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Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions
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We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of
highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet
potentials that were obtained from a numerical Poisson-Boltzmann $@idRRusset al, Phys. Rev. E66,
011402(2002]. On the basis of free energy calculations, we determine the phase diagram of an aqueous
suspension of identical spheres of diameter32 nm and chargé=80 as a function of colloid concentration
and salinity, both for the purely pairwise additive system and for the system with pair and triplet interactions.
The main effect of including the triplet interactions is a destabilization of the body-centereddsodicrystal
phase in favor of the face-centered-cufitx) crystal phase. As a consequence the phase diagram features the
coexistence of a rather dilute fluid with an almost-close-packed fcc phase at low salinity and bcc-fcc coexist-
ence with a big density jump at intermediate salinity. The triplet attractions do not affect the phase behavior at
sufficiently high salinity; under these conditions the system is well described by the pairwise potential.
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[. INTRODUCTION attractions become important, which explain reversible
vapor-liquid phase separation or irreversible flocculation as
Charge-stabilized colloidal suspensions consist of spheriebserved experimentalli3,4]. In the low-salt regimgx™*

cal or anisotropic mesoscopic colloidal particles suspendethrge) van der Waals attractions are completely masked by
in a polar solvent with co-ions and counter-ions. A statisticalthe much longer-ranged screened Coulomb repulsions. The
mechanics description of these highly asymmetric multicom+epulsive long-range nature of the interactions in the low-salt
ponent fluids represents a major challenge as very differeriegime explains the observation of stable crystal phases at
length and time scales are involved for the various speciegacking fractions of a few perceff§]. The success of the
This is the reason why attempts to treat the mesoscopic coPLVO theory on explaining experimental observations made
loids and the microscopic salt and solvent particles on aff @ true cornerstone of colloid science.
equal footing usually fai[1]. It is therefore not surprising Within the past decade, some experimental observations

that the present understanding of these systems is based Bave been published that question the validity of the DLVO
theory. Without exception these experiments were done in

simplified models, in which the degrees of freedom of the ) ; i

: htge low-salt regime and they include observations of a broad
mesoscopic particles interact with an effectiusually pair- gas-solid coexstencﬁﬁ], voids” of vapor In otherwise ho-
wise) potential, resulting in a coarse-grained effective one-1ogeneous suspensid 8], Iong_—hvgd den_se metastable
component description of the suspension. The standard al CéySta"'tes[S'g]’ and even a gas-liquid coexisterjd)] (al-

. . ? ough not without some dispufél]).

very success_ful effect|ve_ one-component  description o . A long-range attraction between like-charged spheres
charged colloidal suspensions dates back to the 1940s and 3,14 account naturally for these experimental observations,
due to Derjaguin, Landau, Verwey, and Overb&Bk-VO) ¢ would be in contradiction with the long-accepted DLVO
[2]. The DLVO theory predicts that the effective pair inter- theory. This discrepancy triggered intense theoretical and ex-
action between the colloids consists of a hard-core repulsioperimental activities and vivid debates. For more details on
due to the finite size of the colloids, screened-Coulomixhe current state of affairs, the reader is referred to the review
(Yukawa repulsion with the screening length given by the papers in[12].
Debye lengthx™* of the electrolyte, and van der Waals at-  While many of these experiments have proven to be dif-
tractions with a typical range of a few nm. The screenindficult to reproduce, there are, let us say, more “traditional”
length ™ defines the thickness of the double layer of oppo-experiments on charged colloids, which until now were con-
site charge surrounding each colloidal surface. The range sidered to include no information that contradicts the DLVO
of the screened-Coulomb repulsion is a function of the saltheory but which on a closer examination do. These experi-
concentration of the electrolyte, the dielectric constant of thaments include the ones made by Monovoukas and @&t
solvent, and the temperature. Here we focus on the effect @irotaet al. [14], and Schépest al. [15]. What all three of
the salt concentration as this can be tuned over several déaem have in common is the observation of a broad gas-solid
cades. or solid-solid coexistence in the low-salt regime. Monovou-

