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Phase behavior of a simple model for membrane proteins
Massimo G. Noroa) and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 15 September 2000; accepted 14 November 2000!

We report a numerical simulation of the phase diagram of a simple model for membrane proteins
constrained to move in a plane. In analogy with the corresponding three-dimensional models, the
liquid–gas transition becomes metastable as the range of attraction decreases. Spontaneous
crystallization happens much more readily in the two-dimensional models rather than in their
three-dimensional counterparts. ©2001 American Institute of Physics.
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I. INTRODUCTION

If one picture is worth a thousand words, recent a
vances in x-ray crystallography are providing the equival
of a dictionary. Crystallographers are now solving the thr
dimensional structure of proteins at the rate of one or m
per day. A bottleneck is the difficulty of growing high
quality crystals for x-ray analysis.

As the success of protein crystallization depen
strongly on the physical conditions of the initial solution,1,2

much effort has gone into finding the relation between s
vent conditions and crystallization behavior. Rosenba
et al.3 analyzed the solubility curves of a variety of globul
proteins and found that they can be made to superimp
when expressed in appropriate scaled units. What this
gests is that the phase behavior of many globular–pro
solutions obeys a law of corresponding states. Specifica
they showed that the solid–fluid phase boundary of the p
teins in solutions can be mapped onto the correspond
curve of a simple model system~the hard-core Yukawa
potential4! with short-ranged attractions. Such correspond
states behavior suggests that — for a given class of c
pounds — the solubility boundary is only weakly depend
on the details of the interaction potential.

Far fewer crystals have been grown of membrane p
teins than of globular proteins. The reason is simply that i
more difficult to crystallize membrane proteins than globu
proteins. It would, of course, be very interesting to know
the ‘‘generic’’ features of the phase behavior of quasi-tw
dimensional proteins are similar to those of globular p
teins. It is tempting to start such an analysis by looking at
corresponding ‘‘minimal’’ model for membrane proteins—
namely, one of circular disks with isotropic, short-rang
attractive interactions. In this paper, we report a numer
study of the phase behavior of such model membrane
teins. In our study, we vary the range of the attractive int
action between the particles. We find that the general to
ogy of the phase diagram is indeed similiar to that for thr
dimensional~‘‘globular’’ ! proteins. In particular, we find tha
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the liquid-vapor transition is preempted by the freezing cu
for particles with sufficiently short-ranged attractions. Ho
ever, quantitatively, there are large differences. In contras
the three-dimensional case which still exhibits a well-defin
metastable liquid–vapor coexistence curve below the e
librium freezing curve, we find crystallization, rather tha
fluid–fluid demixing, in the corresponding ‘‘membrane
protein’’ model.

II. MODEL

We model the effective interaction between membra
proteins using an extension of the well-known Lenna
Jones potential,

v~r !5H `, r<s,

4e

a2 S 1

@~r /s!221#6
2

a

@~r /s!221#3D , s,r ,

~1!

wheres denotes the hard-core diameter of the particles ane
the well depth. The width of the attractive well can be a
justed by varying the parametera: the smallera the longer
the range of attractions. Figure 1 plots this potential for
values ofa used in this paper. Note that asa decreases, the
range of repulsions increases as well, so that the ‘‘effectiv
size of the particle grows. It is, however, convenient to co
pare the simulation results for particles that have the sa
hard-core diameter. To estimate the effective hard-core
ameter for a given value ofa, we separate the potential int
an attractivevatt and a repulsivev rep contribution in the spirit
of the Weeks–Chandler–Andersen method.5 We then calcu-
late the equivalent hard-core size of the repulsive part of
potential using the Barker–Henderson criterion,6

seff5E
0

`

dr@12e2vrep~r !/kBT#. ~2!

In what follows, we useaeff as our unit of length. In these
units, all our model proteins have the same effective dia
eter.

Be-
7 © 2001 American Institute of Physics
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III. COMPUTATIONAL METHODS

In order to map out the phase diagram of our tw
dimensional model for membrane proteins, we have use
combination of simulation techniques that we discuss brie
in this section.

