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Abstract. In these lectures, I discuss techniques to compute the phase
diagram of lyotropic liquid crystals. I review the standard techniques to
compute the free-energy of various phases. Subsequently, I focus on phase
transitions in liquid crystals. Recent techniques to determine the depen-
dence of phase boundaries on the shape and flexibility of the constituent
molecules, are discussed. Finally, I devote attention to Monte Carlo tech-
niques that are particularly suited to study the phase behavior of flexible
molecules.

1. Introduction

These lectures focus on some of the technical aspects of the simulation of
lyotropic liquid crystals. First, I review several techniques that can be used
to locate first-order phase transitions. The availability of such techniques
is of particular relevance for liquid-crystal simulations because many of the
standard techniques to study phase-coexistence in computer simulations of
simple atomic or molecular systems cannot be applied to liquid crystals.
A key quantity that must be computed in order to determine the point
where two phases coexist, is the chemical potential p of the molecules in
either phase. Most techniques to compute the chemical potential are lim-
ited to model systems consisting of small molecules at low densities. Actual
liquid-crystal formers (both thermotropic and lyotropic) rarely meet this
specification. I shall therefore also discuss techniques to study systems con-
sisting of large, flexible molecules.
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2. Phase transitions and free energy

The most direct way to study phase coexistence in a computer simulation
would be to simply change the temperature or pressure of the system under
study until a phase transformation occurs. In the real world it is often (but
by no means always) possible to ensure that such a phase change takes
place reversibly. The coexistence point is defined as the point where the re-
versible phase transformation occurs. At coexistence, the temperature and
pressure of the coexisting phases are equal. In addition, the chemical po-
tential of every individual species must have the same value in every phase.
Following the seminal work of Panagiotopoulos [1], much progress has been
made in the direct simulation of phase coexistence of moderately dense
fluid phases using the “Gibbs-ensemble” method. This method relies on
the fact that it is possible to satisfy the above conditions for coexistence
between two bulk phases (or, to be more precise, homogeneous phases with
periodic boundary conditions) by allowing them to exchange both volume
and molecules. Unfortunately, such a direct simulation method is of lim-
ited value in computer simulations of transitions involving dense phases
that have some translational order. The reason why the Gibbs-ensemble
method breaks down under those circumstances is twofold. First of all,
pronounced hysteresis effects are usually observed in computer simulations
of a strong first order phase transition, such as melting. This implies that
it is difficult for the molecules in the system to spontaneously rearrange
from a configuration belonging to the ‘old’ phase, to one that corresponds
to the ‘new’ phase. But even if the two different phases have somehow been
prepared, it is usually impossible to exchange particles between them. As
a consequence, we cannot ensure the equality of the chemical potential in
the two phases.

Under those circumstances, it is still possible to locate the point where
the two phases coexist. But in order to do so, we must explicitly compute
the chemical potential of the homogeneous phases at the same temperature
and pressure and find the point where the two u’s are equal. The direct
calculation of chemical potentials of dense phases is the first topic that I
address in these lectures. In practice, it is often the Helmholtz free energy
F, rather than the chemical potential p, that is computed. In what fol-
lows, I shall use the terms chemical-potential calculations and free-energy
calculations interchangeably, as F' and y are simply related (e.g., for a one-

component system of N particles in a volume V at pressure P, we have
F=Nyu— PV).

2.0.1. The natural way
When discussing techniques to measure free energies, it is useful to recall
how such quantities are measured experimentally. In the real world, free
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energies cannot be obtained from a single measurement either. What can
be measured, however, is the derivative of the free energy with respect to
volume V' and temperature T

(g—f/;) NT =-F @
and
<%§/Z%) NV = F 2

Here P is the pressure and E the energy of the system under consideration.
The trick is now to find a reversible path that links the state under consid-
eration to a state of known free energy. The change in F along that path
can then simply be evaluated by integration of Eqns. 1 and 2. In the real
world the free energy of a substance can only be evaluated directly for a
very limited number of thermodynamic states. One such state is the ideal
gas phase, the other is the perfectly ordered ground state at T = 0K. In
computer simulations, the situation is quite similar. In order to compute
the free energy of a dense liquid, one may construct a reversible path to the
very dilute gas phase. It is not really necessary to go all the way to the ideal
gas. But at least one should reach a state that is sufficiently dilute that the
free energy can be computed accurately, either from knowledge of the first
few terms in the virial expansion of the compressibility factor PV/NkgT,
or that the chemical potential can be computed by other means (see be-
low). For the solid, the ideal gas reference state is less useful (although
techniques have been developed to construct a reversible path from a dense
solid to a dilute (lattice-) gas [2]). The obvious reference state for solids
is the harmonic lattice. Computing the absolute free energy of a harmonic
solid is relatively straightforward, at least for atomic and simple molecular
solids. However, not all solid phases can be reached by a reversible route
from a harmonic reference state. For instance, in molecular systems it is
quite common to find a strongly an-harmonic plastic phase just below the
melting line. This plastic phase is not (meta-) stable at low temperatures.

