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Using replica density functional theory and Monte Carlo computer simulations we investigate a
system of annealed hard spherocylinders adsorbed in a matrix of quenched hard spheres. Theoretical
predictions for the partition coefficient, defined as the ratio of density of rods in the matrix and that

in a reservoir, agree well with simulation results. Theory predicts the isotropic-nematic transition to
remain first order upon increasing sphere packing fraction, and to shift towards lower rod densities.
This scenario is consistent with our simulation results that clearly show a jump in the nematic order
parameter upon increasing the rod density at constant matrix packing fraction, corresponding to the
isotropic-nematic transition, even for sphere matrix packing fractisi®s3. © 2004 American
Institute of Physics.[DOI: 10.1063/1.1815294

I. INTRODUCTION extensions thereof to arbitrary convex bodies were divEn
and modified to describe the isotropic-nematic transition of
The effect of quenched disorder on the isotropic-nematithard spherocylinders and ellipsoitfsRecently, a technical
phase transition is a matter of strong current interest and gifficulty was overcome and the so-called deconvolution of
variety of experimental, simulation, and theoretical tech-the Mayer bond into functions characteristic for single par-
niques have been used to reveal the nature of orientationgkles was obtained for mixtures of spheres afttin)
order. The Imry-Ma argumehprohibits the existence of true rods!4~1®other cases have also been considéféthe rod-
long-range order in a nematic phase exposed to quenChﬁhere functional predicts the properties of the free interface
random orienting fields. The question what happens insteagetween demixed fluid phases very reliably as compared to
when long-range order is disrupted in nematics Wwithgimylations!® and has also been used to study the wetting
quenched disorder has been addressed receatig,also dy- behavior at a planar hard waf.
namical aspects have been cqnsidérég_masi-_long-range or- One approach to model porous substances is to rely on
der, _hgwe_:ver, exists in nematics confined in random poroug, mopilized particle configurations of model fluids. These
media’ Simulation evidence was given for critical behavior configurations are “quenched,” and are brought into contact

of the 5isotropic-nematic phase transition in a POTOUSith an equilibrated “annealed” fluid. The conventional tool
medium? Much work has bgen devoted to phenomer)ologlcak0 study such quenched-anneal@A) mixtures is via the
approaches, to rotator lattice models, anq the Ma'er'saUpr%plica trick, and a variety of liquid state integral equations
model(see Ref. 6 for recent work on the orientational rEIaX'have been carried over from equilibrium to QA models. Re-
ation of this model A related binary system is that of col- fently a density functional theofDFT) approach to such

loidal particles dlsperseql in a liquid crys'FaI, see, e.g., Ref._ 0A models was propos&¥land demonstrated to give good
for recent work on capillary condensation of the nematic

phase between two spherical particles dispersed in a bur%ccount of hard sphere correlatidis;apillary condensation
isotropic phase and evaporatio?®?® surface behavior of hard spherés,

Nematic ordering in bulk can be understood on a micro-1€€ZINg na Iattlge modef gnd the structure of hard
scopic level via excluded volume interactions of particlesspheres'|mmersed In raqdom fiber netwdfks. )
with continuous spatial and orientational degrees of freedom, N this work we combine the tools developed in Refs. 14,
The Onsager isotropic-nematic transition of the hard rodt> 20, @nd 21 to arrive at a replica DFT for annealed hard
fluid is a prominent example of a phase transition in such 40ds in the Onsager limit of large length-to-thickness size
systenf To study orientationally ordered phases density-atios immersed in a matrix of quenched spheres. We con-
functional theor§ is a primary tool, and in fact Onsager's Sider two types of interactions between matrix particles,
theory is based on the low-density expansion of @eacy  hamely, hard sphere and ide@anishing interactions, the
free energy functional. For additive hard sphere mixturedatter leading to more open matrix void structures at equal
Rosenfeld’s (nonperturbative fundamental-measure theory density. We find that the isotropic-nematic transition remains

(FMT) (Ref. 10 provides a very accurate description. Early Stable upon increasing density of matrix particles. The coex-
isting densities of rods in the void space, however, increase

exponentially with increasing matrix densities. We compare

30n leave from Institut fu Theoretische Physik 1I, Heinrich-Heine- . . . .
Universitd Dusseldorf, UniversitsstraBe 1, D-40225 Bseldorf, Ger- these findings with results from computer simulations where
many. we find a similar shift in the coexisting densities via analyz-
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ing the behavior of the nematic order parameter. Both apergy functionalF .. The following section is devoted to an

proaches cannot access the true long-range behavior of tR&plicit approximation thereof. The minimization condition
model. In simulations finite-size effects are present, and thgs

