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Abstract

We have computed the rotational di�usion coe�cient for a suspension of hard spheres. We
�nd excellent agreement with experimental results over a density range up to, and including,
the colloidal crystal. However, we �nd that theories derived to second order in the volume
fraction overestimate the rotational di�usion coe�cient for volume fractions exceeding 25%. To
investigate the sensitivity of the rotational di�usion coe�cient to the pair distribution function
we also consider a perfect FCC crystal with negligible thermal motion. We show that, in line
with theoretical predictions, the �rst term in the expansion of the rotational di�usion coe�cient
in powers of the volume fraction becomes quadratic. Relative to the random distribution, the
rotational di�usion coe�cient in this case is signi�cantly larger. By studying the decay of angular
velocity 
uctuations, we examined the time dependence of the rotational di�usion coe�cient.
We �nd that for rotation the situation is similar to that reported for translation. The suspension
behaves like an “e�ective 
uid”, i.e. the rotational dynamics of a particle in the suspension can
be described by the isolated particle result, but with the suspension viscosity replacing the 
uid
viscosity. As with translation, this picture only holds for times long compared to the time it
takes transverse momentum to di�use over a distance of the order of a particle radius. c© 1999
Elsevier Science B.V. All rights reserved.

PACS: 05.40.+j; 51.20.+d; 82.70.Dd

1. Introduction

Whereas translational di�usion in concentrated colloidal suspensions of hard spheres
has been extensively studied experimentally [1–4], values for the rotational di�usion
coe�cient have only been reported more recently [5,6]. Theoretically, as is the case for
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translation, the dilute limit is relatively straightforward and can be solved analytically.
The rotational di�usion coe�cient in this limit, DR

0 , is given by the Debye–Einstein
relation [7]

DR
0 =

kBT
8���R3 ; (1)

where � and � are the density and kinematic viscosity of the solvent, respectively, R
the radius of the colloidal sphere, T the temperature and k Boltzmann’s constant. For
concentrated suspensions one can distinguish two well separated time regimes. Correla-
tions in velocity 
uctuations (angular and linear) decay on a time scale characterized by
the di�usive transport of momentum through the solvent � ∼ R2=�. On the other hand,
the time it takes a colloidal particle to move signi�cantly relative to its neighbours,
�p, is of the order R2=D, where D is the short time translational di�usion coe�cient.
Putting in the numbers, for a typical suspension (particles of 1� diameters dispersed
in water) we �nd �p=� ∼ 106. Clearly, on the “short” time scale (�p ¿ t¿�) velocity
correlations decay whilst the particles hardly move. In this case, only the many-body
hydrodynamic interactions in an essentially “frozen” con�gurations of particles need
be taken into account. This is the limit we consider here. For a given form of the
pair distribution function, the short time transport coe�cients can be expressed in the
form of a “virial” expansion, in terms of the volume fraction �. The coe�cients in
this expansion can be derived from macroscopic hydrodynamics. For the rotational dif-
fusion coe�cient, DR, in a suspension of colloidal hard spheres, Clercx and Schram
[8] proposed that this calculation yields

DR = DR
0 (1− 0:630�− 0:74�2) : (2)

A similar result was derived by Degiorgio et al. [5], although the coe�cient for
the second-order term di�ered somewhat (0:67 as opposed to 0:74). In their article
Degiorgio et al. [5] compared their experimental data with theoretical predictions for
the rotational di�usion coe�cient as a function of volume fraction. The experimental
results compared well with the theory up to moderate volume fractions (� ∼ 0:3) and
con�rmed that, for rotation, it is essential to include the second-order term to describe
the rotational di�usion coe�cient at all but the lowest volume fractions. This con-
trasts with translational di�usion, where a �rst-order expansion adequately describes
the di�usion coe�cient up to quite high volume fractions (� ∼ 0:4). At higher volume
fractions (�¿ 0:3), Degiorgio et al. found that the theory overestimated DR. However,
short time transport coe�cients generally depend on the pair distribution function. In
particular, the virial expansion for the rotational di�usion coe�cient, Degiorgio et al.
pointed out, is extremely sensitive to the form of the pair distribution function at small
separations. In the experiments the colloidal particles are highly charged, but the elec-
trostatic interactions are rendered short ranged by adding salt to the solvent. They can
only, therefore, be regarded approximately as hard spheres. At high volume fractions it
is possible that the short-ranged electrostatic interactions (and possibly even the poly-
mer coats of the particles) in
uence the experimental values of the rotational di�usion
coe�cient. Thus, the question arises: does the disagreement found in Ref. [5] originate
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from the need to include a third-order term at high volume fractions or from an e�ect
of the short-ranged potential between the colloidal particles used in the experiment?
This question can most easily be addressed with the aid of a computer simulation.
Any e�ects of higher-order virial coe�cients are more likely to be detected at high