2.0.2. Artificial reversible paths

Fortunately, in computer simulations we do not have to rely on the presence
of a ‘natural’ reversible path between the phase under study and a reference
state of known free energy. If such a path does not exist, we can construct
an artificial path. This is in fact a standard trick in statistical mechanics
(see e.g. [3]). It works as follows: Consider a case where we need to know
the free energy F'(V,T) of a system with a potential energy function U1,
where U} is such that no ‘natural’ reversible path exists to a state of known
free energy. Suppose now that we can find another model system with a
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potential energy function Up for which the free.energy can be 9omputed
exactly. Now let us define a generalized potential energy function U(}),
such that U(\ = 0) = Up and U(\ = 1) = U;. The free energy of a sy‘stem
with this generalized potential is denoted by F(A). Althougb F(A) itself
cannot be measured directly in a simulation, we can measure its derivative

with respect to A:
oF oU(A)
(_> = (& . (3)
o\ ) nvra o\ [/ nvTa

If the path from A = 0 to A = 1 is reversible, we can use Eqn. 3 to compute
the desired F(V,T'). We simply measure < OU/OX > for a number of values
of A between 0 and 1. Typically, 10 quadrature points will be sufficient to
get the absolute free energy per particle accurate to within 0.01 kgT. It
is however important to select a reasonable reference system. One of the
safest approaches is to choose as a reference system an Einstein crystal with
the same structure as the phase under study [4]. This choice of reference
system makes it extremely improbable that the path connecting A = 0 and
A =1 will cross an (irreversible) first order phase transition from the initia)
structure to another, only to go back to its original structure for still larger
values of . Nevertheless, it is important that the parametrization of U/ (A)
be chosen carefully. Usually, a linear parametrization (i.e. U(\) = AU +
(1—A)U) is quite satisfactory. But occasionally such a parametrization may
lead to weak (and relatively harmless) singularities in Eqn. 3 for A — 0.
More details about such free energy computations can be found in refs. 5,
6].

2.1. PHASE TRANSITIONS IN LIQUID CRYSTALS

2.1.1. Isotropic and nematic phases
For the isotropic phase we can take the ideal gas as areference and integrate
along the equation of state using the density p as the integration parameter

F(p,L)  Fa(p) /” Py, L) — p'kpT
0

NkgT ~ NkgT 2kpT

dp'. 4

The isotropic-nematic transition usually exhibits some hysteresis. As a
consequence, direct integration of the equation of state through the transi-
tion region is subject to statistical errors. This problem can be alleviated
by switching on a strong ordering field. In the presence of such a field,
the first-order isotropic-nematic transition is suppressed and a reversible
expansion to the dilute gas becomes possible [7].

A second method that can be used to compute the free energy of the
nematic phase is based on the particle-insertion method of Widom (8]. This
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method was first applied to the evaluation of the free energy of nematics
by Eppenga and Frenkel [9]. As I shall discuss particle-insertion schemes in
some detail below, I defer the discussion of this technique to section 4.1. Suf-
fice it to say that this scheme works best for strongly anisometric molecules
that undergo a transition to the nematic phase at low density.

2.1.2. Solid phase

The strong first order transition separating the solid phase from the other
phases rules out the integration along the equation of state. Instead, we
choose as reference system for the solid an Einstein crystal with the same
structure [4]. Now the reversible path transforms the original system to
an Einstein crystal with fixed center-of-mass, by gradually coupling the
atoms to their equilibrium lattice position. For a system of anisometric
particles, the orientation also needs to be coupled to an aligning field. The
Hamiltonian that can be used to achieve the coupling is

BHuy =Y (ri—19)” + AT sin? 6, (5)
A 3

where p and X are the coupling constants which determine the strength of
the harmonic forces. The free energy of the system can be related to the
(known) free energy of an Einstein crystal by thermodynamic integration

BF(/)*) N BFein, Hmaz 2 /’\"”“ . 9 InV
N TN —-/0 du <A7‘ >u A d\ (sm 9>,\ Tk (6)

Here (Ar?) . is the mean-square displacement and (sin® §), the mean square
sine of the angle between a particle and the aligning field in a simulation
with Hamiltonian H), 5. The free energy of the Einstein crystal (with fixed
center-of-mass) in the limit of large coupling constants is given by
ﬁFeinzglnN—g(N—mnE—Nlnz;. (7)
By performing several simulations at different values of x and ) one can
numerically evaluate the integrals in Eqn. 6. As the values 1 and A at which
the integrand is evaluated can be chosen freely, the error in the integration
can be minimized by using Gauss-Legendre quadrature. Occurrence of any
first order transition was avoided by performing two Gauss-Legendre inte-
grations in succession. The first fixes the positions while leaving A = 0, the
second aligns all spherocylinders while keeping p& = pimaq. It is convenient
to choose the maximum values of A and y such that in a simulation at these
maximum values, there are essentially no overlaps between the particles.
Otherwise it is necessary to correct Eqn. 7 for the occurrence of overlaps

