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Melting line of charged colloids from primitive model simulations
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We develop an efficient simulation method to study suspensions of charged spherical colloids using
the primitive model. In this model, the colloids and the co- and counterions are represented by
charged hard spheres, whereas the solvent is treated as a dielectric continuum. In order to speed up
the simulations, we restrict the positions of the particles to a cubic lattice, which allows
precalculation of the Coulombic interactions at the beginning of the simulation. Moreover, we use
multiparticle cluster moves that make the Monte Carlo sampling more efficient. The simulations are
performed in the semigrand canonical ensemble, where the chemical potential of the salt is fixed.
Employing our method, we study a system consisting of colloids carrying a charge of 80 elementary
charges and monovalent co- and counterions. At the colloid densities of our interest, we show that
lattice effects are negligible for sufficiently fine lattices. We determine the fluid-solid melting line in
a packing fraction �-inverse screening length � plane and compare it with the melting line of
charged colloids predicted by the Yukawa potential of the Derjaguin-Landau-Verwey-Overbeek
theory. We find qualitative agreement with the Yukawa results, and we do not find any effects of
many-body interactions. We discuss the difficulties involved in the mapping between the primitive
model and the Yukawa model at high colloid packing fractions ���0.2�. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2138693�
I. INTRODUCTION

Charge-stabilized colloidal suspensions are mixtures of
mesoscopic charged particles �e.g., latex spheres� suspended
in a solvent �e.g., water or ethanol� with co- and counterions.
Such suspensions are typical examples of systems with high
charge and size asymmetries. Colloids can carry a charge up
to 10 000 elementary charges and their sizes are in the range
of 1 �m, while the microions are typically monovalent with
sizes of �4 Å. Direct simulations of charged colloids are
often hampered by CPU time requirements. This is because
high charge asymmetry requires a large number of counteri-
ons to counterbalance the colloid charge and high size asym-
metry requires a small time step in molecular dynamics or a
small trial displacement in Monte Carlo �MC� simulations.
Therefore, most simulations of charged colloids are per-
formed using coarse-grained models, in which the degrees of
freedom of the microions are integrated out and the colloids
interact with an effective �usually pairwise� potential. The
most well-established coarse-grained model is based on the
Derjaguin-Landau-Verwey-Overbeek �DLVO� theory.1,2 Ac-
cording to the DLVO theory, the counterions form a double
layer of opposite charge around each colloid. The extent of
the double layer depends on the concentration of added salt
�co- and counterions�. At low salt concentrations, the double
layers are inflated, while at high salt concentrations, the
double layers are thin. The coarse-grained entities, colloids
with their double layers, interact via a hard-core repulsion
due to the finite size of the colloids and a screened Coulomb
�repulsive Yukawa� interaction, with the screening length
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given by the thickness of the double layer. The phase dia-
gram of hard-core repulsive Yukawa particles3,4 explains the
experimentally observed phase behavior,5–8 where the col-
loids exhibit fluid, body-centered-cubic �bcc�, and face-
centered-cubic �fcc� phases.

In recent years, there has been a lot of debate whether
the DLVO pairwise description is valid at low salt concen-
trations, where double layers of nearby colloids overlap. The
debate was initiated by a variety of unexplained phenomena
that have been observed in experiments of charge-stabilized
colloidal suspensions at low salt concentrations, e.g., vapor-
liquid condensation,9 large stable “voids,”10,11 and anoma-
lously long-lived dense clusters.12 A long-range attraction
would account naturally for these phenomena, but is incon-
sistent with the long-accepted repulsive DLVO potential. An-
other explanation might be that the effective pair potential
description fails at low salt concentrations and that the three-
and higher-body interactions are important. This discussion
was fueled by theoretical results of attractive three-body
interactions13,14 and experiments that show density-
dependent pair interactions15,16 �signaling that the underlying
interaction is not pairwise�. By now, the existence of many-
body interactions has been established experiment and nu-
merical calculations.17–19

What remains to be less clear-cut is the effect of the
many-body interactions on the phase behavior of charged
colloids. Dobnikar et al.20–22 have studied the melting tran-
sition by solving the nonlinear Poisson-Boltzmann equation
for a multicolloid system. They found that the effective
many-body interactions shift the melting line, extending the
fluid range, than expected on the basis of pairwise interac-

23,24
tions alone. In our earlier work, we studied the effect of
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attractive three-body interactions on the phase behavior of
charged colloids and found that they give rise to broad fluid-
fcc and bcc-fcc coexistence regions. The question remains
whether the effective three-body approach, which ignores the
effective four- and higher-body terms, is valid at high colloid
densities. This question becomes even more important in the
light of recent experimental evidence, which suggests that
the four-body term is repulsive19 and of the same range and
magnitude as the attractive three-body interaction. Hence, a
substantial fraction of the three-body attraction seems to be
canceled by the four-body repulsion.

