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Numerical prediction of the melting curve of n-octane
James M. Polsona) and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 19 January 1999; accepted 30 April 1999!

We compute the melting curve ofn-octane using Molecular Dynamics simulations with a realistic
all-atom molecular model. Thermodynamic integration methods are used to calculate the free energy
of the system in both the crystalline solid and isotropic liquid phases. The Gibbs–Duhem integration
procedure is used to calculate the melting curve, starting with an initial point obtained from the free
energy calculations. The calculations yield quantitatively accurate results: in the pressure range of
0–100 MPa, the calculated melting curve deviates by only 3 K from the experimental curve. This
deviation falls just within the range of uncertainty of the calculations. ©1999 American Institute
of Physics.@S0021-9606~99!52128-4#
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I. INTRODUCTION

The calculation of solid–fluid phase coexistence
computer simulation requires special techniques suita
both for high densities and for crystalline solids. The sta
dard approach relies on thermodynamic integration meth
to compute the chemical potentials of each phase separa
If the chemical potential is known at a particular state po
in either phase, then it can be determined trivially at a
other state point using thermodynamic integration along
therms or isochores, so-called ‘‘natural’’ reversible pa
ways. A convenient reference point in the fluid phase is
the dilute limit where the system behaves as an ideal gas,
where the free energy can be determined analytically. Al
natively, at sufficiently low density, an appropriate variant
the Widom particle insertion method1,2 can be used to calcu
late the chemical potential. In the solid phase, the stand
free energy calculation technique involves thermodyna
integration along anartificial pathway, where the solid is
transformed reversibly into an Einstein crystal, in which p
ticles are coupled harmonically to lattice sites;3 the free en-
ergy of this reference system can be calculated analytica
This lattice-coupling method is highly versatile and can
applied to arbitrary solids with both continuous and disco
tinuous potentials. Variants of the method have been app
mainly to systems composed of simple rigid particles,
cluding a variety of hard particle systems such as sphere3,4

ellipsoids,5,6 spherocylinders,7,8 and dimers.9–11 Application
to any realistic system interacting with a continuous poten
is, in principle, straightforward, although the focus until no
has been on systems of relatively small, effectively rig
molecules such as N2,12–14 CO2,15 N2O,16 and H2O.17

The n-alkane series represents one of the most basic
ganic series. The development of simulation methods to
culate accurately the equilibrium phase diagram for th
systems is of great interest. Recent efforts have focused p
cipally on the simulation of gas–liquid phase equilibriu
and critical behavior of alkanes18–21via the combination22,23

a!Current address: Department of Physics, McGill University, Montreal, P
H3A 2T8 Canada.
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of the Gibbs ensemble24–26 and configurational biasing27–29

Monte Carlo simulation techniques. Clearly, the next imp
tant step is an accurate calculation of the solid–liquid co
istence employing the lattice-coupling free energy calcu
tion technique discussed above. In an important step tow
this goal, this technique was applied to study the solid–fl
phase equilibrium of simple systems of flexible chain m
ecules in two recent studies.30,31 The first study employed
fully flexible chains of hard spheres,30 while the second used
semi-flexible Lennard-Jones chains.31 However, the models
employed in both cases only very crudely resemble r
chain molecules such as alkanes. A recent study by M
anoski and Monson32 focused on the melting behavior of
hard-core model ofn-alkanes. The simulation data for th
hard-core model reference system were subsequently us
input for a mean-field prediction of then-alkane phase dia
gram. Yet, although the results of such simulations prov
insight into the effect of flexibility and steric hindrance o
the alkane phase diagram, the simulation results themse
cannot be compared with experimental data. The aim of
present study is to demonstrate the applicability of
method to simulate the melting transition of an alkane s
tem using a realistic all-atom model which is suitable f
simulations of crystalline solids and high density liquids, a
for which we expect to obtainquantitativeagreement with
experiment.

The choice of the specific alkane system we study her
governed by two factors. First, we wish to study systems
which a crystalline solid melts to an isotropic fluid direct
without passing through any intermediate phases. It is w
known that many alkane systems have at least one inter
diate ‘‘rotator’’ phase, characterized by rotational disord
about the molecular long axis andgauchedefects near the
ends of the chain. Rotator phases are present in alkane
tems for which the chain lengthn is given byn.9 for odd-n
chains andn.22 for even-n chains. Second, we note that th
determination of the phase equilibrium for a system requ
a large number of separate simulations for points along n
ral pathways~isotherms, isochores! and artificial pathways
required for the thermodynamic integration calculations,
of which become computationally very expensive for rea
,

1 © 1999 American Institute of Physics
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1502 J. Chem. Phys., Vol. 111, No. 4, 22 July 1999 J. M. Polson and D. Frenkel
tic all-atom models. Both of these considerations require
we study a relatively small system of short alkane molecu
in the present study we choosen-octane.

II. THEORY AND METHODS

A. Model

Simulation studies of alkane systems in the vapor a
liquid phases frequently employ united-atom~UA! models,
in which the interaction sites consist of composite pseu
atoms composed of a carbon atom plus two~methylene! or
three ~methyl! hydrogen atoms. The principal advantage
this approach over an all-atom~AA ! model, in which every
atom is considered to be a separate interaction site, is a
siderable reduction in the time to compute the energy
molecular forces. This calculation is the rate-determin
step in both Monte Carlo and Molecular Dynamics simu
tions. However, it has been known for over a decade that
models are unsuitable for simulations of alkane crystall
solids, where the details of the potential can have a sign
cant effect on the equilibrium properties of the model s
tem. For example, only by employing an AA potential,
which the hydrogen atoms are explicitly represented, is th
quantitative agreement between calculated and experim
tally measured alkane crystal structures.33,34

