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The critical behavior of electrolyte mixtures was studied using grand canonical Monte Carlo
simulations. Mixtures consist of large multivalent macroions and small monovalent co- and
counterions. The system can be viewed as a binary mixture of macroions (with their counterions)
and salt (co- and counterion pair). The primitive model description was used, in which the ions are
point charges with a hard core and the solvent is treated as a uniform dielectric continuum. The
grand canonical simulations are based on insertions and removals of neutral molecules: macroion
with its counterions or coions and a counterion. We propose a distance biasing method that enables
direct grand canonical simulations up to charge asymmetry of 10:1. We calculated the critical loci
that connect the salt-free state, which consists of only macroions and counterions, with the pure salt
state using mixed-field finite-size scaling with no pressure mixing. The critical parameters are
determined for macroion to counterion charge asymmetries of 2:1, 3:1, and 10:1. Our results suggest
that binary electrolyte mixtures are type-I mixtures, where the two components mix continuously.

© 2005 American Institute of Physics. [DOI: 10.1063/1.1979490]

I. INTRODUCTION

In the recent years, the gas-liquid phase separation of
ionic fluids has been the subject of many experimental,l’2
theoretical,&8 and simulation studies.”"> The simplest and
most frequently used model for electrolytes is the primitive
model, where the ions are point charges with a hard core and
the solvent is taken into account as a uniform dielectric con-
tinuum. Panagiotopoulos and co-workers”'*'? and Yan and
de Pablo'*™'® have determined the critical parameters for
size- and charge-asymmetric primitive model electrolytes us-
ing grand canonical Monte Carlo (GCMC) simulations. A
different approach to the problem was taken by Resc¢i¢ and
Linse,17 who estimated the critical parameters for 10:1
charge-asymmetric electrolyte using thermodynamic scaling
Monte Carlo.

Most theoretical studies on electrolytes have considered
salt-free systems with macroions and counterions, but no
coions. 8% However, in many real micellar and colloidal
systems, salt is always present and often difficult to get rid
of. In this paper, we consider electrolyte mixtures that consist
of large multivalent macroions and small monovalent co- and
counterions (salt). One can view the system as a binary mix-
ture of macroions with their counterions and salt. Our objec-
tive is to calculate the critical loci connecting the two ex-
tremes: (i) salt-free state with macroions and counterions,
and (ii) pure salt state with co- and counterions. The simula-
tions are done for macroion to counterion charge asymme-
tries of 2:1, 3:1, and 10:1, using the fine-lattice primitive
model GCMC method of references.”'”

Our GCMC simulations are based on insertions and re-
movals of electroneutral sets of molecules: a macroion with
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its counterions or a coions and a counterion. The main prac-
tical problem in performing the insertion and removal moves
is how to choose molecule configurations that have a high
probability. This problem is made especially difficult by the
fact that the critical point of electrolyte systems is at low
reduced temperatures, where the unlike-ion coupling is so
high, that the counterions condense on the macroions. At
these conditions, the standard grand canonical scheme,
where the counterion positions are chosen uniformly, has low
probability of acceptance. A popular solution is to use a dis-
tance biasing scheme, where counterion positions close to
the macroion are favored.” In previous studies,9’lo a distance
biasing scheme has been used to calculate critical parameters
up to charge asymmetry of 3:1.

Highly charge-asymmetric electrolytes (above 3:1) are
particularly demanding to simulate with GCMC methods,
because of the high number of counterions in neutral sets of
molecules. Each counterion, if not at an energetically favor-
able position, tends to lower the acceptance of the insertion
and removal steps. In order to increase acceptance at high
charge asymmetries, Cheong and Panagiotopoulos12 used a
reservoir GCMC method, where molecules are picked from a
reservoir held at the same temperature as the GCMC simu-
lation. This way, they were able to try insertions of highly
probable molecule configurations. Consequently, they were
able to determine critical parameters up to charge asymmetry
of 10:1. In order to obey detailed balance in the removal step
of the reservoir method, each ion is assigned to a macroion
with the Stillinger-Lovett pairing protoco].lz'24 The pairing
protocol introduces an extra parameter R., the maximum al-
lowed distance between a macroion and its counterions. As
was noted in Ref. 12, the critical parameters depend (al-
though rather weakly) on R,.
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Our distance biasing scheme is similar to the ones used
in previous works.”!0% By changing the biasing function
such that it takes the macroion valency into account, we are
able to simulate 10:1 electrolytes directly. This paper is or-
ganized as follows. In Sec. II we describe the model and the
methods used in the simulations, in Sec. III we present the
results, and in Sec. IV we present the conclusions from our
study.

