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Velocity fluctuations and dispersion in a simple porous medium
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We model a fluid-filled disordered porous medium by a lattice-Boltzmann system with randomly broken
links. The broken links exert a friction on the fluid without excluding volume. Such a model closely mimics the
idealized picture of a porous medium, which is often used in the theoretical analysis of hydrodynamic disper-
sion. We find that the Brinkman equation describes both the mean flow characteristics and the spatial decay of
velocity fluctuations in the system. However, the temporal decay of the velocity correlétians particle
experiences as it moves with the flyidannot be simply related to the spatial decay. It is this temporal decay
that determines the dispersivity. Thus, hydrodynamic dispersion is generally greater than theories based on
spatial correlations would imply. This is particularly true at high densities, where such theories considerably
underestimate both the magnitude and transient time scale for dispersion. Nonetheless, temporal velocity
correlations are still ultimately screened and the hydrodynamic dispersion coefficient converges exponentially.
The long-lived transients reported for more realistic systems must therefore be due explicitly to the presence of
excluded volume.
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[. INTRODUCTION for the equilibrium caséwhere there is no floyy and to the
dispersioncoefficient for the nonequilibrium cagerhere the
When a tracer particle is introduced into a stationary fluid fluid flows). The relative importance of this convective dis-
it will be dispersed by Brownian motion. The dispersion canpersion, relative to simple diffusion, can be characterized by
be characterized by the mean of the squared displacement ihe Peclet number Pe. It is defined as=R& [*/D,, where
a given directionAx2. From the Einstein definition of the U* is a characteristic velocity antf is a characteristic
self-diffusion coefficientD,, this increases linearly with length. The obvious choice for the characteristic velotity

time, the constant of proportionality being twik, is the mean velocity of the fluitf. At high Peclet numbers,
) tracer transport over distances larger théms dominated by
(AX(1))=2Dqt. @ convection, and dispersion is therefore dominated by the spa-

tial fluctuations in fluid velocity. Conversely, at low Peclet

For a stationary fluid f|||.|ng the voids in eno_nads.orblmg numbers, the convective contribution is small and simple dif-
porous medium, the motion of the tracer particles is hmdereqj

. v o usion dominates
by the medium and the diffusion coefficient of the tracer N .
particles is reduced relative @,. If, on the other hand, the In order to understand hydrodynamic dispersion, we need

. . : .. an idea of how fluid flows in porous media. If the fluid is
ﬂ_md flows through the porous medium with a mean Veloc'tyNewtonian then the steady-state velocity fieldswill be
V, then the dispersion of tracer particieew defined by the  so|utions of the time-independent Navier-Stokes equations
variance in their displacementscreases and can become

very large compared to2yt. The origin of this “hydrody- ~VP+ yV+F=0,
namic” dispersion lies in the fact that, even in the absence of
Brownian motion, different particles experience different lo- V.v=0 ©)

cal flow velocities and are, therefore, transported by convec-
tion over different distances in a given tirheQuantitatively,  that satisfy stick boundary conditions at the solid/fluid inter-
the dispersion coefficient is related to the time integral of theface. HereP is pressureF is any external forces acting on
time correlation function of the velocity fluctuations experi- the fluid, andz is the viscosity. We have also assumed that
enced by tracer particles: inertia is negligible(the flow is at low Reynolds number
The relation between the steady-state flow velocity and the
D= fx<[vi(0)—7][vi(t)—V])dt, ?) ap,plied pressure gradient is then given by the empirical Dar-
0 cy’'s law,
wherev,(t) is the instantaneous velocity of a particle along
the flow direction as it moves through the fluid. Note that we
follow convention here and refer to thffusion coefficient

—_ K
V=——VP, (4)
7

wherex is a constantthe permeabilitythat depends only on

the properties of the porous medium, not on those of the
*Electronic address: capuani@amolf.nl fluid. Equation 4 is a first-order equation while E¢3) are
"Electronic address: frenkel@amolf.nl second-order equations. It is therefore impossible to formu-
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late rational boundary conditions between the two. In 194%oefficient was still increasing on time scales where the
Brinkman proposed an equation to describe the locally avertheory suggested it should have already converged. This
aged flow in a porous medidl]. The Brinkman equation raised the question: Is this the asymptotic behavior? For re-
considers the balance of forces acting on a volume elememtlistic packed beds of spheres Kasthal.[8] showed that the

of fluid, i.e., the pressure gradient, the divergence of thescreening picture describes the decay of the velocity fluctua-
viscous stress tensor, and the friction force exerted by th&ons reasonably well. Dorlosfky and Bra@9] arrived at the
porous medium: same conclusion. There are nonetheless two complications
with “realistic” systems. First, as noted above, the Brinkman
screening is less dramatigoing from a 1 decay to 1r®)

for spatially extended particles than is the case for points
(from 1/, to exponentigl Second, the presence of an ex-