A simple modification of the standard UA model h
been developed by Toxvaerd.35,36 In this anisotropic united-
atom~AUA ! model, the interaction sites, which are genera
placed at the site of the carbon atoms, are displaced slig
in the direction of the hydrogen atoms in the methylene a
methyl groups. By tuning the displacement magnitudes,
calculated equation of state for alkane fluids at high dens
and pressures, a regime in which predictions using the s
dard UA models fail drastically, was shown to be in perfe
agreement with experiment. Apparently, this straightforw
method of accounting for the presence of hydrogen ato
can remove some deficiencies of the UA model. Note t
simulations using the AUA model are only marginally mo
time-consuming than those using an UA model. Thus,
model permits relatively efficient means to simulate ac
rately a high density fluid. In light of this success, we hop
that the AUA model could be applicable the high dens
crystalline solid phase, with the same CPU time-saving
vantage. Unfortunately, we find that this is not the case.
performed a simple constant-stress simulation of so
n-hexane employing the AUA model and observe a crys
line structure which deviates significantly from the expe
mental structure. The results of the simulation are includ
in Sec. III. Apparently, the simple remedy of the AUA po
tential is not sufficient for simulations in the solid phase, a
the need to employ an AA model appears unavoidable
solid alkane systems.

Although there are more complicated all-atom pote
tials, we seek the simplest, empirical potentials which can
efficiently employed in simulations of large systems cons
ing of many alkanes. These potentials have the follow
form:

U5Ubonds1Uangles1U torsions1Unon-bonded. ~1!
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Until recently, there have been two different types of mod
of this class. In the ‘‘Ryckaert–McDonald–Klein–
Williams’’ ~RMKW! model,34 all internal degrees of free
dom involving hydrogen atoms, with the exception of meth
group rotations, are frozen. Rotations about C–C bonds
governed by cosine power series internal torsional potent
Intermolecular atoms, and intramolecular atoms separate
three or more carbon atoms interact with an exp-6 poten
due to Williams.37 This potential has been shown to yie
good agreement with experimental alkane crystal structu
By contrast, the ‘‘Smith–Karplus’’~SK! model38 employs a
fully flexible representation in which the overall torsion
potential is made up of contributions from a single cos
term for each linear set of four bonded atoms in the alka
chain. Atom pairs interact with a Lennard-Jones potential
well as Coulomb interactions as a result of partial char
placed on the carbon and hydrogen atoms. The latter mo
however, performs very poorly in condensed systems, alm
certainly a result of the fact that the parameters of this fo
field were optimized using gas-phase geometries and e
getics of small molecules without considering intermolecu
interactions.

An alternative model, which is essentially a hybrid of th
two described above, is the so-called ‘‘Flexible Williams
~FW! potential introduced recently by Tobiaset al.39 It em-
ploys the Williams exp-6 intermolecular potential of the fir
model with the fully flexible character of the second. Thu
the molecular geometry and nonbonded parameters are t
from Williams’ model IV,37 and the force constants for bon
stretching and angle bending are taken from Smith a
Karplus.38 Fourier cosine series were fit to the Smith
Karplus adiabatic potential for use in the FW model. T
advantage of this model is that it removes the cumberso
constraints of the RMKW model, while preserving the W
liams potential, which performs well in condensed phas
The FW model been shown to reproduce various experim
tal data for the solid phase and the high-density liquid ph
of alkane systems.39 The principal disadvantage is that th
inclusion of the bond-stretching and angle-bending terms
cessitate, in principle, the use of a smaller time-step in M
simulations. However, this problem can be alleviated w
the use of Multiple-Time-Step~MTS! methods.40–42 Wa-
tanabe and Karplus have shown that, for hydrocarbons,
CPU time of simulations can be decreased by a factor of 3
if the reversible reference system propagator algorithm~r-
RESPA! MTS methods are used.43 As we find that the ab-
sence of constraints in the FW model somewhat more c
venient for performing constant-stress simulations and
the calculation of the free energy of the crystalline solid,
choose to employ the FW model in the present study.

A detailed description of the FW model, as well as t
values of all parameters employed~bond lengths and angles
bond-stretching and angle-bending force constants, torsi
potential expansion coefficients! can be found in Ref. 39.

B. Free energy calculations

The alkane melting transition is strongly first-order wi
a considerable degree of hysteresis in the equation of s
Consequently, it is essential to perform free energy calcu
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tions in order to determine the melting curve of the syste
The conditions for equilibrium coexistence are that the te
peratures, pressures and chemical potentials of the coexi
phases be equal. The chemical potential is given by

m5
F~r!

Nch
1

P~r!

r
, ~2!

whereF is the Helmoltz free energy of the system,Nch is the
total number of chains andP(r) is the pressure as a functio
of the density of chainsr5Nch/V. If the Helmoltz free en-
ergy at a densityr0 is known, it can be calculated at an
other densityr by the following relation:

F~r!

Nch
5

F~r0!

Nch
1E

r0

r

dr8
P~r8!

r82
. ~3!

Thus, in order to compute the chemical potentials, one m
first calculate the absolute Helmoltz free energy at some
erence densityr0. The details of this calculation differ fo
the solid and fluid phases.

