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Phase behavior of a simple model for membrane proteins
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We report a numerical simulation of the phase diagram of a simple model for membrane proteins
constrained to move in a plane. In analogy with the corresponding three-dimensional models, the
liquid—gas transition becomes metastable as the range of attraction decreases. Spontaneous
crystallization happens much more readily in the two-dimensional models rather than in their
three-dimensional counterparts. 01 American Institute of Physics.
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I. INTRODUCTION the liquid-vapor transition is preempted by the freezing curve
for particles with sufficiently short-ranged attractions. How-
If one picture is worth a thousand words, recent ad-ever, quantitatively, there are large differences. In contrast to
vances in x-ray crystallography are providing the equivalenthe three-dimensional case which still exhibits a well-defined
of a dictionary. Crystallographers are now solving the threemetastable liquid—vapor coexistence curve below the equi-
dimensional structure of proteins at the rate of one or mordibrium freezing curve, we find crystallization, rather than
per day. A bottleneck is the difficulty of growing high- fluid—fluid demixing, in the corresponding “membrane-
quality crystals for x-ray analysis. protein” model.
As the success of protein crystallization depends
strongly on the physical conditions of the initial solutibf,
much effort has gone into finding the relation between sol-
i, o . Il. MODEL
vent conditions and crystallization behavior. Rosenbaum
et al? analyzed the solubility curves of a variety of globular  we model the effective interaction between membrane
proteins and found that they can be made to superimposgroteins using an extension of the well-known Lennard-
when expressed in appropriate scaled units. What this sugtones potential,
gests is that the phase behavior of many globular—protein
solutions obeys a law of corresponding states. Specifically, o, r<g,
they showed that the solid—fluid phase boundary of the pro-

teins in solutions can be mapped onto the corresponding v(r)= f 1 _ @ o<,
curve of a simple model systertthe hard-core Yukawa &\ [(rlo)?>=11% [(rlo)?—1]3
potentiaf) with short-ranged attractions. Such corresponding (1)

states behavior suggests that — for a given class of com-

pounds — the solubility boundary is only weakly dependentVhereo denotes the hard-core diameter of the particleseand

Far fewer crystals have been grown of membrane proiusted by varying the parameter the smallera the longer
teins than of globular proteins. The reason is simply that it igh€ range of attractions. Figure 1 plots this potential for the

more difficult to crystallize membrane proteins than globularValues ofe used in this paper. Note that asdecreases, the
proteins. It would, of course, be very interesting to know if l2nge of repulsions increases as well, so that the “effective

the “generic” features of the phase behavior of quasi-two-Size of the_partic!e grows. It is, howgver, convenient to com-
dimensional proteins are similar to those of globular pro-Pare the S|mulat|on results .for particles thgt have the same
teins. It is tempting to start such an analysis by looking at thd'ard-core diameter. To estimate the effective hard-core di-
corresponding “minimal” model for membrane proteins— ameter fo'r a given value oi,. we separqte t_he potentlal '|r_1to
namely, one of circular disks with isotropic, short-ranged@" attractivey , and a repulsive ., contribution in the spirit
attractive interactions. In this paper, we report a numericaP the Weeks—Chandler—Andersen metfiadle then calcu-
study of the phase behavior of such model membrane prdate the equivalent hard-core size of the repulsive part of the
teins. In our study, we vary the range of the attractive interP0tential using the Barker—Henderson criterfon,

action between the particles. We find that the general topol-

ogy of t.he phase diagram is indeed similiar to that_for three- O'eff:f dr[1—e vred/keT]. )
dimensional“globular”) proteins. In particular, we find that 0
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independent free-energy calculations allow us to start the
Gibbs—Duhem integration at a finite value gfwhere we

; 3 find a strong first-order liquid—solid phase transition. We
Lhl ] found this second route more reliable.