In order to resolve this issue, we decided to perform
direct simulations of the primitive model, using the same
parameters as in our earlier work, where triplet interactions
are important.23,24 To this end, we develop an efficient simu-
lation method for the highly asymmetric primitive model. In
the primitive model description, colloids, coions, and coun-
terions are treated as charged hard spheres, while the solvent
is treated as a structureless continuum characterized by a
dielectric constant �s. Since the primitive model includes all
the charged species explicitly, it also includes all the effec-
tive many-body interactions. Employing our simulation
method, we determine the fluid-solid transition at various salt
concentrations for the primitive model and we compare the
results with the predictions of the DLVO theory.

In comparing the primitive model results with the effec-
tive Yukawa potential of the DLVO theory, it is important to
know how to map the primitive model parameters onto the
Yukawa model parameters. At low colloid packing fractions,
this mapping can be done quite reliably using the Poisson-
Boltzmann cell model,25 see, e.g., Refs. 20 and 26. At high
colloid packing fractions �, less is known about the validity
of the Yukawa potential27 and the way the parameters should
be mapped. An example of this can be found in Refs. 28–30,
where highly charged colloidal suspensions were studied us-
ing a Car-Parrinello-type ab initio method.31 At high �, it
was found that the DLVO theory underestimates the struc-
ture, meaning that the colloids see an effective charge that is
higher than the real colloidal charge. Supposedly, the reason
for this is that at high �, the screening of the Coulomb in-
teractions is reduced because the counterions are excluded by
the neighboring colloids.30 We find evidence of this charge
renormalization, but we are not able to directly prove the
mechanism behind it. We are unable to find a mapping be-
tween the primitive model and the Yukawa model that would
work at all packing fractions.

The paper is organized as follows. In Sec. II we present
our simulation method for the highly asymmetric primitive
model. In Sec. III, we discuss our results and we end with
some concluding remarks in Sec. IV.

II. SIMULATION METHOD

A. Highly asymmetric primitive model

Our system consists of N colloidal hard spheres with a
diameter �, carrying a positive charge +Ze, and NS co- and

ZN+NS counterions with a diameter �m and a charge +e and
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−e, respectively. Here e denotes the elementary charge. The
particles interact via the pairwise additive Coulombic poten-
tial and a hard-core repulsion

Uij�r�
kBT

= �qiqj�B

�

�

r
for r �

1
2 ��i + � j�

+ 	 for r 

1
2 ��i + � j� ,

� �1�

where �B=e2 /�skBT is the Bjerrum length, �s is the dielectric
constant of the solvent, and r is the distance between the ions
i and j that have charge numbers qi and qj.

Our primitive model Monte Carlo simulations are per-
formed in the semigrand canonical ensemble, i.e., the vol-
ume V, temperature T, number of colloids N, and chemical
potential of the salt �S are kept constant. The simulations
represent a system of colloids in osmotic equilibrium with a
salt reservoir at the same chemical potential �S. In our simu-
lations, one MC cycle consist of N�Z+1�+2NS attempts to
displace a randomly selected particle �a colloid or a micro-
ion�. Attempts to insert or remove a coion-counterion pair
are performed ten times per MC cycle. We use the standard
grand canonical ensemble method for the insertion and re-
moval steps.32

The simulations are performed in a cubic box with side
length L and periodic boundary conditions are applied in all
three dimensions. The long-range Coulombic interactions are
calculated using the Ewald summation method32,33 with con-
ducting boundary conditions, 518 Fourier-space vectors, and
real-space damping parameter �=5. In order to speed up the
simulations, we have used the fine lattice discretization
method of Panagiotopoulos and Kumar.34 In this method, the
positions of the particles are restricted to a cubic lattice with
lattice spacing a. We introduce a lattice refinement parameter
�=� /a, which gives the number of lattice points per colloid
diameter. Continuum is recovered in the limit of �→	. Pre-
viously, the lattice method has been used to study the criti-
cality of electrolytes34–38 and polyelectrolytes.39 In these sys-
tems, the lattice has little impact on the critical behavior once
��3.34 The effect of lattice discretization on hard spheres
has been studied in Ref. 40. The advantage of using a lattice
is that it allows a single precalculation of all the Coulombic
interactions into a three-dimensional �L /a�
 �L /a�
 �L /a�
matrix at the beginning of the simulation. During a simula-
tion, the pair interactions can be determined by a simple
table lookup. Figure 1 shows the CPU time � as a function of
the total number of charges Ntot=N�Z+1�+2NS of both the
Ewald summation method and the lattice method and the
inset shows the ratio between the two CPU times.41 The
Ewald parameters were chosen as described in Ref. 32. The
full lines in Fig. 1 are linear fits to the data points. From
these fits we see that the CPU time of the Ewald summation
method scales as Ntot

1.73 and the CPU time of the lattice
method scales as Ntot

2.03. We note that the lattice method has
the expected scaling, while the Ewald summation does not
have the ideal Ntot

1.5 scaling.42 In the Ewald summation, a
slightly nonideal scaling is obtained because we do not use
neighbor lists in the total potential-energy calculation, and
therefore, the distance between each particle has to be calcu-

lated. We are not sure how much better the Ewald summation
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would perform if neighbor lists were used since the construc-
tion and updating of the lists also require CPU time.