1. Solid phase

In order to calculate the Helmoltz free energy of a cry
talline solid phase, we employ a variant of the method
veloped by Frenkel and Ladd,3 which involves a thermody-
namic integration scheme to link a state of a given sys
along a reversible path to that of another system for wh
the partition function, and, hence, the Helmholtz free ener
can be calculated analytically. A convenient reference s
tem is the Einstein crystal, where individual noninteracti
particles are coupled harmonically to their equilibrium latti
positions

UEin5
a

2 (
i 51

N

~RW i2RW i
(0)!2, ~4!

whereRW i is the instantaneous position of theith particle, and
RW i

(0) is the corresponding Einstein crystal lattice positio
Further,N is the total number of atoms in the system and
given byN5nNch, wheren is the number of atoms per mo
ecule. Finally,a is the force constant of the Einstein crysta
This quantity is generally set to a value such that the me
square displacement of the particles in the true crystal an
the reference crystal are approximately the same. This h
to ensure that the numerical implementation of the therm
dynamic integration method described below is viable. F
ther comments on the choice ofa for this particular system
are given in Sec. III. Note that the Einstein crystal lattice
chosen to have the same structure as that of the true sys
Further, note that a ‘‘particle’’ in the context of a system
chains refers to an individual atom on a chain. To carry
the thermodynamic integration, we employ an effective p
tential:

Ũ~l!5~12l!U1lUEin , ~5!

whereU is the internal potential energy, and wherel is a
parameter employed such thatŨ(l50)5U and Ũ(l51)
5UEin . The free energy difference between the original a
reference systems may be calculated by:
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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F~l50!2F~l51!52E
0

1

dlS ]F~l!

]l D
52E

0

1

dlK ]Ũ

]l
L

l

, ~6!

where the bracketŝ. . . &l indicate an ensemble average ca
culated for a particular value ofl. Thus,

FCM5FEin
CM2E

0

1

dl^UEin2U&l
CM . ~7!

The superscript CM signifies that the center of mass of
crystal is held fixed, a constraint which is required for t
thermodynamic integration calculations. Without this co
straint, each particle may drift far from its associated E
stein lattice site such that the root-mean-square particle
placement grows to the size of the simulation box in the lim
l→0. Consequently, the integrand in Eq.~7! becomes
sharply peaked close tol50, and the numerical evaluatio
of the integral would require many simulations at lowl.
Note that bonded atoms are decoupled in the limit ofl51,
where each atom behaves as a independent harmonic o
lator. To calculate the free energy of the unconstrained c
tal, we write

F5~F2FCM!1~FCM2FEin
CM!1FEin

CM . ~8!

The second term in Eq.~8! is calculated numerically as pre
scribed in Eq.~7! while the first and third terms can be de
termined analytically. The complete calculation has be
presented elsewhere.44 Using this result, it can be shown tha
the free energy per chain atr05Nch/V0 is given by

bF~r0!

Nch
53nC ln LC13nH ln LH2

3~N21!

2Nch
lnS 2p

ba D
2

ln~V0 /Nch!

Nch
2

b

Nch
E

0

1

dl^UEin2U&l
CM

1
3

2Nch
ln@NchnHmH

2 1NchnCmC
2#, ~9!

whereb51/kBT, andV05N/r0 is the volume of the system
andnC andnH are the number of carbon and hydrogen ato
per molecule. Further,L i5h/A2pmikBT are the de Broglie
thermal wavelengths for each species, wheremi are the
atomic masses andh is Plank’s constant, andm i5mi /( imi

5mi /(Nch(nHmH1nCmC)) is the fractional mass of eac
species.

The chemical potential at an arbitrary density can
computed using Eqs.~2!, ~3!, and~9!.

2. Fluid phase

The most convenient reference point to calculate the
solute free energy in the fluid phase is in the limitr→0,
where the system behaves as an ideal gas of nonintera
~though still self-interacting! chains. In this limit, the parti-
tion function for the system is given by

ZIG~Nch,V,T!5
~Zch!

Nch

Nch!
, ~10!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where Zch is the partition function for a single chain. Th
free energy of the ideal gas is given by:

bF IG

Nch
52 ln Zch1 ln Nch!/Nch

'bFch1 ln Nch211
ln~2pNch!

2Nch
, ~11!

where we have employed Stirling’s formula plus the fir
order correction, which appears as the last term.

An analytical evaluation ofFch[2kBT ln Zch for a FW
chain is a virtually impossible. Instead we divide the pote
tial into ‘‘ideal’’ and ‘‘excess’’ components,Uch

id and Uch
ex

[Uch2Uch
id , respectively, and proceed with the calculati

in two steps. First we find a suitableUch
id whose free energy

Fch
id 52kBT ln Z ch

id can be determined from an analytical ca
culation of the partition function,Zch

id , associated with the
ideal interactions. In the second step, we employ a nume
method to determine the excess free energy,Fch

ex[Fch

2Fch
id .
To choose a convenient form forUch

id , we note first that
the difficulty in the evaluation of the complete single cha
partition function arises from two sources. The first is t
intramolecular nonbonded interactions. In our recent st
on the solid–fluid phase equilibria of LJ chain molecules31

we choseU id to have contributions only from the bondin
interactions~bond-stretching and angle-bending!, a choice
which permits a straightforward analytical calculation
Zch

id . However, the situation becomes somewhat more c
plicated in the present case where the presence of hydr
atoms leads to a branching at the carbon atoms on the c
The configurational partition function associated with t
bonding interactions is difficult to evaluate. Consequen
we define a more convenient form forUch

id . Specifically, we
seek the following properties:~1! the associated partition
function Zid

ch can be calculated in a straightforward mann
~2! specific conformations will have approximately the sa
ideal energy as the nonbonded energy in the FW model;~3!
we require the ability to generate easily molecular confi
rations from the distribution governed byUch

id . This last re-
quirement is important for the evaluation ofFex

ch, which we
describe below. The definition ofUch

id and the evaluation o
Zid

ch are described in the Appendix.
The excess single-chain free energy,Fch

ex[Fch2Fch
id , is

evaluated numerically by averaging the Boltzmann factor
the excess single-chain energy over a series of conforma
sampled from a distribution determined by the ideal sing
chain energy:

bFch
ex52 ln^exp~2bUch

ex!& id . ~12!

We note that

Uch
ex[Uch2Uch

id 5~Uch
bonded2Uch

id !1Uch
nonbonded ~13!

and that the choice ofUch
id and the values of its paramete

have been designed to ensure that the differenceUch
bonded

2Uch
id does not deviate significantly from zero for all confo

mations generated from the distribution governed byUch
id .