volume fractions. It would therefore be useful to calculate accurate values for the
rotational di�usion coe�cient of truly hard colloidal spheres right up to hard-sphere
freezing (�=0:49) and compare with the experimental values in the very dense regime.
With this in mind, our �rst aim in this paper is to calculate rotational di�usion co-
e�cients for truly hard spheres, up to hard-sphere freezing, and compare with the
experimental values. This should enable us to shed some light on the question of
whether the colloidal particles used in the experiment behaved as hard spheres at all
volume fractions. The rotational di�usion coe�cient for random distributions of hard
spheres has been calculated numerically, up to volume fractions as high as 45%, using
both Stokesian dynamics [9] and the lattice Boltzmann method [10]. In both cases
the calculation involved evaluating the average rotational mobility of the spheres, �,
and then relating this to the rotational di�usion coe�cient by way of the generalised
Einstein equation [11].

DR = kBT� : (3)

The experiments performed by Degiorgio et al. extended to the colloidal crystal
regime (which has a face-centered cubic structure) for (almost) hard spheres. Suspen-
sions of highly charged spheres, in the absence of added salt, crystallize at much lower
volume fractions. Recently, Watzlawek and N�agele [12] studied theoretically a system
of deionized charge stabilized particles at moderate volume fractions (�¡ 0:25). They
found that

DR = DR
0 (1− 1:15�2) ; (4)

a quadratic � dependence. Note that in this case the � dependence is quite di�erent
from that found for the random spheres (Eq. (2)). This clearly illustrates how sensitive
the rotational di�usion coe�cient is to the pair-distribution function. To gain an insight
into the in
uence of the pair-distribution function on the rotational di�usion coe�cient,
we also consider what is e�ectively the opposite limit to randomly distributed hard
spheres – namely, a perfect face centered cubic (FCC) crystal. By “perfect” we mean
a crystal for which thermal motion can be neglected.
A second question that we can study with the aid of computer simulation is the

transient rotational dynamics of a colloidal sphere. This tells us how the asymptotic
rotational di�usion coe�cient is reached and has, to our knowledge, not been studied
experimentally. We probe the short-time rotational dynamics by studying the angular
velocity autocorrelation function,  (t), de�ned as

 (t) = 〈!�
j (0)!

�
j (t)〉 ; (5)

where � denotes one Cartesian component of the angular velocity ! and the averaging
is carried out over all particles in the system. The rotational di�usion coe�cient is
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related to the time integral of  (t), so it is useful to de�ne a “time-dependent” rotational
di�usion coe�cient, DR(t), by

DR(t)
kBT

=

∫ t
0  (�) d�
I (0)

; (6)

where I is the moment of inertia of the sphere. In the long time limit of the short time
regime (�. t ¡ �p) the time-dependent rotational di�usion coe�cient approaches the
short time rotational di�usion coe�cient. In the interests of brevity we will subsequently
refer to this regime as “long” times and denote it in�nity, so that

DR = lim
t→∞DR(t) : (7)

Unlike rotation, the transient translational dynamics of colloidal suspensions have been
studied experimentally [13], theoretically [14] and by computer simulation [15]. Whereas
there is almost universal agreement regarding the value of the di�usion coe�cient, its
time dependence is still a matter for debate. One of our aims here is to see if the study
of rotation in dense suspensions can shed some light on this matter.
To brie
y recapitulate, the AVACF of a single-sphere decays asymptotically with

an algebraic tail of the form [16]

 (t → ∞) =  (0)
�I
�
(4��t)−5=2 : (8)