In a system with a high density of microions, a simple
displacement of a colloid would almost always result in an
overlap with at least one of the microions. In order to over-
come this problem, we remove the microions that hinder the
displacement of the colloid at its new position and reinsert
them into the space vacated by the displacement of the col-
loid. Figure 2�a� shows a typical starting configuration. The
colloid at its new trial position is denoted by a dashed line
and the microions that result in an overlap with the colloid at
its new position are filled gray. In our cluster move, the over-
lapping microions are reflected through the center between
the old and new colloid positions �marked P� into the space
left empty by the displacement of the colloid. An example of
such a reflection is shown in Fig. 2�a� by the gray arrow.
Figure 2�b� shows the end situation, where the colloid and
the microions are at their new positions. Cluster moves are
performed only in three lattice coordinate directions, which
guarantee that each reflected microion has a well-defined lat-
tice position. The cluster moves satisfy detailed balance as
they are entirely symmetric, i.e., moving a colloid back to its
original position returns the microions to their original posi-
tions. Our method is similar to the cluster move technique
used in Ref. 43. However, in their approach, also the coun-
terions close to the colloids are added in the cluster move. In
our case, these extended cluster moves are not needed as the
coupling between the colloid and counterions is weak.

We define the �inverse� Debye screening length of the
reservoir as

�� = �8��B�2	�S
res
 , �2�

where 	�S
res
= 	NS
 /V is the average salt density in the reser-

voir measured from a simulation with no colloids �N=0� and
a fixed �S. In the ideal-gas approximation, the salt chemical
potential �S is related to the �ideal� salt reservoir density �S

res

FIG. 1. CPU time � vs the total number of charge centers Ntot=N�Z+1�
+2NS for a system with Z=80,�=0.2, and �=19. The circles ��� mark the
results of the Ewald summation and the squares ��� mark the results of the
lattice method. The annotated numbers show the �id� values. The full lines
are linear fits to the data points. The inset shows the ratio of the Ewald
summation and the lattice method CPU times.
through
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�S = 2kBT ln��S
res�3� , �3�

and one can define an ideal reservoir screening length as

�id� = �8��B�2�S
res. �4�

We tested the validity of the ideal-gas approximation in Eq.
�3� by performing simulations of a reservoir system �N=0�.
The simulations were performed in a box with side length
L=2.11�, Bjerrum length �B=0.0225�, microion diameter
�m=� /19, and lattice parameter �=38. For a fixed �S, we
measured 	�S

res
 in a simulation and calculated the reservoir
screening length �� using Eq. �2�. In Fig. 3, we plot the
reservoir screening length �� as a function of the ideal res-
ervoir screening length �id�. The dashed line gives the ideal-
gas result, where ��=�id�. As can be seen from Fig. 3, the
reservoir screening length �� starts to deviate from the ideal
reservoir screening length at �id��6, but the difference re-
mains small even up to �id�=10, where ���9.5. Therefore,
Eqs. �3� and �4� give a convenient way of approximating ��
at a given salt chemical potential �S.

In summary, we present an efficient simulation method
to study model suspensions of charged colloids using the
primitive model. Primitive model simulations cause severe
sampling problems as the number of particles involved in the
simulations increases with larger charge asymmetry and the
convergence slows down due to the high density of micro-
ions close to the colloids. The combination of the fine lattice
discretization approach and the cluster moves enables us to
solve some of the sampling problems. We estimate that the
lattice gives a speed up of a factor 2 compared with con-

FIG. 2. The multiparticle cluster move technique. In �a�, the colloid is at its
old position and the colloid at its new trial position is drawn with a dashed
line. The gray microions overlap with the colloid at its new position and are
therefore included in the cluster move. The reflection point P is in the
middle between the old and new colloid positions. The gray arrow shows an
example of a reflection through point P. In �b�, the colloid is at its new
position and the microions �gray� are reflected to their new positions.
tinuum simulations in the range of parameters where most of
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our simulations were performed, and the cluster move tech-
nique gives a speed up of 10 or more. Therefore, the cluster
move technique is considered essential to make the simula-
tions feasible. These methods are a combination of methods
used previously. For previous studies on highly charged col-
loidal suspensions, see, e.g., Refs. 43–45. See also a recent
review46 and the references therein. Distinct from previous
work, our simulations are performed in the semigrand ca-
nonical ensemble, i.e., the salt chemical potential and, hence,
the Debye screening length of the reservoir are fixed. This
facilitates a direct comparison with theoretical predictions.
To the best of our knowledge, we are not aware of any simu-
lation study of the primitive model at fixed salt chemical
potential in the colloidal regime.

