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Numerical prediction of the melting curve of n-octane
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We compute the melting curve ofoctane using Molecular Dynamics simulations with a realistic
all-atom molecular model. Thermodynamic integration methods are used to calculate the free energy
of the system in both the crystalline solid and isotropic liquid phases. The Gibbs—Duhem integration
procedure is used to calculate the melting curve, starting with an initial point obtained from the free
energy calculations. The calculations yield quantitatively accurate results: in the pressure range of
0-100 MPa, the calculated melting curve deviates by @K from the experimental curve. This
deviation falls just within the range of uncertainty of the calculations.1999 American Institute

of Physics[S0021-96069)52128-4

I. INTRODUCTION of the Gibbs ensembi& 26 and configurational biasi§g2°
Monte Carlo simulation techniques. Clearly, the next impor-
The calculation of solid—fluid phase coexistence viatant step is an accurate calculation of the solid—liquid coex-
computer simulation requires special techniques suitablistence employing the lattice-coupling free energy calcula-
both for high densities and for crystalline solids. The stantion technique discussed above. In an important step toward
dard approach relies on thermodynamic integration methodshis goal, this technique was applied to study the solid—fluid
to compute the chemical potentials of each phase separatelyhase equilibrium of simple systems of flexible chain mol-
If the chemical potential is known at a particular state pointecules in two recent studi€$®! The first study employed
in either phase, then it can be determined trivially at anyfully flexible chains of hard spheré8while the second used
other state point using thermodynamic integration along isosemi-flexible Lennard-Jones chaitisHowever, the models
therms or isochores, so-called “natural” reversible path-employed in both cases only very crudely resemble real
ways. A convenient reference point in the fluid phase is inchain molecules such as alkanes. A recent study by Mal-
the dilute limit where the system behaves as an ideal gas, anghoski and Monsoi focused on the melting behavior of a
where the free energy can be determined analytically. Alterhard-core model of-alkanes. The simulation data for this
natively, at sufficiently low density, an appropriate variant of hard-core model reference system were subsequently used as
the Widom particle insertion methbéican be used to calcu- input for a mean-field prediction of the-alkane phase dia-
late the chemical potential. In the solid phase, the standargram. Yet, although the results of such simulations provide
free energy calculation technique involves thermodynamignsight into the effect of flexibility and steric hindrance on
integration along arartificial pathway, where the solid is the alkane phase diagram, the simulation results themselves
transformed reversibly into an Einstein crystal, in which par-cannot be compared with experimental data. The aim of the
ticles are coupled harmonically to lattice sifetie free en- present study is to demonstrate the applicability of the
ergy of this reference system can be calculated analyticallymethod to simulate the melting transition of an alkane sys-
This lattice-coupling method is highly versatile and can betem using a realistic all-atom model which is suitable for
applied to arbitrary solids with both continuous and disconsimulations of crystalline solids and high density liquids, and
tinuous potentials. Variants of the method have been appliefbr which we expect to obtaiguantitativeagreement with
mainly to systems composed of simple rigid particles, in-experiment.
cluding a variety of hard particle systems such as sphiétes,  The choice of the specific alkane system we study here is
ellipsoids?® spherocylinder$? and dimers** Application  governed by two factors. First, we wish to study systems in
to any realistic system interacting with a continuous potentialvhich a crystalline solid melts to an isotropic fluid directly
is, in principle, straightforward, although the focus until now without passing through any intermediate phases. It is well
has been on systems of relatively small, effectively rigidknown that many alkane systems have at least one interme-
molecules such as N*"'*C0,," N,0,'® and HO." diate “rotator” phase, characterized by rotational disorder
The n-alkane series represents one of the most basic oabout the molecular long axis amghuchedefects near the
ganic series. The development of simulation methods to calends of the chain. Rotator phases are present in alkane sys-
culate accurately the equilibrium phase diagram for thes@ems for which the chain lengthis given byn>9 for oddn
systems is of great interest. Recent efforts have focused prithains and> 22 for evenn chains. Second, we note that the
cipally on the simulation of gas-liquid phase equilibrium determination of the phase equilibrium for a system requires
and critical behavior of alkan&?!via the combinatioff*®  a large number of separate simulations for points along natu-
ral pathways(isotherms, isochorg¢sand artificial pathways
aCurrent address: Department of Physics, McGill University, Montreal, Q,"€quired for the thermodynamic integration calculations, all
H3A 2T8 Canada. of which become computationally very expensive for realis-
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tic all-atom models. Both of these considerations require that)ntil recently, there have been two different types of models
we study a relatively small system of short alkane moleculesof this class. In the “Ryckaert—McDonald—Klein—
in the present study we choogmeoctane. Williams” (RMKW) model?* all internal degrees of free-