At high salt concentrationg«™* smal)) screening of the kas and Gast observed a gas-solid coexistence with a density
Coulomb interactions is most efficient and the van der Waalgump of around 200%, while Sirotet al. and Schopeet al.
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reported a bcc-fcc coexistence with density jumps of 26%mine the phase diagram using free energy calculations both
and 72%, respectively. To appreciate the broadness of theser an effective one-component system of colloids interact-
coexistence regions, one recalls that the fluid-fcc densityng with pair and triplet interactions and that of a pairwise
jump of the hard spheres is only 10%. This can be considsystem without the three-body interactions. We find that at-
ered as the maximum density jump allowed by the DLVOtractive three-body interactions drive most likely a gas-solid
theory and can only take place at a very high salt concentraransition instead of a gas-liquid transition as was found pre-
tion. In the low-salt regime, the DLVO theory predicts soft \joysly within the van der Waals—like mean-field theg2g).
long-ranged repulsive interactions and it is well known thatyioreover, the presence of triplet attractions also affects the
such interactions give rise to extremely narrow Coexistingg|ative stability of fcc and bee crystals. A brief version of
regions[16—18. The observations of broad coexisting re- this paper was published elsewh¢2s).

O ea e e e oyomcsd ot th source gy T1e PaDe s rganized s follows. I Sec. I we descrive
prop Sl system. In Sec. Ill, we briefly describe the simulation

attraction in charge-stabilized colloidal suspensions. The echniaues used. We bresent the phase diaarams in Sec. IV
can be divided into two classes: those trying to improve th lques used. P ) P diag ! o
and we make some concluding remarks in Sec. V.

DLVO theory (which is a mean-field theoyyby including
correlations between the micro-ions and those wieo#oi-
dal) many-body effects are considered. The focus here is on Il. MODEL

the latter.

Indeed, at low salt concentration, of the order of several Our model for the colloidal suspension consistatien-
uM’s, the double-layer thickness is of the order of the col-tical sphgrlcal coII.0|d'aI particles with a hard—cor_e diameter
loid diameter—i.e.x*=o—and pairwise additivity might gnd a uniformly dlstrlbuted_ surface charge dfe,—lmmer_sed
break down as many-body interactions become important. I} @ volumeV, together withNZ monovalent counter-ions,
some of the theoretical approaches the many-body contribi@nd added salt at a bulkeservoiy concentration ot. The
tions are captured in so-called volume terms, which do notiNit (Proton charge is denoted bg. The monovalent posi-
depend on the particle coordinates but on the density of thiVe counter-ions and negative co-ions are assumed to be
system[19-23. Alternatively, one captures the many-body charged-pom_t particles. The _eIectronte |s_treate_d as a struc-
effect by many-body potentials—i.e., functions of the colloi- tu_reless_ contlr_luum characterized by the dielectric con&_tant
dal coordinates butot of colloid density. Direct S|mulapon_of such a system that treats all species on

Recent experimentd24,29 and theoretica[26,27 re-  an equal footing is untractable for _Iar@e dqe to the differ- _
sults support the existence of many-body effects. Both stuc€nt length and time scales associated with the mesoscopic
ies show that the pair repulsion is reduced at distances larg@nd microscopic species. This problem may be circumvented
than the mean distance between the colloids, due to many?y a_doptlng a Coarse-g_rame_d description for the_ micro-ions.
body interactions. The reduction of the repulsion at distanced! this approach, the micro-ions are not treated individually,
larger than the mean distance between the colloids can g¥t at the level of their equilibrium density distributions
traced back to the shielding effect of the macro-ions. This ig:(") for the positive and negative micro-ions in a fixed con-
in line with recent explicit numerical calculations within figuration of the colloids. Due to large differences in time
nonlinear Poisson-Boltzmann theory, which show that thescales, the micro-ions may be assumed to be in thermody-
pairwise repulsion between two colloids is dramatically re-N@mic equilibrium for any configuration of the colloids. The
duced when a third colloid is placed in betwel@€]. This inhomogeneous density distributiopgr) in the presence of
effect results in effectiveattractive triplet interactions be- @ fixed configuration of colloidal particles can be obtained by
tween the charged colloidal spheres. At high salt concentraSolving the nonlinear Poisson-Boltzmann equation. It is con-
tions this effect is not important, since the double layers ar&/enient to treat the electrolyte grand canonically—i.e.. at a
small and the Yukawa repulsion has already decayed at tHiged chemical potential of salfs. Oncep.(r) have been
distance between the outermost colloidwo diameters or determined, the effective interactions between the colloids
more). However, at low salt concentrations the double layergre given by
are large and a considerable reduction of the repulsion be- N
tween the outermost colloids is caused by the presence of the 1) = L
third intermediate colloid: pairwise additivity breaks down Ver{ri}) Ev(rl,rj) +OArEN.g9), @)
and many-body interactions become important. Based on nu- . . ]
merical calculations, simple empirical expressions were obWherev(ri,rj) is the nonelectrostatic part of the pair poten-
tained for the pair and triplet interactions within the nonlin- tial between colloids andj, the center-of-mass coordinates
ear Poisson-Boltzmann theory, specifically in the nonlineaPf the colloids are given by; with i=1,... N, and Qy
regime of low salt concentrations and high chargeg].  =Q({ri},N, uJ) is the grand potential of the electrolyte in the
Moreover, it was shown within a van der Waals-like mean_external field of a fixed Configuration of colloidal particles.
field theory that the strength of the attractive three-body indn the present case the nonelectrostatic pért,r;) is equal
teraction is large enough to induce gas-liquid phase coexisto the hard-core interaction—i.ev(r;,r;)=uv(rij) =, if rj;
ence. =|ri-rj| <o, anduv(r;;)=0 otherwise. In principle, the effec-