B. Hard-core repulsive Yukawa model

In addition to the primitive model simulations, we also
perform MC simulations of the hard-core Yukawa model.
According to the DLVO theory,1,2 the colloid-colloid pair
interaction is given by a repulsive Yukawa potential with a
hard-core,

u�r�
kBT

= � Z2�B/�

�1 + ��/2�2

exp�− ��r − ���
r/�

for r � �

+ 	 for r 
 � .
� �5�

Simulations of the continuum hard-core Yukawa model are
performed in the canonical ensemble using a cubic box with
periodic boundary conditions. The DLVO theory is derived
for infinite dilution where �=0. At ��0, it is customary to
replace the reservoir screening length � in Eq. �5� by an
effective screening length �eff. The effective screening length
�eff takes into account that, at a finite colloid density, the
screening length in the colloidal suspensions is not simply
determined by that of the reservoir �where the colloid density
is zero�. The reason is that the counterions from other col-
loids also contribute to the screening length. A simple way to

FIG. 3. The reservoir screening length �� as a function of the ideal reser-
voir screening length �id�. The dashed line gives the ideal-gas result, where
��=�id�. The error bars are not shown as they are smaller than the symbol
sizes. The solid line is a guide to the eye.
incorporate this extra contribution is to substitute the reser-
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voir charge density 2	�S
res
 in Eq. �2� with the average total

microion charge density 2	�S
+Z�

�eff� = �4��B�2�2	�S
 + Z�� , �6�

where �=N /V is the colloid number density and 	�S

= 	NS
 /V is the average salt density measured from a primi-
tive model simulation. We also consider an effective screen-
ing length where the excluded volume of the colloids is
taken into account �see, e.g., Ref. 47�,

�eff� � =�4��B�2� 2	�S

1 − �c

+
Z�

1 − �c

 , �7�

where �c=��1+�m /��3 is the fraction of the volume ex-
cluded by the colloids. For highly charged colloids, it is typi-
cal to replace the bare charge Z in Eq. �5�–�7� with a renor-
malized charge Zre. The renormalized charge Zre takes into
account the condensation of counterions on the colloid sur-
face, see, e.g., Refs. 25 and 27. As Zre is a sum of the colloid
charge Z and the charge in the condensed shell of counteri-
ons, it is smaller than the bare charge Z. In the simulations
presented in this paper, charge renormalization is insignifi-
cant �see also Sec. III C�.

At low colloid concentrations, there are both numerical
and experimental evidence that the Yukawa form �5� is valid
at high coupling,44 high charge,26,48 and high salt
concentrations.20–22 At low salt concentrations, one observes
a “cutoff” behavior: at large distances the force between a
pair of colloids is considerably smaller than expected on the
basis of the Yukawa potential.15,16,20–22,49 Hence, the effec-
tive colloid-colloid pair interaction resembles closely a
Yukawa potential that has a density-dependent truncation.
Phase diagrams of such potentials have been studied in Refs.
20–22 and 50.

As was mentioned in the Introduction, much less is
known about the validity of the Yukawa form at high colloid
concentrations, even with effective parameters �see, e.g., the
discussion in Ref. 27�. In Refs. 28–30, highly charged col-
loidal suspensions were studied using an ab initio method
that can be seen as a classical counterpart of the Car-
Parrinello method.31 It was found that the Yukawa potential
is valid at all packing fractions, but that the parameters of the
potential do not follow the DLVO theory. At low �, the
DLVO theory overestimates the structure, as expected ac-
cording to the charge renormalization discussed above. At
high �, the DLVO theory underestimates the structure, mean-
ing that the colloids see an effective charge that is higher
than the bare charge. The reason for this is that at high �, the
screening of the Coulomb interactions is reduced because the
counterions are excluded by the neighboring colloids.30

Therefore, the colloids experience a stronger repulsion than
expected based on the DLVO theory. The effect of the ex-
cluded volume on the effective pair potential is included by
Belloni51 �see also Ref. 27� by imposing that the structure
factor within an integral equation theory using the mean
spherical approximation �MSA� is the same in the effective
one-component system and the primitive model. According

51
to Belloni, the effective charge Zeff can be calculated from
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Zeff = ZX�1 + ��/2�exp�− ��/2� , �8�

where

X = cosh���

2

 + U���

2
cosh���

2

 − sinh���

2

� �9�

and

U =
3�

�1 − �����/2�3 −
��

���1 + ��/2 + 3�/�1 − ���
, �10�

and where � can be solved from

����2 = ����2 +
24��B/�

1 + ��/2 + 3�/�1 − ��
. �11�

In practice, one solves Eq. �11� numerically for a given
�� , �, and �B /�, and then evaluates Eqs. �8�–�10�. The ef-
fective charge Zeff is larger than Z at high � and equal to Z at
low �. Our simulations are in the range where Zeff�Z. The
MSA theory is known to fail at low densities51 �see Ref. 26
for experimental evidence�. At low densities, we also find
that the MSA theory gives a worse description of the inter-
actions than the DLVO theory �see Sec. III B�.