dom involving hydrogen atoms, with the exception of methyl
group rotations, are frozen. Rotations about C—C bonds are
Il. THEORY AND METHODS governed by cosine power series internal torsional potentials.
Intermolecular atoms, and intramolecular atoms separated by
A. Model . . .
three or more carbon atoms interact with an exp-6 potential
Simulation studies of alkane systems in the vapor andiue to Williams®’ This potential has been shown to yield
liquid phases frequently employ united-atdiwA) models, good agreement with experimental alkane crystal structures.
in which the interaction sites consist of composite pseudoBy contrast, the “Smith—Karplus'{SK) modef® employs a
atoms composed of a carbon atom plus twwethyleng or  fully flexible representation in which the overall torsional
three (methy) hydrogen atoms. The principal advantage ofpotential is made up of contributions from a single cosine
this approach over an all-atofAA) model, in which every term for each linear set of four bonded atoms in the alkane
atom is considered to be a separate interaction site, is a coghain. Atom pairs interact with a Lennard-Jones potential, as
siderable reduction in the time to compute the energy anevell as Coulomb interactions as a result of partial charges
molecular forces. This calculation is the rate-determiningplaced on the carbon and hydrogen atoms. The latter model,
step in both Monte Carlo and Molecular Dynamics simula-however, performs very poorly in condensed systems, almost
tions. However, it has been known for over a decade that UAertainly a result of the fact that the parameters of this force
models are unsuitable for simulations of alkane crystallinéfield were optimized using gas-phase geometries and ener-
solids, where the details of the potential can have a signifigetics of small molecules without considering intermolecular
cant effect on the equilibrium properties of the model sys-nteractions.
tem. For example, only by employing an AA potential, in An alternative model, which is essentially a hybrid of the
which the hydrogen atoms are explicitly represented, is therevo described above, is the so-called “Flexible Williams”
quantitative agreement between calculated and experimeliFW) potential introduced recently by Tobias al>° It em-
tally measured alkane crystal structurés? ploys the Williams exp-6 intermolecular potential of the first
A simple modification of the standard UA model has model with the fully flexible character of the second. Thus,
been developed by Toxvaetd® In this anisotropic united- the molecular geometry and nonbonded parameters are taken
atom(AUA) model, the interaction sites, which are generallyfrom Williams’ model IV 37 and the force constants for bond
placed at the site of the carbon atoms, are displaced slightlytretching and angle bending are taken from Smith and
in the direction of the hydrogen atoms in the methylene anarplus® Fourier cosine series were fit to the Smith—
methyl groups. By tuning the displacement magnitudes, th&arplus adiabatic potential for use in the FW model. The
calculated equation of state for alkane fluids at high densitieadvantage of this model is that it removes the cumbersome
and pressures, a regime in which predictions using the staronstraints of the RMKW model, while preserving the Wil-
dard UA models fail drastically, was shown to be in perfectliams potential, which performs well in condensed phases.
agreement with experiment. Apparently, this straightforwardThe FW model been shown to reproduce various experimen-
method of accounting for the presence of hydrogen atomtal data for the solid phase and the high-density liquid phase
can remove some deficiencies of the UA model. Note thabf alkane system® The principal disadvantage is that the
simulations using the AUA model are only marginally more inclusion of the bond-stretching and angle-bending terms ne-
time-consuming than those using an UA model. Thus, thigessitate, in principle, the use of a smaller time-step in MD
model permits relatively efficient means to simulate accusimulations. However, this problem can be alleviated with
rately a high density fluid. In light of this success, we hopedthe use of Multiple-Time-StegMTS) methods'*42 Wa-
that the AUA model could be applicable the high densitytanabe and Karplus have shown that, for hydrocarbons, the
crystalline solid phase, with the same CPU time-saving ad€PU time of simulations can be decreased by a factor of 3-5
vantage. Unfortunately, we find that this is not the case. Wéf the reversible reference system propagator algoritiim
performed a simple constant-stress simulation of soli)RESPA MTS methods are uséd.As we find that the ab-
n-hexane employing the AUA model and observe a crystalsence of constraints in the FW model somewhat more con-
line structure which deviates significantly from the experi-venient for performing constant-stress simulations and for
mental structure. The results of the simulation are includedhe calculation of the free energy of the crystalline solid, we
in Sec. lll. Apparently, the simple remedy of the AUA po- choose to employ the FW model in the present study.
tential is not sufficient for simulations in the solid phase, and A detailed description of the FW model, as well as the
the need to employ an AA model appears unavoidable fovalues of all parameters employéubnd lengths and angles,
solid alkane systems. bond-stretching and angle-bending force constants, torsional
Although there are more complicated all-atom poten-potential expansion coefficientsan be found in Ref. 39.
tials, we seek the simplest, empirical potentials which can be
efficiently employed in simulations of large systems consistB. Free energy calculations
ing of many alkanes. These potentials have the following