In this paper, we use computer simulations to study thdive interactions can be calculated “on the fly” for each col-
effect of attractive three-body interactions on the phase bdeid configuration in the same spirit as thé initio method
havior of charge-stabilized colloidal suspensions. We deteref Car and Parrinello for ion-electron systefi29] (applica-
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tions for colloidal systems are found in Ref80,31]). How-  tive three-body potentials as the lowest-order correction to

ever, here we adopt a different method based on effectivpairwise additivity.

n-body interactions. It can be shown explicitly that, can

be uniquely decomposed into effectimebody interactions

Q™ petween the colloid§26,32: Il METHODS
Our purpose is to calculate the Helmholtz free energy of a

system with a Hamiltonian that includes a potential energy

= (1) ) (3) S . . . :

Q=N+ E QAAri,ry) + 2 kQ (Frprd + -y that is given as a sum of the pair and triplet potential energies

= == of Egs.(3) and(4), respectively, and of the nonelectrostatic
(2)  hard-core contributiorv(r;j). That is, the potential energy
function U,5(rN) of our Hamiltonian is written as

N N

where the ellipsis represents the ter@$’ for n=4. The

n-body potentials are defined in a system withcolloids N N

with neutralizing counterions in contact with a salt reservoir Uas(r™) = X5 [u(ry) + Q@(r)T+ X QO(r +rjc+1y).
at chemical potentiaks. The one-body potentidd® is ac- i<j i<j<k

tually the grand-potential difference between a sea of salt at (5)

Ms, VOlume V with and without a single colloid; it can be
interpreted as the self-energy of a colloid or the Henry coe
ficient. The effective pair potentidd®(r;,r;) between two
colloids is the grand-potential difference between a syste
with volume V containing two colloids at separatiap=|r;

-r J-| and at infinite separation. Far>2, the effectiven-body
interactions can be defined along the same lines and wi
depend on the exact coordinatesroftolloids. It is worth
noting that the mapping o) onto effectiven-body inter-
actions withn=1,... N is exact. One actually hopes, o ) N . -
course, that the rate of convergence of the expansion is fagf'd 10 particlek with i. The distance between partigleand

and that(,, can be approximated by only includimgbody is then fixed. The distance between the closest image of
potentials Nofnzl 2,...p"<N. In many cases, the expan- particlesj andk with respect to particlé is not necessarily

sion is truncated at pair potential level, and three- andhe minimum-image distance gfto k. This can easily be
higher-body interactions are ignored. Recently, two- andshown by defining th& component of the translation vector,
thrge—body interactions were calculated _numer_ically within ty = [0 —x)/LIL, e =[06 = x/LIL, (6)
Poisson-Boltzmann theorj26]. The effective pair interac-

tions turn out to be purely repulsive and can be fitted by avith L the box length andx] the closest integer t&. The
screened Coulomb potential, consistent with the well-knowrfesultingx components of the separation vector between the
DLVO result: particles are given by

fNote that the kinetic energy term in the Hamiltonian plays no
role in phase stability and can therefore be ignored. A cubic
rT§imulation box with periodic boundary conditions is used
and the minimum image rule is applied. While the minimum
image rule works fine for pair potentials, there is no unique
jvay of applying the minimum-image convention to a group
of three particle$33]. Consider a triangle of particles labeled
by i, j, andk. The minimum-image convention can only be
¢ applied to two sides of the triangle—say, to particheith i