The second point is the choice of the form of the equa-
v(r) tion to be integrated. The Gibbs—Duhem method is not self-
0Ff i ........ — correcting. This means that small numerical errors may cause

A the computed coexistence curve to diverge from the true
phase-equilibrium curve. To minimize this problem, the
right-hand side of Eq(3) must be a smooth function of pres-
sure and temperature, so that simple integration schemes can
B . . . be applied with high accuracy. In our case we found that at

1.0 1.5 2.0 2.5 3.0 high temperatures a suitable slowly varying function was

rfo dlogP  Ae+PAp

FIG. 1. Interaction potential and defined in Efj) corresponding tar=50 dlogB ~ PAv
(—), a=4.5 (——-), and @=0.1 (---). Note that asa decreases, attractions

become longer ranged but the range of repulsions increases as well, so that . . . .
the “effective” size of the particle grows\We have set=1) whereAe is the difference in the energy per particle between

the two coexisting phases. In the hard-particle limit By
term completely overwhelms the energy difference, and the
IIl. COMPUTATIONAL METHODS slope of the phase boundary plotted in theg P,log B8) dia-
, gram approaches-1. We have verified this in our simula-
~ In order to map out the phase diagram of our tWo-(ions |n the low temperature regime the most convenient
dimensional model for membrane proteins, we have used giterential form of the Clausius—Clapeyron equation, in

combination of simulation techniques that we discuss brieﬂyagreement with Kofkkand Haged,was found to be
in this section. ’

. 4)

A. Gibbs—Duhem integration dlog BP Ae

=— . 5
This method was proposed by Kofk& and is based on dg BPAv ©®
the integration of the Clausius—Clapeyron equation, which

expresses the slope of the phase boundary infhg) dia-  Equations(4) and (5) were solved using a second-order
gram, predictor-corrector algorithm. As such algorithms are not
dP Ah self-starting, we initiated the integration by supplying the
@:_ﬂTv’ (3) values of the integrand and its slogehen knowrn, and
using a first-order algorithm for the prediction of the first
where 8=1/kgT, P is the pressureAh and Av are the dif-  point; after two integration steps we continued with the de-
ferences in enthalpy and voluniper particl¢ in the two  sired second order procedure. In Fig. 2 we collect the phase
coexisting phases, respectively. To compute this slope, twtransition points obtained from numerical integration of Egs.
simulations are carried out in parallel: one in the liquid phas€4) and (5).
and one in the solid. The two systems are held at the same The third point has to do with spontaneous phase transi-
temperature and pressure, but cannot interact with eadions during a single phase simulation. In two dimensions
other; during the runs we measure the average defity  there is much less hysteresis in the solid—liquid transition
and enthalpyh per particle and thus determinel/dg). than in three dimensions. As a consequence, it may happen
Knowing this slope, we can then estimate the location of ahat, in a constant-pressure simulation of a relatively small
neighboring point on the R,B8) coexistence curve. The system(in our case,N=256), a fluid could spontaneously
Gibbs—Duhem method is straightforward, but there are sewwansform into a solid, or vice versa. This creates a problem
eral ways in which it can be implemented, and there ardor the Gibbs—Duhem simulations that involve constant-
several subtleties that require attention. pressure studies of state points along the solid—fluid coexist-
The first is the choice of a good starting point. Theence line. To prevent such undesiraléed, on a macro-
Gibbs—Duhem integration method allows one to trace out thecopic scale, irrelevanfluctuations, we imposed a constraint
(P,B) coexistence curve once one point on this curve ion the degree of crystallinity of the system. The degree of
known. There are several ways to select this point. In one sefystallinity was measured using a global bond-order
of calculations, we started the stepwise integratiopgaDd  parametet! If during a constant-pressure Monte Carlo simu-
(i.e., the infinite temperature limitvhere the phase diagram lation of the liquid(or solid phase, the value of the bond-
approaches that of hard disks. Here we have used the fluiderder parameter of a configuration was outside the interval
solid equilibrium density gap reported by Ja$ts the input  typical for the phase under consideration, then the configu-
of our first Gibbs—Duhem simulation. However, as the freezration was rejected. Typically no more than 0.5% of the con-
ing transition of hard disks is itself still not completely figurations were rejected during a simulation of any state
characterized? this is not necessarily the best option. In fact point.
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FIG. 3. Plot of the chemical potential as a function of the pressuRefor

the liquid and the solid phase. The transition condition is satisfied at the
crossing; at a fixed temperature the chemical potentials and the pressure are
equal. Here we neglect the de Broglie wavelength contribution. The calcu-
lation equilibrium pressure does not change since one subtracts the same