Further, we note that, since the generated conformations
nonself-avoiding, the effect ofUch

nonbondedon the average can
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in principle, cause problems with the statistical accuracy
the evaluation of the averagêexp(2bUch

ex)& id if a large
enough majority of the conformations contain at least o
overlap of interaction sites. For short chains, this resu
mainly from the presence of a (fg6

fg7
) consecutive pair in

the chain, wherefga
represents agauchetorsional angle of

0°,fg2,120° or 240°,fg1,360°. However, for the
calculation for then-octane in the present study, we find
minimum of one such pair in only about 30% of the gen
ated conformations, and, therefore, this was not a probl
In more problematic calculations of this sort, it may be ne
essary to employ a Rosenbluth sampling scheme to impr
the statistical accuracy of the averaging.29

The ideal gas free energy is given by

bF IG

Nch
5 lnr211

ln~2pNch!

2Nch
13nC ln LC13nH ln LH

2 ln Zid,int
ch 2 ln~8p2!1bFch

ex, ~14!

whereZid,int
ch is defined in the Appendix. Using Eq.~3!, and

the fact thatPIG5NchkBT/V, it is trivial to show that

bF~r!

Nch
5

bF IG~r!

Nch
1E

0

r

dr8FbP~r8!2r8

~r8!2 G . ~15!

One further relation that is employed in the present stu
is that for the free energy difference evaluated along an
chore between systems at temperaturesT1 andT2 and con-
stant densityr:

F1

T1
2

F2

T2
5E

1/T2

1/T1
d~1/T!E~r,T!, ~16!

whereE(r,T) is the total energy of the system.
Finally, the chemical potential for the fluid phase can

calculated using Eqs.~2!, ~14!, ~15! and ~16!.

C. Calculation of the phase boundaries

Using the expressions derived in the previous section
is possible to calculatem(P) for fixed T for each phase. The
intersection of these functions determines the location wh
the conditions for thermodynamic coexistence are satis
and gives a single point on the melting curve. Since the f
energy calculations required to obtain this single point
computationally very expensive, we do not repeat them
order to obtain a full line of points. Instead, we employ t
Gibbs–Duhem integration scheme developed by Kofke45,46

to trace out the phase boundaries, without the need to c
pute further free energies. The simplest variant of t
method involves the integration of the standard Claussiu
Clapeyron equation,

S dP

db D
coexist

52
Dh

bDv
, ~17!

whereDv5v22v1 and Dh5h22h1 are the differences in
molar volume and enthalpy between the two phases, res
tively. As the Claussius–Clapeyron equation is a first-or
differential equation, it can be integrated to compute the
existence curve provided one point on the curve is know
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



n
a

ou
w

fo
p
t

he
is
iz

ce
th
t

.
e

h
an

a
n
P

ra
t

lo
e
re
od

an

D
r-
to

ia
a

os
C

o
n

-
on
th

in
ar
s

d
o

oc

in
ar

n
vi-

u-
ase
on
ps.

the
tep
n
We
CC
le-
by

T
ba-
tion
s
of

ed.
Å,

ion
nca-

e

cell
ref-
en-

i-
n
to

ns.
rain
em-

the
le
all

ate

ct
-

of
re.

-
f a
the
. As

to
al-

he
s-

1505J. Chem. Phys., Vol. 111, No. 4, 22 July 1999 Melting curve of n-octane
D. Simulation details

The simulations employed systems ofNch564 octane
molecules in the fluid phase, andNch550 chains in the solid
phase. The use of a small system size is an unfortunate
cessity when employing an AA alkane model for which
large number of separate simulations must be carried
Clearly, there will be some finite-size effects present. Ho
ever, considering the large number of degrees of freedom
this system, the effects should be much smaller than
those of atomic systems of the same size, and should
sumably have only a slight effect of the coexistence poin
Since an explicit calculation of the finite-size scaling of t
melting curve results is prohibitively time-consuming, it
not possible to give a quantitative estimate of the finite-s
effects.

The 64 octane molecules in the fluid phase were pla
in a cubic box. The equilibration procedure depended on
density and temperature. Simulations were carried out on
supercritical isotherm atT5650 K for a wide density range
At low densities (r,0.40 g/cm3), the octane chains wer
initially centered on points of a 43434 bcc lattice in their
all-trans extended conformation. NVT simulations wit
these systems were carried out for both equilibration
production. At higher densities, a final configuration of
lower density run was used as an initial configuration, a
the system was equilibrated by compression through an N
simulation to a desired density or pressure. After equilib
tion, an NVT production simulation was carried out. A
lower temperatures, a problem arises due to the very s
relaxation toward conformational equilibrium when th
trans-gaucheenergy barrier becomes large enough compa
to kBT. To circumvent this problem, we employed a meth
similar to that used by Tobiaset al.39 in which starting con-
figurations were obtained by isothermally compressing r
domly chosen vacuum chain conformers~i.e., chains in con-
formations sampled at different times in a single-chain M
simulation! initially placed on a cubic lattice. As the confo
mational behavior of flexible molecules is generally found
be only marginally affected by condensation47 this will likely
accelerate the equilibrium process. In the study by Tob
et al.39 the conformers were obtained from sampling from
one-molecule MD simulation. In the present study, we ch
instead to conduct single-chain configurational bias M
simulations using a UA model and then to use sampled c
figurations to initiate the MD simulations for one point o
the T5230 K isotherm atP550 MPa. The final configura
tion from this simulation was used as an initial configurati
for the next higher and lower pressure, and so on, along
isotherm. NPT simulations were conducted at state po
along theT5230 K isotherm and along the phase bound
in the Gibbs–Duhem integration, while NVT simulation
were performed along ther50.81 g/cm3 isochore between
T5230 and 650 K. All liquid phase simulations employe
equilibration times of at least 100 ps and production runs
at least 50 ps.