In this paper, we determine the melting lines of the
primitive and hard-core Yukawa models using the Linde-
mann criterion,52 which states that a crystal is stable when
the root-mean-square �rms� displacement �	u2
 of the col-
loids about their equilibrium lattice positions �r0,i� is below
19% of the mean colloid distance �−1/3=��� /6��1/3, i.e.,

�	u2
 � �	�ri − r0,i�2
 
 0.19�� �

6�

1/3

. �12�

We define the melting packing fraction �melt as the smallest
� for which Eq. �12� holds, i.e., where a crystal is still stable.

III. RESULTS

A. Effect of lattice discretization

Our system consists of colloids with charge 80e and
monovalent co- and counterions. We use Bjerrum length �B

=0.0225� and microion diameter �m=� /19�0.053�. Typi-
cal simulation runs consist of 5000 equilibration cycles �at-
tempts to displace each particle once� and 10 000 production
cycles. Statistical errors are estimated from ten block aver-
ages using the Student’s t-test with 95% confidence.

We study the effect of the lattice discretization on the
average salt density 	�S
, average total potential energy per
particle 	U
 /N, and rms displacement of the colloids �	u2
.
The ensemble averages are calculated for lattice discretiza-
tion parameters �=19, 38, and 57, and for two reservoir
screening lengths, ��=2 and 5. For ��=2, the simulations
were started from a bcc crystal containing N=54 colloids; for
��=5, the simulations were started from a fcc crystal with
N=32 colloids. Figures 4�a� and 4�b� show 	�S
 as a function
of the packing fraction � for screening lengths ��=2 and 5,
respectively. We clearly observe that �=38 and �=57 give
results that are equivalent within the statistical accuracy,
while �=19 overestimates 	�S
. A similar conclusion can be

drawn from the data for 	U
 /N shown in Figs. 5�a� and 5�b�:
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the results or the lattice discretization �=38 and �=57 are
again equivalent within the statistical accuracy, while those
for �=19 differ systematically. Figures 6�a� and 6�b� show
the rms displacement in units of the mean colloid distance,
�	u2
 /�−1/3, for ��=2 and ��=5, respectively. For ��=2,
in Fig. 6�a�, the effect of the lattice discretization on
�	u2
 /�−1/3 is not clear due to the statistical noise. For ��

=5, in Fig. 6�b�, we clearly see that �=19 overestimates
�	u2
 /�−1/3 compared with the results obtained for �=38 and
57. Again, we observe that the results for �=38 and 57 are
equivalent within the statistical accuracy. To conclude, the
lattice discretization �=38 is sufficient to yield results that
are independent of � and are similar to the continuum case.
We will use �=38 �or in some cases �=57� in all subsequent
calculations.

B. Charge distribution and structure

We study the distribution of co- and counterions in a bcc
crystal with N=54 colloids at packing fraction �=0.34 and
reservoir screening length ��=5. A snapshot of this system
is shown in Fig. 7. Since we are interested in the ion distri-
bution in a crystal of colloids, we fix the colloid positions

FIG. 4. The average salt density 	�S
 �in units of �−3� as a function of the
packing fraction � for lattice parameters �=19, 38, and 57. 	�S
 in �a� is for
a bcc crystal with N=54 colloids and reservoir screening length ��=2. 	�S

in �b� is for a fcc crystal with N=32 colloids and ��=5. In the inset in �b�,
we subtract a linear fit from 	�S
 to make the differences more visible. The
lines are guides to the eye.
and do MC moves only for the ions. Co- and counterion
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positions were recorded into 400 frames during 2000 MC
cycles. From this data, charge distributions were obtained by
averaging the co- and counterion positions on a bcc unit cell
that contains one colloid in the center and eight in the cor-
ners of a cube. The averages were saved on 60
60
60
matrices, which were visualized by plotting the three-
dimensional �3D� constant-density contours with the
GOPENMOL program.53 Figures 8�a�–8�d� show 3D contour
plots for ��a� and �b�� counterion, �c� coion, and �d� charge
densities �counterion density minus coion density� in the bcc
unit cell. Note that in Figs. 8�a�, 8�c�, and 8�d�, the central
colloid of the bcc unit cell is covered by the contour plots.
The counterion contour plot in Fig. 8�a� shows that the coun-
terions are distributed in a spherical orbital around each col-
loid, just like the DLVO theory predicts. Figure 8�b� shows a
contour plot of counterions, where the constant-density con-
tour is set at a higher counterion density than in Fig. 8�a�. As
can be seen from Fig. 8�b�, the highest counterion density is
on the part of the colloid surface where the nearest neighbors
are closest to each other �i.e., between the center colloid and
one of the corner colloids�. This can be explained by super-
imposing two spherical orbitals, as is expected based on the
DLVO theory. The coion contour plot in Fig. 8�c� shows that