(4].
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2.1.3. Smectic phase
The smectic phase does not have an obvious reference state for which the

free energy is known. In the case of hard spherocylinders, Veerman and
Frenkel [10] used the fully aligned system as a reference system. However,
the free energy of the aligned parallel smectic itself is subject to numerical
error. An alternative is to couple the mesogenic molecules with an har-
monic spring to the smectic layer to which they belong and subsequently
align them. In this way, the smectic phase of hard spherocylinders can be
transformed into what is essentially a 2D hard disk fluid for which the free
energy is well known [2]. In principle, one could apply the Einstein integra-
tion method used in the previous section with one difference: the position
field couples only the z-coordinates of the particles to the layer positions
and leaves the z,y coordinates completely free. If we consider the first part
of the integration, where the particle are confined to their layers, the free
energy of smectic phase can be related to this planar system by

BF,—o _ ﬂFﬁl_ﬁ‘ﬁ:T _ /uo A2 InV
N - N | du{art) - (&)

In the second integration, the difficulty arises that a infinite amount of

aligning energy is needed to get all spherocylinders completely parallel.

! lanar,aligned
BF e _ BB ey / “ i (sin?6) (9)
N N 0 >

To keep the energy values finite, we subtract on both sides of this equation
the free energy of an ideal rotator in the same field.

planarid planar,aligned,id
Phosapmpe _ Phocopimmy / Y (sin”0) (10)
N N Ao id,\
which results in
planar planarid planar,aligned,ex
pE A=0,p=p0 BE A=Ag,p=40 + ad z\=oo,u’=uo 11
N B N N (11)

- /0 * 0 <sin2 9> N /:o dX [<Sin2 0>,\ B <Sin2 6>id,/\] '

o]

The excess free energy of the completely aligned planar system, that is

ﬁFff:ofz’iZﬂ"ed’em, is equal to the excess free energy of a 2D hard disk fluid.

The free energy of the ideal planar system (with fixed center-of-mass) in
the limit of large coupling constants is given by
2m

@ 1 1
B ey = 51N = S(N ~ l)ln% ~Nl=. (12)

-2
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The integral over the difference of the sin? terms in Eqn. 11 is finite. We
can change the integration boundaries by substituting A =1 €2

*® . 9 . 9 (% 2 [/ . 9 .9

/Ao dX [<sm 9>)‘ - <sm 0>M,’J = /0‘/* dE2)3 [<s1n 0>/\ - <sm 0>id,A] .

(13)

In conventional MC sampling, the statistical error of both terms in the in-

tegrand is larger than the difference itself. Under those circumstances, the

following approach is useful: instead of rotating a spherocylinder ¢ around

an angle df; we choose a completely new trial value of 8; from the proba-
bility distribution

P(6) ~ exp(—BAsin®8) . (14)

This is the equilibrium distribution for an ideal rotator with a Hamiltonian

according to Eqn. 5 and results in the correct value for (sin® 0>id, s If no
overlap occurs the trial move will be accepted and we will have

sin} 0; —sinj; , 6; =0 . (15)

If an overlap does occur the trial move will be rejected and the particle will
retain its old value. The difference now will be

sin} 6; — sin; , 6; = sinj 67 — sinf, , 67~ (16)

The statistical error in the average of the difference is always smaller
than the average itself. This will enable us to determine the integrand more
accurately. By combining Eqns. 8,11 and 13 the complete expression for free
energy of the smectic phase follows

planarid
BEu=o _ BF _ BB Sou=po _ IV _ [0 du <Ar2>
N N N N J p
Ao -
_ 2 _ VAo 2 c 2 2
/0 dX <sm 0>>\ /0 d€2)3 Ksm,\ 8 — singy 9>] . (17)

The excess hard disk free energy can be obtained by subtracting the
ideal term BFi. = Inp from the free energy in Ref [2]. Another problem
that may arise is that, as the smectic phase forms from the nematic, the
fluctuations in the number of particles per layer get frozen in. As a result,
different layers may have different (2D) densities. To ensure that the 2D
densities in the smectic layers are equal throughout the system one can use
shifted periodic boundaries: the periodic boundaries in the z direction are
shifted exactly one layer period along the z-axis, while leaving them the
same in the y and z direction. In this way, a particle leaving the simulation
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box at the left side will reenter the box at the right one layer higher. This
particle can diffuse through the whole system, as there is effectively only one
layer. This ensures that fluctuations in the number of particles per smectic
layer can relax, even at high density where normal inter-layer diffusion is
completely frozen out [11].