DFT is essentially a mean-field treatment. We believe, how-

ever, that our findings describe what would be seen in a finite 5Q[psipn] -0 ()
sample of colloidal rods immersed in a mesoporous  pn(T.€2) | )
material®’

The paper is organized as follows. In Sec. Il we defineVhere the density distribution of the quenched species
the model of thin hard rods immersed in a sphere matrix irps(r’) is treated as a fixed .q‘{a”_t&?"zl In the case of the
more detail. We outline our DFT approach in Sec. Ill. Thefreely overlapping matrix this is just the distribution of an
simulation techniques are briefly discussed in Sec. IV. Reld€al gas, for the hard sphere matrix it can be calculated from
sults from DFT and simulations are presented in Sec. V. w&osenfeld’s hard sphere functiortdl.
finish with concluding remarks in Sec. VI. B. Excess free energy functional

Il. THE MODEL Following the general structure of FMRef. 10 and, in
particular, the extension to QA fluid8 the (Helmholt2 ex-

We consider a fluid of needlelike hard roGpeciesN) cess free energy is obtained by integrating over a free ener
of diameterD and lengthL, whereL>D. The rods are density oy y 9 9 oy

immersed in a quenched matrix comprised of spheres of ra-
dius R (and diametewr=2R), and we restrict ourselves to 3 d?Q i

the case of large spherdsD <o?. The interaction between FeXC{PS;pN]:kBTJ d rf 2, PdnD, ®)
a fluid rod and a matrix sphere is that of hard bodies, i.e., o )

infinite if both particles overlap and zero otherwise. We con-Vhere the(reduced free energy density is a _S|rri1ple func-
sider two different kinds of sphere-sphere interactidiisa 10N (not a functional of the weighted densities,,, where
hard sphere interaction, being infinite if the separation dis! =N labels the species andlabels the type of weighted
tance between spheres centers<i€R and zero otherwise d€nsity. The functional form o> is obtained by consider-
and (i) freely overlapping spheres that behave like an ideafition of the exact zero-dimensional excess free erfergyr
gas(i.e., the pair interaction vanishes for all distances the case of the hard sphere mati= sy, where

We denote the number densities of both speciep;hy ANRSNL NNN
i=S,N, and also use the sphere packing fraction Ppsy=—npy IN(1—n3) + ! 21_ é 2 (6)
=mpsol6 as a parameter. The size rattito is a geometric N
control parameter. Local density profiles for spheres and rodBor ideal matrix spheres we fini=®p,,, where
are denoted byg(r) andpy(r,Q), respectively, where is NoS . _N.SN. -N_NN S
the space coordinate a€dl is the rod orientation. See Fig. 1 Pipm=NoNg+NyNZ N N " exping). @)
for an illustration of the model. The dependence on the spatial coordirmaend the orienta-
tion Q are suppressed in the notation in E¢®.and(7); we
IIl. DENSITY FUNCTIONAL THEORY give the explicit dependences and the relation to the bare
A. General strategy density fields in the following. The weighted densities for
Following the extension of DFT(Ref. 9 to QA fods are given by
mixture$’? we express the grand potential functional as ny(r,Q)=pn(r,Q)*wy(r,Q), (8)
N N
O psion] =l onl+ Feud psionl + | M1(F =T, D (r. ), ©
20
620 0= [ a0, 10
XJ 27 PN [Vedr, ) —uy], (1) 7

where the asterisk denotes the spatial convolution,
where Ve, (r,Q) is an external potential acting on the rods g(r)«h(r) = [d®x g(x)h(r —x), and the weight functions are
(which will be set to zero in the followingand uy is the rod  defined as
chemical potential. The ideal free energy functional is given

by N _1
wh(r @)= S[8(r + QL2+ 51— QL) (11)
L[ 40
Flonl =koT [ & [ 5 pur. ) @

X[In(pn(r,Q)AZ)—1], )
NN . ry — ’ N
whereA  is the (irrelevant thermal wavelength of the rods, w5 (r,€2;02")=16D V1—(Q- Q") wy(r,Q), (13
kg is the Boltzmann constant, afdis the absolute tempera- \ynpere 5(-) is the Dirac distribution. For spheres the
ture. The effects of all interparticle interactions, those beweighted densities are

tween rods and rods as well as those between rods and S s
(quenchetispheres are described through the excess free en-  No(r) = ps(r)*Wg(r), (14)