Il. MODEL AND METHODS

We consider a system of N,; macroions with diameter
oy carrying charge +Qq, and Ng co- and N_=QNy+Ng
counterions with diameter o; carrying charges +¢g and —q,
respectively, where ¢ is a unit of charge. The particles inter-
act via Coulomb potential plus hard-core repulsion such that

qi4;
Ui(ry) =4 Drij
+ © forrij<%(0'i+0'j),

for riJ'; %((Ti'i' O'])

(1)

where D is the dielectric constant of the solvent, g; and g; are
the charges of ions i and j, and r;; is the distance between the
ions. The size asymmetry between a macro- and microion is
described by

5=(ﬂ)—1=1—ﬂ, (2)

Omi1 Omi1

where oy;,= %(O'M+ o) is the macroion-microion collision di-
ameter.

The Monte Carlo simulations are performed in the grand
canonical ensemble, where the thermodynamic state of the
system is defined by temperature 7, volume V, and chemical
potentials of the macro- and coions, w and ug, respectively.
In the grand canonical ensemble, the numbers of macroions
Ny, and coions Ng fluctuate. We use a cubic box of length L
with periodic boundary conditions. We work in reduced units
with a reduced temperature

7= kDo 3)

q
We use the microion diameter o to define the reduced tem-
perature 7~ because we wish to keep the temperature inde-
pendent of the size of the macroion. The reduced density is
defined as the total volume fraction of the macro- and micro-
ions, and reads

T

= oL+ 77 (ONy + 2N9)]. @)

¢

Chemical potentials of the macroions u" and the coions ,u;
are defined such that at the ideal-gas limit,

for 7" — o, ¢—0. (5)

The reduced pressure is defined in units of the microion di-
ameter oy as
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._Pao;
pr="2L 6)
kT

We again use the microion diameter o, to define P* in order
to keep it independent of the macroion size.

Long-range Coulombic interactions are calculated using
the Ewald summation method”>*® with conducting boundary
conditions, 518 Fourier-space vectors, and real-space damp-
ing parameter k=5. In order to speed up simulations, we use
the fine-lattice discretization method of Panagiotopoulos and
Kumar.”” The advantage of the lattice method is that it allows
us to precalculate all the Coulombic interactions in the be-
ginning of the simulation. During the simulation, the pair
interactions are determined by a simple table lookup. Denot-
ing the lattice spacing by a, we can define a lattice refine-
ment parameter

E=oyjla. (7)

Continuum is recovered when £€—o0. The presence of salt
introduces an additional length scale, the microion diameter
oy, and, therefore, we introduce a second lattice refinement
parameter

&=ola=(1-9)%¢. (8)

The effect of lattice discretization on the critical behavior of
1:1 systems was studied in Ref. 27, where it was found that
the normal vapor-liquid phase coexistence is recovered for
&=3. For £<2, no vapor-liquid phase coexistence is pos-
sible, but instead the system phase separates into a disor-
dered and an antiferromagnetic phase. In order to ensure that
the salt in our system has a vapor-liquid phase coexistence,
we use microion refinement &;=3. For the macroions, we
use £€=10, as it is known from an earlier work® that the
difference between the critical parameters at {=10 and &
— 0 is small, about 1% for the temperature and about 4% for
the density.

Our GCMC simulations are based on insertions and re-
movals of two types of neutral molecules: (i) a macroion
with Q counterions and (ii) a coions with a counterion. As
the vapor-liquid phase separation occurs at low reduced tem-
peratures, the counterions have a strong tendency to form
clusters around macroions and coions. Therefore, purely ran-
dom (i.e., uniform) insertions and removals of counterions
lead to very low acceptance rates. In order to improve the
acceptance, we use a distance biasing scheme. In the distance
biasing scheme, counterions are inserted with a biased prob-
ability distribution that increases the probability of inserting
a counterion close to a macroion or a coions. In the present
case, a natural choice for the biased probability distribution
is

for r;; = %(o’i+ a;)

exo{ 21
Whias(77) = T r; (9)

0 for r; < %(cr,»+ T,
that is the Boltzmann factor of a Coulomb interaction be-

tween a positive ion of charge O, and a counterion. Note that
the probability distribution in Eq. (9) is not normalized.
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In Eq. (9), the “bias charge” Q,, is a free parameter that
can be adjusted to obtain maximum acceptance. We use,
0,=0 for molecules with Q=1 and 3, and Q,=6 for mol-
ecules with Q=10. As we observed, for Q= 10, it is favor-
able to choose Q,<Q, in order to account for counterion-
counterion repulsion that reduces the effective charge seen
by the counterions. For 0=10, optimal Q, was determined
by running a short simulation with different Q;,, and choosing
the one that gave the highest acceptance. The choice Q,=6
was also confirmed by fitting the effective macroion-
macroion pair potential (obtained from the radial distribution
function at low density) with Q,/r. For Q=3 and 1, we did
not try to find an optimal Q, because Q,=Q already gave
high acceptance. Note that Q,=1 was used for all Q in pre-
vious works.”' This gives relatively low acceptance for Q
> 1, although still much higher than without biasing at all.

