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We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of
highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet
potentials that were obtained from a numerical Poisson-Boltzmann study[C. Russet al., Phys. Rev. E66,
011402(2002)]. On the basis of free energy calculations, we determine the phase diagram of an aqueous
suspension of identical spheres of diameters=32 nm and chargeZ=80 as a function of colloid concentration
and salinity, both for the purely pairwise additive system and for the system with pair and triplet interactions.
The main effect of including the triplet interactions is a destabilization of the body-centered-cubic(bcc) crystal
phase in favor of the face-centered-cubic(fcc) crystal phase. As a consequence the phase diagram features the
coexistence of a rather dilute fluid with an almost-close-packed fcc phase at low salinity and bcc-fcc coexist-
ence with a big density jump at intermediate salinity. The triplet attractions do not affect the phase behavior at
sufficiently high salinity; under these conditions the system is well described by the pairwise potential.
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I. INTRODUCTION

Charge-stabilized colloidal suspensions consist of spheri-
cal or anisotropic mesoscopic colloidal particles suspended
in a polar solvent with co-ions and counter-ions. A statistical
mechanics description of these highly asymmetric multicom-
ponent fluids represents a major challenge as very different
length and time scales are involved for the various species.
This is the reason why attempts to treat the mesoscopic col-
loids and the microscopic salt and solvent particles on an
equal footing usually fail[1]. It is therefore not surprising
that the present understanding of these systems is based on
simplified models, in which the degrees of freedom of the
microscopic particles have been integrated out, such that the
mesoscopic particles interact with an effective(usually pair-
wise) potential, resulting in a coarse-grained effective one-
component description of the suspension. The standard and
very successful effective one-component description of
charged colloidal suspensions dates back to the 1940s and is
due to Derjaguin, Landau, Verwey, and OverbeeksDLVOd
[2]. The DLVO theory predicts that the effective pair inter-
action between the colloids consists of a hard-core repulsion
due to the finite size of the colloids, screened-Coulomb
(Yukawa) repulsion with the screening length given by the
Debye lengthk−1 of the electrolyte, and van der Waals at-
tractions with a typical range of a few nm. The screening
lengthk−1 defines the thickness of the double layer of oppo-
site charge surrounding each colloidal surface. The rangek−1

of the screened-Coulomb repulsion is a function of the salt
concentration of the electrolyte, the dielectric constant of the
solvent, and the temperature. Here we focus on the effect of
the salt concentration as this can be tuned over several de-
cades.

At high salt concentrations(k−1 small) screening of the
Coulomb interactions is most efficient and the van der Waals

attractions become important, which explain reversible
vapor-liquid phase separation or irreversible flocculation as
observed experimentally[3,4]. In the low-salt regime(k−1

large) van der Waals attractions are completely masked by
the much longer-ranged screened Coulomb repulsions. The
repulsive long-range nature of the interactions in the low-salt
regime explains the observation of stable crystal phases at
packing fractions of a few percent[5]. The success of the
DLVO theory on explaining experimental observations made
it a true cornerstone of colloid science.

Within the past decade, some experimental observations
have been published that question the validity of the DLVO
theory. Without exception these experiments were done in
the low-salt regime and they include observations of a broad
gas-solid coexistence[6], “voids” of vapor in otherwise ho-
mogeneous suspension[7,8], long-lived dense metastable
crystallites[8,9], and even a gas-liquid coexistence[10] (al-
though not without some dispute[11]).

A long-range attraction between like-charged spheres
would account naturally for these experimental observations,
but would be in contradiction with the long-accepted DLVO
theory. This discrepancy triggered intense theoretical and ex-
perimental activities and vivid debates. For more details on
the current state of affairs, the reader is referred to the review
papers in[12].

While many of these experiments have proven to be dif-
ficult to reproduce, there are, let us say, more “traditional”
experiments on charged colloids, which until now were con-
sidered to include no information that contradicts the DLVO
theory but which on a closer examination do. These experi-
ments include the ones made by Monovoukas and Gast[13],
Sirota et al. [14], and Schöpeet al. [15]. What all three of
them have in common is the observation of a broad gas-solid
or solid-solid coexistence in the low-salt regime. Monovou-
kas and Gast observed a gas-solid coexistence with a density
jump of around 200%, while Sirotaet al. and Schöpeet al.
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reported a bcc-fcc coexistence with density jumps of 26%
and 72%, respectively. To appreciate the broadness of these
coexistence regions, one recalls that the fluid-fcc density
jump of the hard spheres is only 10%. This can be consid-
ered as the maximum density jump allowed by the DLVO
theory and can only take place at a very high salt concentra-
tion. In the low-salt regime, the DLVO theory predicts soft
long-ranged repulsive interactions and it is well known that
such interactions give rise to extremely narrow coexisting
regions [16–18]. The observations of broad coexisting re-
gions therefore call for a long-ranged attraction.