L/2

wQ‘(r,Q)=%f L/Zdlé(H—QI), (12
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ngN(r,Q)sz(r)*WgN(r'Q), (15) density fields of spheres and rods. Thg rgsulting excess
S S Helmholtz free energy per system volurdeis given by
n3(r)=ps(r)*ws(r), (16)
2
where the weight functions are given by Fexc —pynat Z pLZD (24)
=—pn —,

WS(r) = 8(R—1)/(4R?), ap TV 4o

SNr, Q)= "o ~(1- . 25
wiNr, @) =25(R-1)| -, (18) a=(1=mexy ~ 57—/, (25
w3(r)=0(R—r), (19

where« has the interpretation of a free volume fraction of a
with r=|r|, and @(-) being the step function. This com- rod in a sea of sphereG.e., the ratio of average volume
pletes the prescription of the functional. accessible to the rods and the total volyme

Note that the weight functions are constructed in orderto  In a spatially homogeneous, but orientational ordered
generate the Mayer bonds = exdV;;/(ksT)]—1, whereV;, phase(i.e., a bulk nematicadditional simplifications arise in

is the pair potential between particles of spedieand j,  the free energy density, ER3),
upon convolution. Explicitly, \ N
3L N Q)niNQ)
fsn(r, )= —w3(r)*wg(r, ) —w3Nr,Q)xwy(r,Q), Bpysm=pn| —IN(1— )+ oo | 4 2

(26)

fan(r,Q2,Q)=—2wiNr, ;QH)«wi(r,Q"), (22
. - . wherepy, is the (bulk) rod number density. The only depen-
?’Zﬁlcﬁpgiggrdﬁgcg R;;'uig fcﬁ (t)hinee)(pclg:: ;?LCWUI?ESP.thBey dence on the orientational distribution is through the numera-
current functional is exact or717 the second virial level. Highertor of the secpnd term on the right-hand S'.d.e of m) th_e

ders iny are included in an aporoximative wav. der_10m|nator is a tr|v.|al con;tant. The specific combl_nat|on of
orde n PP y weighted densities is precisely the Onsager functional, re-
stated in FMT terminology, see the end of Sec. IlIB. The

C. Homogeneous matrices effect of the denominator, however, isiticreasethe excess
Considerable simplifications of the theory outlined free energy as grows. Note further that the first term on the

above arise if the matrix particles are distributed uniformly"ight-hand side of Eq(26) is linear inpy, and hence does
in space, i.e.p<(r) = const. This still permits the study of rod not affect phase equilibria. Hence we can immediately obtain

orientational order, as well as inhomogeneous situations i€ iSotropic-nematic phase transition within the present

duced by an additional external influence modeled byh€ory by rescaling the known bulke., in the absence of
Vo (r,Q) in Eq. (1). The weighted densities for species matrix particleg solution. We find that the densities of the
become proportional to the bulk density of spedighence ~ COEXISting isotropic phasgy i, and the nematic phase
n' =& p,, where the proportionality constants are fundamen£N.nem ar€
tal measures. For sphereg;=1,&"=47R?, andé&s
=47R®%3. For rods¢)'=L/4, £=1, and, in an isotropic PNiso  PN.nem_ o 5

NN NN NN . 0 0 ( 7])1 ( 7)
state,n, "=§&, pn, Where & " =wLD equals the leading PNiso PN nem
contribution to the surface of a rod in the limi/D—oo.
[Recall that for spherocylinders of finite aspect ratio the fun-where the coexisting densities in bulk are/Q)pﬁ,’isoLzD

damental measures ag& =1, & =L/4+D/2, &=wD(L =4.189 in the isotropic phase anelr/@)pﬁ’nenj_zD=5.336
+D), andé;=wD?(L/4+D/6).] in the nematic phas®.It might at first glance be surprising
The free energy density per volume for either type ofthat the densities of the coexisting states in the matrix are
matrix is then smaller than those without matrix. This is, however, simply
3/ RINN 4 NN due to the occupied matrix volume that depletes rods. More
Ppoy=— ng‘ In(1—7)+ (B7/R)ny +nin; (22) relevant is the ratio of density of rods in the free volume left
1-7 by the quenched spheres and that in biuithout matrix.
® o= pnh+ (3 RN+ exp )ik, (29 Thisis
Where_the explli\lcit dependence of all rod W_eighted _de_nsities PNiso _ PN,nem . 3_|_ 7 ) 29
on variables is,(r,2), and the sphere packing fractioris ap%,iso ap%’nem 20 1—n 7’

just a constant.

which is anincreasingfunction of 7, in accordance with
D. Isotropic-nematic transition physical expectation, as higher rod densities are required to
induce the nematic order against the quenched matrix disor-
der. For large size ratids/ o the effect is stronger, however,
In isotropic and homogeneous bulk states the free energihe overall analysis is, as stated above, restricted. o
is obtained by applying the density functional to constant<o?, hence the limit./o— o is not directly accessible.