2.1.4. Nematic-smectic free energy difference

Even when all tricks to compute the absolute free energies of the different
phases are used, it remains difficult to locate the nematic-smectic coex-
istence region with reasonable accuracy. However, we are hardly ever in-
terested in the absolute free energies themselves. It is often attractive to
calculate the free energy difference between a stable nematic and a stable
smectic directly. In order to find a reversible path from the nematic to
smectic one can use the following Hamiltonian

Hy =)\ (Z cos(gz%lf—i’-{) + 1) , (18)
i Z

where n is the number of smectic layers, L, the box length in the z-direction,
r; 5 the z-coordinate of particle s and A the coupling parameter determining
the strength of the smectic ordering. At low density this Hamiltonian will
produce, by increasing A, a gradual transition from a nematic to a smectic
phase. We start with a smectic phase and applied a cosine field at large
enough ). Subsequently, the smectic is expanded to lower density, while
measuring the pressure. Finally, the cosine field is slowly turned off. The
free energy difference now simply is

AFns  Fomee Frem / Amaz 2y,
= — = A\ —_— 1
N i N | d ; cos( L. )+ -

Ps P Amaz 2 i 2
—/ -Lfldp—/ dA <Zcos(%)+l> . (9)
e 0 i z nem

n P

Of course, the value of Apmqz should be chosen large enough that the first-
order S-N transition is completely suppressed. For more details, see ref. [11]

2.1.5. Changing the particle shape

Usually, we are interested in the phase diagram of a model system, for
a whole range of model parameters. In the case of spherocylinders, the
relevant parameter is the length-to-width ratio L/D (strictly speaking, L
is the length of the cylindrical part — the total length is L + D). Once
the free energy of a phase for a given value of L/D has been determined at
some density p, the free energy at other values of L/D can be obtained by a
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simple thermodynamic integration scheme. We can compute the reversible
work involved in changing the aspect ratio of the spherocylinders from L,
to L and subsequently changing the density from pg to p (for convenience,
we have chosen D = 1):

F(p,L) _ Fo(po, Ly) /L (3F> /” P(p, L)
— 97 ap+ [y, (20
N v th\er), ), T @0

The pressure is obtained from an MD simulation in the usual way, by time
averaging the virial.

E.E -1 = %'BZ (f55 - rij) ) (21)

p i<j

where r;; is the vector joining the centers of mass of particles i and j,
and f;; denotes the (impulsive) force on j due to i. The derivative k =
(OF/OL), can be measured at the same time by taking the projection of
the intermolecular force along the particle axis.

5= (%%) = 23 (B - (i b)), (22)
ij

The average k is calculated at constant number density p. However, it is
more convenient to measure it at constant reduced demnsity p* (i.e. at a
constant fraction of the close-packing density). If we denote this derivative
by &', we get

OF OF oF dp OF V3
- —_— = D ] —_— —_— == — — e *
"= (BL),,* (az;),,*’(ap),;(afz),ﬂ (aL),, 2ot 1) (3)
and Eqn. 20 becomes

F(p*,L) _ FO(pUaL )
N = Yt : (24)

L OF V3 ” 1 P(p*,L)
dL (—) — Y Pt L dL+/ 2
/Lo ( oL/, 2p* (b )) w pp(L) P

2.2. GIBBS-DUHEM INTEGRATION

The location of a fluid-solid coexistence curve can be determined by per-
forming several free-energy calculations and measurements of the equation-
of-state for a large number of L/ D values. However, this approach is compu-
tationally rather expensive. To avoid this problem, we use a modification
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of a method that was recently developed by Kofke to trace coexistence
curves [12]. The advantage of this method is that only equation-of-state in-
formation at the coexistence curve is required to follow the L/D-dependence
of the melting curve. In its original form, the Kofke scheme is based on the
Clapeyron equation which describes the temperature-dependence of the
pressure at which two phases coexist:

& (29
dI' TAV

where AH is the molar enthalpy difference and AV the molar volume
difference of the two phases. This equation is not self starting, in the sense
that one point on the coexistence curve must be known before the rest of
the curve can be computed by integration of Eqn. 25.

For hard-core systems, we are not interested in the (trivial) temperature
dependence of the coexistence curve, but in the dependence of the coex-
istence pressure on L/D, the shape anisotropy of the spherocylinders. In
order to obtain a Clapeyron-like equation relating the coexistence pressure
to L/D, we should first write down the explicit dependence of the (Gibbs)
free energy of the system on L/D:

dG = Np = VdP + kdL , (26)

where & is the derivative (8F/8L), defined in Eqn. 22 and where we have
used the fact that D is our unit of length. Along the coexistence curve, the
difference in chemical potential of the two phases is always equal to zero.
Hence,

Ap = AvdP + %'T—AndL =0, (27)

where Aw is the difference in molar volume of the two phases at coexistence
and Ak = k1 — k9. From Eqn. 27 we can immediately deduce the equivalent
of the Clausius-Clapeyron equation

b _ 125, (28)
dL N Av
In Kofke’s application of the Gibbs-Duhem method, the MC simulations
are carried out in the isothermal-isobaric (NPT) ensemble. However, in the
present case (hard-core particles), it is more efficient to use Molecular Dy-
namics to compute the derivative k. In practice, we use a hybrid approach
where MD simulations are embedded in a constant NPT-MC scheme. True
constant-pressure MD is not an attractive option for hard-core models.