Several mechanisms have been proposed for the source of
attraction in charge-stabilized colloidal suspensions. They
can be divided into two classes: those trying to improve the
DLVO theory (which is a mean-field theory) by including
correlations between the micro-ions and those where(colloi-
dal) many-body effects are considered. The focus here is on
the latter.

Indeed, at low salt concentration, of the order of several
mM’s, the double-layer thickness is of the order of the col-
loid diameter—i.e.,k−1ùs—and pairwise additivity might
break down as many-body interactions become important. In
some of the theoretical approaches the many-body contribu-
tions are captured in so-called volume terms, which do not
depend on the particle coordinates but on the density of the
system[19–23]. Alternatively, one captures the many-body
effect by many-body potentials—i.e., functions of the colloi-
dal coordinates butnot of colloid density.

Recent experimental[24,25] and theoretical[26,27] re-
sults support the existence of many-body effects. Both stud-
ies show that the pair repulsion is reduced at distances larger
than the mean distance between the colloids, due to many-
body interactions. The reduction of the repulsion at distances
larger than the mean distance between the colloids can be
traced back to the shielding effect of the macro-ions. This is
in line with recent explicit numerical calculations within
nonlinear Poisson-Boltzmann theory, which show that the
pairwise repulsion between two colloids is dramatically re-
duced when a third colloid is placed in between[26]. This
effect results in effectiveattractive triplet interactions be-
tween the charged colloidal spheres. At high salt concentra-
tions this effect is not important, since the double layers are
small and the Yukawa repulsion has already decayed at the
distance between the outermost colloids(two diameters or
more). However, at low salt concentrations the double layers
are large and a considerable reduction of the repulsion be-
tween the outermost colloids is caused by the presence of the
third intermediate colloid: pairwise additivity breaks down
and many-body interactions become important. Based on nu-
merical calculations, simple empirical expressions were ob-
tained for the pair and triplet interactions within the nonlin-
ear Poisson-Boltzmann theory, specifically in the nonlinear
regime of low salt concentrations and high charges[26].
Moreover, it was shown within a van der Waals–like mean-
field theory that the strength of the attractive three-body in-
teraction is large enough to induce gas-liquid phase coexist-
ence.

In this paper, we use computer simulations to study the
effect of attractive three-body interactions on the phase be-
havior of charge-stabilized colloidal suspensions. We deter-

mine the phase diagram using free energy calculations both
for an effective one-component system of colloids interact-
ing with pair and triplet interactions and that of a pairwise
system without the three-body interactions. We find that at-
tractive three-body interactions drive most likely a gas-solid
transition instead of a gas-liquid transition as was found pre-
viously within the van der Waals–like mean-field theory[26].
Moreover, the presence of triplet attractions also affects the
relative stability of fcc and bcc crystals. A brief version of
this paper was published elsewhere[28].

The paper is organized as follows. In Sec. II we describe
our system. In Sec. III, we briefly describe the simulation
techniques used. We present the phase diagrams in Sec. IV,
and we make some concluding remarks in Sec. V.

II. MODEL

Our model for the colloidal suspension consists ofN iden-
tical spherical colloidal particles with a hard-core diameters
and a uniformly distributed surface charge of −Ze, immersed
in a volumeV, together withNZ monovalent counter-ions,
and added salt at a bulk(reservoir) concentration ofcs. The
unit (proton) charge is denoted bye. The monovalent posi-
tive counter-ions and negative co-ions are assumed to be
charged-point particles. The electrolyte is treated as a struc-
tureless continuum characterized by the dielectric constante.
Direct simulation of such a system that treats all species on
an equal footing is untractable for largeZ, due to the differ-
ent length and time scales associated with the mesoscopic
and microscopic species. This problem may be circumvented
by adopting a coarse-grained description for the micro-ions.
In this approach, the micro-ions are not treated individually,
but at the level of their equilibrium density distributions
r±sr d for the positive and negative micro-ions in a fixed con-
figuration of the colloids. Due to large differences in time
scales, the micro-ions may be assumed to be in thermody-
namic equilibrium for any configuration of the colloids. The
inhomogeneous density distributionsr±sr d in the presence of
a fixed configuration of colloidal particles can be obtained by
solving the nonlinear Poisson-Boltzmann equation. It is con-
venient to treat the electrolyte grand canonically—i.e.. at a
fixed chemical potential of salt,ms. Oncer±sr d have been
determined, the effective interactions between the colloids
are given by