form: The alkane melting transition is strongly first-order with

a considerable degree of hysteresis in the equation of state.
U= Upondst Uanglest Utorsionst U non-bonded (D) Consequently, it is essential to perform free energy calcula-
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tions in order to determine the melting curve of the system. 1 IF(N)
The conditions for equilibrium coexistence are that the temF(A=0)—F(A=1)= —J d ( N )
peratures, pressures and chemical potentials of the coexisting
phases be equal. The chemical potential is given by 1 <,90>
. F(p) N P(p) @ Jo M N ©
Nen p where the brackets. . . ), indicate an ensemble average cal-
whereF is the Helmoltz free energy of the systely, is the  culated for a particular value of. Thus,
total number of chains ané(p) is the pressure as a function 1
of the density of chaing=N,/V. If the Helmoltz free en- FCM:FEM—f d\(Ugin— UM, 7)
ergy at a densityp, is known, it can be calculated at any 0
other densityp by the following relation: The superscript CM signifies that the center of mass of the

, P(p') crystal is held fixed, a constraint which is required for the
+ | dp’ pz ) (3)  thermodynamic integration calculations. Without this con-
Nen Nech Po p' straint, each particle may drift far from its associated Ein-

Thus, in order to compute the chemical potentials, one mustein lattice site such that the root-mean-square particle dis-
first calculate the absolute Helmoltz free energy at some refflacement grows to the size of the simulation box in the limit

erence density,. The details of this calculation differ for A—0- Consequently, the integrand in E7) becomes
the solid and fluid phases. sharply peaked close =0, and the numerical evaluation

of the integral would require many simulations at low
Note that bonded atoms are decoupled in the limihefl,
1. Solid phase where each atom behaves as a independent harmonic oscil-
In order to calculate the Helmoltz free energy of a crys-lator. To calculate the free energy of the unconstrained crys-
talline solid phase, we employ a variant of the method detal, we write
velopeq by Frgnkel and La&dvyhich involves a thermody— F:(F_FCMH(FCM_FEMHFgm_ ®)
namic integration scheme to link a state of a given system
along a reversible path to that of another system for whichfhe second term in Ed8) is calculated numerically as pre-
the partition function, and, hence, the Helmholtz free energyscribed in Eq.(7) while the first and third terms can be de-
can be calculated analytically. A convenient reference systermined analytically. The complete calculation has been
tem is the Einstein crystal, where individual noninteractingpresented elsewhef&Using this result, it can be shown that
particles are coupled harmonically to their equilibrium latticethe free energy per chain ay=Ng,/V, is given by
positions _
N AF (po) =3ncIinAc+3nyIn AH—B’(N—l)In<2—Tr)
o => —)(0) 2 NCh 2NCh BCZ
Uen=75 2, (R=R®)?, (@) . )
A i | N B[ e
whereR; is the instantaneous position of thk particle, and Nen NenJo

ﬁi(o) is the corresponding Einstein crystal lattice position. 3
Further,N is the total number of atoms in the system and is + Wln[NchnH,uﬁJr Nencre2], 9
given byN=nN, wheren is the number of atoms per mol- ch

ecule. Finally,« is the force constant of the Einstein crystal. whereg= 1/kgT, andVy=N/p, is the volume of the system,
This quantity is generally set to a value such that the mearandn¢ andn,, are the number of carbon and hydrogen atoms
square displacement of the particles in the true crystal and iper molecule. Furtherh;=h/\27mkgT are the de Broglie
the reference crystal are approximately the same. This helpsermal wavelengths for each species, where are the

to ensure that the numerical implementation of the thermoatomic masses and is Plank’s constant, ang;=m;, /=;m;
dynamic integration method described below is viable. Fur=m;/(Ng(nymy+neme)) is the fractional mass of each
ther comments on the choice affor this particular system species.

are given in Sec. lll. Note that the Einstein crystal lattice is  The chemical potential at an arbitrary density can be
chosen to have the same structure as that of the true systesomputed using Eqg2), (3), and(9).

Further, note that a “particle” in the context of a system of

chains refers to an individual atom on a chain. To carry outy £jig phase

the thermodynamic integration, we employ an effective po-
tential:

F(p) F(po)

The most convenient reference point to calculate the ab-
solute free energy in the fluid phase is in the limit-0,

U\)=(1-N)U+AUgp, (5)  where the system behaves as an ideal gas of noninteracting

(though still self-interactingchains. In this limit, the parti-

where U is the internal potential energy, and whevds a tion function for the system is given by

parameter employed such tha{A=0)=U and U(A=1) N
=Ugy,- The free energy difference between the original and Z,o(Nep V. T) = (Zep) e
reference systems may be calculated by: IGAReh ¥ Ngtd

(10
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where Z, is the partition function for a single chain. The in principle, cause problems with the statistical accuracy of

free energy of the ideal gas is given by: the evaluation of the averagéexp(—BUg))iq if a large
enough majority of the conformations contain at least one
BFic i N si i i
=—InZg+InNg!/ N, overlap of interaction sites. For short chains, this results
ch mainly from the presence of apg_ ¢4_) consecutive pair in
In(27Ngp) the chain, wherep, represents gauchetorsional angle of
~BFantINNey=1+ —50—, (1D o<, <120° or 240% ¢4, <360°. However, for the

. ~calculation for then-octane in the present study, we find a
where we haye employed Stirling’s formula plus the first- inimum of one such pair in only about 30% of the gener-
order correction, which appears as the last term. ated conformations, and, therefore, this was not a problem.

An analytical evaluation of o,=—KkgT InZs, fora FW 15 more problematic calculations of this sort, it may be nec-
chain is a virtually impossible. Instead we divide the poten—essary to employ a Rosenbluth sampling scheme to improve
tial into “ideal” and “excess” componentsU, and Uy the statistical accuracy of the averagfig.
=U—UY, respectively, and proceed with the calculation  The ideal gas free energy is given by
in two steps. First we find a suitabldz[f’h whose free energy
Fig=—kgTInZ, can be determined from an analytical cal- @:l 1, IN27Ney)
culation of the partition functionZl,, associated with the Ncn P 2N¢p
ideal interactions. In the second step, we employ a numerical ch 2 ex
method to determine the excess free enerBfi=F, ~INZig o= IN(@7%) + BF (14
— th. ' whererJ}im is defined in the Appendix. Using E3), and

To choose a convenient form fm'g‘h, we note first that the fact thatP,g=NKkgT/V, it is trivial to show that
the difficulty in the evaluation of the complete single chain , )
partition function arises from two sources. The first is the ~ AF(P) _ BFi(p) " fpd | BP()—p
(p')?

intramolecular nonbonded interactions. In our recent study Nen Nen 0
One further relation that is employed in the present study

on the solid—fluid phase equilibria of LJ chain molecuites,
is that for the free energy difference evaluated along an iso-

we choseUy to have contributions only from the bonding
interactions(bond-stretching and angle-bendin@ choice chore between systems at temperatdFesnd T, and con-
stant densityp:

+3ncInAc+3ngIn Ay

(15

which permits a straightforward analytical calculation of
Z" . However, the situation becomes somewhat more com>
plicated in the present case where the presence of hydrogen F; F» i
atoms leads to a branching at the carbon atoms on the chain. T_l - -|-_2 - f
The configurational partition function associated with the
bonding interactions is difficult to evaluate. ConsequentlyWhereE(p,T) is the total energy of the system.
we define a more convenient form fofd . Specifically, we Finally, th_e chemical potential for the fluid phase can be
seek the following propertiestl) the associated partition Calculated using Eqs2), (14), (15 and(16).
function Z&' can be calculated in a straightforward manner;
(2) specific conformations will have approximately the sam
ideal energy as the nonbonded energy in the FW md@agl;
we require the ability to generate easily molecular configu-  Using the expressions derived in the previous section, it
rations from the distribution governed ty/%,. This last re- is possible to calculatg(P) for fixed T for each phase. The
quirement is important for the evaluation Bf}, which we intersection of these functions determines the location where
describe below. The definition &9, and the evaluation of the conditions for thermodynamic coexistence are satisfied
Zﬁ,h are described in the Appendix. and gives a single point on the melting curve. Since the free
The excess single-chain free ener§f=F ;,— igh, is  energy calculations required to obtain this single point are
evaluated numerically by averaging the Boltzmann factor offomputationally very expensive, we do not repeat them in
the excess single-chain energy over a series of conformatior@der to obtain a full line of points. Instead, we employ the
sampled from a distribution determined by the ideal single-Gibbs—Duhem integration scheme developed by Kbk

"d(UT)E(p,T), (16)
T,

€c. calculation of the phase boundaries

chain energy: to trace out the phase boundaries, without the need to com-
ox ox pute further free energies. The simplest variant of this
BF cn=—In{exp(— BUc))ia - (120 method involves the integration of the standard Claussius—
We note that Clapeyron equation,
S U U= (U Ul) + Ui (13 (d_P) __an an
d'B coexist 'BAU,

and that the choice df'd and the values of its parameters
have been designed to ensure that the differeld@#‘ded whereAv=v,—v; and Ah=h,—h; are the differences in

- Ug’h does not deviate significantly from zero for all confor- molar volume and enthalpy between the two phases, respec-
mations generated from the distribution governeduig(,. tively. As the Claussius—Clapeyron equation is a first-order
Further, we note that, since the generated conformations ardfferential equation, it can be integrated to compute the co-

nonself-avoiding, the effect d#7°"°°"%%n the average can, existence curve provided one point on the curve is known.
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D. Simulation details in the Gibbs—Duhem integration. The initial configuration

The simulations employed systems =64 octane for one octane crystal simulation was taken from the previ-

molecules in the fluid phase, ahty— 50 chains in the solid ously published x-ray crystal structut@lnitially configura-

’ : fions for other simulations obtained from the final configu-
cessity when employing an AA alkane model for which aration of the previous simulation along the isotherm or phase
large number of separate simulations must be carried Oquundary. All solid phase simulat.ions used equilibration
Clearly, there will be some finite-size effects present. How-tImes of at least 25 ps, and produc_tlon runs of at IeasF 50 ps.

Because we choose a fully flexible model to describe the

ever, considering the large number of degrees of freedom Oflk ‘ "~ tial 1 | Multinle-Ti St
this system, the effects should be much smaller than foft <an€ System, 1t 1S essential to eémploy a Multiple- Time-Step

0-42 H . . .
those of atomic systems of the same size, and should préMTS) methqd to integrate the equations O.f motion in
order to avoid the need to use a very small time-step. We

sumably have only a slight effect of the coexistence points. :
Since an explicit calculation of the finite-size scaling of the(l;hOzS'Gt tf:eh_refefrence for((:jetrfo é%nCSISéCOL thedcl:-ll_é :nd (|3C
melting curve results is prohibitively time-consuming, it is ond.-s refc Ing (\)Ar/ces, anl teh v and I aggs'
not possible to give a quantitative estimate of the finite-siz&€"dINg orces. We employ the integrators developed by
effects. Martynaet al.* for all NVT, NPT and constant-stress NPT

The 64 octane molecules in the fluid phase were Iolaceaimulations;. The fictitious masses for the thermostat and ba-
in a cubic box. The equilibration procedure depended on th ometer variables were chosen according to the prescription

49 \ i i

density and temperature. Simulations were carried out on th dMar;c)ynaett ?Lt' With althe;mlogéat t|m: 'lscale ,?f O'Gf ps f
supercritical isotherm af=650 K for a wide density range. Zrt]—i faros tz)id' |.r(1j1edsgate 0_4' psl‘l‘ i arg;a |me—f58tep 0
At low densities p<0.40 g/cnd), the octane chains were ~'_ -+ 'S Subdivided intons=4 small time-steps o

initially centered on points of aX4x4 bcc lattice in their zAgns:dO.ZdS fs ‘.N"f‘ eg]plo()j/ed. dit loved
all-trans extended conformation. NVT simulations with tandard periodic boundary conditions were employed.

these systems were carried out for both equilibration anJ hg Iexp-6 Iong-ranget!nteractlong V\Ile;e C:rgn(t:ﬁted ?t Il(?[ A
production. At higher densities, a final configuration of adnad long-range corrections were inciuded in the caiculation

lower density run was used as an initial configuration, anoo_f the energies and pressures to compensate for this trunca-

the system was equilibrated by compression through an NPITLon'

simulation to a desired density or pressure. After equilibra- To calcul_ate the free energy of the c_rystalllne SOI'O." we
tion, an NVT production simulation was carried out. At evaluate the integral appearing in K@) using the ten-point

lower temperatures, a problem arises due to the very Slo\&;auss—Legendre qge}drature method. First the average cell
relaxation toward conformational equilibrium when the shape and atom positions were calculated to provide the ref-

trans-gaucheenergy barrier becomes large enough compare&rence_ lattice used in th%h;:alculations. Then, the average en-
to kgT. To circumvent this problem, we employed a method %Y difference(Ug;,—U),™ was evaluated at the appropri-
similar to that used by Tobiaat al® in which starting con- ate ten values ok at constant volume. We note that when