]
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3. Simulations at infinite aspect ratio

3.1. SCALING

Most theoretical information about lyotropic liquid crystals has been ob-
tained in the limit of infinite aspect ratio. Clearly, it would be interesting to
perform simulations in the same limit. At first sight this seems impossible
because in general the system size scales with L3. However, at finite reduced
density p*, i.e. not in the isotropic phase or low p* nematic phase, the av-
erage angle 6 that a particle makes with the director scales as 1/L, which
means that the particles are (almost) completely aligned. In this regime,
we can bring the volume down to finite sizes by scaling the system along
the director (chosen to be along the z-axis) with a factor L [11]. This will
change the shape of the particle from a spherocylinder to a shifted cylinder
of height 1 and diameter D. The height of the cylinder is always 1 because
the angle § o« 1/L and the difference in height 1 — cos(1/L) ~ 1/L? van-
ishes as L/D — oo. The shift of the cylinder in the xy plane perpendicular
to the director is finite because it is given by Lsin® = O(D) in the limit
L/D — oco. The top and bottom end of the cylinder are flat and always
perpendicular to the director. The hemispheres of the spherocylinder have
completely disappeared by the scaling procedure.

Because the shape of the particle is different from a spherocylinder we
need a new overlap criterion. This is given by the shortest distance between
two particle axes in the zy plane. In the zy plane a cut through the cylinder
results in a circle of diameter D. Therefore, if the shortest distance is smaller
than the diameter D, an overlap will occur.

Scaling of the box in this particular way will not effect the reduced
density because the close packing density will scale in the same way as the
number density. The pressure will be multiplied by a factor L, whereas P/p
remains unaffected by the scaling. We can therefore measure the equation
of state in this limit using normal NPT-MC simulations.

Because the particles are free to shift any arbitrary amount in the zy
plane it is convenient to keep the nematic director always along the z-axis.
That is, we keep the total amount of shift in the zy plane equal to zero.
This can be achieved by starting with a completely aligned system and
shift two particles with the same amount in opposite direction at every MC
trial move. In order to avoid multiple overlaps, shifts larger than half the
box-length are forbidden. Standard MC trial moves are not very effective in
reproducing the collective motion of tilted layers. In the smectic phase, we
therefore allowed for two neighboring layers to tilt collectively by equal but
opposite amounts, so that the constraint of a constant director is satisfied.

A similar scaling technique can be (and has been [13]) applied to oblate
hard particles. In this case, the method can be used to study the nematic,
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columnar and crystalline phases of disklike particles.

3.2. MIXTURES

Almost all liquid crystals of practical interest are mixtures. Either mix-
tures of different mesogenic molecules, or mixtures of a mesogenic and non-
mesogenic molecules. In simulations, the fact that we deal with mixtures,
rather than pure compounds, poses no special problems. For instance, Camp
et al. [14] have studied the phase diagram of mixtures of prolate and oblate
ellipsoids. The simulations reveal the presence of an isotropic phase, two
nematics and one biaxial nematic.

An example of a simulation of a mixture of a mesogen and a non-
mesogen is the work by Bolhuis et al. [15] on mixtures of hard spherocylin-
ders and polymers. In this case, the presence of the polymers leads to the
appearance of fluid-fluid phase transitions in the various liquid-crystalline
phases.

More interesting from a technical point of view are simulations of mix-
tures of particles with a continuous size or shape distribution. The general
approach in this case is discussed in a paper by Bolhuis and Kofke, who
studied the freezing of polydisperse hard-sphere mixtures [16]. This ap-
proach was extended to polydisperse lyotropic liquid crystals by Bates and
Frenkel [17]. The interesting point is that, in this case, poly-dispersity may
induce phases that are absent in the phase diagram of mono-disperse parti-
cles. For example: mono-disperse spherocylinders do not exhibit a columnar
phase, but polydisperse spherocylinders do.

4. Chemical potential of flexible molecules

Before discussing techniques to measure the chemical potential of chain
molecules, I first review the particle-insertion method of Widom [8].

4.1, THE PARTICLE INSERTION METHOD

A particularly simple and elegant method to measure the chemical potential
L of a species in a pure fluid or in a mixture is the ‘particle-insertion’ method
(often referred to as the Widom-method [8]). The statistical mechanics that
is the basis for this method is quite simple. Consider the definition of the
chemical potential s, of a species . From thermodynamics we know that
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Where G, F and S are the Gibbs free energy, the Helmholtz free energy and
the entropy, respectively. Here, and in the next few paragraphs we focus on
a one-component system, and hence we drop the subscript . Let us first
consider the situation at constant NVT. If we express the Helmholtz free
energy of an N-particle system in terms of the partition function QN

F(N,V,T) = —kgThhQn
= —kgTlhh (%\)nz)—{v—) —kgTln ( / ds" exp[—BU(sV; L)])
= Fid(NavaT)+Fea:(N)Vv)T) ) (30)

then it is obvious from Eqn. 29 that, for sufficiently large N the chemical
potential is given by: u = —kpT In(Qn.+1/Qn)- If we use the explicit form
(Eqn. 30) for @, we find:

u = —kgT ln(QN+1/QN)

~ v [ dsN L exp(~BU(sN)))
= “’“BTI"((N+1)>"’°BTIH< [ ds™ exp(~BU (V) )

= pid(V) + e - (31)