1. Hard sphere matrix
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2. Ideal sphere matrix

Carrying out the same analysis as above for the case of
freely overlapping matrix spheres yields

I:exc T 5 2

kBTV——len a+ ZPNL D exp(7), (29
= 1+ 3t 30

a=eX n 20/ 1" ( )

In the nematic phase

FIG. 1. lllustration of the model of hard rods of lendthand diameteD
immersed in a matrix of fixed hard spheres of diameteThe rods are
equilibrated in the presence of quenched configurations of spheres. The
statistical distribution of spheres is that of a pure hard sphere system.
The bare coexisting densities of the isotropic and the nematic

phase decrease as a functionzpf

1+ S
4R

D pm=pN7 +exp p)n()niNQ). (3D

1MW /3 P
Pg,lso: pg,nem:exq_n). (32) Qw:<N_E (EQS)QS)—TW)>, (34
PN,iso  PN,nem NI

However, the actual rod density in the free volume is agaivhereQ!) is the v component of the unit orientation vector

increasing at coexistence, of particlei, Ny is the number of spherocylinders, aégl. is
the Kronecker delta. At sufficiently low rod densiti€3,is
deiSO = pNO'”em :exp(g_l‘,?)_ (33  about zero, which corresponds to the isotropic phase. We
aPNiso  XPN,nem 20 observe a jump its upon increasing, denoting a transition

The increase is weaker than in the above case of the haffP™ the isotropic to nematic phase. The densities at which

sphere matri{Eq. (28)], as the present matrix induces a 1€ JUmp inS occurs gives us a rough estimate of the coex-
more open void structure due to sphere overlaps isting densities of the isotropic-nematic transition. It is worth

noting that the coexisting densities of the isotropic and nem-
atic phase in bulk can be determined more accurately using
Gibbs ensemble Monte Carlo simulaticiidn these simula-

We have carried out Monte Carlo simulations to obtaintions the two coexisting phases are simulated simultaneously
results for the partition coefficient, defined as the ratio ofin two separate boxes which can exchange particles and vol-
densities in the matrix and in the reserv@iree of matrix  ume to ensure equal chemical potential and equal pressure.
spheres in chemical equilibrium with the systemy/py - However, Gibbs ensemble Monte Carlo simulations cannot
We perform simulations of hard spherocylinders for a fixedbe used to determine phase equilibria in systems at a fixed
matrix configurations and for the bulk simultaneously in twomatrix packing fractionz as it is impossible to exchange
separate simulation boxes. The linear dimension of the cubigolume between the two simulation boxes while keeping
simulation boxes is aboutl5and periodic boundary condi- fixed (see, however, Ref. 30While histogram reweighting
tions are applied. Matrix configurations are taken to be(see, e.g., Ref. 31does not suffer from this problem, we
equilibrated hard sphere configurations of the prescribeéxpect it to be difficult to sample accurately the two phases
packing fractions. Most of the results presented below are of different symmetry with greatly differing values of the
for a length-to-diameter ratit/D =20 of the spherocylin- order parameter in both phases.
ders, while the rod-sphere size ratio is chosen toLbe
=1. Moreover, the boxes can exchange spherocylln.ders 0 RESULTS
order to ensure equal chemical potential of the rods in bulk
and in the matrix, while the total number of spherocylinders  As a first check of the accuracy of the DFT we compare
in the two boxes is kept constant. Typical particle numbergesults for the partition coefficienpy/py, to those from
are <60 spheres ane<12 000 rods. We measure the aver- MC simulation in Fig. 2. The DFT results are obtained from
aged number densities of the spherocylinders in bulk and ithe (analytio expression for the rod chemical potential ob-
the matrix to obtain the(averagedl partition coefficient tained asun(pn,7)=V 19(Fig+Fexd/dpn and inserted
pn/py - To approach the Onsager limit, we have also carriednto the condition for chemical equilibriurtwith respect to
out simulations for thinner rods with/D =80 and 800. Such exchange of rods of the reservoir and the system
aspect ratios severely limit the maximum obtainable reducegky(pn, 7) = un(pn;0), Which is solved numerically. For
densityc= (7/4)pnL?D. fixed matrix sphere packing fraction, there is a slow in-