The crucial assumption is that the external force in thd:)||c|t SOI|d/ﬂU|d interface, Where the ﬂOW Velocity gOES to
Navier-Stokes equatidiEq. (3)] can be replaced by the force Z€ro, means that there is a region close to the surface that the
term in Darcy’s law{Eq. (4)]. This substitution is only justi- fracer particles must always enter and leave by diffusion.
fied if the porous medium occupies a vanishingly small fracoch and Brady suggest that the presence of this diffusive
tion of space. In that case one may consider the porous m&oundary layer means that the dispersion coefficient reaches
dium as a continuum that exerts a friction on the fluid atitS asymptotic value on time scales much longer than would
every point. In spite of the approximate nature of the Brink-0therwise be expected. This could also be responsible for the
man equation, it has proved to be an extremely useful togpehavior observed in Ref7]. In this paper we, therefore,
for modeling flow in spatially inhomogeneous porous mediaconsider a simple model system where both these complica-
[2,3]. tions are absent; that is, following in the spirit of the theory,
Of most relevance to us here is the use of the BrinkmanVe consider a porous medium composed of fixed points that
equation to describe not average flow velocities, but the spaXert friction but have no spatial extension. Indeed, the
tial decay of fluctuations in the flow velocity. It is clear from @nalysis of such a system gives one contribution to the over-
Eq. (2) that it is these fluctuations that play the crucial role in@ll dispersion coefficient in the expression derived for a
determining the dispersion coefficient. Indeed, if BrownianPacked bed10]. It is regarded as the contribution to the
motion can be neglected, the particle veloaityt) appear- dispersion coefficient QUe to thg velocity pgrturbatlpn at dis-
ing in Eq. (2) is simply the instantaneous velocity of a par- tances far from the fixed particle. .Spe_cmcally, this pur.ely
ticle as it convects along a streamline. This we refer to as thgonvective termp., makes a contribution to the total dis-
Lagrangian velocity correlation functidd, (t). This concept Persion coefficient
was utilized by Koch and Brady in their theoretical analysis _
of dispersion in random media composed of randomly dis- D — \
tributed fixed particles. Notably, they made use of the fact ¢ 8mpA?’
that a velocity fluctuation generated by one of the fixed
points making up the porous medium will, according to thewherep is the number density of the fixed points. For the
Brinkman theory, decay in space on a length scale set by thgork we describe here, we will ignore Brownian motion and
Brinkman lengthh. The Brinkman length is the square root concentrate solely on the decay of velocity fluctuations due
of the permeability. If the particles making up the mediumto convection. In that case, we ha@&=D.. While the
have no spatial extensidthey are simply points in the fluid model may seem of somewhat academic interest, there are
exerting friction, the decay is exponential. If they do have aimportant examples of hydrodynamic dispersion in dilute
spatial extension, in the sense that stick boundary conditionsystems for which the model could be reasonably applied.
apply on the surface, the decay is slower, going with distanc®ispersion in flow through polymer networks would be an
r as 1t [4]. On the other hand, if the presence of the porousexample.
medium is neglected, the Brinkman equation reduces to the
gsual Navier-Stokes gquation for which a veloci_ty perturba- Il. DESCRIPTION OF THE MODEL
tion decays as i/ This leads to an unbounded integral for
the dispersion coefficient, implying that the dispersion coef- To simulate fluid flow in our model porous media, we
ficient diverges, that is, it would always depend on the sysemployed the lattice-Boltzmani.B) method. This method
tem size. The hydrodynamic screening predicted by thelescribes the fluid in terms of the density of particles with a
Brinkman equation thus plays a crucial role in determiningdiscrete set of velocities, constraining their locations to a
the dispersion coefficient. A similar effect occurs in sedimen-discrete set of positions at integer times. These positions
tation, where velocity fluctuations in an unbounded systenthus correspond to points on a lattice when time is dis-
diverge[5]. In this case, it is the presence of container wallscretized. The choice of the lattice is restricted by the fact that
that is crucial in providing the necessary screeritig only a few lattices have a high enough local symmetry to
The question we want to address here is how well thignodel hydrodynamic flow with an isotropic viscosity. The
picture, central to the theory of Koch and Brady, describeshoice of the lattice defines the velocitiég} that are al-
hydrodynamic dispersion. One reason for doing so is thalowed. In our simulations we have used the “D3Q18” model
numerical simulations of dispersion in packed beds of 11], where D3 indicates that the lattice is three dimensional
spheres, reported in Ref7], suggested that the dispersion and the number after the “Q” indicates the number of veloc-

nVZU—VP—gUZO. 5)