In the first line of Eqn. 31, we have assumed that the system is contained

in a cubic box with diameter L = Vé and have defined scaled coordinates
N
s, by:

q; = Ls;

fori=1,2,---,N. In the last line of Eqn. 31, we have indicated the separa-
tion in the ideal-gas contribution to the chemical potential, and the excess
part. As pig(V) can be evaluated analytically, we focus on jie;. We now
separate the potential energy of the N + 1-particle system into the poten-
tial energy function of the N -particle system, U(s"), and the interaction
energy of the N + 1-th particle with the rest: AU = U(sV+?) - U(s").
Using this separation, we can write pez as:

tey = —kpT'In < /dSN+1 exp(——BAU) >N, (32)

where < - >y denotes canonical ensemble averaging over the configura-
tion space of the N-particle system. The important point to note is that
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where < ++- >y denotes canonical ensemble averaging over the configura-
tion space of the N-particle system. The important point to note is that
equation 32 expresses jte; as an ensemble average that can be sampled by
the conventional Metropolis scheme [18]. There is only one aspect of this
equation that makes it different form the averages that we considered be-
fore, namely the fact that we compute the average of an integral over the
position of particle V4 1. This last integral can be sampled by brute-force
(unweighted) Monte Carlo sampling. In practice the procedure is as follows:
we carry out a perfectly normal constant-NV'T Monte Carlo simulation on
the system of N particles. At frequent intervals during this simulation (for
instance, after every MC trial move) we randomly generate a coordinate
SN+1, uniformly over the unit cube. With this value of sy, we then com-
pute exp(—SAU). By averaging the latter quantity over all generated trial
positions, we obtain the average that appears in Eqn. 32. So, in effect, we
are computing the average of the Boltzmann factor associated with the
random insertion of an additional particle in an N-particle system, but we
never accept any such trial insertions, because then we would no longer be
sampling the average needed in Eqn. 32. The Widom method provides us
with a very powerful scheme to compute the chemical potential of (not too
dense) atomic and simple molecular liquids.

The particle insertion scheme fails when the probability of ‘accepting’ a
trial insertion becomes very small. One consequence is that the simple par-
ticle insertion method is less suited for molecular than for atomic systems.
This is so because the probability of accepting the random trial insertion
of a large molecule in a fluid is usually extremely small.

4.2. CHEMICAL POTENTIAL OF MACRO-MOLECULES WITH DISCRETE
CONFORMATIONS

In order to understand the methods that have been devised to calculate the
chemical potential of chain molecules, it is instructive to first consider how
we would compute e, of a chain molecule with the Widom technique. To
this end, I introduce the following notation: the position of the first segment
of the chain molecule is denoted by q and the conformation of the molecule
is described by I'. The configurational part of the partition function of a
system of chain molecules can be written as

Quran,V,T) = - [da" 3 exp(-pU(",TY) . (39)
' Iy Ts
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where of the Q(N +1,V,T) is the (configurational part of) the partition
function of a system of N + 1 interacting chain molecules and Q(N,V,T) x
Qnon—interacting(1, V,T') the partition function for a system consisting of N
interacting chains and one chain that does not interact with the others. The
latter chain plays the role of the ideal gas molecule in the previous sections.
Note, however, that although this molecule does not interact with any of
the other molecules it does interact with itself, both through bonded and
through non-bonded interactions. Unfortunately, this is not a particularly
useful reference state, as we do not, in general, know the partition function
of an isolated self-avoiding chain.

We therefore use another reference state, namely that of the isolated
non-selfavoiding chain. To be specific, let us consider the case of a molecule
that consists of ¢ segments. Starting from segment 1, we can add segment
2 in by equivalent directions, and so on. Clearly, the total number of non-
selfavoiding conformations is ;g = Hf=1 b;. For convenience, I have as-
sumed that for a given i, all b; directions are equally likely (i.e. I ignore
gauche-trans potential energy differences and I even allow the ideal chain
to fold back on itself). These limitations are not essential but they simplify
the notation. Finally, I assume that all b; are the same. Hence, for the sim-
ple model that we consider, Q4 = b. If we use such an ideal chain as our
reference system, the expression for the excess chemical potential becomes

. Qchain(N+1:VaT)
Phiew = kBTln(Q(N, V,T>Qmeal(1,v,T))

— —kpTln < exp[-BAU(q",TV;qn41,Tn1)] >, (34)

where AU denotes the interaction of the test chain with the N chains that
are already present in the system and with itself, while < .- > indicates
averaging over all starting positions and all ideal-chain conformations of a
randomly inserted chain.