2 Ne exl= ] %=X

o rlo

BOAA(r) = Al 3

Xik = Xi = Xy~ Tig,
Here A® is a fitting constantx=y8m\gCs is the inverse
Debye screening length\g=€?8/€ is the Bjerrum length, Xjk = Xj = X + Gjj — tig,
andﬁ:l/kT. By contrast, it was found in_Re_[26] that the nd similarly for they andz components. For most caseg
three-body interactions are purely attractive in all consideregy the same as given by the minimum-image convention—

possible choices of triangles that have at least two sides with
lengths less than half the box length, as the minimum-image
EM, (4) convention can only be applied to two sides of the triangle.
o Lo However, it is too time-consuming to check all possible tri-

) angles in each Monte Carlo step, and we have therefore cho-
where the two fit parameters are the decay constamtd the  sen for a simpler minimum-image rule. Our minimum-image
prefactorA®. The prefactorsA® and A® as well as the e for the triplets is best explained and motivated by con-
decay lengthy are given in Ref[26] for different combina-  gjgering the way the potential energy is calculated: We first
tions of the reduced charge=Z\g/ o and xo. These empiri- take particlei (N choices; we then take particlg¢ (from the

cal fits for the two- and three-body potentials enable us tset of N-1 particles that are leftand apply the minimum-
perform computer simulations and study the effect of attracimage rule for particles andj. Next the two-body potential

,BQ(?’)(L) =-A0
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0@ is calculated for the paiij. For each paiij we take a o w 3N-1 [

third particlek (from the set ofN-2 particles that are left BFgin(N,V, T,\) = BUas(rg) = 5 In o

Since now the distance betweeandj is already fixed, we m

only have two choices for the minimum imagelgfi.e., we +(N- 1)"{/\_3} )
can take the minimum image &fwith respect to or with o3

respect tg. By choosing the minimum image &fthat gives ) ) _

the triangle with the smallest total side length of the triangleWhere A is the de Broglie wavelength. The correction term

we take into account the position of partidtethat screens Feorr @rises when the constraint on the center of masses is

the pair interaction between particleandj most. released—i.e., the Helmholtz free energy difference between
A consequence of this three-body minimum-image rule ighe unconstrained and constrained crystal:

that the resulting three-body potential energl ;. , Q¥ A3

X(rij+rj+ri) depends on the order in which the summation BFeorN,V, T) = In{ 1/2]_ (10)

is done. This is why the result is noh all geometriesequal VN

. . >
to one-sixth of the unrestricted SUB;, Q@ (ry +ry+ri). |y our calculations we have replacéts(ry) with N times

yvhere all triangles are calculatgd 6 times. Howeyer, accordg,q Madelung energy per particle obtained from an “infinite”
ing to our tests, for a system with an adequate size the errqf o large enougherystal—i.e. Uy (N..) = U23(r8‘°°)/N with

produced is at least fiv_e c_)rders _of magnitude smaller than th _(=5000—20 00Pparticles. For these system sizes, the tail
error produced by statistical noise.

The two-body potential is truncated at a cutoff radis correction to the potential energy due to the finite cutoff

which is chosen to be equal to the half of the box length, Fo radius can be neglected. Therefore, no further tail corrections

. b the potential energy are needed. Note, however, that there
the three-body potential we choose to truncate the potent|a|1 still a nonzero finite-size correction to the free energy from

yvhen one of the side lengths of the minimum-image trianglqwo other sources: the implicit effect of the cutoff to the

is greater than, (the same method as used in R[m])' . value 0f<r2)f'\" and the effect of finite number of particles
As the free energy cannot be measured directly in 6136]

Monte Carlo(MC) simulation, we used thermodynamic in- : . .