Veffshr ijd = o
i, j

N

vsr i,r jd + Vshr j,N,msd, s1d

wherevsr i ,r jd is the nonelectrostatic part of the pair poten-
tial between colloidsi and j , the center-of-mass coordinates
of the colloids are given byr i with i =1, . . . ,N, and VN
=Vshr ij ,N,msd is the grand potential of the electrolyte in the
external field of a fixed configuration ofN colloidal particles.
In the present case the nonelectrostatic partvsr i ,r jd is equal
to the hard-core interaction—i.e.,vsr i ,r jd=vsr ijd=`, if r ij

= ur i −r ju,s, andvsr ijd=0 otherwise. In principle, the effec-
tive interactions can be calculated “on the fly” for each col-
loid configuration in the same spirit as theab initio method
of Car and Parrinello for ion-electron systems[29] (applica-
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tions for colloidal systems are found in Refs.[30,31]). How-
ever, here we adopt a different method based on effective
n-body interactions. It can be shown explicitly thatVN can
be uniquely decomposed into effectiven-body interactions
Vsnd between the colloids[26,32]:

VN = NVs1d + o
i, j

N

Vs2dsr i,r jd + o
i, j,k

N

Vs3dsr i,r j,r kd + ¯ ,

s2d

where the ellipsis represents the termsVsnd for nù4. The
n-body potentials are defined in a system withn colloids
with neutralizing counterions in contact with a salt reservoir
at chemical potentialms. The one-body potentialVs1d is ac-
tually the grand-potential difference between a sea of salt at
ms, volume V with and without a single colloid; it can be
interpreted as the self-energy of a colloid or the Henry coef-
ficient. The effective pair potentialVs2dsr i ,r jd between two
colloids is the grand-potential difference between a system
with volumeV containing two colloids at separationr ij = ur i
−r ju and at infinite separation. Forn.2, the effectiven-body
interactions can be defined along the same lines and will
depend on the exact coordinates ofn colloids. It is worth
noting that the mapping ofVN onto effectiven-body inter-
actions with n=1, . . . ,N is exact. One actually hopes, of
course, that the rate of convergence of the expansion is fast
and thatVN can be approximated by only includingn-body
potentials ofn=1,2, . . . ,n* !N. In many cases, the expan-
sion is truncated at pair potential level, and three- and
higher-body interactions are ignored. Recently, two- and
three-body interactions were calculated numerically within
Poisson-Boltzmann theory[26]. The effective pair interac-
tions turn out to be purely repulsive and can be fitted by a
screened Coulomb potential, consistent with the well-known
DLVO result:

bVs2dsrd = As2dlB

s

expf− krg
r/s

. s3d

Here As2d is a fitting constant,k=Î8plBcs is the inverse
Debye screening length,lB=e2b /e is the Bjerrum length,
andb=1/kT. By contrast, it was found in Ref.[26] that the
three-body interactions are purely attractive in all considered
cases. More surprisingly, the triplet interaction calculated for
many configurations of the three colloids collapsed onto one
master curve that can be fitted remarkably well by a Yukawa
potential which depends on the sum of the three distances,
L=r ij +r jk+r ik, instead of the three distances separately:

bVs3dsLd = − As3dlB

s

expf− gLg
L/s

, s4d

where the two fit parameters are the decay constantg and the
prefactorAs3d. The prefactorsAs2d and As3d as well as the
decay lengthg are given in Ref.[26] for different combina-

tions of the reduced chargeZ̄=ZlB/s andks. These empiri-
cal fits for the two- and three-body potentials enable us to
perform computer simulations and study the effect of attrac-

tive three-body potentials as the lowest-order correction to
pairwise additivity.