The problem with the Widom approach to Eqn. 34 is that almost all
randomly inserted ideal chain conformations will overlap either with parti-
cles already present in the system, or internally. The most important con-
tributions to pez will come from the extremely rare cases where the trial
chain happens to be in just the right conformation to fit into the available
space in the fluid. Clearly, it would be desirable if we could restrict our
sampling to those conformations that satisfy this condition. If we do that,
we introduce a bias in our computation of the insertion probability and we
must somehow correct for that bias. In practice, the scheme involves two
steps: in the first step a chain conformation is generated in such a way that
‘acceptable’ conformations are created with a high probability. The next
step corrects for this bias by multiplying with a weight factor. A scheme
that generates ‘acceptable’ chain conformations with a high probability
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was developed by Rosenbluth and Rosenbluth in the early fifties [19]. In
the Rosenbluth scheme, a conformation of a chain molecule is constructed
segment-by-segment. For every segment, we have a choice of b possible di-
rections. In the Rosenbluth scheme, this choice is not random but favors the
direction with the largest Boltzmann factor. To be specific, the probability
(P) to generate a polymer with a conformation I' using the Rosenbluth
algorithm is given by

1=1

(35)

where u()(I';) denotes the energy of segment ¢ of the chain with conforma-
tion I' (note that this energy excludes the contributions of segments i -+ 1
to I, so the total energy of the chain is given by: Ur = Zf=1 u(® (Iy). Z;
in equation 35 is shorthand for

Z; = iexp [——ﬁu(i) (I‘j)] .
j=1

where j enumerates all possible orientations from which the i-th segment
of the chain can be chosen and u(® (I'y) denotes the potential energy of
the i-th segment in orientation j. An important property of the probability
given by Eqn. 35 is that it is normalized, i.e

SN Pp=1.
r

The Rosenbluth weight factor that corrects for the bias in the selection of
conformation T is given by

WI\EH—-b—. (36)

Now let us assume that we use the Rosenbluth scheme to generate a large
number of chain conformations while keeping the coordinates of all other
particles in the system fixed. For this set of conformations, we compute
the average of the Rosenbluth weight factor W, W. If we also perform an
ensemble average over all coordinates and conformations of the N particles
in the system, we obtain

(W) = <Z Pr(qN,I‘N)WI‘(qN,I‘N)> ; (37)
T
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where the angular brackets denote the ensemble average over all configura-
tions of the system {qN ry } of the ‘solvent’. Note that the test polymer
does not form part of the N-particle system. Therefore the probability to
find the remaining particles in a configuration {q",T'¥} does not depend
on the conformation I' of the polymer.

In order to simplify the expression for the average in Eqn. 37, we first
consider the average of the Rosenbluth factor for a given configuration
{g",T'™} of the solvent.

W({q", TV} = ZPr yWr({d", TV} . (38)

Substitution of equations (35) and (36) yields

{ Iz;[ exp [~ 5u<z)(rz] [

-3 %]

£ 1 @
215 xp [-pu(r)|
I‘ =1
1
= Z7exp -BUT] , (39)
r
where we have dropped all explicit reference to the solvent coordinates
{q",I'N}. Note that Eqn. 39 can be interpreted as an average over all

ideal chain conformations of the Boltzmann factor exp [—BUr]. If we now
substitute Eqn. 39 in Eqn. 38 we obtain

Tr < exp[-BAU(QY, TV an41, Tv41)] >
2T
If we compare Eqn. 40 with Eqn. 34, we see that the ensemble average of

the Rosenbluth factor is directly related to the excess chemical potential of
the chain molecule.

(W) = (40)

Blier = —kpTIn (W) , (41)

The above method to measure the chemical potential is not limited to chain
molecules on a lattice. What is essential is that the number of possible
directions for each segment (b) relative to the previous one is finite.

4.3. EXTENSION TO CONTINUOUSLY DEFORMABLE MOLECULES

The numerical computation of the (excess) chemical potential of a flexible
chain (with or without elastic forces that counteract bending), is rather
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different from the corresponding calculation for a chain molecule that has
a large but fixed number of undeformable conformations. Below, I shall
consider the case of a flexible molecule with internal energy. Consider a
‘worm-like’ chain of £ linear segments. The potential energy of a given
conformation has two contributions:

1. The internal potential energy Ujn; is equal to the sum of the contri-
butions of the individual joints. A joint between segments ¢ and i + 1
(say) has a potential energy u(6;) that depends on the angle 6; be-
tween the successive segments. For instance, u(6;) could be of the form
u(@)=af?. For realistic models for poly-atomic molecules, Uj,; would
account for all local internal potential energy changes due to bending
and torsion.

2. The ‘external’ potential energy Uey¢. This energy accounts for all inter-
actions with other molecules and for the non-bonded intra-molecular
interactions. In addition, interactions with any external field that may
be present are also included in Ugg;.

In what follows I shall denote the chain in the absence of the ‘exter-
nal’ interactions as the ideal chain. Clearly, the conformational partition
function of the ideal chain is equal to

I
Z,'d = c/--A/dI‘l~~dI‘g]:[exp(—ﬁu,~d(0i)) (42)

i=1

where ¢ is a numerical constant. Our aim is to compute the effect of the
external interactions on the conformational partition function. Hence, we
wish to evaluate Z/Z;4, where Z denotes the partition function of the in-
teracting chain. The excess chemical potential of the interacting chain is
given by

pex = —kBT In(Z/Z;4) .