There is a similar expression for the translational equivalent of the AVACF, the velocity
autocorrelation function (VACF). The explicit form is given in Ref. [16], here it is
su�cient to note that the algebraic decay is of the form (�t)−3=2, i.e. one power slower.
These results apply for a single sphere, i.e. in the dilute limit. It is natural to ask
the question, what form does this decay take in a concentrated suspension? Intuitively
one might expect that at su�ciently long times the concentrated suspension will behave
like a 
uid with the suspension viscosity (as opposed to the solvent viscosity). This
“e�ective 
uid” picture would suggest that, in a concentrated suspension, the decay of
the AVACF (or the VACF, for that matter), will be described by the single particle
result, but with the suspension viscosity replacing the solvent velocity. For translation,
Milner and Liu [14] showed theoretically that, at least to order � in the volume fraction,
this was the case. Experiments [13,17] and computer simulations [15] of the VACF
in concentrated suspensions con�rmed this. The experiments, however, suggested that
a concentrated suspension behaves like an ‘e�ective 
uid’ on surprisingly short time
scales. The hydrodynamic interactions between spheres, which modify the values of
the transport coe�cients in a concentrated suspension relative to those in the dilute
limit, propagate by the di�usion of local momentum. This takes place on a time scale
t ∼ �. It would therefore be surprising if, as has been suggested [17], a suspension
behaved like an e�ective 
uid for times such that t=�. 1. In the case of the VACF, the
analysis is complicated by the fact that the translational motion of the colloidal particle
also couples to the longitudinal momentum (sound waves). Although this coupling is
irrelevant at long times, it partially masks the e�ect of the transverse momentum at short
times. For the AVACF, sound waves play no role. Hence, by studying the short-time



380 M.H.J. Hagen et al. / Physica A 272 (1999) 376–391

behaviour of the AVACF in a suspension we can determine on what time scale the
di�usion of transverse momentum has progressed to the point where the suspension
starts to behave like an e�ective 
uid.

2. Description of the model

In this section we outline the lattice-Boltzmann simulation method and how we
applied it to compute the rotational di�usion coe�cient of a suspension of colloidal
hard spheres. The method, historically at least, is a pre-averaged version of a lattice–
gas cellular automaton (LGCA) model of a 
uid. In lattice–gas cellular automaton
the state of the 
uid at any (discrete) time is speci�ed by the number of particles at
every lattice site and their velocity. Particles can only move in a limited number of
directions (towards neighbouring lattice points) and there can be at most one particle
moving on a given ‘link’. The time evolution of the LGCA consists of two steps
– 1. Propagation: every particle moves in one time step, along its link to the next
lattice site. 2. Collision: at every lattice site particles can change their velocities by
collision, subject to the condition that these collisions conserve number of particles
and momentum (and retain the full symmetry of the lattice). In the lattice-Boltzmann
method (see e.g. [18]) the state of the 
uid system is no longer characterised by the
number of particles that move in direction ci on lattice site r, but by the probability
to �nd such a particle. The single-particle distribution function ni(r; t), describes the
average number of particles at a particular node of the lattice r, at a time t, with the
discrete velocity ci. The hydrodynamic �elds, mass density �, momentum density j,
and the momentum 
ux density � are simply moments of this velocity distribution:

�=
∑

i

ni; j=
∑

i

nici ; � =
∑

i

nicici : (9)

The lattice model used in this work is the four-dimensional face-centered hyper cubic
(FCHC) lattice. A three-dimensional model can then be obtained by projection. This
FCHC model is used because three-dimensional cubic lattices do not have a high
enough symmetry to ensure that the hydrodynamic transport coe�cients are isotropic.
The time evolution of the distribution functions ni is described by the discretized

analogue of the Boltzmann equation [19]:

ni(r+ ci ; t + 1) = ni(r; t) + �i(r; t) ; (10)

where �i is the change in ni due to instantaneous molecular collisions at the lattice
nodes. The post-collision distribution ni + �i is propagated in the direction of the
velocity vector ci. A complete description of the collision process is given in [18]. The
main e�ect of the collision operator �i(r; t) is to (partially) relax the shear stress at
every lattice site. The rate of stress relaxation or equivalently, the kinematic viscosity
� can be chosen freely.
The motion of the colloidal particle is determined by the force and torque exerted on

it by the 
uid. These are in turn a result of the stick boundary conditions applied at the