A. Gibbs–Duhem integration

This method was proposed by Kofke,7,8 and is based on
the integration of the Clausius–Clapeyron equation, wh
expresses the slope of the phase boundary in the (P,b) dia-
gram,

dP

db
52

Dh

bDv
, ~3!

whereb51/kBT, P is the pressure,Dh andDv are the dif-
ferences in enthalpy and volume~per particle! in the two
coexisting phases, respectively. To compute this slope,
simulations are carried out in parallel: one in the liquid pha
and one in the solid. The two systems are held at the s
temperature and pressure, but cannot interact with e
other; during the runs we measure the average density~1/v)
and enthalpyh per particle and thus determine (dP/db).
Knowing this slope, we can then estimate the location o
neighboring point on the (P,b) coexistence curve. The
Gibbs–Duhem method is straightforward, but there are s
eral ways in which it can be implemented, and there
several subtleties that require attention.

The first is the choice of a good starting point. T
Gibbs–Duhem integration method allows one to trace out
(P,b) coexistence curve once one point on this curve
known. There are several ways to select this point. In one
of calculations, we started the stepwise integration atb50
~i.e., the infinite temperature limit! where the phase diagram
approaches that of hard disks. Here we have used the fl
solid equilibrium density gap reported by Jaster9 as the input
of our first Gibbs–Duhem simulation. However, as the fre
ing transition of hard disks is itself still not complete
characterized,10 this is not necessarily the best option. In fa

FIG. 1. Interaction potential and defined in Eq.~1! corresponding toa550
~—!, a54.5 ~–––!, anda50.1 ~---!. Note that asa decreases, attraction
become longer ranged but the range of repulsions increases as well, s
the ‘‘effective’’ size of the particle grows.~We have sete51.!
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independent free-energy calculations allow us to start
Gibbs–Duhem integration at a finite value ofb where we
find a strong first-order liquid–solid phase transition. W
found this second route more reliable.

The second point is the choice of the form of the equ
tion to be integrated. The Gibbs–Duhem method is not s
correcting. This means that small numerical errors may ca
the computed coexistence curve to diverge from the t
phase-equilibrium curve. To minimize this problem, t
right-hand side of Eq.~3! must be a smooth function of pres
sure and temperature, so that simple integration schemes
be applied with high accuracy. In our case we found tha
high temperatures a suitable slowly varying function was

d log P

d logb
52

De1PDv
PDv

, ~4!

whereDe is the difference in the energy per particle betwe
the two coexisting phases. In the hard-particle limit thePDv
term completely overwhelms the energy difference, and
slope of the phase boundary plotted in the~logP,logb! dia-
gram approaches21. We have verified this in our simula
tions. In the low temperature regime the most conveni
differential form of the Clausius–Clapeyron equation,
agreement with Kofke7 and Hagen,4 was found to be

d logbP

db
52

De

bPDv
. ~5!

Equations ~4! and ~5! were solved using a second-ord
predictor-corrector algorithm. As such algorithms are n
self-starting, we initiated the integration by supplying t
values of the integrand and its slope~when known!, and
using a first-order algorithm for the prediction of the fir
point; after two integration steps we continued with the d
sired second order procedure. In Fig. 2 we collect the ph
transition points obtained from numerical integration of Eq
~4! and ~5!.

The third point has to do with spontaneous phase tra
tions during a single phase simulation. In two dimensio
there is much less hysteresis in the solid–liquid transit
than in three dimensions. As a consequence, it may hap
that, in a constant-pressure simulation of a relatively sm
system~in our case,N5256!, a fluid could spontaneously
transform into a solid, or vice versa. This creates a prob
for the Gibbs–Duhem simulations that involve consta
pressure studies of state points along the solid–fluid coex
ence line. To prevent such undesirable~and, on a macro-
scopic scale, irrelevant! fluctuations, we imposed a constrai
on the degree of crystallinity of the system. The degree
crystallinity was measured using a global bond-ord
parameter.11 If during a constant-pressure Monte Carlo sim
lation of the liquid~or solid! phase, the value of the bond
order parameter of a configuration was outside the inte
typical for the phase under consideration, then the confi
ration was rejected. Typically no more than 0.5% of the co
figurations were rejected during a simulation of any st
point.

that
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2479J. Chem. Phys., Vol. 114, No. 5, 1 February 2001 Phase behavior of membrane proteins
B. Thermodynamic integration

