from a dilute solution,
depends strongly on the system size. This effect is probably
due to the volume dependence of the homogeneous nucle
ation rate. It can be completely eliminated by the introduc-
tion of a terraced substrate, as demonstrated in Fi). 2 ;\J”
In the following sections, we first consider the case thatu\f’
E,/E. is zero and hence no crystallization can take place
while B/E; is large enough to induceé—L demixing on
cooling. Next, we switch ofe,/E. . This allows us to study
a phase diagram that exhibits bdtkh L demixing and freez-

ing. - i
0.0 0.2 0.4 0.6 0.8 1.0

10 o---- -

o
-

Polymer volume fraction

IIl. RESULTS AND DISCUSSION FIG. 3. L-L coexistence curvesT() of the sample system witk,/E.

A. Liquid—liquid demixing without crystallization =0 andB/E.=0.25. The solid line is calculated from the classical F—H
free-energy expression for polymer solutions, and the dashed line is calcu-

If both B/EC and Ep/EC are zero, the model only takes lated from the second-order expansion of the mixing free energy in lattice-

excluded-volume interactions between molecules and thguster theory. The triangles are the onsetd el demixing induced by a
terraced substrate on cooling. The error bars are smaller than the symbols.

temperature dependence of chain flexibility into account.
Even in this case, the polymer solution may exhibit a
disorder—order phase transition on coolfiiThis transition oint of the binodal curve obtained in computer simulations.

is not, strictly speaking, a freezing transition but rather an?o second order. the mixing free-enerav change per lattice
isotropic-nematic phase transition: It is induced by the in- ' 9 oy gep

crease in anisotropic excluded volume interactions betwee?i'te 5
polymer chains, due to the increase in chain rigidity on  Afg, ¢
cooling” %! This transition has recently been studied exten- kgT =(1=-¢)In(1-¢)+ ?In(¢)

sively by Weberet al

If we increase the value d8/E. while keepingE,/E.
equal to zero, we should reach a point above wHhieh
o_|em|xmg occurs prior to the isotropic-nematic phase trans'Wheree=ZB/(kBT). Explicit expressions foC,, Cy, and
tion on cooling.

_ . . C, in terms of ¢, g, andr are given in Ref. 6. When we
We focused our attent|or_1_on the—L demixing with compare the predictions of the second-order lattice-cluster
values ofB/E. beyond that critical value, and kept track of

the “mixing” parameter on cooling. As the dense liquid theory with our simulationgdashed curve in Fig.)3we find

phase wets the terraced substrate, the onset temperaturetrﬁ]ﬁ:]t this theory does not lead to better agreement with the
R ’ ulation data, except perhaps at high polymer concentra-
L—L demixing induced by such a substrate should be a gooa Pt P P gh poly

imation to th ilibri h tion t ons. It should be noted that, for very long polymer chains,
?ppr?zltmatlct)_n Ob' ede?w orium ptr?se bsepr;;a_lond EMPETG 6 |attice cluster theory may predict more than one critical
ure. Atentative binodal curve can thus be obtained In Slmuboin. Hence, the predictions of this theory should be
lations to compare with the predictions of mean-field theo'viewed With some cautio®®
ries. '

Figure 3 shows the binodal curves for the sample sys-

tems withE,/E.=0 andB/E.=0.25. The binodal curve can B. Polymer crystallization and its interplay
be estimated from the condition of equal chemical potentiaivith liquid—liquid demixing
of the coexisting phases, using the E2), the F—H expres- When we seB/E,=0 andE,/E,=1, L-L demixing is

sion for the mixing free-energy pre-empted by freezing. In fact, an estimate based on mean-
field theory[Eg. (5) herein indicates that, for these param-
Afmix —(1—H)In(1— f| eter values, the freezing temperature of the pure polymer is a
(1-¢)In(1-¢)+ —In(¢) ) e =

kgT r factor of 3 higher than the critical demixing temperature. We
(q—2)B assume that the onset of crystallization induced by the ter-

+p(1— ) —T 2) raced substrate yields a good approximation for the equilib-

B rium melting temperature. It is this temperature that we sub-

. . ) ) sequently compare with the corresponding prediction of
where ¢ is polymer volume fractiony is the chain length, | ean-field theory.

andq the lattice-coordination number. As can be seen from  The mean-field expression for the partition function of
Fig. 3, the theoretical predictions show a small but constanf,e gisordered polymer solution is givenby
deviation from the simulation results.