M.H.J. Hagen et al. / Physica A 272 (1999) 376–391 381

solid=
uid interface. For a stationary boundary a simple bounce-back rule performed
on boundary links enforces the stick boundary condition. Boundary links are links
connecting lattice sites inside and outside the solid object. For a moving boundary the
bounce back rule is still applied but some of the particles moving in the same direction
as the solid object are allowed to “leak” through, thus matching the 
uid velocity to the
object velocity at the boundary [18]. The equations of motion of the colloidal particles
are then integrated according to a rule [20] whereby the force and torque which act on
each object give the same new velocities for both particle and 
uid. This approach is
unconditionally stable and allows the mass and moment of inertia to be chosen freely.
Rather than evaluating the rotational mobility of each particle in the system and us-

ing the generalised Einstein equation (3) (the approach used by Behrend [10] to obtain
the rotational di�usion coe�cient), we make use of Onsager’s regression hypothesis
and study the decay of an impulsive angular velocity perturbation in the otherwise
dissipative system (there are no spontaneous 
uctuations). The impulsive perturbation
is generated by assigning an initial angular velocity !j(0), taken from a Maxwell–
Boltzmann distribution, to each particle. The subsequent time evolution of the angular
velocity !j(t) is then computed and hence the AVACF. From the AVACF the rota-
tional di�usion coe�cient is evaluated using Eq. (7). These two methods may appear
quite di�erent but are shown in the appendix to be equivalent. The advantages of the
methodology we employ are twofold. First, it enables us to calculate the AVACF as
well as the value of the rotational di�usion coe�cient, thus we glean extra information.
Second, simply viewed as a means of calculating the rotational di�usion coe�cient,
it is more e�cient. Rather than evaluating the mobility of an individual particle, one
essentially calculates the average mobility for all N particles in the system in a sim-
ulation of roughly equivalent duration. Further averaging was performed by repeating
this procedure for a number of independent con�gurations of spheres.

3. Results

Starting from a lattice-Boltzmann 
uid initialised at rest, we used the method outlined
above to follow the time evolution of the angular velocity correlation function of the
suspended particles. In all the simulations the viscosity of the 
uid was equal to �0 = 1

6
and the density � was 24 (all quantities are given in lattice units, where the mass
of the lattice–gas particles, the lattice spacing and the time step are all unity). Both
the mass and moment of inertia of the spheres were assigned values appropriate for a
sphere with a uniform density equal to that of the 
uid.
In order to obtain the normalised rotational di�usion coe�cient (DR=DR

0 ) one also
needs to determine DR

0 . In principle, this can be done analytically, using the Debye–
Einstein relation, but in practice DR

0 in the simulation has a slightly di�erent value
(because of the approximation involved in mapping a sphere onto a cubic lattice). In
order to compensate for this error we calculated the in�nite dilution value of the rota-
tional di�usion coe�cient by numerically integrating the AVACF of a single sphere.
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Fig. 1. Normalised angular velocity correlation function for a single suspended sphere of radius R = 4:5
(lattice units). Time is expressed in units of the discrete time step used in the lattice model. The solid line
denotes the simulation result, the dashed line denotes the theoretical long-time behaviour.

The single particle rotational di�usion coe�cient thus determined can be used to �x
a “hydrodynamic” or “e�ective” radius for the colloidal particle [18]. For a sphere
of nominal radius R = 4:5 (lattice units) the hydrodynamic radius we calculated was
only 1:5% larger than the nominal radius. When we move on to consider concentrated
suspension this error is small compared to other sources of error so, for spheres with
nominal radius 4:5 or greater, the di�erence between the nominal and hydrodynamic
radius will be neglected and the radius taken to be the nominal radius. The normalised
angular velocity correlation function and the predicted long time behaviour (Eq. (8))
are shown in Fig. 1. We see that the predicted power (−2:5) and amplitude of the
long time behaviour (from Eq. (8)) are both accurately reproduced by the simulation.
This simulation was performed using a sphere of nominal radius 4:5, the simulation
box being replicated periodically in space. By comparing results for simulations using
di�erent system sizes, but otherwise identical, we concluded that the boundary condi-
tions have very little e�ect on the AVACF (less than a percent) for times shorter than
the time it takes transverse momentum to di�use distances of the order of the linear
dimension of the simulation box, that is tbox ∼ L2=�. This is in contrast to translation,
where sound propagation is the dominant e�ect and thus tbox ∼ L=cs, where cs is the
speed of sound (equal to 1=