In the following, we describe in detail the insertion and
the removal steps of a macroion; the insertion and removal
of a coions are completely analogous. In the insertion step,
the trial position of the macroion is chosen uniformly. Coun-
terion positions are chosen according to the probability dis-
tribution wbm(Rk & k) given by Eq. (9), where Ry, ik, is the
distance between a macroion center and a lattice site
(ky,ky,k;). In practice, the cumulative probability

ke ko kg
Lk K
Wik = E E 2 Wbias(fofy{,’Z) (10)

is precalculated into a three-dimensional EL X €L X L matrix
at the beginning of a simulation. In Eq. (10),

L &L &L

Z= 2 E E Wblaﬁ(Rf’ {’ {’) (11)

—l(—l(_l

is the appropriate normalization factor, i.e., sum of wy;,, over
all lattice positions [1,...,&L;1,...,EL;1,...,EL]. In the
simulation, we find the lattice site (k,,ky,k.) for the trial
position of the counterions by going through the matrix and
finding the first lattice site (k,,k,,k.), for which the cumula-
tive probability kakykz is smaller than a random number
drawn from a uniform [0, 1] distribution. We use a binary
search algorithm to make the search efficient. This procedure
is repeated for each of the O counterions. Once all the coun-
terion lattice sites are found, the insertion is accepted accord-
ing to the criteria

acc(N—N+1)

in| 1 ( v )QHB‘“S [(u' = Uyyy + UWIT ]|,
=min| 1,| —— ex
N+l Bug p M N+1 N

(12)

where Uy and Uy, are the potential energies (in units of
kgT) before and after insertion, and

Bu [ Z )% N_-(i-1)
By \EL .HEN— iy
del =200 k] exp(Qy/T ;)

is a factor that corrects for the bias, and hence detailed bal-
ance is satisfied.
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In the removal step, a macroion is chosen randomly and
the first counterion is chosen according to the probability

CXP(Q;;/Tk”k,)
2;1_1 eXp(Qh/Tk”j) .

When choosing the second counterion, the first (k;) counter-
ion has to be removed from the normalization. Thus, the
second counterion is chosen according to the probability

exp(Qy/T 1)
E;V:_l,j#kl eXp(Qh/T*rj) .

(14)

(15)

Continuing in this manner, we have for the Qth counterion
eXp(Qb/T*er)

A .

E.i:lsﬁ&[klw-skg—l] eXp(Qb/T*rj)

(16)

When all the Q counterions are chosen, the removal step is
accepted according to the criteria

acc(N+1—N)

N+1\2"'By,
=min| 1 ( ) —Zexp[(— p + Uy, —
|: V Blns ’

UNIT']

(17)

In practice, when choosing the first counterion, we calculate
the probability in Eq. (14) for every counterion, and then, as
in the case of insertion, use a binary search for the cumula-
tive probability. For the second counterion, we simply ex-
clude the first counterion from the cumulative sum and re-
peat the search.

In addition to the insertion and removal steps, displace-
ment moves are carried out for microions. We noticed that
displacement moves help the system to equilibrate. The por-
tion of displacement moves over all the moves was set to
10%.

Simulations consist of equilibration and sampling runs.
In a sampling run, a histogram containing the number of
macroions Ny, coions Ng, and total energy U is collected. In
order to determine the critical point, a simulation is done at a
temperature that is close but above the critical temperature.
Close to the critical point, systems sample a broad density
range, due to critical fluctuations. From the (N,;, Ny, U) his-
togram, the critical point is determined using a mixed-field
finite-scaling method® that assumes Ising criticality with no
pressure mixing. The effects of pressure mixing on the criti-
cal parameters, if any, are expected to be minor, but require
substantial additional computational effort.* Typically, a
single simulation run is not enough to determine the critical
point to a desired accuracy, and therefore multiple runs with
different macroion chemical potential " are combined using
a histogram reweighting technique.3 132