III. METHODS

Our purpose is to calculate the Helmholtz free energy of a
system with a Hamiltonian that includes a potential energy
that is given as a sum of the pair and triplet potential energies
of Eqs.(3) and (4), respectively, and of the nonelectrostatic
hard-core contributionvsr ijd. That is, the potential energy
function U23sr Nd of our Hamiltonian is written as

U23sr Nd = o
i, j

N

fvsr ijd + Vs2dsr ijdg + o
i, j,k

N

Vs3dsr ij + r jk + r ikd.

s5d

Note that the kinetic energy term in the Hamiltonian plays no
role in phase stability and can therefore be ignored. A cubic
simulation box with periodic boundary conditions is used
and the minimum image rule is applied. While the minimum
image rule works fine for pair potentials, there is no unique
way of applying the minimum-image convention to a group
of three particles[33]. Consider a triangle of particles labeled
by i, j , andk. The minimum-image convention can only be
applied to two sides of the triangle—say, to particlej with i
and to particlek with i. The distance between particlej and
k is then fixed. The distance between the closest image of
particles j andk with respect to particlei is not necessarily
the minimum-image distance ofj to k. This can easily be
shown by defining thex component of the translation vector,

tij = fsxi − xjd/LgL, tik = fsxi − xkd/LgL, s6d

with L the box length andfxg the closest integer tox. The
resultingx components of the separation vector between the
particles are given by

xij = xi − xj − tij ,

xik = xi − xk − tik,

xjk = xj − xk + tij − tik,

and similarly for they andz components. For most casesxjk
is the same as given by the minimum-image convention—
i.e.,xjk=xj −xk− tjk—but for those cases where this is not true
one should check if the total side length of the triangle can
be minimized by applying the minimum-image convention to
the other sides of the triangle. In fact there are at most three
possible choices of triangles that have at least two sides with
lengths less than half the box length, as the minimum-image
convention can only be applied to two sides of the triangle.
However, it is too time-consuming to check all possible tri-
angles in each Monte Carlo step, and we have therefore cho-
sen for a simpler minimum-image rule. Our minimum-image
rule for the triplets is best explained and motivated by con-
sidering the way the potential energy is calculated: We first
take particlei (N choices); we then take particlej (from the
set of N−1 particles that are left) and apply the minimum-
image rule for particlesi and j . Next the two-body potential
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Vs2d is calculated for the pairi j . For each pairi j we take a
third particlek (from the set ofN−2 particles that are left).
Since now the distance betweeni and j is already fixed, we
only have two choices for the minimum image ofk; i.e., we
can take the minimum image ofk with respect toi or with
respect toj . By choosing the minimum image ofk that gives
the triangle with the smallest total side length of the triangle,
we take into account the position of particlek that screens
the pair interaction between particlesi and j most.

A consequence of this three-body minimum-image rule is
that the resulting three-body potential energyoi, j,k

N Vs3d

3sr ij +r jk+r ikd depends on the order in which the summation
is done. This is why the result is not(in all geometries) equal
to one-sixth of the unrestricted sumoi,j ,k

N Vs3dsr ij +r jk+r ikd,
where all triangles are calculated 6 times. However, accord-
ing to our tests, for a system with an adequate size the error
produced is at least five orders of magnitude smaller than the
error produced by statistical noise.

The two-body potential is truncated at a cutoff radiusrc,
which is chosen to be equal to the half of the box length. For
the three-body potential we choose to truncate the potential
when one of the side lengths of the minimum-image triangle
is greater thanrc (the same method as used in Ref.[33]).

As the free energy cannot be measured directly in a
Monte Carlo(MC) simulation, we used thermodynamic in-
tegration to relate the free energy of the system interacting
with a potential energy functionU23sr Nd given by Eq.(5) to
that of a reference system at the same density. The Helm-
holtz free energy of the solid phases is calculated using the
Frenkel-Ladd method[34,35]. To this end we introduce the
auxiliary potential energy function

bUsol
l sr Nd = bU23sr Nd + lo

i=1

N

sr i − r 0,id2/s2, s7d

where r 0,i is the lattice position of particlei, and l the di-
mensionless switching parameter. In Eq.(7), particles are
coupled to their lattice sites with harmonic springs: forl
=0 we recover the system of interest, while for a sufficiently
high value of l—say, l=lm—the particles do not “feel”
each other and the system reduces to that of a noninteracting
Einstein solid with Madelung energyU23sr 0