√
2 in our model). Since, for typical parameters used in

the simulations, the former is much longer than the latter, it is easier to exclude the
e�ects of the periodic boundary conditions on the AVACF than the VACF. This makes
it practical to study rotation, free from boundary artifacts, for longer times than trans-
lation [15]. We have excluded �nite size e�ects from all the results we describe here
by limiting our attentions to times such that t ¡ tbox.
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For the concentrated suspensions we generated non-overlapping hard sphere con�g-
urations at the desired volume fraction using standard Monte Carlo techniques [21].
The angular velocity autocorrelation function was calculated for each con�guration and
the results then averaged over a number of independent hard-sphere con�gurations. The
simulations were performed for solid volume fractions �=0:05; 0:10; : : : ; 0:45; 0:49; 0:55.
The highest two densities are those of the coexisting phases of the hard sphere model
at melting [22]. The last (�= 0:55) case is the FCC-solid. The con�gurations for the
FCC solid were also generated using Monte Carlo techniques. The spheres were not
placed on a perfect FCC lattice but on a thermally equilibrated FCC lattice. That is,
we allow for the e�ects of lattice vibrations. There are two sources of error in our sim-
ulations. First, �nite size e�ects, which we have excluded by adopting the procedure
outlined above. The second (and more problematic) is inability of the simulations to
resolve the hydrodynamic interactions accurately between spheres in close proximity.
The lattice Boltzmann approach will inevitably give a poor approximation to the true
hydrodynamic forces when surfaces are separated by distance of the order of the lattice
spacing or less. The only way around this problem is to repeat the calculation with
a higher spatial resolution (i.e. increase the nominal radius, measured in units of the
lattice spacing, of the spheres). Thus, the procedure we adopted was, at all densities,
to repeat the simulations with progressively larger spheres until the results became
independent of the sphere radius (or, more strictly, that the variation we observed on
changing the sphere size was of the same order as the error associated with averaging
over a number of con�gurations). For the simulations at low densities (�¡ 0:3) a
relatively small sphere su�ces. A large number of small spheres were then simulated,
a large system being required to allow us to calculate the AVACF (free from boundary
e�ects) for long enough times to gain a good estimate for the rotational di�usion co-
e�cient. At higher volume fractions �nite size e�ects become less important (because
the rapidly increasing viscosity of the suspension causes a more rapid decay of the
AVACF) but a large representation of the spheres is required. As a result the empha-
sis at high volume fraction shifts from a large number of small spheres to a smaller
number of large spheres. At all solid volume fractions we calculated the normalised
angular velocity auto correlation function ( (t)= (0)); and, by numerical integration,
the normalised time-dependent rotational di�usion coe�cient DR(t)=DR

0 . The limiting
value of this function was estimated by plotting DR(t)=D0R as a function of 1=t3=2, the
intercept at 1=t=0 yielding the long time asymptote and hence the rotational di�usion
coe�cient. The extrapolation was performed by �tting a power series up to second
order. In Table 1 we show the simulation results and the relevant parameters used in
the simulations at various volume fractions. Taking all sources of error into account,
these parameters were necessary to obtain values of DR=DR

0 to an accuracy of 4% or
better. In Fig. 2 we have plotted the values we obtained for DR=DR

0 as a function of
�, along with experimentally measured values [5,6]. Clearly, the agreement is very
good over the entire density range. The simulations also show the apparent disconti-
nuity upon going from the glass to the crystal, i.e. the value for the colloidal crystal
lies above the value one would expect based on the trend for the glass. In Fig. 3 we
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Table 1
Simulation results and parameters. � is the solid vol-
ume fraction, R is the radius of the spheres used
(in units of the lattice spacing), N is the number of
spheres and DR=DR

0 is the normalised rotational di�u-
sion coe�cient

� R N DR=DR
0

0.05 2.5 1320 0.97
0.10 2.5 2640 0.94
0.15 4.5 679 0.90
0.20 4.5 905 0.85
0.25 4.5 1132 0.80
0.30 6.5 216 0.73
0.35 5.5 108 0.67
0.40 5.5 108 0.60
0.45 9.5 108 0.53
0.49 12.5 108 0.50
0.55 13.5 108 0.47