The numerical procedure to compute the chemical potential is similar to
the scheme to compute the excess chemical potential of a chain molecule
with fixed conformations 4.2. Yet, there is an important difference precisely
because the number of conformations is now, in principle, infinite. We can
never hope to sample over all possible orientations of a new segment as
we grow a chain. Hence, we generate a random sample of possible segment
directions and use these in a modified Rosenbluth scheme. To compute peg,
we apply the following ‘recipe’ to construct a conformation of a chain of
¢ segments. The construction of chain conformations proceeds segment by
segment. Let us consider the addition of one such segment. To be specific,
let us assume that we have already grown ¢ segments, and that we are
trying to add segment i + 1. This is done as follows:
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1. Generate a fixed number (say b) trial segments. The orientations of
the trial segments are distributed according to the Boltzmann weight
associated with the internal energy u(6). We denote the different trial
segment by indices 1,2, b.

2. For all b trial segments, we compute the ‘external’ Boltzmann factor
exp(—Puext(5))-

3. Select one of the trial segments, say j, with a probability

Pj — exP(—'ﬁZ'l:ext(j)) ,

where we have defined

b
Z; =Y exp(—Buex(s')) -

j'=1

4. Add this segment as segment 7 + 1 to the chain and store the corre-
sponding partial Rosenbluth weight w;=Z;/b .

The desired ratio Z/Z;q is than equal to the average value (over many
trial chains) of the product of the partial Rosenbluth weights:

e
Z)Zig =< [] wi > . (43)

=1

The advantage of this scheme is that step 3 biases the sampling towards
energetically favorable conformations. However, it still remains to be shown
that equation 43 is, in fact, correct. To show this, we consider the probabil-
ity to generate a given chain conformation. This probability is the product
of a number of factors. Let us first consider these factors for one segment,
and then later extend the result to the complete chain. The probability to
generate a given set of b trial segments with orientations I'; through I’y is

P,g(T1).Pig(T) - - - Pig(Ty)dL'y - - - dT,.

The probability of selecting any one of these trial segments, say segment 7,
is
exp(—Buegt (1))
Z; '

We wish to compute the average of a quantity, say w, over all possible sets
of trial segments and all possible choices of the segment. To this end, we
must sum over all § and integrate over all orientations H§,=1 dlj (i.e, we
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We wish to compute the average of a quantity, say w, over all possible sets
of trial segments and all possible choices of the segment. To this end, we
must sum over all j and integrate over all orientations H - dLj (i.e, we
average over the normalized probability distribution for the orlentation of

segment % + 1):

b b exp(~—Bueg /]
< W > /[H dI‘]I 1d(rj’)] E p( ﬂ - t(J ))w(l,za et 1b) : (44)
=1

=1 Z;

Now we make use of the fact that w;(1,2,---,b) is equal to Z;)/b (see step
4 of the ‘recipe’ above). Inserting this expression in Eqn. 44, we obtain:

b -
<wS= /[H dT; (T Z exp(—Puest(7")) ) (45)

jl=1 =1 b

As the labeling of the trial segments is arbitrary, all b terms in the sum in
Eqn. 45 yield the same contribution, and Eqn. 45 simplifies to

<w> = [drP(T) exp(—Buen()) (46)

J dI exp(—Buia(T) + ttest(T)])
J dT exp(—puiq(T'))
Z1)

= 2 ' (48)
8

(47)

which is indeed the desired result, but for the fact that the expression in
Eqn, 46 refers to one segment (as indicated by the superscript in Z),
The extension to a chain of £ segments is straightforward, be it that the
intermediate expressions become a little unwieldy.

5. Configurational bias Monte Carlo scheme

Up to this point, I have been speaking about techniques to estimate the
chemical potential of flexible molecules. However, the Rosenbluth trial in-
sertion scheme can be used as a starting point for a Monte Carlo scheme to
sample equilibrium configurations of systems consisting of chain molecules.
At first sight, this may not appear to be a new result but a very old one.
After all, the original Rosenbluth scheme itself was designed as a method
to sample polymer conformations. However, the Rosenbluth scheme suf-
fers from the drawback that it generates an unrepresentative sample of all
polymer conformations: i.e. the probability to generate a particular confor-
mation I' using the Rosenbluth scheme, is not proportional to the Boltz-
mann weight of that conformation. The Rosenbluth weight W, discussed in
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works for relatively short chains. This drawback of the Rosenbluth sampling
scheme is, in fact, well known (see, e.g. [20]). The solution of this problem
is to bias the Rosenbluth sampling in such a way that the correct (Boltz-
mann) distribution of chain conformations is generated in a Monte Carlo
sequence. In the configurational bias scheme, the Rosenbluth weight is used
to bias the acceptance of trial conformations that are generated with the
Rosenbluth procedure. As a consequence, all conformations are generated
with their correct Boltzmann weight. This removes the main drawback of
the original Rosenbluth scheme. For details, I refer the reader to ref. [21].

The CBMC scheme has been applied to several models for lyotropic
liquid crystals. Dijkstra and Frenkel studied the effect of flexibility on the
I-N transition of semi-flexible hard rods [22] and subsequently, Polson and
Frenkel combined the scaling approach described above with CBMC to
study the effect of flexibility on the N-Sm transition [23].
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