figurations were obtained by isothermally compressing ranz‘io’ ther.e is an external force acting on .the system qu o
domly chosen vacuum chain conforméis., chains in con- the coupling between the atoms and their lattice positions.
formations sampled at different times in a single-chain MDtChonseqtuentIfy, the c_en:tka‘r of ma}ssllst_ not fixed. To c;onstram
simulation initially placed on a cubic lattice. As the confor- Ie ct(;n esrho kgassd":? tﬁgle cl:a Cl.’;r? |onshyv1:] essen '? y em-
mational behavior of flexible molecules is generally found toP!0Y h€ Shake and Ra algorithm, which in practice,

accelerate the equilibrium process. In the study by Tobia§ument and initial center of mass position from all particle
et al® the conformers were obtained from sampling from aposmons, and the current center of mass momentum from all

one-molecule MD simulation. In the present study, we choseE’artilea momenta,. in a S"‘Q'e ?teration at the _appropriate
instead to conduct single-chain configurational bias MCplace in the equation of motion integration algorithm.

simulations using a UA model and then to use sampled con- We pgrform t_he G:{bgs—lDuhem mtegratlondwng respect
figurations to initiate the MD simulations for one point on w0 , i.e., integration of Eq(17), using a second-order pre-

the T=230 K isotherm aP =50 MPa. The final configura- dictor corrector method, and with an integration stepl Bf

tion from this simulation was used as an initial configurationzo'ooc.)l(KkB) l’. which corresponds to an mprement of

for the next higher and lower pressure, and so on, along thgpproxmatey 5 Kin thetemperature range considered here.

isotherm. NPT simulations were conducted at state points

along theT=230 K isotherm and along the phase boundary“l_ RESULTS

in the Gibbs—Duhem integration, while NVT simulations

were performed along the=0.81 g/cni isochore between An important test of the suitability of a particular mo-

T=230 and 650 K. All liquid phase simulations employed lecular model to calculate accurately the free energy of a

equilibration times of at least 100 ps and production runs otrystalline solid is that the crystal structure measured in the

at least 50 ps. simulation closely matches that measured experimentally. As
For the solid phase, the simulation cell contained 50 ocdiscussed in Sec. Il A, standard UA models are unable to

tane chains arranged in two layers oD molecules. predict correctly the measured crystal structure. Further, al-

Constant-stress NPT simulations were carried out at pointthiough Toxvaerd’'s AUA model improves the results for the

along theT=230 K isotherm and along the phase boundarycalculation of the equation of state for fluids at high pres-
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TABLE I. Unit cell parameters for solid-hexane afr =158 K obtained by
experiment and simulationP=0.1 MP3a with the Toxvaerd Anisotropic-

United-Atom (AUA) model. .,

Expt2 MD
p (glen?) 0.888 0.891 . Pt
a(A) 417 3.93 'g o
b (A) 47 5.56 s 7Y
c(R) 8.57 8.19 ™ L8 Tinsege
a (%) 96.6 74.0 b 3
B 87.2 103.0
6) 103.0 110.0

3Reference 55.

sures and densities, it also suffers from the same problem for
the solid. In Table |, we present the results from a constant-
stress NPT simulation for a system of sotichexane at?
=0.1 MPa. The deviation of the unit cell parameter values
from th.e corresponding e_xpe_r_lmentally mea_‘sured valueIS—IG. 1. Simulation snapshot of a systemMf,=64 n-octane chains in the
clearly illustrates the unsuitability of using this model for jsqopic liquid phase a8=0.793 g/cm and T=230 K.
solid-phase simulations. By contrast, the results of another
constant-stress NPT simulation of soleloctane using the
FW model, presented in Table Il, are considerably more fa-
vorable, and demonstrate the need to employ an AA modeBupercritical isotherm af,= 650 K, significantly above the
Simulation snapshots of-octane in the fluid and crys- cfitical point temperature o .=568.6 K. To connect the
talline solid phases are shown in Figs. 1 and 2, respectivelyl 1= 230 K isotherm to thd,=650 K isotherm, we measure
The evaluation of the free energy of the system at statéhe energy at points along an isochorgg¢0.81 g/cnt and
points in the liquid and solid phases requires several separafnploy Eq.(16) to calculate the free energy difference.
calculations for each phase. Below, we give the results of ~ The first step is the evaluation of the single-chain excess
each separate calculation. The values of the various quanfitee energy using the method described in Sec. 11 B 2. We
ties are also listed in Table IIl for convenience. employ a Monte Carlo procedure to generate a series of con-
Figure 3 shows the calculated points on the isothermdgurations from a distribution corresponding to th&, and
used for thermodynamic integration calculations in thiscompute the average in EL2). Using 10 blocks of 200 000
study. We seek the free energy as a function of deigy) ~ chain configurations per block, we determine tigaf gy
in the solid and fluid phases @ =230 K, somewhat larger =—0.68§1), listed as item(1) in Table Il for the fluid,
than then-octane experimental melting temperature of 216whereB;=1/kgT,.
K. To this end, we have calculated isotherms at this tempera-
ture for both phases. The free energy of the solid is calcu-
lated at one point on the isotherm using the Einstein crystal
thermodynamic integration method described in Sec. Il B 1.
The fluid phase free energy must be calculated by thermody-
namic integration along an isotherm to the dilute limit of
p—0. To avoid the problem of passing through the gas—
liquid two-phase region, we have chosen to integrate along a

TABLE Il. Unit cell parameters for soligh-octane obtained by experiment
and simulation.