Thermodynamic integration is the method most co
monly used to locate the solid–liquid transition. The proc
dure involves the comparison of the chemical potentials
the liquid and solid phases at equal temperature and pres
The result of such a calculation is a (m,P)-diagram similar
to the one shown in Fig. 3. Two phases are in equilibrium
the point where the two chemical potential curves cro
Evaluation of the chemical potential of the fluid branch
straightforward once the equation of state of the fluid
known from low densities up to the density range of intere
In the present case, we did this by performing a large num
of NPT-Monte Carlo simulations at different state points~see
Fig. 4!. We then fitted the numerical data for the pressure
a convenient fitting function. In the present case, we used
ad hoc generalization of the so-calledy-expansion that is
often used to describe the equation of state of hard-b
fluids,12

bP5
r

12ar
1bS r

12ar D 2

1cS r

12ar D 3

, ~6!

wherea, b, and c are to be determined from the fit. Upo
integration of the pressure~6! between zero density~ideal
gas limit! and the density of interest, one obtains an expl
expression for the chemical potential,

FIG. 2. Phase boundary in the two representations used for the Gib
Duhem integration scheme.~a! In the high temperature regime and~b! in the
low temperature regime.
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bm~r!5 ln
rL2

12ar
1

b/a2c/a211

12ar
1

c/2a21br

~12ar!2

1
cr2

~12ar!3
2~b/a2c/2a211!, ~7!

s–

FIG. 3. Plot of the chemical potentialm as a function of the pressureP for
the liquid and the solid phase. The transition condition is satisfied at
crossing; at a fixed temperature the chemical potentials and the pressu
equal. Here we neglect the de Broglie wavelength contribution. The ca
lation equilibrium pressure does not change since one subtracts the
quantity, namely, lnl2, from the chemical potential of both phases.

FIG. 4. Equation of state, or (P,r)-isotherm, calculated at the same tem
perature for two different ranges of interactions:~a! extremely short~a550!,
~b! extremely long~a50.1!. The simulation data have been collected
measuring the average density in NPT-Monte Carlo simulations when c
pressing a liquid~s! or when expanding a solid~d!, and~h! measuring the
average pressure inmVT-Monte Carlo simulations.
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where L is the de Broglie wavelength. In the case of t
solid phase, we fit the calculated (P,r)-isotherms to a simple
power law of the formar21br1c. Integrating between a
reference densityr* and the present density yields th
chemical potential

bm~r!52ar1b~ ln r11!2~ar* 1b ln r* 2c/r* !

1b f * ex~r* !1 ln L2r* 21, ~8!

wheref * ex(r* ) is the excess Helmholtz free energy per p
ticle evaluated at the reference densityr* . A method that is
widely used to compute the free energy of a crystalline so
is the so called ‘‘Einstein crystal’’ method proposed by Fre
kel and Ladd,13 which employs thermodynamic integratio
of the Helmholtz free energy along a reversible artificial p
between the system of interest and an Einstein crystal.
Einstein system is used as a reference since there is a si
analytical expression for its partition function, which allow
a determination of theabsolutevalue of its free energy. We
typically performed a series of 10 NVT-simulations at t
reference densityr* , switching gradually from the Einstein
crystal to our system of interest, by modifying the value
the coupling constantl, wherel51 corresponds to the Ein
stein crystal andl50 to the system of interest. The value
the excess free energy takes a simple form,14

b f * ex~r* !52
d

2
lnF2p

abG1
bU0

N
2

b

NE0

1

dl^DU&l

2
N21

N
ln r112

d11

2N
ln N2

1

2N
ln 2p,

~9!

whered is the dimensionality,N is the size of the system,a
is the spring constant of the Einstein crystal, andU0 the
potential energy of the crystal with all the atoms in th
lattice positions. The difference between the energy of
Einstein crystal and that of the system of interest,DU
[UEin2U, enters in the third term in Eq.~9! and the inte-
gral in this term is evaluated numerically as explained in R
15.

Once the transition pressure is known, from the cross
of the two chemical potential curves of Fig. 3, one simp
reads off the coexisting densities from the (P,r) diagram. In
Fig. 4 we show two typical equations of state for the ca
a550 anda50.1 where we have collected state points us
both NPT-simulations andmVT-simulations~i.e., performed
in the Grand Canonical Ensemble!. At low temperatures it
becomes increasingly difficult to equilibrate the fluid syste
especially if the series of simulations is performed as
gradual compression. The occasional formation of high d
sity clusters of particles generates locally a highly inco
pressible fluid, and a typical compression move is theref
very unlikely to succeed. On the other hand, by keeping
chemical potential constant, the density can be more ea
increased by adding new particles. The transition calcula
via the thermodynamic integration route is completely co
sistent with our simulation data, and the transition is p
dicted to fall inside the observed ‘‘hysteresis’’ loop.
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We have verified the computed~m,P!-curves of the fluid,
by calculating independently the chemical potential, us
the Widom particle-insertion method,16 in an NVT-
simulation.