10g BP quantity, namely, In?, from the chemical potential of both phases.
Bulp)=I pA? . b/a—c/a2+1+c/2a2+bp
n(p)=In
1-ap 1-ap (1—ap)?
sz 9
S — +—3—(b/a—c/2a +1), (7
0 05 1 15 2 25 3 35 (1—ap)
40 ‘
FIG. 2. Phase boundary in the two representations used for the Gibbs—
Duhem integration schemé) In the high temperature regime aftg) in the (a)
low temperature regime. 3.0 ¢
BP
2.0t
B. Thermodynamic integration
Thermodynamic integration is the method most com- 1.0 ¢
monly used to locate the solid—liquid transition. The proce-
dure involves the comparison of the chemical potentials of 0.0

the liquid and solid phases at equal temperature and pressure. 00 04 08 12 16
The result of such a calculation is @& ,P)-diagram similar

to the one shown in Fig. 3. Two phases are in equilibrium at

the point where the two chemical potential curves cross.

Evaluation of the chemical potential of the fluid branch is
straightforward once the equation of state of the fluid is

known from low densities up to the density range of interest. BP
In the present case, we did this by performing a large number

of NPT-Monte Carlo simulations at different state poif#se

Fig. 4). We then fitted the numerical data for the pressure to

a convenient fitting function. In the present case, we used an

ad hoc generalization of the so-callgeexpansion that is

often used to describe the equation of state of hard-body

fluids,'?

2 3

, (6)

p

BP=1 o, D

p
1-ap

c p
l-ap

FIG. 4. Equation of state, orR,p)-isotherm, calculated at the same tem-
wherea, b, andc are to be determined from the fit. Upon perature for two different ranges of interactiota:extremely shorta=>50),

: : o (b) extremely long(a=0.1). The simulation data have been collected by
Integration of the pressuréﬁ) between zero denSItydeal measuring the average density in NPT-Monte Carlo simulations when com-

gas Iimi'g) and the density of interes_t, one obtains an explicitpressmg a liquidO) or when expanding a soli®), and(C)) measuring the
expression for the chemical potential, average pressure j@VT-Monte Carlo simulations.
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where A is the de Broglie wavelength. In the case of the TABLE I. Coexistence data for the liquid—gas equilibriugis the inverse
solid phase, we fit the calculateB;(p) -isotherms to a simple temperature ang is the number density. The uncertainti®s quoted here

2 . refer to the half-width of the histogram indicating the probability of finding
power law of the formap * bp+ ¢. Integrating between a a certain density during the simulation. By fittipg,sand pjq to the law of

reference densityp* and the present density yields the reciiinear diameters, we extrapolate the critical poinBat2.392 andp,

chemical potential =0.134.
Bu(p)=2ap+b(lnp+1)—(ap*+binp*—cl/p*) B Pgas Ap Piiq Ap

xex % 2 % 2.60 0.015 0.010 0.250 0.005
AT )+InA 1. (8) 2.55 0.020 0.010 0.245 0.005
rex i - 2.525 0.020 0.010 0.240 0.010
v_vheref (p™) is the excess HeImhoI.tZ free energy per par- ;50 0.0225 0.010 0.235 0.010
ticle evaluated at the reference dengity A method that is 2.475 0.020 0.015 0.230 0.015
widely used to compute the free energy of a crystalline solid 2.45 0.032 0.015 0.228 0.010
is the so called “Einstein crystal” method proposed by Fren- 2:425 g-ggg g-gfg 8-;38 g-gfg
kel and Ladd-* which employs thermodyngmlc integration  '55 0.070 0.020 0.200 0.020
of the Helmholtz free energy along a reversible artificial path 5 35 0.090 0.020 0.180 0.020

between the system of interest and an Einstein crystal. The
Einstein system is used as a reference since there is a simple

analytical expression for its partition function, which allows

a determination of thabsolutevalue of its free energy. We We have verified the computég,P)-curves of the fluid,
typically performed a series of 10 NVT-simulations at theby calculating independently the chemical potential, using
reference density*, switching gradually from the Einstein the Widom particle-insertion methdfl, in an NVT-
crystal to our system of interest, by modifying the value ofsimulation.