6
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ity allowed per sitin our case 18[12]. For more details on Instead, with a given probability, we break linkghat is,
possible lattices see, for example, Hdf2]. The quantity we define a set of links for which the propagation equation is
calculate in the LB method is the discretized one-particlenodified according to Eq10)]. These broken links exclude
velocity distribution functiom;(r,t). This is the probability no volume(so long as the fraction of broken links stays well
a particle at lattice site at timet has a velocityc,. The  below the percolation thresholthut will exert a friction on
hydrodynamic fields, the densip(r), and momentum den- the fluid proportional to the local flow velocity. They are
sity j(r), for example, are moments of this distribution func- effectively point scatterers.
tion,

Ill. RESULTS

p(r.t)= Z n;(r,t); @) To generate our model porous medium we generated a set
of point sources for friction according to a binomial distri-
bution. We first fixed the probabilityp that a link would be
j(r,t)=2 cni(r,t), (8)  broken. This number was varied between 0.01 and 0.3. For
: every link, we then generated a random number between 0
and 1. If this random number was less thhnthe link was
broken, otherwise it was left intact. In this way, we generated
one particular realization of the porous medium for a given
value of ®. All our results were obtained by performing
ni(r+c,t+1)=n;(r,t)+A;(r,t). (9)  simulations for at least 25 different configurations for every
value of®. Note that, for every configuration, the fraction of
Here,A; is the change im; due to “collisions” at the lattice  broken links is not exactly equal t&. Only the average
sites. The postcollision distributiom;+ A; is propagated in value is imposed. We cannot predipriori how the Brink-
the direction of the velocity vectar;. A complete descrip- man length depends on the fractidn of broken links, be-
tion of the collision process is given in R¢fL1]. The main  cause this, even for point scatters, involves the many-particle
effect of the collision operatoh;(r,t) is to (partially) relax  hydrodynamic interactions. We therefore determienu-
the shear stress at every lattice site while conserving the locaherically. This can be done in two ways. One is to measure
particle number and momentum. The rate of stress relaxatiothe average flow velocity in the presence of an applied ex-
is related to the kinematic viscosity. A full description of  ternal force and calculate the permeability. The second is to
the collision operator is given by Laddl]. Further, we compute the flow profile in a simple confined geometry. For
make use of the simplest collision operator where the noninstance, the Brinkman equati¢d) can easily be solved for
equilibrium components of the stress tensor relax in one timea three-dimensional porous medium confined in a slit
step and the Reynolds number is rigorously zéte con- bounded by two hard walls. On the walls, stick boundary
vective term in the equilibrium stress tensor is neglected conditions apply. If we apply a body force parallel to the
The overall procedure involves two steps: a propagation steplates, the solution for the steady velocity profile is given by
and a collision step. In the propagation step each distribution

wherei sums over all possible velocities. The time evo-
lution of the distribution function is described by the dis-
cretized analog of the Boltzmann equatidrd].

function is moved to the neighboring site by veloogy In z

the collision step the distributions at each site “collide,” in \2F cosr{ X)

the sense that they are modified by the collision operator. It vy(2)= S I=—— | (11
can be shown that the evolution of the hydrodynamic fields COSI’( —)

in the model is described by the Navier-Stokes equations 2\

[11]. _ -4
Having described how we can simulate the fluid, we nowyvhere the two plates are locateczat —L/2 andz= +1/2, x