The pressure is given by the relation

P’V PV

3 =In Z(u, ps, V,T) + const, (18)
O'l kB

where E(u, ug,V,T) is the grand canonical partition func-
tion, whose value can be calculated from the histogram data.
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TABLE 1. Critical parameters for system (a) with charge asymmetry of 2:1 and size asymmetry 6=0.5. The
parameters are for box size L=120,,;. The numbers in parentheses refer to the statistical uncertainty of the last

decimal place shown.

s e xg T, % 10? b X 107 P. X 10°

- —2.0260(2) 0(0) 4.770(5) 5.7(1) 0.328(4)

—0 -2.0254(4) 0(0) 4.75(1) 5.8(1)* e

—0 -2.02557(9) 0(0) 4.752(3) 5.99(6) 0.352(4)b

—-1.500 -2.0315(4) 0.0496(1) 4.798(8) 5.5(1) 0.308(3)

—-1.500 —2.0300(6) 0.0503(6) 4.75(2) 5.91(8) 0.325(2)b

-1.300 —2.0684(6) 0.353 20(2) 4.733(8) 5.5(1) 0.341(6)

~1.250 ~2.1049(6) 0.531(2) 4.708(8) 5.4(2) 0.45(1)

-1.200 —2.1944(5) 0.760(1) 4.70(1) 5.3(2) 0.74(3)

-1.175 —2.3115(1) 0.8868(5) 4.817(8) 5.1(2) 1.20(2)

“For box size L=150,,; from Ref. 10.

"For box size L= 150
In the limit of low density, where the system behaves as an Ny (19)
. —_ . . . Xo= —>— 19
ideal gas, a plot of In B vs (Ny+Ns) gives a straight line S Ny + N

with unit slope. The “const” in Eq. (18) is given by the
extrapolation of this line to the limit Ny, +Ng—0.

lll. RESULTS

We study four different systems with charge and size
asymmetries of (a) 2:1 and 6=0.5, (b) 3:1 and 6=0.667, (c)
10:1 and 6=0.9, and (d) 10:1 and 6=0.667. For systems
(a)—(c), the size asymmetry was chosen so that a macroion-
counterion pair and a coions-counterion pair have equal
Coulomb potentials at contact. The lattice refinement param-
eter £is set to £=10 in systems (a), (b), and (d). According to
Eq. (8), this gives &=5 in system (a) and &,=3.33 in systems
(b) and (d). In system (c), £&=10 would give a microion lat-
tice refinement of &=1. As was mentioned in Sec. II, only
systems with =3 have a vapor-liquid phase separation.
Therefore, in system (c), we use a finer lattice with ¢=30, to
make sure that the salt has a vapor-liquid phase separation
(§1=3)~

In our simulations, we start from a salt-free state with
,uié:—w and add salt by increasing ,uz in steps. For each step,
the critical parameters are determined. We characterize the
amount of the added salt by the salt mole fraction, defined as

With this definition, xg=0 corresponds to a salt-free state and
xg=1 corresponds to a pure salt state. Our results are listed in
Tables I-1V. Unless otherwise indicated, the parameters are
for box size L=120,,,. Error estimates are calculated from
(two to four) independent runs at different temperatures us-
ing the Student’s 7-test with 90% confidence interval.
Figures 1-4 show the critical temperature Ti as a func-
tion of the salt mole fraction xg. The pure salt critical tem-
perature is taken from Ref. 27; we use £=5 results for system
(a), whose ions are on a lattice with &=5, and £=3 results
for systems (b)—(d), whose ions are on a lattice with &
=3.33. As can be seen from Figs. 1-3, in systems (a)—(c),
where the pure salt has a higher critical temperature than the
salt-free state, T:(xs) is not monotonic, but goes through a
minimum (at xg=0.6—0.8). In system (c), we did not reach
high enough salt fractions to locate the minimum explicitly,
but as the inset in Fig. 3 shows, T: is decreasing with in-
creasing xg. Therefore, we expect there to be a minimum. We
have extrapolated lines from our data to pure salt to indicate
the expected qualitative behavior of T: over the complete
composition range. This extrapolation is, of course, only
approximate—it would take significantly more computa-

TABLE II. Critical parameters for system (b) with charge asymmetry of 3:1 and size asymmetry §=0.667. The
parameters are for box size L=120,,;. The numbers in parentheses refer to the statistical uncertainty of the last

decimal place shown.