the coupling constant, wherex=1 corresponds to the Ein-

stein crystal and =0 to the system of interest. The value of

the excess free energy takes a simple fotm, C. Gibbs ensemble simulations
q [2 U L A method that focuses specifically on the location of the
BF* X p*)=—~1In _W}Jr D_ EJ d\(AU), liquid—vapor coexistence curve is the Gibbs—Ensemble
2 laB] N NJo technique-’ Here two simulations are carried out in parallel:
N—1 d+1 1 one in the liquid phase and one in the vapor. The two sys-
— Inp+1— —=—INN—=—In 2, tems are held at the same temperature and are allowed to

2N 2N exchange volume and mass, but the total volume and total
(9) number of particles of the two systems is fixed. This ensures
that, at equilibrium, the pressure and chemical potential of
whered is the dimensionalityN is the size of the systena;  the two systems are the same. As a consequence, the condi-
is the spring constant of the Einstein crystal, ddgl the  tions for phase coexistence are automatically satisfied. Using
potential energy of the crystal with all the atoms in theirthis technique we calculated liquid—gas coexisting densities
lattice positions. The difference between the energy of théor the case of long-range attractions=0.1), where the
Einstein crystal and that of the system of interest) liquid—vapor transition is stable and the phase diagram
=Ugj,— U, enters in the third term in Eq9) and the inte-  shows a critical point as well as a triple point. The coexist-
gral in this term is evaluated numerically as explained in Refence data have been collected in Table I. Close to the critical
15. point the free energy associated with the formation of the
Once the transition pressure is known, from the crossingiquid—vapor interface becomes very small. As a conse-
of the two chemical potential curves of Fig. 3, one simplyquence, the free energy cost to create an interface in either
reads off the coexisting densities from tHe, ) diagram. In  box becomes small, while the formation of such interfaces is
Fig. 4 we show two typical equations of state for the casentropically favorable. For this reason, just below the critical
=50 anda=0.1 where we have collected state points usingpoint, vapor—liquid coexistence can no longer be observed in
both NPT-simulations angtVT-simulations(i.e., performed a Gibbs Ensemble simulatidf.Therefore the highest tem-
in the Grand Canonical EnsemhleAt low temperatures it perature at which the coexistence can be observed is not a
becomes increasingly difficult to equilibrate the fluid system,proper estimate of the critical temperature of the system;
especially if the series of simulations is performed as aevertheless it is possible to estimate it by assuming that the
gradual compression. The occasional formation of high dentemperature dependence of the density difference of the two
sity clusters of particles generates locally a highly incom-coexisting phases can be fitted to a scaling 1w,
pressible fluid, and a typical compression move is therefore o Ty
very unlikely to succeed. On the other hand, by keeping the Plia™ Poas™ AT=To), (10)
chemical potential constant, the density can be more easilywhere y is the critical exponentfor two dimensional sys-
increased by adding new particles. The transition calculatettmsy=0.125, T, is the estimate of the critical temperature,
via the thermodynamic integration route is completely con-andA is a constant determined in the fit. Ontgis known,
sistent with our simulation data, and the transition is pre-t is possible to estimate the critical densjty, by using the
dicted to fall inside the observed “hysteresis” loop. law of rectilinear diameters’
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ot
P e o B(T=To), (1)

whereB is an adjustable parameter.

IV. RESULTS

We have mapped the phase boundaries for three differ-
ent ranges of attractions correspondingate50, 4.5, and
0.1. Our results are summarized in Fig. 5. The first point to
note is that we find clear evidence ofiest order transition
between the solid and fluid phase at finite temperatures. This
finding would be trivial in three dimensions but not in two.
In fact there is considerable evidence that melting in two
dimensions may be a continuous phase transffiéhOn the
other hand evidence for first order two-dimensional melting
has also been observed in a number of systéarsl there is,
in fact, no theoretical reason to rule out first-order melting in
two dimensions.