C. Gibbs ensemble simulations

A method that focuses specifically on the location of t
liquid–vapor coexistence curve is the Gibbs–Ensem
technique.17 Here two simulations are carried out in paralle
one in the liquid phase and one in the vapor. The two s
tems are held at the same temperature and are allowe
exchange volume and mass, but the total volume and t
number of particles of the two systems is fixed. This ensu
that, at equilibrium, the pressure and chemical potentia
the two systems are the same. As a consequence, the c
tions for phase coexistence are automatically satisfied. U
this technique we calculated liquid–gas coexisting densi
for the case of long-range attractions~a50.1!, where the
liquid–vapor transition is stable and the phase diagr
shows a critical point as well as a triple point. The coexi
ence data have been collected in Table I. Close to the crit
point the free energy associated with the formation of
liquid–vapor interface becomes very small. As a con
quence, the free energy cost to create an interface in e
box becomes small, while the formation of such interface
entropically favorable. For this reason, just below the criti
point, vapor–liquid coexistence can no longer be observe
a Gibbs Ensemble simulation.18 Therefore the highest tem
perature at which the coexistence can be observed is n
proper estimate of the critical temperature of the syste
nevertheless it is possible to estimate it by assuming that
temperature dependence of the density difference of the
coexisting phases can be fitted to a scaling law,19

r liq2rgas5A~T2Tc!
g, ~10!

whereg is the critical exponent~for two dimensional sys-
temsg50.125!, Tc is the estimate of the critical temperatur
andA is a constant determined in the fit. OnceTc is known,
it is possible to estimate the critical densityrc , by using the
law of rectilinear diameters,19

TABLE I. Coexistence data for the liquid–gas equilibrium.b is the inverse
temperature andr is the number density. The uncertaintiesDr quoted here
refer to the half-width of the histogram indicating the probability of findin
a certain density during the simulation. By fittingrgasandr liq to the law of
rectilinear diameters, we extrapolate the critical point atbc52.392 andrc

50.134.

b rgas Dr r liq Dr

2.60 0.015 0.010 0.250 0.005
2.55 0.020 0.010 0.245 0.005
2.525 0.020 0.010 0.240 0.010
2.50 0.0225 0.010 0.235 0.010
2.475 0.020 0.015 0.230 0.015
2.45 0.032 0.015 0.228 0.010
2.425 0.040 0.020 0.230 0.020
2.40 0.060 0.015 0.220 0.015
2.375 0.070 0.020 0.200 0.020
2.35 0.090 0.020 0.180 0.020
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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r liq1rgas

2
5rc1B~T2Tc!, ~11!

whereB is an adjustable parameter.

IV. RESULTS

We have mapped the phase boundaries for three di
ent ranges of attractions corresponding toa550, 4.5, and
0.1. Our results are summarized in Fig. 5. The first poin
note is that we find clear evidence of afirst order transition
between the solid and fluid phase at finite temperatures.
finding would be trivial in three dimensions but not in tw
In fact there is considerable evidence that melting in t
dimensions may be a continuous phase transition.20,21On the
other hand evidence for first order two-dimensional melt
has also been observed in a number of systems22 and there is,
in fact, no theoretical reason to rule out first-order melting
two dimensions.

A. Short-range

In the first panel of Fig. 5 we show the calculated pha
diagram for the shortest range considered. A relatively sm
system size ofN5256 particles was used in the mapping
the phase boundary using two parallel NPT-simulations co
bined into the Gibbs–Duhem method. In order to shor
simulation times we have truncated, but not shifted, the
tential atr53.5s, and maintained a neighbor list of particle
within a radius ofr55.0s. In order to prevent the solid sys
tem from melting and the liquid from crystallizing, we hav
used the artificial constraint on a crystallinity order para
eter ~see Sec. III!. However, we also ran a few simulation
without this artificial constraint and we verified that th
phase coexistence was not an artifact due to the constr
We performed two sets of integrations, one where we
creasedb stepwise~empty circles in the figure!, and one in
the opposite sense~filled circles!. An independent evaluation
of the crystallization boundary was obtained with thermod
namic integration. The squares in the figure represent
calculated coexisting densities, and are connected wit
simple fitting function which is only meant to be a guide
the eye. Note that the curves for increasing and decreasib
do not superimpose everywhere. This is due to the limi
numerical accuracy of our Gibbs–Duhem integration.