Nd—i.e., the po-
tential energy of a crystal with all particles at their lattice
positions. It is a standard result that[34,36]

bFsolsN,V,Td = bFEin
CMsN,V,T,lmd + bFcorrsN,V,Td

−E
0

lm

dlKo
i=1

N

sr i − r 0,id2/s2L
l

CM

, s8d

where the superscript “CM” on the ensemble average de-
notes that it is calculated for a crystal with fixed center of
mass. The free energy of an Einstein crystal with fixed center
of mass is given by

bFEin
CMsN,V,T,lmd = bU23sr 0

Nd −
3sN − 1d

2
lnF p

lm
G

+ sN − 1dlnFL3

s3G , s9d

whereL is the de Broglie wavelength. The correction term
Fcorr arises when the constraint on the center of masses is
released—i.e., the Helmholtz free energy difference between
the unconstrained and constrained crystal:

bFcorrsN,V,Td = lnF L3

VN1/2G . s10d

In our calculations we have replacedU23sr 0
Nd with N times

the Madelung energy per particle obtained from an “infinite”
(i.e., large enough) crystal—i.e.,uMsN`d;U23sr 0

N`d /N` with
N`s<5000–20 000d particles. For these system sizes, the tail
correction to the potential energy due to the finite cutoff
radius can be neglected. Therefore, no further tail corrections
to the potential energy are needed. Note, however, that there
is still a nonzero finite-size correction to the free energy from
two other sources: the implicit effect of the cutoff to the
value of kr2ll

CM and the effect of finite number of particles
[36].

The Helmholtz free energy of the fluid phase is calculated
using thel integration with the hard-sphere fluid as a refer-
ence state[34]. To this end, we introduce an auxiliary poten-
tial energy function

Ufluid
l sr Nd = o

i, j

N

vsr ijd + lFU23sr Nd − o
i, j

N

vsr ijdG , s11d

where 0ølø1 is the coupling parameter: atl=0 the inter-
action reduces to that of a fluid ofN hard spheres, while at
l=1 it is the potential energy function of interest(for fixed
V). The Helmholtz free energy is

FfluidsN,V,Td = Ffluid
HS sN,V,Td

+E
0

1 KU23sr Nd − o
i, j

N

vsr ijdL
l

dl, s12d

where Ffluid
HS is the free energy of a hard-sphere fluid, for

which we use the Carnahan-Starling expression[37]

bFfluid
HS

N
= lnFNL3

V
G − 1 +

hs4 − 3hd
s1 − hd2 . s13d

In the case of solids, the tail correction for the potential
energy could be calculated exactly from the Madelung en-
ergy for an infinite system. This is not possible for a fluid,
and therefore the fluid free energy calculation inevitably suf-
fers from the finite cutoff radiusrc for the potential energy.
For a system with only pair interactions this problem can be
solved by adding a tail contribution to the potential energy
which is approximated by the potential energy due to a con-
tinuous distribution of particles beyond the cutoff radius
rc—i.e., by settinggsrd=1 for r . rc [34]. A similar tail cor-
rection for the three-body potentialVs3d is not very practical
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as it requires a numerical integration over a three-
dimensional region and the approximationgsrd=1 is not ac-
curate because some triangles consist of particle pairs with
r , rc. Therefore, we approximate the tail correction per par-
ticle, utail, for a fluid with two- and three-body interactions
by the difference between the Madelung energy per particle
of an “infinite” systemuMsN`d and that with the same num-
ber of particles as the simulated fluiduMsNd—i.e., utail

=uMsN`d−uMsNd.
The integrations in Eqs.(8) and(12) were done using the

Gauss-Legendre quadrature with 10 integrations points. This
number of integration points was tested to be adequate by
recalculating some of the results with more(20 or 32) inte-
gration points. The number of particles was chosen to beN
=250 for the bcc andN=256 for the fcc and fluid phases.

To improve the accuracy of the numerical quadrature, we
change the integrand for the solid in Eq.(8) in a slowly
varying function by changing the integration variable froml
to lnsc+ld as described in Ref.[34]. The value of c
=Ns2/ koi=1

N sr i −r 0,id2ll=0
CM was evaluated in the beginning of

the free energy calculation and the value of the parameterlm
was chosen to be large enough so that forl=lm the system
behaves as an Einstein crystal.

Each evaluation of the integrands in Eqs.(8) and (12),
respectively, consisted of an equilibration run and a sampling
run, both withNt=1000–2000 trial moves per particle. For
systems interacting with a potential energy given by Eq.(5),
the evaluation of the three-body interaction scales withN3.
Our choice ofNt resulted in MC simulations that took about
36 CPU hours per free energy point on a supercomputer. In
order to map out the phase diagram the Helmholtz free en-
ergy must be determined for the fluid, bcc, and fcc phases
and for many statepoints—i.e., about 10 different packing
fractions and about 8 different values of salt concentrations
or ks, which resulted in approximately 1 yr of CPU time on
a supercomputer. For the two-body system the number of
trials was often increased toNt=10 000 per particle. At small
values ofl the data become more noisy and therefore, in
order to reach better statistical accuracy, the number of trial
moves,Nt, was doubled for the three integration points with
smallest value ofl and for estimation of the parameterc (the
l=0 point).