Yan et al® have shown that a second-order lattice-_, [ N|™ n\"2(q\|" (=251 -r)ny (= 1z, 4
cluster theory may provide a better description of the critical n) \n,) \2] % %p 2t @

1 2 2
_qud) +Cyt+Cre+Cye, (©)]
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where z.=1+(q—2)exp(- E./(kgT)), z,=exd—(q—2)/ 12
2(1=2(r=1)n,/(an)) Ey/(keT)],  ze=exp(=ny/n(g 1 e

—2)B/(kgT)). n; denotes the number of sites occupied by the
solvent,n, is the number of chains, each havingnits, and
n=n;+rn,. We note that, in this expression, we have cor-
rected an error in the expression for the partition function
given in Ref. 8. The corresponding expression for the free- <
energy density(i.e., the Helmholtz free energy per lattice W
site) is -

f(¢) ¢
Tt ~(1-@In(1-¢)+ I g

—————

0 T T T T d T T T

d’( _In(ar/2) —(1-2/)inz 0.0 0.2 0.4 0.6 08 10
C
' (a) Polymer volume fraction
+(1—=1/r)+( 2) +(1 1/r)q—E
a- 2 kel 12
B g—-2 E T, (1,0.25)
Y _ _ L 104 &
¢ (q— 2) KaT +(1-1/) kBT)' (5 -
T,(0,0.25) "~
We assume that the pure polymer crystal is in its fully or- 84 +--“+(..,_+)~ pal
dered ground state and that the partition function of this state=< “~+\ *\\
is equal to one. In a pure polymer system, melting takestd €+ s (1.01) T . ..
place at the point where the free energies of the crystal and— '”“'w—-- T (t.01) ‘+9,_.__=g;‘
the melt cross. For polymer solutions, the freezing curve can 4'T " OA/——"'"'/’ —— +_T.(1,0.25)
be computed by imposing that the chemical potential of the 'Tm(1, 01) ~+
polymers in crystal and solution are equal, i.@S—u° 29
= uS—u®, whereu? is the chemical potential of polymers in {T.(1.03)
the ground state. As the free energy of the crystal phase is 0 —T —— T
0.0 0.2 0.4 0.6 0.8 1.0

assumed to be equal to zero, the chemical potential of the

polymers in that phase is also equal to zero. The chemical )

Polymer volume fraction

potential of the polymers in solution jg°= dF%/dn,. Thus,
by solving the equatio® InZ%dn,=0 by iteration, we can
obtain the equilibrium melting temperature.

Starting the calculation from E¢p), the F—H expression
for the mixing free-energy change becomes

fmix
T (1 @)in(L- )+ In)+ b1 d)(a-2)
B
B 1( 1)2 E,
et "alt ) et/ ©

FIG. 4. L-L demixing curvegdenoted as4) andL—S transition curves
(denoted ag ) for the sample system with variable energy parameter set-
tings[denoted ag (E,/E.,B/E.)]. (a) Theoretical curves calculated from

Eq. (4). Note that changing, /E. from 1 to 0, leads to a 10% decrease in
T4 . In contrast, lowerindd/E; by 0.15 reduced 4 by more than 50%. An
arrow indicates the position of possible triple poifih) onsets of phase
transitions induced by a terraced substrate on cooling. The error bars are
smaller than the symbols, and the segments are drawn as a guide for the
eyes.

Although a change in the value &/E; cannot change

The binodalL—L curves can be separately estimated withoutthe freezing temperature of pure polymers, it can change the

the consideration of —S curves.
In Figs. 4a) and 4b), we compare the mean-field pre-

L—S coexistence curve of polymer solutions. The reason is
that a poor solvent favors phase separafibe it L—L or

dictions for the phase diagram with the simulation data. InL-S).

view of the simplicity of the mean-field theory, the agree-
ment between theorfwithout adjustable parametgm=snd the
simulation data, is gratifying.

According to Eq.(6), we should expect that a positive
value ofE,/E. will increase theL—L demixing temperature.

However, in the simulations, we observed that theS
curves cross not only aé=1 but also at a second point near
¢=0.73. This crossing point is not related to the presence of
the terraced substrate, as it has also been observed in the
absence of such a templé&tdPossibly, this failure of the

This is precisely the behavior observed in Fig. 4, where thesimple mean-field theory is due to the rather naive way in

L—L demixing curve of the sample system wiB/E.
=0.25 shifts up when the value &, /E. changes from zero
to one. By carefully choosing the parameters, sucB/As;

which it accounts for the effective coordination of mono-
mers. We point out that, in our estimate, we have assumed
that the effective coordination number is equal ge-2.

=0.1, we can “tune” the relative strength of the tendenciesHowever, in more sophisticated theoretical descriptiopsg,
to crystallize and to demix, and observe the intersection ofas in Eq.(3)] is, itself, concentration dependent.

theL-—S andL-L curves.

Flory has proposed a semiempirical relationship between
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