s e Xg 75 X 107 b X 102 PIx10?
—oo -2.6672(2) 0(0) 4.488(5) 7.3(2) 0.095(4)
-1.17 -2.7077(9) 0.3710(6) 4.40(2) 7.5(2) 0.120(6)
-1.13 —2.7282(4) 0.4824(9) 4.354(5) 7.5(4) 0.146(3)
-1.12 -2.744(1) 0.5446(9) 4.33(3) 7.3(2) 0.164(7)
-1.07 -2.8294(3) 0.749(2) 4.26(1) 7.3(2) 0.28(1)
-1.07 ~2.8305(5) 0.752(2) 4.23(1) 7.41(9) 0.33(2)*
-1.05 -2.8855(3) 0.8169(6) 4.270(4) 7.7(1) 0.410(1)
-1.03 ~2.9693(6) 0.8818(6) 4.320(2) 7.2(2) 0.590(2)
-1.02 -3.039(1) 0.9157(8) 4.382(4) 6.9(3) 0.77(1)
-1.01 -3.167(2) 0.9535(3) 4.505(0) 6.5(4) 1.0(2)
-1.00 -3.32(1) 0.977(2) 4.62(1) 5.6(5) 1.4(1)

“For box size L=150y,,.

Downloaded 12 Sep 2005 to 131.211.45.119. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



084903-5 Critical point of electrolyte mixtures

J. Chem. Phys. 123, 084903 (2005)

TABLE III. Critical parameters for system (c) with charge asymmetry of 10:1 and size asymmetry §=0.9. The
parameters are for box size L=120,,;. The numbers in parentheses refer to the statistical uncertainty of the last

decimal place shown.

s “ xg T, X 107 ¢ X 102 P x10°
—oo -6.801(1) 0(0) 3.28(1) 15.2(1) 2.444(2)
-1.26 -6.807(1) 0.093(1) 3.28(1) 14.5(5) 1.2(2)
-1.20 -6.818(3) 0.208(4) 3.28(2) 14.3(8) 1.3(3)
-1.10 ~6.8784(8) 0.559(7) 3.26(2) 15(1) 1.5(2)
-1.08 -6.9078(1) 0.641(3) 3.24(1) 15(2) 1.7(2)

tional resources than those available to us to enable calcula-
tions for systems with large amounts of salt because of the
difficulty in sampling macroion insertions and removals.

In Figs. 1-3, the decrease in the critical temperature at
xg<<0.8 can be explained by a more general result, which
states that external disturbances, such as walls, added com-
ponents, etc., lower the critical temperature.33 At xg>0.8, the
critical temperature increases to reach the pure salt critical
point. In contrast, in system (d), where pure salt has a lower
critical temperature than the salt-free state, Tj(xs) decreases
monotonically, see Fig. 4.

In Figs. 5-8, we plot the critical volume fraction ¢, as a
function of the salt mole fraction xg. In systems (a)—(c), ¢, is
more or less a constant for 0 <x¢<<0.9, and at x¢>0.9, ¢,
starts to decrease rapidly towards the pure salt critical point.
In the 10:1 systems [(c) and (d)], we were not able to calcu-
late critical parameters beyond x¢=0.66 for box size L
=120y, due to sampling problems: the acceptance of mac-
roion insertions in these systems was below 0.1%. However,
we were able to calculate critical parameters up to xg=0.76
for system (d) (10:1 and 6=0.667) using box size L=100,,.
These results are denoted by the triangles in Fig. 8. As the
statistical accuracy is poor, it is hard to make any definite
conclusions. However, it is tempting to argue that ¢,(xs)
tends towards the pure salt limit as x¢— 1.

In order to get an idea of the system size dependence of
our results, we recalculated some of the critical points for
different box size L. In system (a) (2:1 and 6=0.5), the two
lowest salt critical points were recalculated using L=150y,,,
see Figs. 1 and 5 and Table I. We find considerable system
size dependence for this system. The is because, for box size

L=120,,, there are not enough data points at the low-density
end of the histogram to fit the Ising curve completely. At
higher salt concentration, there are more data points at the
low-density part of the histograms and this system size de-
pendence disappears. According to our histogram data, the
Ising curve can be fitted completely when xg=0.6. In system
(a), our results for box size L=150,; agree very well with
the earlier results in Ref. 10 that are also for L=150y.
In system (b) (3:1 and 6=0.667), the critical point at ,u,;
=-1.07 was recalculated using L=150,,;, and, as can be seen
from Table II, the critical parameters are almost within the
error bars of the results for L=120,;. In system (d) (10:1
and 6=0.667), we recalculated critical points at ,uj;:—l.33
and at ,u,;:—l.17 using a box size L=100,,;, see Table IV. At
us=—1.17, all critical parameters (except i) are, within the
error bars, indistinguishable. However, at ,u;=—1.33, we find
significant differences between the results for L=120,,; and
for L=100y,;.