IV. RESULTS

Using the methods described in Sec. III, we performed

free energy calculations for givenks andZ̄=ZlB/s with the
parametersAs2d, As3d, andg taken from Ref.[26]. Common
tangent construction was used to determine the phase coex-
istence from the free energy data. We chose the ratio between
the Bjerrum length and the colloidal diameter to belB/s
=0.0225 and focused on calculating the phase behavior for

reduced chargeZ̄=1.8. This corresponds to chargeZ=80
and, in water at room temperature(for which lB=7.2 Å), to
diameters=32 nm. Phase diagrams are presented in theh-
ks representation, whereh=ps3N/6V is the colloidal pack-
ing fraction. Note thatk doesnot depend onh. We note that
our parameters are in the regime, where, according to the

theory in Ref.[38], the effective charge is close to the bare
charge: Forks from 2.2 to 2.56, the theory predicts an ef-
fective charge ofZeff=75, which is close to our bare charge
of Z=80.

In Fig. 1 we present the phase diagram for a system in-
cluding only the two-body interactions—i.e., for the poten-
tial energy of Eq.(5) where the three-body term is disre-
garded. The coexistence regions are colored gray, and tie
lines between the coexisting phases are horizontal. The pre-
factorsAs2d for ks.2.56 were obtained by linear extrapola-
tion with respect toks, since the maximum value ofks for
which the two-body prefactorAs2d was determined in Ref.
[26] is given byks=2.56.

As can be seen from Fig. 1, the bcc phase is very much
favored at low values ofks (low salt), while the bcc regime
ends in an upper triple point(position of which is given here
only as a rough estimate) at ks.4.86. We compared our
fluid-bcc coexistence line with the one given for point-
Yukawa particles in Ref.[39] and found them to be in good
agreement in the low-ks regime, where the hard core is not
expected to play a role. Note also from Fig. 1 that the fluid-
bcc and bcc-fcc coexistence regions shrink when moving to
the lower values ofks, as expected since the potential be-
comes softer.

In Fig. 2 we present the phase diagram for the same sys-
tem but now with two- and three-body interactions—i.e., for
the full potential in Eq.(5). Note the differentks scale in
Figs. 1 and 2. Because the values of the parametersAs2d, As3d,
andg are only given in Ref.[26] for ks=2.0 andks=2.56,
linear interpolation with respect toks was used to get the
parameter values at intermediateks.

Figure 2 shows a very broad fluid-fcc coexistence in the
low-salt regimeks&2.36—i.e., below a fluid-bcc-fcc triple
point (the horizontal dashed line in Fig. 2). In the regime
2.36&ks&2.43—i.e., above the triple point—there is a
very narrow fluid-bcc coexistence ath<0.35 and a rather
broad bcc-fcc coexistence at higherh. The density jump of
the latter shrinks upon approach ofks<2.43 and goes to a
negligible value forks.2.43.

FIG. 1. Phase diagram forZ̄=1.8 including only the two-body
interactions. The gray color represents a coexistence region, while
trianglessnd, circlesssd, and squaresshd represent the fluid, bcc,
and fcc phase boundaries, respectively.
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The essentially vertical long-dashed lines in Fig. 2 give
the fluid-bcc and bcc-fcc phase boundaries of the system
where only two-body interactions are present(Fig. 1). We
observe that the inclusion of the three-body interactions re-
duces the stability of the bcc phase in the regime 2.36
&ks&2.56 and closes up the bcc pocket atks<2.36.

In the limit of high salt, the phase diagram of the system
with the two- and three-body interactions(Fig. 2) should
converge to the phase diagram of the system with only the
two-body interactions(Fig. 1). In order to investigate this,
we calculated the Madelung energies per particle atks
=4.0 for both systems and found them to be very close to
each other. Therefore, we expect that atks.4.0 the phase
diagram of Fig. 2 reduces to the two-body phase diagram of
Fig. 1.