It is interesting to compare our results with the pha
diagram calculated for particles interacting through the sa
potential and with same range,23 but in three dimensions.
Constraining the system to two dimensions causes
‘‘shoulder’’ in the crystallization curve to become flatter an
to move to lower temperatures. The latter effect is not s
prising as there are more neighbors ind53 than ind52. For
instance, a sphere in ad52 close-packed structure has
neighbors and ind53, 12 neighbors. All other things bein
equal, in three dimensions the freezing temperature is ra
by a factor proportional to the number of neighbors. Ne
the effect of thermal fluctuations increases as the dimens
ality of the system is reduced. Ind51, solids can not exis
because of thermal fluctuations. Ind52, there is no true
long-range positional order, although there is a phase tra
tion separating the liquid and the crystalline phase.
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should expect that, due to the stronger fluctuations in t
dimensional fluids, the~metastable! liquid–vapor critical
temperature,Tc , should be reduced compared to the cor
sponding three-dimensional model.

We have attempted to locate the metastable fluid-fl
equilibrium by performing Gibbs-Ensemble simulations
the region where we estimated demixing of the metasta
fluid phase to occur. However, in these simulations we s

FIG. 5. Phase diagrams in the~b,r! representation, shown for increasin
range of attractions:~a! a50.1, ~b! a54.5, and~c! a50.1. The circles refer
to the Gibbs–Duhem integration method. Here we show~s! a series for
increasingb ~decreasing temperature! and~d! a series for decreasingb. The
squares~h! are the result of thermodynamic integration, and the line jus
guide to the eye. The fluid–fluid equilibrium densities are calculated w
Gibbs ensemble simulations~n! when possible, otherwise we estimated t
spinodal~---! extrapolating the isothermal compressibility. See text for d
tails.
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no fluid-fluid demixing. Rather, we noticed a strong te
dency towards spontaneous crystallization. This behavio
in contrast with analogous calculations in the correspond
three-dimensional system.23 We argue that in two dimen
sions the local hexagonal structure of the dense fluid, is s
lar to that of the solid. Only small density fluctuations a
necessary to overcome a~presumably! small free energy bar
rier for the formation of the critical nucleus. Nevertheless
can still provide an estimate of the fluid–fluid metasta
equilibrium by extrapolating to the temperature where
inverse isothermal compressibility,k2152V(]P/]V)T , of
the liquid phase vanishes. This is straightforward, since
equation of state of the liquid is known for several tempe
tures from the thermodynamic integration procedures. S
for example, Fig. 4. The inverse isothermal compressibi
can be rewritten as

bk215rS ]bP

]r D
T

. ~12!

We assumed that the inverse compressibility depends
early on temperature~this is not true close to the critica
point, but there we have no data anyway!. The set of points
where the extrapolatedbk21 vanishes, provides us with ou
estimate of the metastable liquid–vapor spinodal. This e
mate is shown as a dotted curve in Fig. 5.

B. Intermediate-range

We used thermodynamic integration to map out
solid–liquid equilibrium for longer range of attractions. Eve
though the calculation is limited to a few selected tempe
tures, this method has the advantage that it is more ro
than the Gibbs–Duhem. The curve connecting the square
Fig. 5 is only a guide to the eye. As we increase the rang
attractions, we expect the metastable critical point to mov
higher temperatures. Indeed our estimate of the critical po
obtained using the extrapolation method described ab
predicts that, for the intermediate range~a54.5!, the spin-
odal just about touches the crystallization boundary. We
tempted to perform Gibbs ensemble simulations to study
liquid–vapor transition in this model system, but again
encountered a strong tendency of the dense phase to cry
lize.