tegration o relate the free energy of the system interacting o S S 10 E on SRR S 8 e eter

with a potential energy functiotlzs(r ™) given by Eq(5) to ence stat¢34]. To this end, we introduce an auxiliary poten-

that of a reference system at the same density. The Hel | ener fuﬁction ' y

holtz free energy of the solid phases is calculated using th gy

Frenkel-Ladd methodi34,35. To this end we introduce the N N

auxiliary potential energy function Ubig(r™ = > v(ry) +\ Uns(t™) = > (ry) |, (11

i<j i<j

N where 0=\ <1 is the coupling parameter: at0 the inter-

U (1Y) = BUo(TN) + N\ (ri = 1) %02, (7)  action reduces to that of a fluid &f hard spheres, while at
Plsa Plas o o A=1 it is the potential energy function of interg$br fixed
V). The Helmholtz free energy is

wherer; is the lattice position of particle, and A the di- Fauia(N,V, T) = FiiRy (N, V., T)

mensionless switching parameter. In Ed), particles are 1 N

coupled to their lattice sites with harmonic springs: for +f U™ = X u(ry) ) d\, (12)
=0 we recover the system of interest, while for a sufficiently 0 i<j N

high value of »—say, A=\,—the particles do not “feel” Hs - .
each other and the system reduces to that of a noninteractiﬂﬂ;?re Fiua IS the free energy of a hard-sphere fluid, for
Einstein solid with Madelung enerdy,s(rY)—i.e., the po- Which we use the Carnahan-Starling expres$ii

tential energy of a crystal with all particles at their lattice HS 3 _
positions. It is a standard result thH&4,36 PFiuia = In{&} -1 77(4—3727) (13
N v 1-7)
oM In the case of solids, the tail correction for the potential
BFso(N,V,T) = BFgin(N,V, T,\) + BF 0N, V,T) energy could be calculated exactly from the Madelung en-
Am N cMm ergy for an infinite system. This is not possible for a fluid,
_j d\ S (r,-ry)%0?) , (8  andtherefore the fluid free energy calculation inevitably suf-
0 i=1 ’ N fers from the finite cutoff radius, for the potential energy.

For a system with only pair interactions this problem can be
solved by adding a tail contribution to the potential energy
where the superscript “CM” on the ensemble average dewhich is approximated by the potential energy due to a con-
notes that it is calculated for a crystal with fixed center oftinuous distribution of particles beyond the cutoff radius
mass. The free energy of an Einstein crystal with fixed center.—i.e., by settingg(r)=1 for r >r. [34]. A similar tail cor-
of mass is given by rection for the three-body potenti® is not very practical
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A3

as it requires a numerical integration over a three-
dimensional region and the approximatigér)=1 is not ac- 4.7t
curate because some triangles consist of particle pairs with
r <r.. Therefore, we approximate the tail correction per par- 42t
ticle, uy, for a fluid with two- and three-body interactions
by the difference between the Madelung energy per particle o 371
of an “infinite” systemuy,(N..) and that with the same num- *
ber of particles as the simulated fluigy,(N)—i.e., U 32 L
:uM(Nm)_uM(N)-
The integrations in Eqg8) and(12) were done using the 271 fluid e
Gauss-Legendre quadrature with 10 integrations points. This
number of integration points was tested to be adequate by 22 , . , , , .
recalculating some of the results with mgg9 or 32 inte- "0 01 02 03 04 05 06 07
gration points. The number of particles was chosen tiNbe n