For the solid phase, the simulation cell contained 50
tane chains arranged in two layers of 535 molecules.
Constant-stress NPT simulations were carried out at po
along theT5230 K isotherm and along the phase bound
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in the Gibbs–Duhem integration. The initial configuratio
for one octane crystal simulation was taken from the pre
ously published x-ray crystal structure.48 Initially configura-
tions for other simulations obtained from the final config
ration of the previous simulation along the isotherm or ph
boundary. All solid phase simulations used equilibrati
times of at least 25 ps, and production runs of at least 50

Because we choose a fully flexible model to describe
alkane system, it is essential to employ a Multiple-Time-S
~MTS! method40–42 to integrate the equations of motion i
order to avoid the need to use a very small time-step.
choose the reference force to consist of the CH and
bond-stretching forces, and the CCC, CCH and HCH ang
bending forces. We employ the integrators developed
Martynaet al.42 for all NVT, NPT and constant-stress NP
simulations. The fictitious masses for the thermostat and
rometer variables were chosen according to the prescrip
by Martynaet al.49 with a thermostat time scale of 0.62 p
and a barostat time scale of 1.26 ps. A large time-step
Dt51 fs subdivided intons54 small time-steps ofdt
5Dt/ns50.25 fs was employed.

Standard periodic boundary conditions were employ
The exp-6 long-range interactions were truncated at 10
and long-range corrections were included in the calculat
of the energies and pressures to compensate for this tru
tion.

To calculate the free energy of the crystalline solid, w
evaluate the integral appearing in Eq.~7! using the ten-point
Gauss–Legendre quadrature method. First the average
shape and atom positions were calculated to provide the
erence lattice used in the calculations. Then, the average
ergy differencê UEin2U&l

CM was evaluated at the appropr
ate ten values ofl at constant volume. We note that whe
lÞ0, there is an external force acting on the system due
the coupling between the atoms and their lattice positio
Consequently, the center of mass is not fixed. To const
the center of mass in these calculations we essentially
ploy the Shake50 and Rattle51 algorithm, which in practice,
simply amounts to subtracting the difference between
current and initial center of mass position from all partic
positions, and the current center of mass momentum from
particle momenta, in a single iteration at the appropri
place in the equation of motion integration algorithm.

We perform the Gibbs–Duhem integration with respe
to b, i.e., integration of Eq.~17!, using a second-order pre
dictor corrector method, and with an integration step ofdb
50.0001 ~KkB)21, which corresponds to an increment
approximately 5 K in thetemperature range considered he

III. RESULTS

An important test of the suitability of a particular mo
lecular model to calculate accurately the free energy o
crystalline solid is that the crystal structure measured in
simulation closely matches that measured experimentally
discussed in Sec. II A, standard UA models are unable
predict correctly the measured crystal structure. Further,
though Toxvaerd’s AUA model improves the results for t
calculation of the equation of state for fluids at high pre
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sures and densities, it also suffers from the same problem
the solid. In Table I, we present the results from a consta
stress NPT simulation for a system of solidn-hexane atP
50.1 MPa. The deviation of the unit cell parameter valu
from the corresponding experimentally measured val
clearly illustrates the unsuitability of using this model f
solid-phase simulations. By contrast, the results of ano
constant-stress NPT simulation of solidn-octane using the
FW model, presented in Table II, are considerably more
vorable, and demonstrate the need to employ an AA mo

Simulation snapshots ofn-octane in the fluid and crys
talline solid phases are shown in Figs. 1 and 2, respectiv

The evaluation of the free energy of the system at s
points in the liquid and solid phases requires several sepa
calculations for each phase. Below, we give the results
each separate calculation. The values of the various qu
ties are also listed in Table III for convenience.

Figure 3 shows the calculated points on the isothe
used for thermodynamic integration calculations in t
study. We seek the free energy as a function of densityF(r)
in the solid and fluid phases atT15230 K, somewhat large
than then-octane experimental melting temperature of 2
K. To this end, we have calculated isotherms at this temp
ture for both phases. The free energy of the solid is ca
lated at one point on the isotherm using the Einstein cry
thermodynamic integration method described in Sec. II B
The fluid phase free energy must be calculated by thermo
namic integration along an isotherm to the dilute limit
r→0. To avoid the problem of passing through the ga
liquid two-phase region, we have chosen to integrate alon

TABLE I. Unit cell parameters for solidn-hexane atT5158 K obtained by
experiment and simulation (P50.1 MPa! with the Toxvaerd Anisotropic-
United-Atom ~AUA ! model.

Expt.a MD

r (g/cm3) 0.888 0.891
a ~Å! 4.17 3.93
b ~Å! 4.7 5.56
c ~Å! 8.57 8.19
a ~°! 96.6 74.0
b ~°! 87.2 103.0
g ~°! 103.0 110.0

aReference 55.

TABLE II. Unit cell parameters for solidn-octane obtained by experimen
and simulation.

Expt.a MDb MDc

T ~K! 190.0 190.0 180.0
r (g/cm3) 0.891 0.915 0.916
a ~Å! 4.22 4.20 4.23
b ~Å! 4.79 4.62 4.58
c ~Å! 11.02 11.07 11.08
a ~°! 94.7 95.0 95.0
b ~°! 84.3 84.6 84.7
g ~°! 105.8 104.1 104.2

aReference 48.
bPresent study.P50.1 MPa.
cReference 39.P50.
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supercritical isotherm atT25650 K, significantly above the
critical point temperature ofTc5568.6 K. To connect the
T15230 K isotherm to theT25650 K isotherm, we measur
the energy at points along an isochore atra50.81 g/cm3 and
employ Eq.~16! to calculate the free energy difference.