1.6

A. Short-range

In the first panel of Fig. 5 we show the calculated phase
diagram for the shortest range considered. A relatively small
system size oN=256 particles was used in the mapping of
the phase boundary using two parallel NPT-simulations com-
bined into the Gibbs—Duhem method. In order to shorten
simulation times we have truncated, but not shifted, the po-

1.6

tential atr=3.50, and maintained a neighbor list of particles 4.0 ¢

within a radius ofr=5.0c. In order to prevent the solid sys-

tem from melting and the liquid from crystallizing, we have B 33

used the artificial constraint on a crystallinity order param- 30

eter (see Sec. I)l. However, we also ran a few simulations

without this artificial constraint and we verified that the 25+ o

phase coexistence was not an artifact due to the constraint.

We performed two sets of integrations, one where we in- 201

creaseds stepwise(empty circles in the figuse and one in s |

the opposite sendéilled circles. An independent evaluation ’ (C)

of the crystallization boundary was obtained with thermody- 1.0 . . .
namic integration. The squares in the figure represent the 00 04 08 12 16
calculated coexisting densities, and are connected with a 3
simple fitting function which is only meant to be a guide to paeff

the eye. Note that the curves for increasing and decregsing
do not superimpose everywhere. This is due to the limited _ _ . : .
. . . . FIG. 5. Phase diagrams in th@,p) representation, shown for increasing
numerllca}l accur_acy of our Gibbs—Duhem '“tegra“on- range of attractionga) «=0.1, (b) «=4.5, and(c) «=0.1. The circles refer
It is interesting to compare our results with the phaseo the Gibbs—Duhem integration method. Here we sti@y a series for
diagram calculated for particles interacting through the samécreasings (decreasing temperatyrand(®) a series for decreasing The

; ; ; ; ; squareg[J) are the result of thermodynamic integration, and the line just a
potential and with same rané%’bm in three dimensions. uide to the eye. The fluid—fluid equilibrium densities are calculated with

Constraining the syster_n tp two dimensions causes th%ibbs ensemble simulatiorig\) when possible, otherwise we estimated the
“shoulder” in the crystallization curve to become flatter and spinodal(---) extrapolating the isothermal compressibility. See text for de-

to move to lower temperatures. The latter effect is not surtails.

prising as there are more neighborgdi3 than ind=2. For

instance, a sphere in @&=2 close-packed structure has 6

neighbors and i=3, 12 neighbors. All other things being should expect that, due to the stronger fluctuations in two
equal, in three dimensions the freezing temperature is raisedimensional fluids, the(metastable liquid—vapor critical

by a factor proportional to the number of neighbors. NexttemperatureT., should be reduced compared to the corre-
the effect of thermal fluctuations increases as the dimensiorsponding three-dimensional model.

ality of the system is reduced. =1, solids can not exist We have attempted to locate the metastable fluid-fluid
because of thermal fluctuations. th=2, there is no true equilibrium by performing Gibbs-Ensemble simulations in
long-range positional order, although there is a phase transihe region where we estimated demixing of the metastable
tion separating the liquid and the crystalline phase. Wdluid phase to occur. However, in these simulations we saw
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no fluid-fluid demixing. Rather, we noticed a strong ten- 8.0
dency towards spontaneous crystallization. This behavior is

in contrast with analogous calculations in the corresponding
three-dimensional systefd.We argue that in two dimen- 6.0 *
sions the local hexagonal structure of the dense fluid, is simi- g(r)
lar to that of the solid. Only small density fluctuations are
necessary to overcomeg(presumably small free energy bar-
rier for the formation of the critical nucleus. Nevertheless we
can still provide an estimate of the fluid—fluid metastable 201
equilibrium by extrapolating to the temperature where the
inverse isothermal compressibilitx, *=—V(dP/dV)1, of

the liquid phase vanishes. This is straightforward, since the 0'00,0 20 40 60 80 100

equation of state of the liquid is known for several tempera-

tures from the thermodynamic integration procedures. See, T/Ueff

for example, Fig. 4. The inverse isothermal compressibility

can be rewritten as FIG. 6. Pair correlation functiog(r) calculated in the short-range attraction

a=50 system aff*=2.5 for different densities(---) typical gas density
. IBP p*=0.13,(———)_|iquid system exgctly at equilibrium* =0.5680, and—)
Bk ZP<W) . (12 the corresponding coexisting solid systefi=0.8267.
T