FIG. 5. The average potential energy per particle 	U
 /N �in units of kBT� as
a function of the packing fraction � for lattice parameters �=19, 38, and 57.
	U
 /N in �a� is for a bcc crystal with N=54 colloids and reservoir screening
length ��=2. 	U
 /N in �b� is for a fcc crystal with N=32 colloids and ��
=5. In the insets, we subtract a linear fit from 	U
 /N to make the differences
more visible. The lines are guides to the eye.
the coions are distributed in the regions left empty by the

Downloaded 19 Jan 2006 to 131.211.45.107. Redistribution subject to
colloids and are depleted from the surfaces of the colloids.
The highest density of coions is in the space between next-
nearest neighbors �i.e., between the colloids in the corners of
the unit cell�. This region of space is still completely charge
neutral, because it contains as many counterions as coions.
This can be seen from Fig. 8�d�, which shows a contour plot
of the charge density �counterion density minus coion den-
sity�. Figure 8�d� also shows that the charge distribution is
similar in shape to the counterion distribution in Fig. 8�a�.
Figure 9 is a snapshot of the fluid phase containing N=30
colloids at packing fraction �=0.11 and reservoir screening
length ��=5.

Figures 10�a� and 10�b� show the colloid-colloid,
colloid-coion, and colloid-counterion radial distribution
functions �RDFs� for two statepoints close to the fluid-bcc
melting line. The RDFs in Fig. 10�a� are for packing fraction
�=0.206 and reservoir screening length ��=2, and those in
Fig. 10�b� are for �=0.266 and ��=5. In Fig. 10, we also
plot the RDFs of Yukawa systems, where the screening
length �eff� is from Eq. �6� �the gray dashed and dot-dashed
lines� or �eff� � from Eq. �7� �the gray dotted and full lines�.
We use a constant effective charge Zeff=80 for the RDFs

FIG. 6. The root-mean-square �rms� displacement �	u2
 in units of the mean
colloid distance �−1/3 as a function of packing � for lattice parameters �
=19, 38, and 57. The rms displacement in �a� is for a bcc crystal with N
=54 colloids and reservoir screening length ��=2. The rms displacement in
�b� is for a fcc crystal with N=32 colloids and ��=5. The dashed line gives
the Lindemann criterion. In the inset in �b�, we subtract a linear fit from
�	u2
 /�−1/3 to make the differences more visible. The lines are guides to the
eye.
plotted with the dotted and dashed lines, and we use the
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effective charge from the MSA theory, Eq. �8�, for the RDFs
plotted with the full and dot-dashed lines. We observe that
the results with Zeff=80 always underestimate the structure.
The best agreement �the gray full lines� is obtained by using
�eff� � from Eq. �7� and Zeff from the MSA theory �Eq. �8��,
although the result always slightly overestimates the struc-
ture. We want to point out that the primitive model RDFs in
Figs. 10�a� and 10�b� can be fitted with Zeff=80 if �eff� is
treated as a fitting parameter. However, from our colloid-
colloid RDF data for statepoints in the range �
� �0.03,0.314� and ��� �0,9.5�, we noticed that at ��0.2
the fitting was not possible if Zeff=80 was used. More spe-
cifically, at state points ��=2.0 and �=0.21,��=5.0 and
�=0.27,��=6.9 and �=0.28,��=8.7 and �=0.30, and

FIG. 7. A snapshot of a bcc crystal with N=54 colloids at packing fraction
�=0.34 and reservoir screening length ��=5. The small light �yellow�
spheres are coions and the small dark �red� spheres are counterions. This
system was used to calculate the contour plots in Figs. 8�a�–8�d�.

FIG. 8. Constant-density contour plots for ��a� and �b�� counterion, �c�
coion, and �d� charge densities in a bcc unit cell at packing fraction �
=0.34 and reservoir screening length ��=5. In �a�, �c�, and �d�, the central

colloid of the bcc unit cell is covered by the contour plots.
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��=9.5 and �=0.31, we observed that a higher effective
charge was required to make the fitting of the colloid-colloid
RDF even qualitative.

In conclusion, our results seem to suggest that, at �
�0.2, the effective screening length is best described by tak-
ing into account the excluded volume of the colloids, as we
do in Eq. �7�, and the effective charge should be chosen
larger than the bare charge. At �
0.2 we find that the
colloid-colloid structure can be described by the DLVO
theory, i.e., with Zeff=80 and �eff� from Eq. �6�. At these low
densities, we also find that the MSA theory gives in certain
cases worse description of the structure than the DLVO
theory. We emphasize that our results are not meant to vali-
date the MSA theory. We use this theory simply in lack of
anything better and acknowledge that it gives only a rough
idea of the optimal effective charge.

Note that we have implicitly assumed that the Yukawa
form of the pair potential is valid at concentrated colloidal
suspensions. This does not need to be so, but we do not have
evidence of any other form of the pair potential either.