The first step is the evaluation of the single-chain exc
free energy using the method described in Sec. II B 2.
employ a Monte Carlo procedure to generate a series of c
figurations from a distribution corresponding to theUch

id and
compute the average in Eq.~12!. Using 10 blocks of 200 000
chain configurations per block, we determine thatb2Fch

ex

520.688(1), listed as item~1! in Table III for the fluid,
whereb251/kBT2.

FIG. 1. Simulation snapshot of a system ofNch564 n-octane chains in the
isotropic liquid phase atr50.793 g/cm3 andT5230 K.

FIG. 2. Simulation snapshot of a system ofNch550 n-octane chains in the
crystalline solid phase atr50.906 g/cm3 and T5230 K. The chains are
arranged in two layers of 535 chains per layer.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Using Eq.~14!, we determine the ideal gas free energy
T25650 K at a density ofra50.81 g/cm3. We calculate
Zch,int

id through a numerical calculation of the integrals in E
~A8!. We find that b2F IG /Nch23nC ln L2

C23nH ln L2
H

575.995@item ~2! in Table III#, whereL i
a is the de Broglie

thermal wavelength for a particle of typea5C,H at tempera-
ture Ti . These kinetic terms involving the thermal wav
lengths which arise from the integration of the momenta
the partition function play no essential role in the free ene
calculation. However, because the calculations were car

TABLE III. Calculated quantities relevant for free energy calculations.b i

51/(kBTi), whereT15230 K andT25650 K.L i
a[h/(2pmakBTi)

1/2 is the
de Broglie thermal wavelength fora5C and H atT15230 K and T2

5650 K. Nch is the number of alkane chains in the system, andnC andnH

are the number of carbon atoms and hydrogen atoms, respectively
chain.P(r) is the pressure as a function of density of chainsNch /V. Fch

ex is
the excess single chain free energy defined in Eq.~12!. F IG(r) is the ideal
gas free energy at densityr and is defined in Eq.~14!. ^UEin2U&l

CM is the
average difference between the energy of a crystal,U, and an Einstein
crystal with the same equilibrium lattice,UEin @see Eq.~4!#, calculated using
an effective potential given by Eq.~5! for lP@0,1#, and subject to the
constraint of a fixed center of mass. For the solid phase,F is the free energy
of the unconstrained crystal,FCM is the free energy of the crystal with
constrained center of mass, andFEin

CM is the free energy of an Einstein crysta
with a constrained center of mass. Finally,ra50.810 g/cm3, and rb

50.904 g/cm3.

Fluid

~1! b2Fch
ex/Nch 20.688~1!

~2! b2F IG(ra)/Nch23nC ln L2
C23nH ln L2

H 75.995~1!
~3! *0

ra dr8@bP(r8)2r8#/(r8)2 1.1~1!

~4! b2F(ra)/Nch23nC ln L2
C23nH ln L2

H 77.1~1!
~5! *1/T2

1/T1 d(1/T)E(ra ,T)/(NchkB) 64.97~3!

~6! b1F(ra)/Nch23nC ln L2
C23nH ln L2

H 142.1~1!
~7! 3nC ln(L2

C/L1
C)13nH ln(L2

H/L1
H) 240.517

~8! b1F(ra)/Nch23nC ln L1
C23nH ln L1

H 101.5~1!

Solid

~9! (b1 /Nch)*0
1dl^UEin2U&l

CM 13.1~1!
~10! (b1 /Nch)@(F(rb)2FCM(rb))1FEin

CM#
23nC ln L1

C23nH ln L1
H 114.957

~11! b1F(rb)/Nch23nC ln L1
C23nH ln L1

H 101.9~1!

FIG. 3. Calculated isotherm forn-octane atT5650 K for the fluid phase,
and atT5230 K for solid and liquid phases. The gas–liquid critical point
T5568.4 K is also labeled, as well as the solid–liquid coexistence tie lin
P550.82 MPa forT5230 K.
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out at two different temperatures, we include them explici
to avoid confusion.

To determine the free energy of the true fluid atra

50.81 g/cm3, we employ Eq.~15!. Using a eighth-order
polynomial to fit theT25650 K isotherm, we find that the
integral in Eq.~15! has a value of 1.1~1! @item ~3! in Table
III #. Consequently, the free energy of the fluid has a value
b2F(ra)/Nch577.1(1) @item ~4! in Table III#. To connect
this pathway with the 230 K isotherm, we employ Eq.~16!
and carry out the integration along an isochore at 0.81 g/c3.
We employ a five point Gauss–Legendre integration sche
to evaluate the integral and find that (b1F(T1)
2b2F(T2))/Nch564.9(1) atr50.81 g/cm3. Consequently,
the free energy of the fluid less the kinetic factors in Eq.~14!,
3nC ln L2

C13nH ln L2
H , has value 142.1~1! @item ~6! in Table

III #. To provide a more convenient reference point to co
pare with the solid phase, we evaluate the difference betw
the free energy and the kinetic terms, where the latter
evaluated atT15230 K. Consequently, we add a value
3nC ln(L2

C/L1
C)13nH ln(L2

H/L1
H)5240.517 @item ~7! in

Table III#, and find that the free energy of the liquid atra

50.81 g/cm3 and T15230 K has a valueb1F(ra)/Nch

23nC ln L1
C23nH ln L1

H5101.5(1) @item ~8! in Table III#.
Figure 4 shows the calculated̂Du* &l[(b/Nch)^UEin