We also performed Monte Carlo simulations in the ca-crease ofpy/py as a function of the reservoir densigpy, .
nonical ensemble to estimate the isotropic-nematic transitioSimulation results are shown for reduced reservoir densities
as a function of the matrix packing fraction We measure c'=(w/4)p\L2D=<2.5, about halfway of the density of the
as a function of the reduced density of the raggshe nem- isotropic phase at isotropic-nematic coexistence in bulk in
atic order paramete® defined as the largest eigenvalue of the case of the Onsager limit and close to the result for
the standard nematic order parameter tensor L/D=20 (see Ref. 32 In this regime the acceptance prob-

IV. COMPUTER SIMULATION TECHNIQUE
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FIG. 2. Partition coefficienpy /py , Wherepy, is the density of rods in the  FIG. 3. Phase diagram of hard rods immersed in a matrix of quenched hard
hard sphere matrix angf, is the density of rods in a reservoir, as a function Spheres displayed as a function of matrix packing fractiand scaled rod

PR L2Dw/4 for packing fractions of the hard sphere matrix 0.1,0.2,0.3 densitypyL?D /4. Shown are DFT results for the binodal of the isotropic-
(from top to bottor and size ratid./o= 1. Results from DFT(lines and nematic transition of Onsager rodise., L/D—x) inside the hard sphere
from simulationgsymbol3 are shown. Simulation results are shown for rod matrix (solid lineg and inside the ideal matridashed lines Coexistence is
aspect ratios of./D=20 (dotg, 80 (pluses, 800 (crossey theoretical re- along vertical tie linegnot shown. In this representation the phase diagram
sults correspond to the limlt/D— . The inset shows the area inside the iS predicted to be independent of the rod-sphere size kdtio Simulation
rectangle marked in the main plot on an expanded scale; the simulatiofesSults are shown for coexistence densitielstained from analysis of the
results approach the theoretical curve for increasifiy. nematic order paramejeinside the HS matrix fot./D =20 (symbols.

_, , _ . ume. This density is obtained as *p\L?D /4, wherea is
ability of particle swaps between system and reservoir in thene ree volume fraction accessible to the rods as given in Eq.
simulation is sufficiently large in order to obtain reliable (25) for hard sphere matrices and in H&0) for ideal ma-
data. Most cif our simulations are carried out for an aspecfices. The results, as displayed in Fig. 4, indicate a strong
ratio of L/D=20. The DFT resultsderived in the Onsager j,crease withy. Hence largereffectiverod densities are

Iirrnit, L/D— ) overestimate slightly the MC ﬂata for small eeded to overcome the quenched disorder and drive the sys-
pn . but these deviations decrease for increagiggIn order o into a nematic state.

to assess the influence of finite rod thicknesses we have also We next turn to the simulation results of the nematic

carried out simulation runs for larger aspect rgtlosl_g)D order parameter, from which the coexistence densities in Fig.
=80 and 800. Due to the scaling ofandc” with LD 3 \yere obtained. In Fig. 5 we pl@ as a function ofc for
these large values significantly limit the accessible values Ofjitferent values ofy. The results for the bulky=0, serve as

c with reasonable particle numbers. It is, however, evident (oference case. In the isotropic st&te0.05, which is>0

that for smallpy, the theoretical curve is indeed approachedomy due to the finite system size. At sufficiently highwe

for increasingL/D. We hence conclude that the DFT gives gpserve a jump irS from which we can estimate the coex-
good account of the thermodynamic properties of isotropiGsience densities as,=2.5 andc,.,—3.0, in fair accor-

states of rods in a quenched sphere matrix. _ dance with data from the literature. FbfD =20 the coex-
As derived in Sec. Il D the DFT predicts the first-order