; o is the direction of the force an& is a force per unit of
need a method to model the porous medium. Within the{/olume. Note that the Brinkman lengkhenters this equation

lattice-Boltzmann framework there is a straightforward Pro-y vice: first through théDarcy) prefactor, and second through

ceqlure for.imposing stic!< boundary conditions at an expliCitthe “screening” length that determines the shape of the flow
solid/fluid interface. A simple bounce-back rule performed rofile. The constraint that a single valuedthould fit both

on boundary links enforces the stick boundary condition t : :
second order, while not perturbing the strEsE|. Boundary 82186 cihgﬁeoﬁngesgremipnraet%%t(gf provides a good consistency

links are defined as links connecting lattice sites inside an The simulation box had a length of 320 lattice spacings in

out5|d_e the solid ObJ.eCt’ and ob_wously t_hese COme IN PaINSy, girection of the flow, and 40 lattice spacings in the other
Adopting a convention of labeling the link that goes from two directions. Periodic boundary conditions were used in

inside to outside ab and its partner-ib, the unbounded directions. Even for the lowest density system

N_ip(rp, t+A)=np(r,t), (®=0.01), the Brinkman length was found to be no larger
than 3.41 lattice units. This is more than an order of magni-
Nip(Tp+ G t+A)=n_;,(rp+Cip ,t), (10) tude less than the smallest system dimension. At larger val-

ues of®, the Brinkman length is even smaller. Hence, we
Here we do not want an explicit solid-fluid interface, in the expect finite-size effects to be negligible at all valuestof
sense of a solid phase that excludes volume from the fluidhat we studied. To study the flow, we let the system evolve
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_ _ _ _ FIG. 2. The normalized spatial velocity correlation function
FIG. 1. Ve|0C|ty proflle for a fluid ﬂOW|ng through the model [cs(r)/c(o), open Symb0|$ and Eulerian velocity correlation

porous medium confined between two plates. The flow velagity - function[ C4(r)/C(0), filled symbold, as a function of dimension-
normalized by the maximum flow velocity, is plotted as a func-  |ess distance/\. The broken link fractions ar@=0.01 (plus),

tion of dimensionless distance from the center. The dashed line i§.08(circles), 0.1(square} 0.2 (diamonds3, and 0.3(triangles. The

the solution of the Brinkman equation; the circles are the numericagrror pars are smaller than symbols. The dashed line is the result of

data. fitting an exponential t&(r)/C(0) for r/\>0.5

under the applied body forc€, After some transient time, from the average value. The SVCF shows how these
the flow fields reach a steady state. All correlation functionsdisorder-induced fluctuations decay, spatially, to zero.

that we report have been computed for this steady state. To In Fig. 2 (open symbolswe showC4(r)/C4(0) computed

compute the average flow profile, we averaged the steadyor a range of values ob. In this figure, we have expressed
state flow profiles of all 25 different configurations. It is to all distances in units of the Brinkman lengih If, as we

this averaged flow profile that we fitted the Brinkman flow assume, the Brinkman length is the only relevant length scale
profile given by equatiorill). A result of this fitting proce- in the system, then all the functions should superimpose.
dure is shown in Fig. 1. It is worth remembering that theThis is precisely what we observe. Moreover, the SVCF de-
Brinkman length is the only parameter in this fit. The figurecays exponentially, with a characteristic decay distance of a
shows that the computed flow profile fits the Brinkman ex-Brinkman length. It seems, therefore, that the average flow
pression. This result is nat priori obvious and provides a profiles and the averaged spatial decay of perturbations in the
useful check that we do indeed have a system with a wellflow profile satisfy Brinkman scaling. It would seem logical
defined Brinkman length whose spatially averaged behaviofo assume that, as the spatial decay of velocity fluctuations
is a solution to the Brinkman equation. By repeating thissatisfies Brinkman scaling, so should the temporal decay. If
fitting procedure for other values df, we obtained the de- this were true, then Brinkman scaling should apply to disper-
pendence ok on ®. We found that the low density result sjon of tracer particles. In fact, it has been argued that the
Ax1/J/® holds to a good approximation over the whole nature of the equations, in particular, that the Brinkman
range of® we consider here. equation has no explicit time dependence, has as a conse-
As Fig. 1 shows, the Brinkman length describes the disquence that the Lagrangian velocity correlation function
tance over which a flow profile in a porous medium is per-(LVCF) should decay in the same way as the SVCEF, i.e.,
turbed by an “obstacleTin this case the hard wallln the  exponentially, with a characteristic time equalév [10].
spirit (if not the lettey of Onsager’s regression hypothesis, The LVCF is, within this approximation, simply
we might expect that “spontaneous” spatial velocity fluctua-
tions should decay on the same length scale. To verify this,

we computed the spatial velocity correlation function
(SVCPH defined as

C,(t)={[v(0) = V][v(r=Vt)—V])=Cq(r=Vt).
(13)