Fig. 2. Rotational di�usion coe�cient as a function of volume fraction. The open circles are the simulation
results. The �lled circles with error bars are the experimental values from Ref. [5] and the �lled squares are
the results from Ref. [6].

show the comparison with the relevant virial expressions from Refs. [5,8]. There is (to
within the statistical uncertainty) agreement for volume fractions �¡ 0:30. By �tting
the simulation data for �60:2 to a quadratic function we �nd

DR = DR
0 (1− (0:63± 0:02)�− (0:68± 0:08)�2) : (11)

Thus, the value of the �rst virial coe�cient is consistent with theory [5,8]. The value
for the second coe�cient is closer to the value of 0.67 derived by Degiorgio et al.
than the value 0.74 derived by Clercx and Schram. However, both values lie within
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Fig. 3. Rotational di�usion coe�cient as a function of volume fraction. The open circles are the simulation
results. The solid line is the result derived in Ref. [5] and the dashed line the result derived in Ref. [8].

the range of uncertainty so we cannot unambiguously di�erentiate between the two. At
higher densities both theories overestimate the true rotational di�usion coe�cient. This
must re
ect the neglect of the �3 term in the expansion.
We now proceed with the investigation of the in
uence of the pair distribution func-

tion on the rotational di�usion coe�cient. To do so we located the colloidal spheres
on a regular (non-thermally equilibrated) FCC lattice. The simulations were then re-
peated over the same range of densities used for the thermally equilibrated suspensions.
The values for the rotational di�usion coe�cient we calculated from the simulations
are plotted in Fig. 4, along with the theoretical prediction from Eq. (4). Fitting our
numerical data for DR=DR

0 to a polynomial in � (�60:30, the same range used in
Ref. [12]), we �nd

DR = DR
0 (1 + (0:03± 0:03)�− (1:22± 0:15)�2) : (12)

The pre-factor of the linear term is small (and positive, which is unphysical), and our
data are thus best described by a polynomial that contains no term linear in �. The
quadratic term agrees (within statistical uncertainty) with the value of 1.15 predicted
theoretically by Watzlawek and N�agele [12].
We now turn to the question of the time dependence of the hydrodynamic inter-

actions. To do so we focus on one particular intermediate volume fraction, � = 0:20.
For a suspension of N =1438 nominally neutrally buoyant spheres with radius R=4:5
suspended in a 
uid with viscosity �0= 1

6 we calculated the angular velocity correlation
function,  (t). If the suspension behaves like an e�ective 
uid then we expect, based
on Eq. (8), that the long time decay of AVACF will take the form

 (t → ∞)= (0) = �I
�∗ (4���t)

−5=2 ; (13)
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Fig. 4. Rotational di�usion coe�cient as a function of volume fraction for spheres located on a regular FCC
lattice. The solid line is Eq. (4).

Fig. 5. Plot of  (t)t5=2= (0) for a suspension with volume fraction � = 0:20. The dashed line denotes
limt→∞  (t)t5=2= (0). Time is expressed in units of the discrete time step used in the lattice model.

where �� is the suspension viscosity and �∗=�(1+�). The latter represents a correction
for the rotational inertia of the 
uid inside the spheres (which is a small computational
artifact). In Fig. 5 we have plotted the AVACF for this system, multiplied by t5=2. If
the long time decay takes the form we expect (Eq. (13)) this plot should approach
a constant at long times. From the plot it does appear to be approaching a constant
but the constant value has not been reached. To allow for this, and attempt to extract



M.H.J. Hagen et al. / Physica A 272 (1999) 376–391 387

Fig. 6. Plot of  (t)t5=2= (0)A for a suspension with volume fraction �= 0:20 (solid line), and for a single
particle (dashed line). Time is expressed in units of the hydrodynamic time � = R2=��, where �� is the
solvent viscosity for the single particle and the suspension viscosity for �= 0:20: A is the asymptotic value
of  (t)t5=2= (0).