Figure 9 shows the critical-point loci in the (temperature
T", pressure P”) plane. From two independent measurements
with box sizes L=150y,; and 190, we estimated the pure
salt critical pressure P*=0.002 97(4) using Eq. (18) and criti-
cal temperature 7" =0.0528(2). We are not aware of previous
work that reports critical pressure of electrolytes. As can be
seen from Fig. 9, the pure salt state has a higher pressure
than any of the salt-free states. The reason for this is the
ideal-gas contribution to the pressure (P;;V=NkzT), which is
high for the pure salt state because it has the highest number
density of particles than any of the salt-free states (although
it has the lowest volume fraction, see Figs. 5-8). Figure 9
also shows that, upon adding salt, the pressure increases very

TABLE IV. Critical parameters for system (d) with charge asymmetry of 10:1 and size asymmetry 5=0.667.
The parameters are for box size L=120,,;. The numbers in parentheses refer to the statistical uncertainty of the

last decimal place shown.

s . Xs T X 107 ¢. X 10 PIX10°
—o0 -22.744(2) 0(0) 11.10(1) 11.2(2) 0.101(5)
-1.80 -22.737(6) 0.126(3) 10.89(3) 11.8(3) 0.18(1)
-1.67 -22.732(2) 0.202(2) 10.74(2) 11.9(5) 0.26(2)
-1.53 -22.726(3) 0.30(1) 10.49(3) 13(1) 0.40(4)
-133 -22.718(3) 0.48(1) 9.73(2) 15(1) 0.69(1)
-1.33 -22.723(3) 0.50(2) 9.83(2) 12(1) 0.521(9)*
-1.30 -22.733(1) 0.535(9) 9.732(5) 13.4(8) 0.683(5)"
-1.17 -22.758(5) 0.661(7) 8.61(8) 16(1) 1.2(1)
-1.17 -22.771(2) 0.667(4) 8.79(5) 16.2(7) 1.2(5)°
-1.1 -22.8229(4) 0.755(2) 7.99(7) 15(1) 1.3(1)*

“For box size L=100,,.
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FIG. 1. Critical temperature Tj of system (a) with charge asymmetry of 2:1
and size asymmetry 6=0.5, as a function of the salt mole fraction xg. The
points marked with the circles (O) are for box size L=120,,;, while those
marked with the squares ((J) and triangles (V) are for box size L=15ay;.
The line is a guide to the eye. The pure salt critical temperature at xg=1 ()
is from Ref. 27 and salt-free critical temperature at xg=0 (V) is from Ref. 10
(L=150y;). The error bars smaller than the symbol size are not drawn.

gradually at first, and then in big steps at higher salt concen-
trations. This is why, even at the highest coions concentra-
tion xg=0.977 [system (c)], where the system consists almost
completely of salt, the pressure is well below the pure salt
state. Note that the critical-point loci of system (c) (10:1 and
6=0.9) is missing from Fig. 9. In this high size asymmetry
case, all pressures are much smaller than in the other sys-
tems, see Table III. This is because the length scale in our
definition of P” [see Eq. (10)] is the microion diameter and
for high size asymmetries, the factor 0*; is very small.

We can conclude that the electrolyte mixtures studied
here are type-I mixtures, where the two components mix
continuously.34 Clearly, this conclusion hold less firmly for
system (c), where we were not able to reach high enough xg

0.051

0.042

FIG. 2. Critical temperature T(‘ of system (b) with charge asymmetry of 3:1
and size asymmetry 6=0.667, as a function of the salt mole fraction xg. The
points marked with the circles (O) are for box size L=120,,; and the point
marked with the square (OJ) is for box size L=150,,,. The line is a guide to
the eye. The pure salt critical temperature at xg=1 (<) is from Ref. 27. The
error bars smaller than the symbol size are not drawn.
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FIG. 3. Critical temperature 7f of system (c) with charge asymmetry of 10:1
and size asymmetry §=0.9, as a function of the salt mole fraction xg (O).
The results are for box size L=120,,;. The line is a guide to the eye. The
pure salt critical temperature at xg=1 (<) is from Ref. 27. The error bars
smaller than the symbol size are not drawn.

to see a convergence towards the pure salt limit. However,
our data does not give evidence of more complex mixing
behavior either.