We call this approximation to the LVCF the Eulerian time

velocity correlation function(EVCP), Ce(Vt). In Fig. 2

(filled symbolg we show the normalized EVCF computed
whereu (r) is the component of fluid velocity along the flow for a range of values ofp, together with the SVCF. We

direction at a distance. To compute the SVCFKand all re- observe that all EVCF’s superimpose. The typical length of
maining correlation functionswe considered a purely peri- decay is a little bit larger than that for the SVCF, because we
odic system without walls. In such a system, the averagare now considering correlations along the flow direction
flow velocity is the same everywhere. In any specific realiza-only. Otherwise, there is little difference. Based on this ap-
tion of the disorder, however, there will be local deviationsproximation, one would expect that the natural unit of time

Co(n={([v(0)—V][v(r)—V]), (12)
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FIG. 3. Comparison of the scaled, normalized, Eulerfai FIG. 4. The normalized Lagrangian velocity correlation function

ang|e$’ and Lagrangiarﬁdiamonc& Ve|ocity correlation functions. as a function of dimensionless time. The different curves corre-

£ is a dimensionless unit equal tdx for Cy(r) and tot/r for spond to different broken link fractions. The corresponding dimen-

C,(t). Time 7 is the average time to convect a Brinkman length sionless densities are 24ircles, 1.7 (squares and 0.27 (tri-

(r= )\/v)_ The dotted lines are guides to the eye. angles. Note that the curves do not superimpose but decay more
slowly with decreasing dimensionless denditycreasing absolute

for the Lagrangian velocity correlation functions is the density.

Brinkman time defined as=\/V, i.e., the average time it

takes a tracer particle to travel over a distance equal to Onléydrodynamlc screening picture that works so well for aver-

Brinkman length. In order to calculate the Lagrangian veloc29€ flow profiles, seems to be quantitativétiiough not

ity correlation function, we need to follow the trajectory qualitatively) incorrect when we consider temporal correla-
along which a patrticle travels; that is, we have to caIcuIaté'Orl'S' hat foll hall der hvdrod i di

velocity correlations for a streamline. In the appendixes we . n what follows, we snhall consider hydrodynamic disper-
describe our procedure for doing so. Figure 3 shows thaion in the limit of high Peclet number. In this limit, and in
LVCF for a system with®=0.3. In the same figure, we the absence of any explicit solid/fluid interface, the Brown-

show the theoretical prediction for the shape of the LVCF:caIr; motflon Oé thg t;ﬁc;a;hpadrfucles can beﬁ!g'norte_d. Itl tthzn
corresponding to the EVCF and assuming that the velocit){0 ows from Eq.(2), that the dispersion coefficient is relate

time correlation function can be obtained directly by replac- 0 th_e time integral of the Lagrangian velo_<:|ty C(_)rrelatlon_
. . . — . function. We now compare the computed dispersion coeffi-
ing the displacement in the latter Y. The figure shows

. . X cients with values predicted by the theory of Koch and
clearly that there exists no such simple relation between th%rady. Before proceeding, we need to briefly recapitulate

spatial and temporal decays of velocity fluctuations. In théneir model. They model the porous medium by a continuum
first place, there is a marked difference in the behavior aby points, every point exerting a friction on the fluid. This

s_horfc times. Th(_a initial ra'ée of decay of thdebLagrang|an fun_c- ight seem an abstract concept of porous media, but it rep-
tion s zgrrc]),fso I c(;:mno:] € a;pproxrl]mgte yan gé$onent|a esents a simplified model of a dilute packed bed of spheres
It is straightforward to show, from the incompressibility Con-;p, e |imit of many scatterers per Brinkman length cubed.

dition, that this must be the cageee Appendix A More  ging sych a model, they were able to compute the fluid
”.“pO”f"‘”“y* if we plot the LVCF for different values @ velocity perturbation at large distances generated by particles
(i.e., different Brinkman lengthswe cannot make the_dn‘fer— making up the porous medium. From this they derive an
ent LVCF's collapse onto the same master cuse Fig. 4 oynression for the dispersion coefficient. In order to perform
This is surprising, because it suggests that the Brinkman timg, o ~a|culation they approximate the LVCF with the EVCF.

is not the only relevant time scale in the system. In fact, g resyIting expression for the dispersion coefficient at high
Koch and coworker$10,8] have suggested that anomalous paclet number is