Expt2 MDP MD®
T (K) 190.0 190.0 180.0
p (glen?) 0.891 0.915 0.916
a(A) 4.22 4.20 4.23
b (A) 4.79 4.62 4.58
cA) 11.02 11.07 11.08
a (%) 94.7 95.0 95.0
B(°) 84.3 84.6 84.7 B R
y () 105.8 104.1 104.2

2Reference 48.
bPresent studyP=0.1 MPa.
‘Reference 39P=0.

FIG. 2. Simulation snapshot of a systemMf,=50 n-octane chains in the
crystalline solid phase g=0.906 g/cm and T=230 K. The chains are
arranged in two layers of>65 chains per layer.
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TABLE IlIl. Calculated quantities relevant for free energy calculatiggs. 200.0
=1/(kgT;), whereT, =230 K andT,=650 K. A*=h/(2mmkgT;)*/?is the

de Broglie thermal wavelength for=C and H atT,=230 K and T,

=650 K. Ng, is the number of alkane chains in the system, agpdndny

are the number of carbon atoms and hydrogen atoms, respectively, per
chain.P(p) is the pressure as a function of density of chdiRg/V. Fg is *
the excess single chain free energy defined in(Eg). Fg(p) is the ideal

gas free energy at densipyand is defined in Eq(14). (Ugi,—U)M is the

average difference between the energy of a crydfaland an Einstein

crystal with the same equilibrium latticeg;, [see Eq(4)], calculated using

an effective potential given by Ed5) for A €[0,1], and subject to the —200.0
constraint of a fixed center of mass. For the solid phBss,the free energy

of the unconstrained crysta,® is the free energy of the crystal with a

constrained center of mass, alﬁg"rf' is the free energy of an Einstein crystal

with a constrained center of mass. Finally,=0.810 g/cri, and py, FIG. 4. Calculated(Au*),=(B/Nep)(Ugin—U)™ used in the ten-point
=0.904 g/cm. Gauss—Legendre integration of K@) at p=0.904 g/cmd andT=230 K. An
Einstein crystal force constant af=30 000 K/& was used.

100.0

0.0

<Au >,

-100.0

Fluid
D) BoF&HNen —0.6881)
(2 BaFis(pa)/Nen—3ncIn AS—3ny In A} 75.9951) out at two different temperatures, we include them explicitly
@) [dp’[BP(p")—p'1(p")? 1.12) to avoid confusion.
4 BaF(pa)Nep—3ncin A5=3nyIn AY 77.11) To determine the free energy of the true fluid @t
5 Jyrs d(AME(pa, T)/(Nerke) 64.973) =0.81 g/cni, we employ Eq.(15). Using a eighth-order
(6)  B1F(pa)/Ney—3ncIn AS—3n,, In AY 142.12) polynomial to fit theT,=650 K isotherm, we find that the
(7 3ncIn(ASIAS) +3ny, In(A57A T —-40.517 integral in Eq.(15) has a value of 1(1) [item (3) in Table
(®  BiF(pa)/Ney—3ncIn AT—3nyIn Af 101.51) l11]. Consequently, the free energy of the fluid has a value of
Solid BoF(pa)/Neh=77.1(1) [item (4) in Table lll]. To connect
n o this pathway with the 230 K isotherm, we employ Et6)
(i?); Eﬁlm‘:g[f{’g?(f??xﬂ(ﬂ )+ FEM 13.41) and carry out the integration along an isochore at 0.81 §/cm
—3lnc n Af_gt;mm AH Po Ein 114.957 We employ a five point Gauss—Legendre integration scheme
1) B1F(py)/Nen—3ncIn AS—3n,, In AY 101.97) to evaluate the integral and find thatB,F(T,)

— B,F(T5,))/Ngp=164.9(1) atp=0.81 g/cni. Consequently,
the free energy of the fluid less the kinetic factors in @4),
3ncIin AS+3ny,In AY, has value 142(1) [item (6) in Table

Using Eq.(14), we determine the ideal gas free energy atlll . To provide a more convenient reference point to com-
T,=650 K at a density ofp,=0.81 g/lcni. We calculate Pare with the solid phase, we evaluate the difference between

Zicdh,int through a numerical calculation of the integrals in Eq_the free energy and the kinetic terms, where the latter are
(A8). We find that B,Fg/Ng—3ncIn AS—3n,In AY evaluateéj agr1=230 K. lg:oanequently, we _add a vall_Je of
— 75.995[item (2) in Table I1I], whereA® is the de Broglie ~ 3NcIN(Az/A7) +3nyIn(A3/A7)=—40.517 [item (7) in
thermal wavelength for a particle of type=C,H at tempera- Table IIl], and find that the free energy of the liquid @t

ture T,. These kinetic terms involving the thermal wave- = 9-81 g/ccnfl and T1H2230 K has a valuessF(pa)/Nen
lengths which arise from the integration of the momenta in— 3NcIN A7—3nIn Ay=101.5(1)[item (8) in Table IIl].

the partition function play no essential role in the free energy ~ Figure 4 shows the calculate@u®),=(B/Ncr)(UEin

CM . . .
calculation. However, because the calculations were carried U)x used in the ten-point Gauss—Legendre evaluation of
the integral in Eq(7). We note that for the value of Einstein

crystal force constant that was usee=30000 K/A2), the

function (Au*), has a positive peak near=0, and a small
negative peak near=1. This behavior was also noted in our
?g ] previous study of semi-flexible Lennard-Jones chains in the

1000 ¢
100 E case of stiff bond$! If « is small, then, in the limit where
i ] A—1 and U=Ug;,, deviations in bond lengths and bond
angles from their equilibrium values will be significant, and
lead to a large value of) and, therefore, a possibly sharp
TS (it reduction in(Au*),. If « is too large, then, in the limit
I—F] T=230K (solid) ~ . .
—— Coexistence | ] where \—0 andU=U, the individual atoms may deviate

(O Critical Point
WM T=650K (fluid)