=250 for the bcc andN=256 for the fcc and fluid phases. o
To improve the accuracy of the numerical quadrature, we FIG. 1. Phase diagram f&=1.8 including only the two-body
change the integrand for the solid in E@) in a slowly interactions. The gray color represents a coexistence region, while
varying function by changing the integration variable fram triangles(A), circles(O), and squareg) represent the fluid, bcc,
to In(c+\) as described in Ref[34]. The value ofc  and fcc phase boundaries, respectively.
=Na?/(EN; (r;-r0)? was evaluated in the beginning of
the free energy calculation and the value of the paramigter theory in Ref.[38], the effective charge is close to the bare
was chosen to be large enough so thaten ,, the system charge: Forko from 2.2 to 2.56, the theory predicts an ef-
behaves as an Einstein crystal. fective charge o¥Z.4=75, which is close to our bare charge
Each evaluation of the integrands in E@8) and (12), of Z=80.
respectively, consisted of an equilibration run and a sampling In Fig. 1 we present the phase diagram for a system in-
run, both withN,=1000-2000 trial moves per particle. For cluding only the two-body interactions—i.e., for the poten-
systems interacting with a potential energy given by @.  tial energy of Eq.(5) where the three-body term is disre-
the evaluation of the three-body interaction scales Wth  garded. The coexistence regions are colored gray, and tie
Our choice of\; resulted in MC simulations that took about lines between the coexisting phases are horizontal. The pre-
36 CPU hours per free energy point on a supercomputer. IfactorsA® for ko> 2.56 were obtained by linear extrapola-
order to map out the phase diagram the Helmholtz free ertion with respect taco, since the maximum value ofo for
ergy must be determined for the fluid, bce, and fcc phasewnhich the two-body prefactoA® was determined in Ref.
and for many statepoints—i.e., about 10 different packing26] is given byxo=2.56.
fractions and about 8 different values of salt concentrations As can be seen from Fig. 1, the bcc phase is very much
or ko, which resulted in approximately 1 yr of CPU time on favored at low values oko (low salf), while the bcc regime
a supercomputer. For the two-body system the number ofnds in an upper triple poirgposition of which is given here
trials was often increased =10 000 per particle. At small only as a rough estimateat xo=4.86. We compared our
values of\ the data become more noisy and therefore, irfluid-bcc coexistence line with the one given for point-
order to reach better statistical accuracy, the number of triaYukawa particles in Ref{39] and found them to be in good
moves,N,, was doubled for the three integration points with agreement in the lowo regime, where the hard core is not
smallest value ok and for estimation of the paramete(the  expected to play a role. Note also from Fig. 1 that the fluid-
A=0 poain. bcc and bece-fce coexistence regions shrink when moving to
the lower values ofco, as expected since the potential be-
comes softer.
IV. RESULTS In Fig. 2 we present the phase diagram for the same sys-
Using the methods described in Sec. Iil, we performed- but now with two- and three-body interactions—i.e., for
: ) - ' he full potential in Eq.(5). Note the differentko scale in
free energy calculations for giveto- andZ=2\g/ o with the Figs. 1 and 2. Because the values of the param&@sA®,
parameters\®, A%, and y taken from Ref[26]. Common  and y are only given in Ref[26] for ko=2.0 andko=2.56,
tangent construction was used to determine the phase CO€fnear interpolation with respect teo was used to get the
istence from the free energy data. We chose the ratio betwe(?ﬂﬂrameter values at intermediate.
the Bjerrum length and the colloidal diameter to g/ o Figure 2 shows a very broad fluid-fcc coexistence in the
=0.0225 and focused on calculating the phase behavior fqpyy-salt regimexo =< 2.36—i.e., below a fluid-bee-fec triple
reduced chargez=1.8. This corresponds to charge=80  point (the horizontal dashed line in Fig).2In the regime
and, in water at room temperatufier which \g=7.2 A), to  2.36<ko<2.43—i.e., above the triple point—there is a
diameteroc=32 nm. Phase diagrams are presented inzthe very narrow fluid-bcc coexistence at=0.35 and a rather
ko representation, wherg=70°N/6V is the colloidal pack- broad bcc-fec coexistence at higher The density jump of
ing fraction. Note thak doesnot depend ory. We note that  the latter shrinks upon approach efr=2.43 and goes to a
our parameters are in the regime, where, according to thregligible value forko>2.43.
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FIG. 2. Phase diagram fat=1.8 including the two- and three- FIG. 3. Free energies per volume sat=2.2 for t_he_flwd, b_cc,
body interactions. The gray color represents a coexistence regioﬁ,nc_j fee _phases, resulting from _the thermodynamic |ntegrat|9n de-
while triangles (A), circles (O), and squaresC]) represent the scribed in Sec. Il. Also shown is the result from the approximate
fluid, bcc, and fcc phase boundaries, respectively. The crgsses theory of Eq.(14).
mark the bcce-fee and fluid-fece coexistence points based ori1E.

The two vertical long-dashed lines represent the fluid-bcc and bedree energy of a hard-sphere systéeantropy term as
fcc phase boundaries of the system with only two-body interactions
(see Fig. 1 The horizontal dashed line denotes the fluid-bcc-fcc