We assumed that the inverse compressibility depends lin-

early on temperaturéthis is not true close to the critical the open squares refer to the solid-fluid equilibrium and were
point, but there we have no data anywaphe set of points determined through thermodynamic integration. At very low

where the extrapolatex ~* vanishes, provides us with our temperatures, though, calculating the fluid branch of the
estimate of the metastable liquid—vapor spinodal. This estigquation of state becomes quite a difficult task, because

mate is shown as a dotted curve in Fig. 5. equilibration times become increasingly longer. Here we
have estimated the crystallization boundary by Grand-
B. Intermediate-range Canonical(«VT) simulations of very low density systems.

We used thermodynamic integration to map out the )
solid—liquid equilibrium for longer range of attractions. Even D- Structural properties

though the calculation is limited to a few selected tempera- |n order to investigate the structural properties of the
tures, this method has the advantage that it is more robughases identified in the previous sections, we have performed
than the Gibbs—Duhem. The curve connecting the squares §lmulations on a larger system of 450 particles, at a single
Fig. 5 is only a guide to the eye. As we increase the range ofemperature, for the case of a short-range potential. The use
attractions, we expect the metastable critical point to move t@y this larger system enables the calculation of the pair dis-
higher temperatures. Indeed our estimate of the critical pointripution functions for large separation: this is especially im-
obtained USing the eXtrapOlation method described abOV?)ortant in order to Study the decay of the bond-order param-
predicts that, for the intermediate range=4.5), the spin-  eter close to the solid—liquid transition. Monte Carlo
odal just about touches the crystallization boundary. We atsimulations were performed in the NPT-ensemble. The struc-
tempted to perform Gibbs ensemble simulations to study thgyres of the two coexisting phase were characterized using
liquid—vapor transition in this model system, but again Wethe radial distribution functiog(r) (see Fig. and the bond-
encountered a strong tendency of the dense phase to crystgfder correlation functiomye(r), which correlates over the
lize. value of thelocal bond-orientational order parametgg be-
tween two particles. This is defined by

L , . (s (ry) dhe(ri))

The situation changes quite dramatically when the range  Js(r) = T
of attraction is increased even more. The liquid—gas transi-
tion becomes stable and Gibbs-Ensemble simulations athere the local bond orientational order for particlat a
successful in locating the phase boundaries. In Table | w@ositionr; is given by
collect the coexistence dgns_mes as a fgnctlon of the inverse 3 W(F ) exp(6i 6,))
temperature. The uncertaintidp quoted in the table are not Pe(ri) =
the errors in the average densities, rather they refer to the
half-width of the histogram indicating the probability of In this expression the summation is over the neighboring
finding a certain density during the simulation. By fitting the particlesk of particle i and 6, is the angle between the
liquid and gas densities to the law of rectilinear diametersyector (r;—r,) and a fixed reference axis. We used a weight-
we extrapolate the critical point al,=0.418 and p, ing functionw to define nearest neighbotsin the present
=0.134. The fitting curve is portrayed in the third panel of study, we chos&v(r) such that it is unity for a separation of
Fig. 5. The open circles are the Gibbs-Ensemble simulation<1.60- and zero forr;, above 1.8 with a linear interpola-
coexistence densities for the liquid—gas equilibrium, whiletion between the two endpoints. The upper limit of the

C. Long-range
: (13

2w (ri) 4
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moved below the freezing curve, there is virtually no barrier

10 to crystallization. This suggests that membrane proteins with
effectively isotropic interactions should easily form two-

0.8 | . ) : .

g6<7") dimensional crystals. Two questions ari§E: how do these

06 - two dimensional crystals proceed to form three-dimensional
crystals; and2) to what extent is the ease ofl 2rystalliza-

04 tion changed by anisotropy in the protein—protein interac-
tions?

02t
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