(non-Brinkman decay of velocity time correlation functions

should be intimately linked to similar anomalies in the D 3
SVCEF. Yet, our simulations appear to show “normal” behav- —th_ —Pe, (14)
ior in the EVCF and “anomalous” behavior in the LVCF. As Do 4

the LVCF decays much more slowly than one would expect ] .

on basis of the Brinkman-scaling assumption, the dispersiolhere the Peclet number is P&*1*/D,; U™ being natu-
coefficient[calculated from Eq(2)] is larger than would be rally identified with the mean velocity of fluid/ and Dq
predicted by simple use of the Brinkman equation. The slowbeing the diffusion coefficienthere superfluous because it
decay of the LVCF indicates that the velocity of tracer par-cancels theD, on the left hand side of Eql14)]. Some
ticles remains strongly correlated in the time that it takes theliscussion is needed about the choicé*ofIn general]* is
average fluid to move over one Brinkman length. Hence, the typical length of the system. The theory takes as a charac-

056306-5



CAPUANI, FRENKEL, AND LOWE PHYSICAL REVIEW E67, 056306 (2003

teristic length the “effective” radius of spherical particles, '
which leads to a low density random medium with the same

Brinkman length. This gives the expressibn,=3Va. In 02
actual, radiusa is a somewhat fictitious parameter obtained
by implying a dilute bed of spheres to model the porous
medium. The following procedure is needed to obtaias -
function of the Brinkman lengtih. A dilute bed of spheres, 5
with number density of scattereps exerts a total drag equal

to p times the Stokes drag of a single sphere. Darcy’s law %!
gives a value for the same drag in terms of the Brinkmar
length[Eq. (4)]. Equating the two, one gets

1
A= 6mpa’ (15

Using Eq.(15) the dispersion coefficient becomes

1/p*

FIG. 5. The dimensionless dispersion coefficibxit as a func-
Do — (u) (16) tion of inverse dimensionless densji§ . Also plotted are the the-
th 8’7Tp)\2. oretical values of the dimensionless dispersion coefficiBiit
(circles and the dispersion coefficient obtained by approximating
We need, at this point, an expression foin terms of the the Lagrangian velocity correlation function with the scaled Eule-
broken links model. We should point out that, at this level offian function, D, (plus. Note that the high values gf* corre-
detail, it is difficult to map our model directly to the theory spond to .the low point densities so this data covers the spatially
because we have, in effect, points with a directionally dependilute regime.
dent friction. The theory, on the other hand, considers points
that exert an isotropic friction. To mat¢approximately the
two, we proceed as follows. In the D3Q18 lattice there are 18-
links, six of which have weight 211]; in our case only two
such links are oriented along the flow direction. There are * T
also eight singly occupied links with a component in the flow b 8mp\° '
direction, oriented at 45° to the flow. We therefore take these
to contribute 1/2. The remaining links are oriented perpen- .
dicular to the flow direction, so these contribute nothing. Eul™
Allowing for the fact that each link belongs to two lattice
sites, the effective density of links, in lattice units, we there- .
fqre take to be=4®d. From the simulation data the_ disper- D* :_if C,(t)dt. (19)
sion coefficient can be computed from the Lagrangian veloc- Vv2Jo
ity correlation function,

In units where length, time, and velocity are, respectively,
7, andV, the dispersion coefficients are thus

C(0) 7
SRt

In the following we will plot the dispersion coefficients as a
* o function of the dimensionless friction point densip*
D= Jo Cv(t)dt:C(O)Jo C,(H/C(0)dt. (17) =p\3. This is the number of scatterers per cubic Brinkman
length and sets the intrinsic scale of the system. The scaling
The initial value of the functionC(0), is simply the cova-  of the Brinkman lengttix~p~ 2 see Eq(15)] means that
riance of the velocity field. This is, in fact, true for all the dense porous media in “real word” units are actually dilute
correlation functions we have defined. Equati@i) defines in the intrinsic scale set by the Brinkman length. In fact,
D. If, instead, we approximate LVCF with EVCF, we can when p—, p*—0; that is, high dimensionless number
define densities correspond to the approximations made in the
theory, because in th@patially dilute limit there are many
scatterers per Brinkman length cubed. This assumption is
needed to treat the porous medium as a continuum. We are
thus able to disentangle the effect of the dilute limit approxi-
As we have already shown that tlig(t)/C(0) scales onto a mation and use the EVCF instead of the LVCF to compute
single curver’ defined by Eq(18) and representing a char- the dispersion coefficient.
acteristic time, is the same for all values of the Brinkman In Fig. 5 we plotD;}, and Dg,, as functions of 14* for
length. The two integrals will, in general, be different, in thathigh values ofp*. The theoretical value of the dispersion
while C,(t) is related to the velocity of the particle at tihe  coefficientD}}, is a linear function of ¥* [Egs.(19)]. We
Ce(t) refers to the velocity of a particle at a position  observe that in the dilute limiDg, also has a linear behav-
=Vt. The two quantities are only necessarily equal in thelor. A linear fit of DE, for high p* has an intercept at zero,
absence of velocity fluctuations. as the theory predicts. In the figure we plotted al3b,