In all systems, the macroion vapor phase is also the va-
por phase for the salt, and the macroion liquid phase is also
the liquid phase for the salt. In other words, when the system
fluctuates between vapor and liquid phases, macroion and
salt densities are coupled. We observed, that for a fixed
coions chemical potential ,u,;, the ratio between macroion
and salt number densities is constant to a very good approxi-
mation. The coupling between the macroion and the salt den-
sities also explains why the errors in the salt mole fraction xg
are so small. Figures 10 and 11 show the radial distribution
functions of positive like-charged species for the 3:1 (b) and
10:1 (d) systems with §=0.667, respectively. The radial dis-

o2rFr————— T
0.11
0.1

0.09
T
c

0.08
0.07

0.06

| 2 1 N 1 N 1 N | N
0.05—5 02 04 06 08 1

FIG. 4. Critical temperature T“ of system (d) with charge asymmetry of 10:1
and size asymmetry 6=0.667, as a function of the salt mole fraction xg. The
points marked with the circles (O) are for box size L=120,; and those
marked with the triangles (<) are for box size L=100,,,. The lines are
guides to the eye. The pure salt critical temperature at xg=1 (<) is from
Ref. 27. The error bars smaller than the symbol size are not drawn.
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FIG. 5. Critical volume fraction ¢.(xg) of system (a) with charge asymmetry
of 2:1 and size asymmetry 6=0.5, as a function of the salt mole fraction xy.
The points marked with the circles (O) are for box size L=120,,;, while
those marked with the squares ((J) and triangles (V) are for box size L
=150y,,. The pure salt critical temperature at xg=1 (<) is from Ref. 27 and
the salt-free critical temperature at xg=0 (V) is from Ref. 10. The line is a
guide to the eye.

tribution functions in Figs. 10 and 11 are calculated in the
vapor phase, close to the x¢=0.48 critical point at T~
~1.03T. (i.e., slightly above the critical temperature). As
Figs. 10 and 11 show, all radial distributions are peaked close
to their contact distance. Since, in the low-density vapor
phase, the effective interaction potential is, to a good ap-
proximation, equal to negative logarithm of the radial distri-
bution function [u.s=—In g(r)], this implies effective attrac-
tion between all like-charged species. The effective attraction
between macroions and coions explains the coupling be-
tween the macroion and salt densities.

The height of the first peaks in the radial distribution
functions in Figs. 10 and 11 is related to the strength of the
attraction. As can be seen, the macroion-macroion peak is

0.08

0.07

o 0.06

0.05

0.04

FIG. 6. Critical volume fraction ¢.(xg) of system (b) with charge asymme-
try of 3:1 and size asymmetry 6=0.667, as a function of the salt mole
fraction xg. The points marked with the circles (O) are for box size L
=120y, and the point marked with the square (OJ) is for box size L
=150,;. The line is a guide to the eye. The pure salt critical temperature at
xg=1 (0) is from Ref. 27.
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FIG. 7. Critical volume fraction ¢,(xg) of system (c) with charge asymmetry
of 10:1 and size asymmetry 6=0.9 (O), as a function of the salt mole
fraction xg. The results are for box size L=120,,,. The line is a guide to the
eye. The pure salt critical temperature at xg=1 (<) is from Ref. 27.

approximately twice as high for system (d) (Fig. 11) than for
system (b) (Fig. 10), while the coions-coions peak is much
higher for system (b) (Fig. 10) than for system (d) (Fig. 11).
A simple explanation for these differences is obtained, when
one considers the critical temperature in these systems rela-
tive to the salt-free (xg=0) and pure salt (xg=1) critical tem-
peratures. Temperature in system (d) (Fig. 11) is below the
critical temperature of the salt-free state, and this is why the
macroion-macroion coupling is zigh compared to system (b)
(Fig. 10), where the temperature is similar to the critical
temperature of the salt-free state. Similarly, temperature in
system (b) is below the critical temperature of pure salt and
this is why the coions-coions coupling is high compared to
system (d), where the temperature is above the critical tem-
perature of the pure salt. The difference between the two

0.18

0.164

0.14}

0.081

0.06

0.04

FIG. 8. Critical volume fraction ¢.(xs) of system (d) with charge asymme-
try of 10:1 and size asymmetry 6=0.667, as a function of the salt mole
fraction xg. The points marked with the circles (O) are for box size L
=120y, and those marked with the triangles (<I) are for box size L
=100,,;. The line is a guide to the eye. The pure salt critical temperature at
xg=1 (0) is from Ref. 27.
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FIG. 9. Critical-point loci in the (7", P") plane. The lines are guides to the
eye.

system’s is also well depicted in Figs. 12 and 13, where
snapshots of the vapor phase close to the xg=0.48 critical
point are shown. Macroions in system (d) (Fig. 13) form
rather dense clusters, while in system (b) (Fig. 12) the mac-
roions are more loosely bound to each other. This implies
that the macroion-macroion coupling is higher in system (d)
than in (b). Co- and counterions in system (b) (Fig. 12) form
dimers and trimers, while in system (d) (Fig. 13) there are
free microions, implying that the coions-coions coupling is
higher in system (b) than in (d). This agrees with the radial
distribution functions in Figs. 10 and 11. Furthermore, coions
in system (b) are bound close to the macroions (see Fig. 12),
while in system (d) the coions fill the space left empty by the
macroions (see Fig. 13). This is in agreement with the radial
distribution functions in Figs. 10 and 11, which show a
higher macroion-coions peak for system (b) than for (d). The
clustering seen in Fig. 13 is typical for system (d) with added
salt. Clusters were also seen at temperatures above the criti-
cal temperature and at densities different from the critical
density.