C. Melting line

We determine the melting line for the primitive model at
reservoir screening lengths ��=0.0, 2.0, 5.0, 6.9, 8.7, and
9.5 using the Lindemann criterion �12�. The numerical values
for the melting points are given in Table I. In Table I, the
effective screening lengths �eff� are calculated using Eq. �6�
and �eff� � are calculated using Eq. �7�. We also give the cor-
responding effective charges Zeff and Zeff� that are calculated
using the MSA theory from Eq. �8�. We checked that charge
renormalization due to condensation is insignificant by cal-
culating Zre at the statepoints in Table I using the Poisson-
Boltzmann cell model.25 According to our results, the renor-
malized charge is Zre�79, i.e., very close to the bare charge.

Figure 11 shows the melting line of the primitive model
in the �-�eff� representation. The squares mark the results
where the mapping onto the �-�eff� plane is done using �eff�

FIG. 9. A snapshot of the fluid phase with N=30 colloids at packing fraction
�=0.11 and reservoir screening length ��=5. The small light �yellow�
spheres are coions and the small dark �red� spheres are counterions.
from Eq. �6�, and the circles mark the results where the map-
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ping onto the �-�eff� plane is done using �eff� � from Eq. �7�.
The filled symbols denote the melting points of a bcc crystal,
while the open symbols denote the melting points of a fcc
crystal. The inset in Fig. 11 shows the melting line in terms
of the reservoir screening length ��. For comparison, Fig. 11
also shows the phase diagrams of point Yukawa particles �the
black dashed and dot-dashed lines� from Ref. 54, which were
mapped onto the �-�eff� plane by matching the point

TABLE I. Numerical values for the primitive model m
to the Lindemann �12�, �id� is the ideal reservoir scr
length �see Eq. �2��, �eff� and �eff� � are the effective
and Zeff� are the corresponding effective charges from
density.

Crystal �melt �id� �� �

bcc 0.219 0 0.0 3
bcc 0.257 2 2.0 3
fcc 0.284 5 5.0 5
fcc 0.335 7 6.9 6
fcc 0.350 9 8.7 7
fcc 0.366 10 9.5 8

FIG. 10. Radial distribution functions �RDFs� for a system with N=54
colloids with charge Z=80 close to the fluid-bcc melting line. �a� shows the
RDFs for a system at packing fraction �=0.206 and reservoir screening
length ��=2. �b� shows the RDFs for a system at packing fraction �
=0.266 and reservoir screening length ��=5. The colloid-colloid RDFs are
plotted with the full lines, the colloid-coion with the dashed lines, and the
colloid-counterion with the dotted lines. The gray lines give the RDFs of
Yukawa systems for four different choices of Yukawa parameters, see text.
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Yukawa pair potential with the hard-core pair potential at r
�� �for details, see Ref. 4�. In the mapping of the dashed
lines, we used the effective charge Zeff from the MSA theory
�Eq. �8��, and in the mapping of the dot-dashed lines, we
used the DLVO theory bare charge Zeff=80. We also calcu-
lated the melting line of hard-core Yukawa particles using the
Lindemann criterion. These are plotted by the gray lines, and
the effective charges are chosen as in the corresponding point
Yukawa phase lines. As can be seen from Fig. 11, the primi-
tive model melting lines are between the Yukawa fluid-solid
phase lines, and it is hard to say which mapping of the primi-
tive model and the Yukawa model is the best. Using the
DLVO theory, i.e., �eff� from Eq. �6� and Zeff=80, gives a
reasonable agreement between the primitive model results
denoted by the squares and the Yukawa fluid-solid line de-
noted by the dot-dashed line. In this case, the Yukawa model
predicts more fluid phase than the primitive model. Using
�eff� � from Eq. �7� and Zeff from the MSA theory �Eq. �8��
gives a reasonable agreement between the primitive model

g line. �melt is the melting packing fraction according
g length �see Eq. �4��, �� is the reservoir screening
ning lengths from Eqs. �6� and �7�, respectively, Zeff

SA theory �Eq. �8��, and 	�S
�3 is the average salt

Zeff �eff� � Zeff� 	�S
�3

101.9 3.57 102.3 0.0
107.1 4.48 107.7 5.1
112.0 6.75 116.7 29.8
120.6 8.39 122.4 50.2
124.1 10.00 126.3 77.9
129.3 10.85 129.8 91.5