isotropic-nematic transition to remain stable #pr 0. In Fig.
3 the results for the coexistence densities are displayed as a 16
function of sphere packing fraction. An almost linear de-
crease withn is found, which might seem at first glance
surprising. The reason is thay; is the average density in the 12
system, hence both the volume of the void space between 10
spheres and the forbiddéfor rods volume contribute. The
latter clearly increases withy leading to the observed de-
crease in transition densities. We also display in Fig. 3 esti-
mates of the transition densities from simulations. Those val-
ues are obtained from analysis of the nematic order
parameter(as described belowobtained forL/D=20. For
this size ratio the scaled coexistence densities are consider-
ably smaller than in the Onsager case #6¢ 0. The decrease 0 0.1 0.2 0.3 0.4 0.5
of the coexistence densities upon increasjrig very similar n
to that predicted by the theory. ) ) ) ) )
Next we investigate the behavior of the rod density in"'S: # Same as Fig. 3, butas as a function of matrix packing frasfand
] L i ensity of rods in the void space, i.e, “pyL°D 7/4, wherea is the free
the void space of the matrix, i.e., the number of rods d|V|de£

' - olume fraction accessible to the rods. The inset shows the results for size
by their accessible volume rather than the total system volratiosL/o=0.5 and 2(as indicate}l

14

o' pNL7DT/4

S N b N
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FIG. 5. Simulation results for the nematic order paramgtas a function of
the scaled rod densitg=pyL2D=/4 for different matrix sphere packing
fraction »=0(bulk),0.1,0.2,0.3.

isting phases in bulk(i.e., »=0) have densities ofc

= 2.645 (isotropic phaseand 3.337(nematic phaseas ob-
tained from Gibbs ensemble simulations and?2.698(iso-
tropic phasgandc= 3.315(nematic phaseas obtained from
Kofke integratior’> Remarkably, for increasing values of
sphere packing fractiony=0.1,0.2, the qualitative shape of
the order parametes as a function of densitg remains the

M. Schmidt and M. Dijkstra

FIG. 7. Snapshots from MC simulation at statepoints close to isotropic-
nematic coexistence of hard rods of aspect rati® =20 immersed in a
matrix of quenched hard spheres of packing fractipn0.1. The reduced
density of rods i€ = 2.0 (isotropic phase, leftandc=2.75(nematic phase,
right). Rods are colored according to their orientation.

resembling closely a bulk situation without matrix particles.
In our simulations the overall director orientation is deter-
mined by the initial condition. Although there should be an
optimal global director orientation for each different geom-
etry of the void structure, in practice the system hardly
changes its initial director during the course of the simula-
tion. For =0.2, displayed in Fig. 8, we observe different
competing local directors, especially close to the parts of the
sphere surfaces normal to the global nematic director. The

same as fom=0, hence there can still be a transition regiondjisturbance of the nematic phase is even more pronounced

identified. However, a marked shift to lower valuescobc-

for »=0.3, as displayed in Fig. 9.

curs. Also the order parameter in the nematic phase attains  Wwhile the theory predicts artificially the existence of an
smaller values as compared to that at the bulk transition. Fggotropic-nematic transition for ath<<1, the simulation re-

the very large matrix packing fractioy=0.4 no reliable
indication of a phase transition can be determined.

sults suggest that the transition disappears for matrix packing
fractions larger than abouj=0.3. We did not focus on the

We have checked that these results do not sensitivelgrecise nature of this disappearance and the question of

depend on the matrix configuration. In Fig. 6 resultsSdor
the same matrix packing fraction=0.3, but different(ran-

whether it is accompanied by a critical point.

dom) configurations of the matrix are shown. The systematic;; coONCLUSIONS
deviations between results for different matrix configurations

are comparable to the statistical erfof the annealed aver-
age.

In conclusion, we have considered the nematic-isotropic
phase transition of rodlike particles immersed in a model

As further illustrations of the remarkable stability of the Porous medium represented by quenched hard spheres. We
nematic phase we display snapshots from the MC simulatioh@ve used hard spherocylinders as a truly microscopic model
in the isotropic and in the nematic phase. In Fig. 7 configu-for the steric interactions between elongated molecules or
rations forc=2.0 andc=2.75 are shown fop=0.1, clearly colloidal rods, and have employed DFT and Monte Carlo
(MC) simulation to investigate the isotropic-nematic phase
transition. As the theory is mean field in character, true long-
range order and quasi-long-range order in the nematic phase
cannot be distinguished. Also nematic glass phases are out of
the scope of the current equilibrium approach. Within these

0.8 T

0.2

35

FIG. 6. Simulation results for the nematic order param8tas a function of
the scaled rod density for fixed matrix sphere packing fractiop=0.3 and

three different realizations of the quenched hard sphere matrix. FIG. 8. Same as Fig. 7, but foy=0.2, c=1.75 (left) andc= 2.51 (right).
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