The deepness of the macroion-macroion attraction in
system (d) can be estimated from the first peak in Fig. 11 to
be In(10)kzT~2.3ksT.™> This means, that each macroion
gains about 2kzT of energy when it comes in contact with

6 * T d 750 LSRN SUNPLSUUUNEN VWU SRS NN AN
macroion - macroion T T T 1 T ]
S5 . . 1
coion - coion
. . -1 1
a4 \ - macroion - coion ]
8() 3
2k
1 =
q S 2 2.5 3 3.5 4 45 5

FIG. 10. Radial distribution functions for system (b) (3:1 and 5=0.667) at
T"=0.045~1.037,, ug=—1.13, and =0.020(2).
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FIG. 11. Radial distribution functions for system (d) (10:1 and 6=0.667) at
T"=0.1=1.03T., pg=—1.33, and ¢=0.037(2).

another macroion. We observed, that this energy minimum
causes considerable sampling problems. Acceptance of the
insertion and removal steps drops and simulations tend to get
stuck in the high-density state. This is the main reason why
we could not reach higher salt concentrations.

IV. CONCLUSIONS

We have studied the critical parameters of electrolyte
mixtures within the primitive model. The mixtures consist of
large multivalent macroions and small monovalent co- and
counterions. We view the system as a binary mixture of mac-
roions with their counterions and salt (co- and counterion
pair). We calculated the critical-point loci that connect the
salt-free state consisting of macroions and counterions with
the pure salt state. Critical points were calculated for four
systems with charge and size asymmetries of (a) 2:1 and &
=0.5, (b) 3:1 and 6=0.667, (c) 10:1 and 6=0.9, and (d) 10:1
and 6=0.667.

We used a combination of grand canonical Monte Carlo
simulations, histogram reweighting method, and mixed-field

FIG. 12. (Color online) Snapshot of system (b) (3:1 and 6=0.667) at the
vapor phase of the pg=—1.13 [x3=0.482(1)] critical point with 7"=0.044
:Tf, u'=-2.730, and ¢=0.087. The big spheres are macroions with charge
+3¢, white small spheres are coions with charge +¢, and red (dark) small
spheres are counterions with charge —q.
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FIG. 13. (Color online) Snapshot of system (d) (10:1 and §=0.667) close to
the ug=—1.33 [xg=0.48(1)] critical point with T°=0.0992=1.02T,, p'=
—22.738, and ¢=0.079. The big spheres are macroions with charge +10g,
white small spheres are coions with charge +¢, and red (dark) small spheres
are counterions with charge —q.

finite-scaling method to obtain the critical points. The simu-
lations were done using fine-lattice discretization method.
We implemented a distance biasing method that enhances the
efficiency of the grand canonical insertion and removal steps
by many orders of magnitude and enables direct simulations
of systems with charge asymmetry of 10:1. In systems (c)
and (d), at high salt (coions) concentration, we experienced
sampling problems that inhibited us from calculating critical
points closer to the pure salt limit.

We observed the following nonmonotonic behavior in
the critical parameters: (i) in systems (a)—(c), the critical tem-
perature T: as a function of the salt mole fraction xg goes
through a minimum, and (ii) in system (d), the critical vol-
ume fraction ¢.(xg) goes through a maximum. The binary
electrolyte mixtures studied in this paper are type-I mixtures,
where the two species mix continuously.

As the salt has nonmonotonic effects on the critical pa-
rameters of electrolytes, our results should form a good
benchmark for testing theoretical models on electrolytes. In
particular, it would be interesting to see if a theory can re-
produce the nonmonotonic behavior of T:(xs) and q’)ﬁ(xs),
and predict the type of the mixture correctly.

For future studies, an idea that could help in calculating
critical points close to the pure salt limit is to reduce the
system size at high salt concentrations. Smaller system size
means shorter simulation time and, if done correctly, should
not introduce considerable finite-size effects because the
overall density of the system decreases in the pure salt limit.

J. Chem. Phys. 123, 084903 (2005)
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