the correct value for the constant, we adopted a procedure of extrapolating to longer
times. We expect that, taking into account higher-order terms, the long-time decay can
be expanded as a polynomial of the form  (t)t5=2= (0) ∼ A+ B=t + C=t2. By �tting a
polynomial of this form to the data shown in Fig. 5 we obtain a plateau value of  (t →
∞)t5=2= (0) = A= 482± 10, where the statistical error includes both errors associated
with ensemble averaging and uncertainty in the extrapolation. We can now substitute
this value into Eq. (13) and extract an apparent viscosity based on making the e�ective

uid assumption. This procedure yields a value ��=�0 = 1:77 ± 0:04. This compares
with the accurate numerical value, calculated by Ladd [23], of ��=�0 = 1:81 ± 0:02.
We can therefore conclude that the e�ective 
uid argument describes our data very
well – at least, after su�ciently long times. To be more precise as to what we mean
by “su�ciently” long, we need to compare the AVACF for a colloidal particle in a
suspension with the single-particle function scaled to the appropriate viscosity. To this
end, in Fig. 6 we have plotted the normalised AVACF calculated for the suspension,
multiplied by t5=2 and divided by the long time asymptote, A, as a function of a
reduced time t=�, where �= R2=��. On the same graph we show the same function for
a single particle (in this case � = R2=�0, i.e. the time is measured in units de�ned by
the solvent rather than the suspension viscosity). It is important to note that following
this procedure everything is dimensionless and the single particle curve is unique.
Therefore, if the AVACF in a suspension can be described by the AVACF of a single
particle in a solvent with the suspension viscosity, the two curves should coincide.
Clearly, for the range of times we studied, they do not. This is despite the fact that, by
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construction, the two functions approach the same asymptote. We can thus conclude
that only for long times where t=�/1 does the e�ective 
uid argument hold. More
speci�cally, it holds for times where the decay of the AVACF in the suspension can
be described by its asymptotic decay. As Fig. 6 shows, this time is markedly longer
for the suspension than for the single particle. This is precisely the same conclusion
arrived at for translation [15], although, comparing Fig. 6 with the equivalent plot for
translation (Ref. [15]), the conclusion is much more clear-cut for the rotational case.

4. Conclusions

We have calculated short time rotational di�usion coe�cient for hard spheres over
the full range of volume fractions. We �nd agreement with experimental results at all
volume fractions. It was suggested [5] that a theory valid to order �2 might be valid
up to hard sphere freezing, but with a modi�ed pair distribution function. At high
volume fractions, the suggestion was, the colloidal particles did not behave as truly
hard spheres. Our simulations showed this was not the case and that the experimental
values for the rotational di�usion coe�cient were consistent with true hard sphere
behaviour in the dense 
uid, the glass and the colloidal crystal regimes. We can thus
conclude that the di�erence between theory and experiment at high volume fractions,
reported in Ref. [5], stems solely from the need to include higher-order terms in the
viral expansion. Our simulations did, however, con�rm that the rotational di�usion
coe�cient is very sensitive to the form of the pair distribution function. We only
found agreement with experiment for the colloidal crystal if we allowed for the e�ect
of thermal 
uctuations of the particle positions about their equilibrium values. This
point was emphasised when we studied the perfect FCC structure and found that, when
compared to experiment, it gave a poor estimate for the rotational di�usion coe�cient
in a colloidal glass. Studying the perfect FCC crystal as a function of volume fraction,
we were able to show that, for this system, the order � term is zero, in line with
theoretical predictions. Further, the order �2 term is well described by the theory of
Ref. [12].
When we examined the transient rotational dynamics, by calculating the angular ve-

locity autocorrelation function, we found that the decay of the AVACF in a suspension
had an algebraic decay of the same form found in the dilute limit. Further, we found
this algebraic tail could be quantitatively described by the single particle result if we
simply replaced the solvent viscosity with the suspension viscosity. Having established
the asymptotic functional form of the decay of the AVACF, it should be possible to
test this observation by making a direct comparison with experimental results obtained
for times longer than those accessible in the simulations. Comparing the full time
dependence of the scaled single-particle function with the AVACF in a concentrated
suspension, we found that the the scaled function only described the decay adequately
in the long-time limit. At shorter times the AVACF had a di�erent functional form
to the single particle case. This re
ects the fact that on these very short time-scales,



M.H.J. Hagen et al. / Physica A 272 (1999) 376–391 389

during which the hydrodynamic interactions are propagating, the suspension does not
behave like an “e�ective” Newtonian 
uid.
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Appendix A

In this appendix we show that our method for calculating the rotational di�usion in
a purely dissipative system (where there are no spontaneous 
uctuations), is equivalent
both to calculating it in a “real” dissipative system or proceeding via the generalised
Einstein equation.