We have checked the effect of the tail corrections used for
the fluid phase on the phase behavior in Fig. 2. We find that
the tail correction in the fluid phase is unimportant for the
broad fluid-fcc phase coexistence. Also, the fluid-bcc phase
boundary is hardly affected by the tail correction: If we re-
move the tail correction from both the fluid and bcc phases,
the fluid-bcc phase boundary moves to lower packing frac-
tion by about 0.002.

In Fig. 3 we show as an example the free energy data for
ks=2.2, which were used to determine the phase coexist-
ence in the system with two- and three-body interactions
(Fig. 2). A common tangent construction reveals a coexist-
ence between a fluid at packing fractionh<0.12 and an fcc
solid at packing fractionh<0.72. Because the dip in the fcc
free energy ath<0.72 is very deep, the underlying fluid-bcc
coexistence is only metastable and the same is true for the
possible gas-liquid coexistence.

In order to study the source of this dip we made a very
simple theoretical approximation for the free energy based
on the sum of the Madelung energy(energy term) and the

free energy of a hard-sphere system(entropy term) as

Fapprox= NuM + HFHS
fluid , h ø 0.49,

FHS
sol, h . 0.49.

s14d

Here the Madelung energy per particle,uM, is that of an
“infinite” fcc solid and the free energy of the hard-sphere
solid, Fsol

HS, is obtained from the equation of state by Hall
[40]. In Fig. 3, Fapprox is plotted with the long-dashed line
and, as can be seen, the result is qualitatively the same as the
one from the elaborate free energy calculations. This result
explains the very broad fluid-fcc coexistence: because of the
three-body attraction, at lowks and high densities(h.0.55
for ks=2.2) the Madelung energy per particle,uM, is a
monotonically decreasing function of the density. This pro-
duces a lowering of the free energy at high densities(in Fig.
3 this is seen ath<0.6). At very high densities(h<0.72 in
Fig. 3) the free energy shoots up again, because there the
hard-sphere solid free energyFHS

sol starts to increase rapidly.
Thus the competition between the Madelung energy and the
hard-sphere free energy produces a minimum in the fcc free
energy curve at high density and explains the broad fluid-fcc
coexistence.

In the broad fluid-solid coexistence regime, the fcc crystal
is more favorable than the bcc phase as the former phase has
a higher maximum packing. The denser packing yields a
larger negative three-body energy contribution, which lowers
the total free energy of the system. Figure 3 illustrates this:
The bcc free energy starts to increase strongly afterh<0.6
due to the hard-core repulsion, while at this packing fraction,
the fcc has sufficient space to densify and to lower its free
energy due to the three-body attractions.

As the range of the three-body attraction is reduced at
higher values ofks (higher salt concentrations), the mini-
mum becomes less pronounced while at the same time the
coexisting fluid phase moves to higher densities. Finally, at
ks<2.36 the fluid is metastable with respect to the bcc, and
the fluid-fcc coexistence is replaced by a broad bcc-fcc co-
existence.

FIG. 2. Phase diagram forZ̄=1.8 including the two- and three-
body interactions. The gray color represents a coexistence region,
while triangles snd, circles ssd, and squaresshd represent the
fluid, bcc, and fcc phase boundaries, respectively. The crossess3d
mark the bcc-fcc and fluid-fcc coexistence points based on Eq.(14).
The two vertical long-dashed lines represent the fluid-bcc and bcc-
fcc phase boundaries of the system with only two-body interactions
(see Fig. 1). The horizontal dashed line denotes the fluid-bcc-fcc
triple point.

FIG. 3. Free energies per volume atks=2.2 for the fluid, bcc,
and fcc phases, resulting from the thermodynamic integration de-
scribed in Sec. II. Also shown is the result from the approximate
theory of Eq.(14).
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The approximation for the free energy given in Eq.(14)
can be used as a quick tool for mapping out the fluid-fcc and
bcc-fcc coexistence points in the low-ks regime.1 In Fig. 2
the coexistence points obtained from the free energy curves
provided by Eq.(14) are denoted by crossess3d. As can be
seen, the results obtained from the approximate method are
in good agreement with those from free energy calculations.