. . Flid 5<0.49,
triple point. Fapprox= Nuy + { e

Fa, 7> 0.49. (149
The essentially vertical long-dashed lines in Fig. 2 give
the fluid-bcc and bce-fecc phase boundaries of the systerhlere the Madelung energy per particlgy, is that of an
where only two-body interactions are preséhig. 1). We  “infinite” fcc solid and the free energy of the hard-sphere
observe that the inclusion of the three-body interactions resolid, F55, is obtained from the equation of state by Hall
duces the stability of the bcc phase in the regime 2.3640]. In Fig. 3, Fapox iS plotted with the long-dashed line
=< ko=<2.56 and closes up the bcc pocketxat= 2.36. and, as can be seen, the result is qualitatively the same as the
In the limit of high salt, the phase diagram of the systemone from the elaborate free energy calculations. This result
with the two- and three-body interactioriig. 2) should explains the very broad fluid-fcc coexistence: because of the
converge to the phase diagram of the system with only théhree-body attraction, at lowo and high densities> 0.55
two-body interactiongFig. 1). In order to investigate this, for xo=2.2) the Madelung energy per particley,, is a
we calculated the Madelung energies per particlexat monotonically decreasing function of the density. This pro-
=4.0 for both systems and found them to be very close taluces a lowering of the free energy at high densities-ig.
each other. Therefore, we expect thatkat>4.0 the phase 3 this is seen ay=0.6). At very high densitie§7=~0.72 in
diagram of Fig. 2 reduces to the two-body phase diagram ofig. 3) the free energy shoots up again, because there the
Fig. 1. hard-sphere solid free ener@i% starts to increase rapidly.
We have checked the effect of the tail corrections used foil hus the competition between the Madelung energy and the
the fluid phase on the phase behavior in Fig. 2. We find thalhard-sphere free energy produces a minimum in the fcc free
the tail correction in the fluid phase is unimportant for theenergy curve at high density and explains the broad fluid-fcc
broad fluid-fcc phase coexistence. Also, the fluid-bcc phaseoexistence.
boundary is hardly affected by the tail correction: If we re- In the broad fluid-solid coexistence regime, the fcc crystal
move the tail correction from both the fluid and bcc phasesis more favorable than the bcc phase as the former phase has
the fluid-bcc phase boundary moves to lower packing fraca higher maximum packing. The denser packing yields a
tion by about 0.002. larger negative three-body energy contribution, which lowers
In Fig. 3 we show as an example the free energy data fothe total free energy of the system. Figure 3 illustrates this:
ko=2.2, which were used to determine the phase coexistfhe bcc free energy starts to increase strongly ajfter0.6
ence in the system with two- and three-body interactionglue to the hard-core repulsion, while at this packing fraction,
(Fig. 2. A common tangent construction reveals a coexistthe fcc has sufficient space to densify and to lower its free
ence between a fluid at packing fractigii=0.12 and an fcc  energy due to the three-body attractions.
solid at packing fractiomp=0.72. Because the dip in the fcc ~ As the range of the three-body attraction is reduced at
free energy aty=0.72 is very deep, the underlying fluid-bcc higher values ofxo (higher salt concentratiopsthe mini-
coexistence is only metastable and the same is true for thmum becomes less pronounced while at the same time the
possible gas-liquid coexistence. coexisting fluid phase moves to higher densities. Finally, at
In order to study the source of this dip we made a veryko=2.36 the fluid is metastable with respect to the bcc, and
simple theoretical approximation for the free energy basedhe fluid-fcc coexistence is replaced by a broad bcc-fcc co-
on the sum of the Madelung energgnergy term and the  existence.
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5 - - - - - - based on Eq(14) and the squares denote gas-liquid coexist-
x ence as predicted in RgR6]. The circles denote a “narrow”
4l | fluid-solid regime and the line represents our prediction for
the crossover from a “narrow” fluid-solid to a “broad” gas-
- solid regime.
3 L 4
N 5 V. CONCLUSIONS AND DISCUSSION
Zg Z Z : _ We performed a computer simulation s.tudy of the pha_tse
1 s . ] dlagram of a suspensmn.of chgrged chI0|d§ at Iow salinity,
o = B 8 taking into account effective pair and triplet interactions be-
g8 © tween the colloids. The effective potentials are taken from an
0 L L L L L L