Dgy=C(0) f:Ce(t)/C(O)dt=C(O)T’. (18
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was modeled by simply breaking randomly, with probability
7S ®, the links used in the lattice-Boltzmann equation. From
e | the point of view of comparing with theory, this broken link
4 model has two advantages. First, it has no excluded volume.
g Second, it exerts a relatively high local friction. The latter
- {1 allows one to calculate correlation functions over several
! S+ Brinkman lengths. We showed, by two different calculations,
y that this model does indeed behave as the Brinkman equation
051 Ayl 1 predicts. Specifically, for the velocity profile of a flow
through a porous medium sandwiched between two plates
and the spatial decay of fluctuations in the local flow velocity
about the meariSVCF. The latter is an assumption in the
Koch and Brady theory of dispersion in random media and it
is a good one. We found that there is a universal behavior of
spatial correlations if we measure lengths in units of the
Brinkman length, confirming that this is the only relevant
FIG. 6. The dimensionless dispersion coefficixit as a func-  length in the system. We also confirmed that, spatially, this
tion of the inverse dimensionless densjty. Also plotted are the results in an exponential screening of the fluctuations. Again,
theoretical values of the dimensionless dispersion coeffid®nt  this is central to the Koch and Brady theory. It guarantees
(circles and the dispersion coefficient obtained by approximatingconvergence of the dispersion coefficient, which would oth-
the Lagrangian velocity correlation function with the scaled Eule-gpyise diverge. We can conclude that the broken link model
rian functionDE,, (plus. Note that the low values gf* correspond s wel| described by the Brinkman equation. Conversely, the
to the high point densities so this data extends to the spatially densginkman equation describes successfully the spatial decay
regime. of velocity fluctuations in our model porous medium.

which has the same behavior. At a given number density the From the point of view of hydrodynamic dispersion, it is
difference betweed}, andDZ,, measures the effect of the the temporal, rather than spatlal decay, of fluctqatlons thgt is
dilute limit approximation, whereas the difference betweerrelevant. For the Lagrangian velocity correlation function
D, andD* measures the error made by approximating the(the temporal decay of the velocity a particle experiences as
LVCF with the EVCF. The difference betwe®f, andD* is it traverses the fl.uwthmgs.were more complex. Th|s time
a measure of the accumulated effect of the two approximaVe|OC|tY correlat.|0n function bghaved quite differently. Its
tions. We can conclude that the theoretical expression workdecay is not a simple exponential and, if we attempt to relate
very well in the dilute limit. In this regime the absolute time to an average displacement, there is no universal behav-
agreement between the theory and simulations, given the ajer in the scaled decay. The decay of this function cannot be
proximate nature of the mapping, is clearly very good. Thispredicted by a simple mapping to the Brinkman equation
confirms the prediction of Koch and Brady theory that thealone. It is not possible to say that Lagrangian fluctuations
dispersivity is independent of volume fraction for dilute are uniquely related to the Eulerian fluctuations for all den-
beds. sities of scatterers. This is an approximation invoked in the
In Fig. 6 we show the whole range of densities covered bykoch and Brady theory and one, the simulations show, that is
our simulations, and we repeat the analysis carried out fopnly strictly justified for low densitiesKoch and Brady
Flg 5. Again on the abscissa is the inverse dimenSiOﬂleSﬁ]emseNeS acknowledge that it is a low density approxima-
density 1p*. For decreasing values of the dimensionlession). We should stress, however, that the decay of the La-
density the two lines diverge. The difference between th%rangian correlation function with time is still asymptotically