2U&l
CM used in the ten-point Gauss–Legendre evaluation

the integral in Eq.~7!. We note that for the value of Einstei
crystal force constant that was used~a530 000 K/Å2), the
function ^Du* &l has a positive peak nearl50, and a small
negative peak nearl51. This behavior was also noted in ou
previous study of semi-flexible Lennard-Jones chains in
case of stiff bonds.31 If a is small, then, in the limit where
l→1 and Ũ5UEin , deviations in bond lengths and bon
angles from their equilibrium values will be significant, an
lead to a large value ofU and, therefore, a possibly shar
reduction in ^Du* &l . If a is too large, then, in the limit
where l→0 and Ũ5U, the individual atoms may deviat
significantly from their equilibrium lattice positions, leadin
to a large value ofUEin and, therefore, a high value o
^Du* &l . These two cases lead to peaks atl50 and 1. As in
the case of the Lennard-Jones chain system with s
bonds,31 we find that there is no intermediate value ofa that
simultaneously removes both peaks and yields a smoo
varying ^Du* &l over the full range ofl. Nevertheless, the

er

at

FIG. 4. Calculated̂ Du* &l[(b/Nch)^UEin2U&l
CM used in the ten-point

Gauss–Legendre integration of Eq.~7! at r50.904 g/cm3 andT5230 K. An
Einstein crystal force constant ofa530 000 K/Å2 was used.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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value ofa530 000 K/Å2 was found to minimize each of th
two peaks. It is possible that the presence of the peaks c
present problems for the ten-point Gauss–Legendre num
cal integration. Since the calculation of the ten points in F
4 was extremely time-consuming, we did not repeat the
merical integration for more points, nor did we attempt
determine a suitable transformation to a different integrat
variable such that the integrand is a more smoothly vary
function. However, we note that when such approaches w
tested in our previous study31 for the stiff-bond Lennard-
Jones chain solid, for whicĥDu* &l also displayed the sam
features, the 10-point integration was found to be sufficien
accurate.

The integral has a value of*0
1 dl^Du* &l

CM513.1(1)
@item ~9! in Table III#. We subtract this from the quantit
(b1 /Nch)@(F(rb)2FCM(rb))1FEin

CM#, which is defined by
Eqs.~8! and~9!, and which has a value of 114.957@item ~10!
in Table III#. Thus, the free energy of the crystalline solid
rb50.904 g/cm3 and T15230 K is given byb1F(rb)/Nch

23nC ln L1
C23nH ln L1

H5101.9(1) @item ~11! in Table III#.
From the calculations described above, the absolute

energy of then-octane system is known for one point o
each of the solid and fluid branches of the 230 K isothe
As we have calculated several points along the isotherm
can determine the chemical potential of each phase as a f
tion of density or pressure at this temperature using Eqs~2!
and~3!. Solid and liquid branches ofm(P) are shown in Fig.
5. The intersection point atP550.8 MPa gives the pressur
at coexistence between the two phases at 230 K. This co
sponds to densities ofr l50.790 g/cm3 for the liquid phase
andrs50.910 g/cm3 for the solid phase.

With one point on the coexistence boundary, we obt
other points along the curve via Gibbs–Duhem integrati
i.e., by integrating Eq.~17!. The results are tabulated i
Table IV. The melting curve in theP-T plane is shown in
Fig. 6. The curve is almost perfectly linear, which is simp
a reflection of the narrow 20 K temperature range cons
ered. To estimate the uncertainties in the calculated mel
curve data, we note from Fig. 5 that small relative displa
ments of them(P) curves will shift the position of the inter
section of the curves over a wide range in pressure. Co
quently, we assume that the principal source of error is
uncertainty in the calculation of the absolute free energy
the reference points on the liquid and solid branches of

FIG. 5. Solid and fluid branches of the reduced chemical potentialbm as a
function of the pressureP at T5230 K.
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230 K isotherm prior to thermodynamic integration along t
isotherm branches. The uncertainty of the free energy
both the solid and liquid reference points isdF50.1kBT1 per
chain. Applying a relative shift of the chemical potential
2dF shifts the location of the intersection of them(P)
curves in Fig. 5 by approximatelydP520 MPa. Next, we
conduct simulations for the solid and liquid phases at 5
MPa 6dP to measure the enthalpy and molar volume d
ferences between the phases and take a linear approxim
of Eq. ~17! to construct shifted melting curves. The regio
between the two calculated gives a reasonably accurate m
sure of the uncertainty of the position of the melting curv
this region is colored gray in the figure.

Superimposed on the phase diagram are three point
the melting curve taken from the experimental different
thermal analysis study ofn-octane of Wu¨rflinger.52 While the
pressure dependence of the melting temperature in that s
was measured to pressures of up to 300 MPa, Fig. 6 inclu
only those data which fall within the 0–100 MPa pressu
range considered in the calculations. The experime
‘‘curve’’ is essentially parallel to the calculated curve, an
shifted to lower temperatures by approximately 3 K. Furth
we note that the experimental data points lie within t
shaded area for the temperature range considered here.

Given that the temperature scale in Fig. 6 is highly e
panded, the quantitative agreement between the experim
and calculated melting curves is striking: the melting te
peratures have been calculated to within 2% of their t
values in the pressure range considered. As stated above

TABLE IV. Calculated liquid–solid coexistence points forn-octane.