Pressure (MPa)
)
\

A R R B significantly from their equilibrium lattice positions, leading
00 02 04 06 08 10 to a large value ofUg;, and, therefore, a high value of
Density (g/cm’) (Au*), . These two cases lead to peaka.atO and 1. As in

_ _ the case of the Lennard-Jones chain system with stiff
FIG. 3. Calculated isotherm far-octane aff =650 K for the fluid phase, bonds31 we find that there is no intermediate valuewmfhat
and atT =230 K for solid and liquid phases. The gas—liquid critical point at ’

T=568.4 K is also labeled, as well as the solid—liquid coexistence tie line atSimU_ltaneOU5|y removes both peaks and yields a smoothly
P=50.82 MPa forT =230 K. varying (Au*), over the full range of\. Nevertheless, the
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C N T L R TABLE IV. Calculated liquid—solid coexistence points faroctane.
115.0 |- - A
- A T(K) P (MPa) pr (glent) ps (glent)
[ —— 80 2 &
1160 T Dsesrsins E 219.89 2.4 0.775 0.911
3 : r 224.83 25.5 0.781 0.909
Q. L - 230.00 50.8 0.790 0.910
105.0 ] 235.41 77.9 0.803 0.916
L ] 241.09 104.8 0.806 0.919
1000 -
[T IR I AR

-500 0.0 500 100.0 150.0 200.0

230 K isotherm prior to thermodynamic integration along the
Pressure (MPa)

isotherm branches. The uncertainty of the free energy for
FIG. 5. Solid and fluid branches of the reduced chemical potegfisis a  POth the solid and liquid reference pointsi =0.1kgT, per
function of the pressur® at T=230 K. chain. Applying a relative shift of the chemical potential of
26F shifts the location of the intersection of the(P)
curves in Fig. 5 by approximatelyP=20 MPa. Next, we
value of«=30000 K/A* was found to minimize each of the conduct simulations for the solid and liquid phases at 50.8
two peaks. It is possible that the presence of the peaks coulglpa + sP to measure the enthalpy and molar volume dif-
present problems for the ten-point Gauss—Legendre numeferences between the phases and take a linear approximation
cal integration. Since the calculation of the ten points in Fig.of Eq. (17) to construct shifted melting curves. The region
4 was extremely time-consuming, we did not repeat the nupetween the two calculated gives a reasonably accurate mea-
merical integration for more points, nor did we attempt tosure of the uncertainty of the position of the melting curve;
determine a suitable transformation to a different integrationhjs region is colored gray in the figure.
variable such that the integrand is a more SmOOthly Varying Superimposed on the phase diagram are three points on
function. However, we note that when such approaches werge melting curve taken from the experimental differential
tested in our previous studfyfor the stiff-bond Lennard- thermal analysis study @foctane of Wuflinger 52 While the
Jones chain solid, for whichAu*), also displayed the same pressure dependence of the melting temperature in that study
features, the 10-p0int integration was found to be SUﬁiCienthVas measured to pressures of up to 300 MPa, F|g 6 includes
accurate. only those data which fall within the 0—-100 MPa pressure
The integral has a value ofgd\(Au*){"=13.1(1) range considered in the calculations. The experimental
[item (9) in Table Ill]. We subtract this from the quantity “curve” is essentially parallel to the calculated curve, and
(B1/Nep[(F(pp) = FM(pp)) +Fgin], which is defined by shifted to lower temperatures by approximately 3 K. Further,
Egs.(8) and(9), and which has a value of 114.95%m (10)  we note that the experimental data points lie within the
in Table Il1]. Thus, the free energy of the crystalline solid atshaded area for the temperature range considered here.
p,=0.904 g/cm and T;=230 K is given byB;F(pp)/Ncy Given that the temperature scale in Fig. 6 is highly ex-
—3ncIn A7—3nyIn Af=101.9(1)[item (11) in Table Il].  panded, the quantitative agreement between the experimental
From the calculations described above, the absolute fregnd calculated melting curves is striking: the melting tem-
energy of then-octane system is known for one point on peratures have been calculated to within 2% of their true

each of the solid and fluid branches of the 230 K isothermyajues in the pressure range considered. As stated above, the
As we have calculated several points along the isotherm, we

can determine the chemical potential of each phase as a func-
tion of density or pressure at this temperature using Ejs. L |
and(3). Solid and liquid branches qf(P) are shown in Fig. 100.0 |- ELEsimlﬂfﬁmt Y -
5. The intersection point &=50.8 MPa gives the pressure I — ]
at coexistence between the two phases at 230 K. This corre-
sponds to densities gf,=0.790 g/cm for the liquid phase

P (MPa)

, 50.0 - .
and ps=0.910 g/cmi for the solid phase. -
With one point on the coexistence boundary, we obtain
other points along the curve via Gibbs—Duhem integration, L 'y
i.e., by integrating Eq(17). The results are tabulated in 60 &~ 7
Table 1IV. The melting curve in th®-T plane is shown in 2100 2200 230.0 2400 250.0
Fig. 6. The curve is almost perfectly linear, which is simply T (K)

a reflection of the narrow 20 K temperature range consid- _ _ _

ered. To estimate the uncertainties in the calculated meltinff/C: 6. Calculated and experimental melting curves-actane. The simu-
. . . tion data were calculated by solving the Claussius—Clapeyron equation via

curve data, we note from Fig. 5 that small relative d'Splace'the Gibbs—Duhem integration procedure. The integration was initiated using

ments of thew(P) curves will shift the position of the inter- the coexistence point &=230 K obtained from the intersection of the

section of the curves over a wide range in pressure. Consehemical potential curves shown in Fig. 5. The gray zone marks the limits of