FIG. 11. Phase diagram of charged colloids with charge Z=80 and Bjerrum
length �B /�=0.0225 in the packing fraction �-effective length �eff� repre-
sentation. The point Yukawa phase boundaries from Ref. 54 are denoted by
the black dashed and dot-dashed lines and the corresponding hard-core
Yukawa melting lines are denoted by the gray lines. The primitive model
melting points are denoted by the squares ��� and circles ���. The filled and
open symbols are the melting points for bcc and fcc crystals, respectively.
The inset shows the melting line �diamonds ���� in terms of the reservoir
screening length ��. The full lines are guides to the eye.
eltin
eenin
scree
the M

eff�

.08

.74

.39

.55

.69

.22
 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



244902-9 Melting line of charged colloids J. Chem. Phys. 123, 244902 �2005�
results denoted by the circles and the Yukawa fluid-solid line
denoted by the dashed line. In this case, the Yukawa model
predicts less fluid phase than the primitive model. As noted
in Sec. III B, at ��0.2 the agreement of the colloid-colloid
RDFs of the primitive model and the Yukawa system is the
best in this case. We have also calculated the melting point
for a system with Z=160 and no added salt ���=0�. We
found �melt=0.066±0.005 for a bcc crystal with N=54 col-
loids. At this density, �eff�=2.47 and �eff� �=2.58 from Eqs.
�6� and �7�, respectively. Using �eff�=2.5 and Zeff=160 in
the hard-core Yukawa model gives melting at �melt=0.071, in
good agreement with the primitive model result. This shows
that at low densities, the DLVO theory gives a good descrip-
tion of charged colloids �as long as charge renormalization is
not important�. We can only conclude that it is not clear how
the mapping between the primitive model and the Yukawa
model should be done in the packing fraction range ��0.2.

In our earlier work,23,24 we performed simulations of the
effective one-component system using a repulsive two-body
Yukawa potential and an attractive three-body potential, and
we found broad fluid-fcc and bcc-fcc coexistence regions at
��=2.2-2.45. Using this effective three-body potential ap-
proach, the simulations showed a clear phase separation for
statepoints well inside such a broad two-phase coexistence
region. This is in contrast with our primitive model simula-
tions, which do not give any indication of phase separation
or broad coexistence regions when the same parameters are
used as in Refs. 23 and 24.

IV. CONCLUSIONS

We develop an efficient simulation method to study sus-
pensions of charged spherical colloids using the primitive
model. The combination of the fine lattice discretization ap-
proach and cluster moves enables us to speed up sampling.
We find the cluster moves essential to make the primitive
model simulations feasible in the colloidal regime. These
methods are a combination of methods used
previously.34,43–46 We showed that by increasing the lattice
discretization, its effect on the results can be made small in a
sense that no change is observed if the lattice is refined fur-
ther. The crucial difference between our work and the earlier
work is that we perform the simulations in the semigrand
canonical ensemble, where the volume, temperature, number
of colloids, and salt chemical potential are fixed. This allows
us to make direct comparison not only with experiments but
also with various theoretical approaches. For instance, Refs.
55 and 56 show direct comparisons of radial distribution
functions measured experimentally using confocal micros-
copy and those obtained from our primitive model code.

We studied charge distributions in a bcc crystal by plot-
ting contour plots of coion, counterion, and charge �counter-
ion minus coion� densities. The charge distributions were
found to be in qualitative agreement with the DLVO theory,
which predicts spherical double layers around each colloid.

We determined the fluid-solid melting line of the primi-
tive model for colloidal charge Z=80 using the Lindemann
criterion and compared it with the melting line of colloids

described by the effective Yukawa potential of the DLVO
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theory. We found that the agreement between the primitive
model and the Yukawa model depends strongly on the way
the mapping between the two systems is performed, i.e., on
the choice of the effective screening length and effective
charge. Our results for colloid-colloid RDFs at ��0.2 sug-
gest that the effective screening length is best described by
taking into account the excluded volume of the colloids and
that the effective charge is higher than the bare charge. This
charge renormalization is due to the excluded volume of the
colloids that reduces the volume available for the microions
and therefore reduces the screening.30,51 Thus, the colloids
feel a stronger repulsion because their charges are less
screened. However, we do not have direct evidence confirm-
ing this mechanism. At �
0.2, the colloid-colloid structure
can be described by using an effective charge equal to the
bare charge, i.e., Zeff=80. We are not aware of a unique way
of mapping between the primitive model and the Yukawa
model that would work at all packing fractions, except
fitting.30 One possibility is that the Yukawa form of the pair
potential breaks down at high densities, but our results did
not show any definite evidence supporting this. Note that the
breakdown of the Yukawa form of the pair potential has been
observed before by other authors.15,16,49

Treating the salt grand canonically allows us to make a
direct comparison with our earlier work,23,24 where three-
body attraction gave rise to broad fluid-fcc and bcc-fcc co-
existence regions. We use the same parameters as in Refs. 23
and 24, but do not find any broad coexistence regions or any
other manifestations of many-body interactions. This sug-
gests that the four- and higher-body terms play an essential
role in the parameter range considered here; they seem to
cancel the effective three-body attraction. Therefore, the ef-
fective colloid interactions in colloidal suspensions seem to
be better described by an effective pair potential description
than by an effective Hamiltonian truncated after the three-
body term, as was done in Refs. 23 and 24.
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