T ~K! P ~MPa! r f ~g/cm3) rs ~g/cm3)

219.89 2.4 0.775 0.911
224.83 25.5 0.781 0.909
230.00 50.8 0.790 0.910
235.41 77.9 0.803 0.916
241.09 104.8 0.806 0.919

FIG. 6. Calculated and experimental melting curves ofn-octane. The simu-
lation data were calculated by solving the Claussius–Clapeyron equatio
the Gibbs–Duhem integration procedure. The integration was initiated u
the coexistence point atT5230 K obtained from the intersection of th
chemical potential curves shown in Fig. 5. The gray zone marks the limit
uncertainty in the calculated melting curve. The procedure for the calc
tion of the uncertainty region is given in the text. The experimental d
were taken from Ref. 52. The simulation melting curve data are also liste
Table IV.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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quantitativeprecisionof the calculations is determined prin
cipally by the precision with which the solid and liquid pha
free energies are calculated. However, the quantitativeaccu-
racy of the calculations, i.e., the degree to which the cal
lated and experimental data agree, is also expected t
highly sensitive to the details of the molecular potential e
ployed in the calculations. Although the FW model was d
veloped and optimized to reproduce various measured
for the solid and high-density liquid phases of alkanes, i
not clear that it would be adequate to calculate accurately
free energies required for the calculation of the solid–liq
phase boundary. The positive result of this study indica
both that a realistic all-atom model of this sort is sufficie
and that the free energy calculations themselves can be
formed with sufficient precision, in order to predict acc
rately the melting curve for an-alkane system.

IV. CONCLUSIONS AND OUTLOOK

While the basic computational methods required to c
culate the free energies of solids and liquids and, theref
equilibrium solid–liquid phase behavior, have been availa
for many years, there has been little effort made to ap
these methods to realistically modeled molecular syste
Work in this area has until now focused on simple, a
mostly rigid, molecules. To our knowledge, the present stu
is the first to apply these methods to a truly realistic mo
for a system of large flexible molecules. The results lo
very promising: using a relatively simple all-atom alka
model we were able to obtain quantitatively accurate res
for the melting curve ofn-octane. While this system is sti
relatively simple compared to a polymer chain system,
example, it is considerably more complex than the diatom
or triatomic molecular systems studied to date. At presen
major limiting factor in these calculations is the large co
putational effort required to determine the melting curve
a realistic model oligomeric chain molecules such
n-octane. However, with the rapid increase in comput
power, calculations that are barely feasible now should
standard in a few years time.
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APPENDIX: DEFINITION OF UCH
ID AND ZCH

ID

In this Appendix we describe in detailUch
id , the ‘‘ideal’’

component of the single-chain potential energy discusse
Sec. II B 2. We choose aUch

id composed of bonded interac
tion terms of the following types:

• A bond-stretching term:
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U id,b5
kid,b

2
~r 2 l 0!2. ~A1!

This is summed overn-1 CC bonds and 2n12 CH bonds on
each molecule, and is identical to the form which appear
the FW potential. We choose force constants and equilibr
bond lengths, to be equal in magnitude to those used in
FW potential:kid,b5111 200.0 K/Å2, l 051.530 Å for CC
bonds, andkid,b5155 800.0 K/Å2, l 051.040Å for CH
bonds.

• A CCC angle-bending term:

U id,u
CCC5

kid,u
CCC

2
~uCCC2u0

CCC!2. ~A2!

This term is summed over then-1 CCC bond angles. Again
it is again identical in form, and with the same force const
and average CCC bond angles, as that employed in the
potential:kid,u

CCC562 5 00.0 K/rad2 andu0
CCC5112°.

• A CCH angle bending term:

U id,u
CCH5

kid,u
CCH

2
~uCCH2u0

CCH!2. ~A3!

This term is summed only over 2n12 CCH bond angles;
that is, we include only one CCH bond angle per hydrog
atom. This choice effects a more straightforward analyti
evaluation of the partition function. Further, the force co
stant magnitude is not set equal to that in the FW poten
To guarantee condition~2! for Uch

id described in Sec. II B 2
we setkid,u

CCH560 000.0 K/rad2. However,u0
CCH5110.0°, as

in the FW model.
• A CCH azimuthal angular term:

U id,f5
kid,f

2
~fCCH2f0

CCH!2. ~A4!

This term has the same constraining effect as an HCH a
bending potential, which is not included inUch

id ~again, to
simplify the evaluation of the partition function!. fCCH is the
azimuthal angle of a CH bond relative to the carbon skelet
This term is summed over 2n azimuthal bond angles: 2(n
22) methylenefCCH angles, and four of the six azimutha
angles associated with the terminal methyl groups. We t
kid,f560 000.0 K/rad2 andf0

CCH5120°.
• A methyl torsional potential term:

U id,tor
meth5 1

2 E0
meth~12cos 3fmeth!. ~A5!

This torsional potential term is associated with the remain
one hydrogen per methyl group not included in the summ
tion of the terms of Eq.~A4!. The form of this potential is
identical to that of the methyl rotational potential typical
employed for constrained systems. We chooseE0

meth

51707.473 K, as in Ref. 53.
• A carbon skeleton torsional potential term:

U id,tor
CCCC5 (

m51

9

cm
CCCCcos~m)~fCCCC!. ~A6!

This CCCC torsional potential is also chosen to be ident
to that used in UA and constrained-AA alkane model pot
tials. The expansion coefficient values are taken from a fi
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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recent accurate spectroscopic data andab initio calculations and are given in Ref. 54.
The partition functionZid

ch is given by

Zch
id 5F V

LC
3nCLH

3nH
GZch,int

id , ~A7!

whereLC andLH are the de Broglie thermal wavelengths of each of thenC carbon andnH hydrogen atoms resulting from th
integration of the momenta. The ‘‘internal’’ contribution to the single-chain ideal energy partition functionZch,int

id , in the limit
of stiff bonds, is given by

Zch,int
id 58p2F l CC

2 A2p

bkb
S 11

1

bkbl CC
2 D G n21F l CH

2 A2p

bkb
S 11

1

bkbl CH
2 D G 2n12F E

0

p

du sinu exp@2buid,u
CCC#Gn22

3F E
0

2p

df exp@2buid,f
CCCC#Gn23F E

0

p

du sinu exp@2buid,u
CCH#G2n12F E

0

2p

df exp@2buid,f
meth#G2

3F E
0

2p

df exp@2buid,f#G2n

. ~A8!

The five integrals in the above equation are evaluated numerically.
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hy
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