A.1. The 
uctuating system

In a real colloidal suspension the dynamics of the colloidal particles and the solvent
particles evolve according to Newton’s Laws of motion. However, projecting out the
fast degrees of freedom associated with the solvent, the motion of the colloidal particles
can be shown to be described by a generalised Langevin equation [24–26]. For one
component of the angular velocity this takes the form

I
d!i

dt
=−

∫ t

0

∑
j

�ij(t − s)!j(s) ds+ Ti(t) ; (A.1)

where I is the moment of inertia, �ij is a time-dependent friction matrix, and Ti is the
random torque, which is by de�nition orthogonal to the angular velocity. Taking the
Laplace transform

I(z!̃i(z)− !i(0))− T̃ i(z) =−
∑
j

�̃ij(z)!̃j(z) ; (A.2)

where z is the Laplace transform variable, and !i(0) is the angular velocity at time
zero. Transformed quantities are indicated with by a tilde. If we set z = 0 we �nd

I!i(0) + T̃ i(0) =
∑
j

�̃ij(0)!̃j(0) ; (A.3)
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or as a matrix equation

I!(0) + T̃ (0) = �̃(0)!̃(0) : (A.4)

Inverting the equation and taking the product with !(0) we �nd

!(0)!̃(0) = !(0) �̃(0)−1(I!(0) + T̃ (0)) : (A.5)

Or in terms of individual components

1
N

∑
i

!i(0)!̃i(0) =
1
N

∑
ij

( �̃(0)−1)ij(I!i(0)!j(0) + !i(0)T̃ j(0)) : (A.6)

If we now take the velocity average 〈· · ·〉, and note that for short-time di�usion the
friction matrix � only depends on the instantaneous positions of the particles, we �nd

1
N

∑
i

〈!i(0)!̃i(0)〉= 1
N

∑
ij

( �̃(0)−1)ij(I〈!i(0)!j(0)〉+ 〈!i(0)T̃ j(0)〉) : (A.7)

In an equilibrium system we know from thermodynamics that I〈!i(0)!j(0)〉= kBT�ij

and by de�nition we have 〈!i(0)T̃ j(0)〉= 0, hence

DR =
1
N

∑
i

〈!i(0)!̃i(0)〉= kBT
N

∑
i

( �̃(0)−1)ii = kBT� ; (A.8)

which is the generalised Einstein equation ((1=N )
∑

i ( �̃(0)
−1)ii is by de�nition the

average mobility). This shows that the short-time rotational di�usion coe�cient is the
trace of the corresponding part of the mobility matrix. Now we describe how we
e�ectively compute the average mobility matrix.

A.2. The dissipative system

The dynamics of the purely dissipative system we study in the simulation are de-
scribed by an identical Langevin equation, but this time without the random torque,
i.e.

I
d!i

dt
=−

∫ t

0

∑
j

�ij(t − s)!j(s) ds : (A.9)

Again, taking the Laplace transform

!(0)!̃(0) = I!(0) �̃(0)−1!(0) ; (A.10)

or in terms of individual components

1
N

∑
i

!i(0)!̃i(0) =
1
N

∑
ij

( �̃(0)−1)ijI!i(0)!j(0) : (A.11)
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If we now specify the statistical properties of the initial angular velocities velocities
such that I〈!i(0)!j(0)〉= kBT�ij, denoted [ · · · ], then we �nd that

kBT
N

∑
i

( �̃(0)−1)ii =
1
N

∑
i

[!i(0)!̃i(0)] : (A.12)

The right-hand side of this equation is the quantity that we calculate in the simulation.
Comparing with Eq. (A.8), which we derived for the “real” system, then this is clearly
equal to the rotational di�usion coe�cient. So to summarise, by this approach we can
calculate the rotational di�usion coe�cient in the dissipative system, without needing to
average over thermal 
uctuations, and without having to explicitly evaluate the mobility
on a particle-by-particle basis.
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