C. Long-range

The situation changes quite dramatically when the ra
of attraction is increased even more. The liquid–gas tra
tion becomes stable and Gibbs-Ensemble simulations
successful in locating the phase boundaries. In Table I
collect the coexistence densities as a function of the inve
temperature. The uncertaintiesDr quoted in the table are no
the errors in the average densities, rather they refer to
half-width of the histogram indicating the probability o
finding a certain density during the simulation. By fitting th
liquid and gas densities to the law of rectilinear diamete
we extrapolate the critical point atTc50.418 and rc

50.134. The fitting curve is portrayed in the third panel
Fig. 5. The open circles are the Gibbs-Ensemble simula
coexistence densities for the liquid–gas equilibrium, wh
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the open squares refer to the solid-fluid equilibrium and w
determined through thermodynamic integration. At very lo
temperatures, though, calculating the fluid branch of
equation of state becomes quite a difficult task, beca
equilibration times become increasingly longer. Here
have estimated the crystallization boundary by Gra
Canonical~mVT! simulations of very low density systems.

D. Structural properties

In order to investigate the structural properties of t
phases identified in the previous sections, we have perfor
simulations on a larger system of 450 particles, at a sin
temperature, for the case of a short-range potential. The
of this larger system enables the calculation of the pair d
tribution functions for large separation: this is especially i
portant in order to study the decay of the bond-order para
eter close to the solid–liquid transition. Monte Car
simulations were performed in the NPT-ensemble. The str
tures of the two coexisting phase were characterized u
the radial distribution functiong(r) ~see Fig. 6! and the bond-
order correlation functiong6(r ), which correlates over the
value of thelocal bond-orientational order parameterc6 be-
tween two particles. This is defined by

g6~r !5
^c6* ~r j !c6~r i !&

g~r !
, ~13!

where the local bond orientational order for particlei at a
position r i is given by

c6~r i !5
(kw~r ik!exp~6iu ik!)

(kw~r ik!
. ~14!

In this expression the summation is over the neighbor
particles k of particle i and u ik is the angle between th
vector (r i2r k) and a fixed reference axis. We used a weig
ing function w to define nearest neighbors.24 In the present
study, we chosew(r) such that it is unity for a separation o
r,1.6s and zero forr ik above 1.8s with a linear interpola-
tion between the two endpoints. The upper limit of t

FIG. 6. Pair correlation functiong(r) calculated in the short-range attractio
a550 system atT*52.5 for different densities:~---! typical gas density
r*50.13, ~–––! liquid system exactly at equilibriumr*50.5680, and~—!
the corresponding coexisting solid systemr*50.8267.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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weighting function was chosen such that all the partic
included in the first peak of the pair distribution functio
contribute to c6 . The bond-order correlation function i
large if local bond-order parameters are correlated over la
distances~as they are in the crystalline solid!. In the isotropic
liquid, bond-order correlation decay exponentially. Howev
in the hexatic phase, an algebraic decay is expected.
results forg6(r ) are shown in Fig. 7; it is apparent thatg6(r )
rapidly tends to zero in the liquid phase, and therefore
liquid phase at coexistence is not even close to becom
hexatic. Of course, in the coexisting solid phase, the b
orientational correlation function tends to a nonzero value
it should. These findings support our ‘‘thermodynamic’’ o
servation that the fluid–solid transition in these model s
tem appears to be first order.

V. CONCLUSIONS

We have studied the phase behavior of simple mo
system that is meant to mimic membrane proteins confi
in a quasi-two-dimensional geometry. To study the ph
behavior, we used a variety of complementary simulat
techniques. Where possible we have used various route
estimate the phase boundaries. Our study focused on th
fluence of the range of the attractive interactions on the
pology of the phase diagram. For long-ranged attractions
phase diagram displays a stable liquid–vapor critical po
and a solid–liquid–vapor triple point. As the range of attra
tion is decreased, the stable liquid–gas transition beco
metastable and the critical point moves into the solid-fl
two-phase region. Qualitatively, the phase diagrams of
two-dimensional systems that we studied are similar to th
of their three-dimensional counterparts. However, quant
tively, there are large differences. Most importantly, we fi
that in systems where the liquid–vapor coexistence curve

FIG. 7. The bond orientational correlation functiong6(r ) calculated for the
systems described in Fig. 6. Note how the low density system carrie
bond correlations even at short distances; the correlation in the liquid is
within 4–5 particle diameters, but in the solid the bond-order param
tends to a nonzero value in the limit of long particle–particle separatio
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moved below the freezing curve, there is virtually no barr
to crystallization. This suggests that membrane proteins w
effectively isotropic interactions should easily form tw
dimensional crystals. Two questions arise:~1! how do these
two dimensional crystals proceed to form three-dimensio
crystals; and~2! to what extent is the ease of 2d crystalliza-
tion changed by anisotropy in the protein–protein inter
tions?
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