We also used Eq.(14) to check the stability of the gas-
liquid critical point that was predicted for the present system
in Ref. [26], on the basis of a simple van der Waals–like

theory. For Z̄=1.8 the analysis of Ref.[26] yields a gas-
liquid critical point atks.1.8 andh.0.4; i.e., forks,1.8
there is predicted to be anh regime where gas and liquid

coexist. Comparison with the present phase diagram forZ̄
=1.8 in Fig. 2 reveals that this predicted critical point is in
fact metastable with respect to fluid-fcc coexistence. The
same conclusion holds for the critical points that were iden-

tified for other values ofZ̄: application of Eq.(14) reveals
that a broad fluid-fcc coexistence is thermodynamically more

favorable than the gas-liquid transition for all values ofZ̄
considered. However, the analysis of Ref.[26] is still of use,

since the curve in thesZ̄,ksd plane that separated the super-
critical from the subcritical regime turns out to be remark-
ably close to the line that separates a “narrow” fluid-solid

regime from a “broad” gas-solid regime(for Z̄=1.8 this
would take place atks.2.4). This is illustrated in Fig. 4,
where the crosses denote a “broad” gas-solid coexistence

based on Eq.(14) and the squares denote gas-liquid coexist-
ence as predicted in Ref.[26]. The circles denote a “narrow”
fluid-solid regime and the line represents our prediction for
the crossover from a “narrow” fluid-solid to a “broad” gas-
solid regime.

V. CONCLUSIONS AND DISCUSSION

We performed a computer simulation study of the phase
diagram of a suspension of charged colloids at low salinity,
taking into account effective pair and triplet interactions be-
tween the colloids. The effective potentials are taken from an
earlier Poisson-Boltzmann study[26], and are such that the
pair potential is a DLVO-like screened-Coulomb repulsion
[see Eq.(3)], whereas the triplet potential is purely attractive
[see Eq.(4)].

The main effect of the inclusion of triplet interactions is a
reduction of the stability of the bcc phase in favor of the fluid
and fcc phase or coexistence of the latter two. The triplet
attractions induce, at sufficiently low salinity, a very broad
coexistence regime of a dilute fluid with an extremely dense
fcc phase, while at intermediate salinity a broad bcc-fcc co-
existence regime appears.

There are two reasons for the destabilization of the bcc
phase: First, the bcc phase is stabilized by long-range repul-
sions and, therefore, any attraction(or other disturbances like
truncation of the potential, see Ref.[41]) will reduce its sta-
bility. Second, in the broad fluid-solid coexistence regime,
the three-body attraction favors the fcc solid as it has a
higher maximum packing than the bcc phase. The denser
packing yields a larger negative three-body energy contribu-
tion, which lowers the free energy of the system. The dip in
the free energy(see Fig. 3) is beyond the maximum packing
sh=0.698d of the bcc crystal.

We also conclude that any gas-liquid coexistence that may
occur due to the attractive triplet interactions is metastable
with respect to gas-fcc coexistence. This is in line with the
results of Ref.[42], where it was shown that many-body
attractions have a strong tendency to give rise to gas-solid
rather than gas-liquid coexistence.

We want to stress the fact that none of the experimentally
observed broad coexistence regions can be explained with
the pairwise Yukawa picture and that this broad coexistence
is always seen in the low-salt regime. Therefore, we suggest
that many-body interactions between the colloids, which be-
come important in the low-salt regime, are the reason for
these broad coexistence regions.

Finally, some critical remarks on our results must be
made, since they are, at least in the low-salt regime, in dis-
agreement with experimental observations: we are not aware
of reports of observations of almost-close-packed fcc phases
with a dilute gas phase. This suggests that a fully realistic
description of charged colloids in this regime requires the
inclusion of four-body and higher-order terms as well, which
constitutes a daunting task: not only is the calculation of the
n-body potentialVsnd for nù4 computationally demanding,
but including them into an(efficient) Monte Carlo scheme is
also far from trivial. However, at high salinity the system is
well described by pairwise additivity, and therefore we ex-

1The approximate free energyFapproxin Eq. (14) only accounts for
the “crude” features of the phase diagram—i.e., either for the broad
fluid-fcc or for the broad bcc-fcc phase coexistences. It is unable to
predict the phase behavior in theks regime where these effects are
not seen.

FIG. 4. Crossess3d denote the pointssZ̄,ksd where free energy
calculations based on Eq.(14) predict a gas-solid coexistence,
squaresshd show the points where the van der Waals theory of Ref.
[26] predicts a gas-liquid coexistence, and circlesssd show the
points where a “narrow” fluid-solid coexistence is predicted by our
approach and Ref.[26]. The line is our prediction for the crossover
from a “broad” gas-solid to a “narrow” fluid-solid coexistence.
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pect that in an intermediate regime of the salt concentration
(or ks) and h, the system is well described by pair and
triplet interactions alone. Where exactly this regime is needs
further investigation.
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