earlier Poisson-Boltzmann studg6], and are such that the
pair potential is a DLVO-like screened-Coulomb repulsion
[see Eq(3)], whereas the triplet potential is purely attractive
FIG. 4. Crosse$x) denote the pointéZ, ko) where free energy  [S€€ EQ(4)].
calculations based on Eq14) pred|ct a gas.so"d Coexistence’ The ma'n effeCt Of the InC|USIOn Of tl’lp|et InteraCtlonS |S a
squareg[]) show the points where the van der Waals theory of Ref.redUCtion of the Stablllty of the bcc phase in favor of the fluid
[26] predicts a gas-liquid coexistence, and circlé®) show the and fcc phase or coexistence of the latter two. The triplet
points where a “narrow” fluid-solid coexistence is predicted by ourattractions induce, at sufficiently low salinity, a very broad
approach and Ref26]. The line is our prediction for the crossover coexistence regime of a dilute fluid with an extremely dense
from a “broad” gas-solid to a “narrow” fluid-solid coexistence.  fcc phase, while at intermediate salinity a broad bcc-fcc co-
existence regime appears.
There are two reasons for the destabilization of the bcc

The approximation for the free energy given in Ej4) ~ Phase: First, the bcc phase is stabilized by long-range repul-
can be used as a quick tool for mapping out the fluid-fcc andions and, therefore, any attracti@r other disturbances like
bce-fec coexistence points in the lows regime? In Fig. 2 truncation of the potential, see R¢&1]) will reduce its sta-
the coexistence points obtained from the free energy curvedlity. Second, in the broad fluid-solid coexistence regime,
provided by Eq(14) are denoted by crosséx). As can be the three-body attraction favors the fcc solid as it has a
seen, the results obtained from the approximate method afégher maximum packing than the bcc phase. The denser
in good agreement with those from free energy calculations?@cking yields a larger negative three-body energy contribu-

We also used Eq14) to check the stability of the gas- tion, which lowers the free energy of the system. The dip in
liquid critical point that was predicted for the present systerrthe free energysee Fig. 3is beyond the maximum packing
in Ref. [26], on the basis of a simple van der Waals—like (7=0.698 of the bcc crystal.

theory. ForZ=1.8 the analysis of Ref[26] yields a gas- We also conclude that any gas-liquid coexistence that may
liquid critical point atko=1.8 andy=0.4; i.e., forko<1.8  OCCUr due to the attractive triplet interactions is metastable

there is predicted to be an regime where gas and liquid with respect to gas-fcc coexistence. This is in line with the

. . , , results of Ref.[42], where it was shown that many-body
coexist. Comparison with the present phase diagranZfor aractions have a strong tendency to give rise to gas-solid
=1.8 in Fig. 2 reveals that this predicted critical point is in

. ) X rather than gas-liquid coexistence.

fact metastab_le with respect to_f_lwd-fC(_: coexistence. The \we want to stress the fact that none of the experimentally
same conclusion holds for the critical points that were idengpserved broad coexistence regions can be explained with
tified for other values ofZ: application of Eq.(14) reveals the pairwise Yukawa picture and that this broad coexistence
that a broad fluid-fcc coexistence is thermodynamically morés always seen in the low-salt regime. Therefore, we suggest
favorable than the gas-liquid transition for all valueszf that many-body interactions between the colloids, which be-
considered. However, the analysis of R€f] is still of use, come important in the low-salt regime, are the reason for

since the curve in théZ, ko) plane that separated the super- €S€ broad coexistence regions.

critical from the subcritical regime turns out to be remark- deally, sor;]"ne critical :emar_ks ﬁnl our rclasults must (tj)_e
ably close to the line that separates a “narrow” fluid-solig™Made, since they are, at least in the low-salt regime, in dis-

. ,, ; . . = , agreement with experimental observations: we are not aware
regime from a “broad” gas-solid regim@or Z=1.8 this

L 7 of reports of observations of almost-close-packed fcc phases
would take place ako=2.4). Tf,"s IS !!Iustrated_ In F|g__4, with a dilute gas phase. This suggests that a fully realistic
where the crosses denote a “broad” gas-solid COeXisteNnGgseription of charged colloids in this regime requires the

inclusion of four-body and higher-order terms as well, which
“The approximate free ener@poxin Ed.(14) only accounts for constitutes a Qaunting task: not only is'the calculation 'of the
the “crude” features of the phase diagram—i.e., either for the broaé-body potential)™ for n=4 computationally demanding,
fluid-fcc or for the broad bce-fcc phase coexistences. It is unable tdut including them into aKefficieny Monte Carlo scheme is
predict the phase behavior in tle regime where these effects are also far from trivial. However, at high salinity the system is
not seen. well described by pairwise additivity, and therefore we ex-

0 1 2 3 4 5 6 7
1/xc
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