D*

two represents the factor needed to correct for the dilute limi xponential. Thus, the qualitative picture that the screening
assumption. We observe that the computed dispersion coe ’

ficients no longer have a linear dependence @i 1¥Ve also
see that there is an appreciable difference between the ex
dispersion coefficienD* and both the approximatior3g
andDj},. This difference increases with decreasjifg This
means that, for what would correspond to iacreasingly
packed bed, the dispersion coefficient becomes much larg
than the theory predicts. Both the dilute limit assumption an
approximating the Lagrangian velocity correlation function
with the Eulerian contribute to the error. At low and moder-yne o rrelation functions were decaying on time scales that
ate der_ls_ltles it is the former, rather than the latter, that I'm't%reatly exceeded the Brinkman time.
the validity of the theory. Given the simplicity of our model and its similarity to the

IV. CONCLUSIONS systgm chh gnd Brady used to de.velop part of_ their theory

of dispersion in packed beds, a direct comparison seemed
In this paper we described numerical simulations of flowappropriate. We thus computed the dispersion coeffigiant

through a simple model porous medium. The porous mediurthe limit where molecular diffusion can be negledted a

T the velocity fluctuations by the porous medium itself leads
to a convergent dispersion coefficient remains true. The re-
lits reported in Ref.7] cannot be attributed to a breakdown
of the screening picture, the slow decay must in some way be
related to the more complex nature of the porous medium,
notably, the presence of excluded volume and diffusive
oundary layers. Nonetheless, the conclusion that Lagrang-
an correlations can decay on much longer temp@madl, by
implication, spatigl scales is consistent with Rdf7]. Here,
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function of broken link density. In the limit where the theory We can now use the incompressibility conditi® u=0,
should be most validlow volume fraction, a broken link this can also be written as

“volume” interpreted as the volume of a sphere that exerts
the same frictiol we found reasonable agreement. At higher
volume fractions, the agreement breaks down and the theory TEx
grossly underestimates the dispersion coefficient. In this re- IX
gime, the decay of the Lagrangian velocity correlation func-

tions diffe_rs dram a tically from the scaled spatial decay L.Jseq'he term within the square brackets is zero by definition
tq appr9>§|_rnate itin the theory. The.fact that j[he theory glVesbecause of the choice of the axes. As a consequence
dispersivities that actually agree quite well with expenmentalaI 19x=0, s0 it follows tha?C,(t)/at—0. Thus the initial

results for dense packed beds must be due to the fact that ope of the LVCF along a streamline is zero. It follows that

more accurately accounts for the boundary layer dispersioﬁ L . X
that we do not consider here. along the direction of the mean fluid flow the slope is also

zero, because the average of the vector tangent to a trajectory
is parallel to the vector defining the direction of the flow.

duy [duy  duy

+ W‘FE :O.
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given a fieldV(x;) on a latticex;, construct a flux line(t),
APPENDIX A: INITIAL RATE OF DECAY OF THE LVCF wherex is a continuous variable. A straightforward proce-

In this section we give a simple argument as to why thedure to perform this calculation is the Euler methodt

initial gradient of the Lagrangian velocity correlation func- +1)=x(1) +dtV(x(1)). This method is only accurate to first-
tion, computed along the direction of the flow, should beorder. We e.mployed the Runge-Kutta method in the m!dp0|nt
zero. We define thg direction as the tangent to the trajectory a}pprOX|mat|or[13], which is accurate to second order in the

~ A ~ A . time step. Higher-order methods were not necessary. The
x=t. They andz directions would be any pair of orthogonal

. ) . value ofV(x(t)) has to be interpolated. In order to compute
vectors in the plane orthogonal to the trajectory. The LVCF IShe off-lattice values of the velocity field, we used a very
defined a<C,(t) =(u,(0)u,(t)) and its time derivative is

simple trilinear interpolation, which is the three-dimensional
aC, (1) au(t) generalization of the linear interpolatiof(x; +dx) =V(X;)
X X
=\ Ux
o < at t0>

FAXV(Xi11) = V(x)].

Although very simple, the approach described above
proved to be very robust. We checked that the time step
chosen was small enough to ensure a consistent streamline
calculation up to the distance used in our simulations. Any

On the other hand, the time derivative of the fluid velocity
experienced by a tracer particle can be written as

uu(t ox(t uu(t Suu(t possible improvement in the streamline calculation results in
(V] _ X (] ux(O);() a small enhancement of the effect we have pointed out in this
It fio Ot |t=0 X Jiso IX o paper.
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