quently we assume that the principal source of error is th#ncertainty in the calculated melting curve. The procedure for the calcula-
’ ion of the uncertainty region is given in the text. The experimental data

uncertainty in the_ CalCUlation_ Of_the absol_ute free energy alyere taken from Ref. 52. The simulation melting curve data are also listed in
the reference points on the liquid and solid branches of theable Iv.
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guantitativeprecisionof the calculations is determined prin- Kid b

cipally by the precision with which the solid and liquid phase ~ Uidp=—5~(r— o). (A1)

free energies are calculated. However, the quantitatbesi-

racy of the calculations, i.e., the degree to which the calcu-This is summed oven-1 CC bonds and2+2 CH bonds on
lated and experimenta| data agree, is also expected to @Ch molecule, and is identical to the form which appears in
highly sensitive to the details of the molecular potential em-the FW potential. We choose force constants and equilibrium
ployed in the calculations. Although the FW model was de-bond lengths, to be equal in magnitude to those used in the
veloped and optimized to reproduce various measured dafWV potential: kiq,=111200.0 K/&, 1,=1.530 A for CC

for the solid and high-density liquid phases of alkanes, it igoonds, andkiqp,=155800.0 K/&, 1,=1.040A for CH

not clear that it would be adequate to calculate accurately theonds.

free energies required for the calculation of the solid—liquid ~ * A CCC angle-bending term:

phase boundary. The positive result of this study indicates KEee

both that a realistic all-atom model of this sort is sufficient, Ui‘éﬁfz%(emc— 65°92. (A2)

and that the free energy calculations themselves can be per-

formed with sufficient precision, in order to predict accu- This term is summed over thel CCC bond angles. Again,

rately the melting curve for a-alkane system. it is again identical in form, and with the same force constant
and average CCC bond angles, as that employed in the FW
IV. CONCLUSIONS AND OUTLOOK potential:ki%f:ﬁcz 62500.0 K/rad and 65°“=112°.
* A CCH angle bending term:

While the basic computational methods required to cal-

culate the free energies of solids and liquids and, therefore, UCCH_ %,CeH(GCCH_ gCCH?2 (A3)
equilibrium solid—liquid phase behavior, have been available id,o " 9 0 '

for many years, there has been little effort made to applyl_

these methods to realistically modeled molecular systems h|s_term IS summed only overr2-2 CCH bond angles;
that is, we include only one CCH bond angle per hydrogen

Work in this area has until now focused on simple, and N This choi Hact traightt q Wtical
mostly rigid, molecules. To our knowledge, the present stud)?i om. This choice effects a more straightforward analytica

is the first to apply these methods to a truly realistic modefe\/a'u"jltlon 9f the. partition function. Further, the force con-
for a system of large flexible molecules. The results loo stant magnitude is not set equal to that in the FW potential.

very promising: using a relatively simple all-atom alkane 0 guarantee conditio@) for Ug, described in Sec. Il B 2

model we were able to obtain quantitatively accurate result{'® setkig j=60000.0 K/rad. However, 65"=110.0°, as
for the melting curve of-octane. While this system is still " the FW model.

relatively simple compared to a polymer chain system, for A CCH azimuthal angular term:

example, it is considerably more complex than the diatomic

or triatomic molecular systems studied to date. At present, a  ~idé ™~

mﬁ; :calgrg:tle:r}?oifurtorulirr]ett??jzg'?elfrlrjlliitelot?\seIfngl]tei:nlarguerv??;-r-rhis term has the same constraining effect as an HCH angle
P q 9 bending potential, which is not included m;f’h (again, to

2_02?:::2&'_'23\?:\?; O\i:/?t?]nlﬁgc rad:gl?ncTeOel(sagu:ﬁScoSrlrJ\CZtir?SSimp"fy the evaluation of the partition functipnp©“His the
' ' P PUling, 7 imuthal angle of a CH bond relative to the carbon skeleton.

power, calculations that are barely feasible now should bel’his term is summed overr2azimuthal bond angles: B(

standard in a few years time. —2) methylene$®“" angles, and four of the six azimuthal
angles associated with the terminal methyl groups. We take

k:
52 (¢ pGrH2 (A4)
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A carbon skeleton torsional potential term:

APPENDIX: DEFINITION OF UE, AND Z§,

9
In this Appendix we describe in detaild,, the “ideal” Uidior = mzzl Cr“CeosM (9. (A6)

component of the single-chain potential energy discussed in

Sec. Il B 2. We choose b'9, composed of bonded interac- This CCCC torsional potential is also chosen to be identical

tion terms of the following types: to that used in UA and constrained-AA alkane model poten-
* A bond-stretching term: tials. The expansion coefficient values are taken from a fit to

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1510 J. Chem. Phys., Vol. 111, No. 4, 22 July 1999

J. M. Polson and D. Frenkel

recent accurate spectroscopic data ahdnitio calculations and are given in Ref. 54.

The partition functionzﬁ,h is given by
V
ACSHCAHSnH

whereA - andA  are the de Broglie thermal wavelengths of

id _
ch™

id
ch,int»

(A7)

each ofrthearbon andy, hydrogen atoms resulting from the

integration of the momenta. The “internal” contribution to the single-chain ideal energy partition furﬂ‘,ﬂ;gm, in the limit

of stiff bonds, is given by

. [27 1\ [27 (RN n-2
79 =872 12 \/——| 1+ ——— 12\ —] 1+ —— J désingexy — BuSce
ch,int eV gk, S i\ Bi, EREn . A —Buigs
27 n—-3 T 2n+2 20 2
X . de ex] — Bug’s© UO d@singexg — BugS’ { d exd — BuigS;
2a 2n
X o d¢ eXF[ — ﬁuid’¢] (A8)

The five integrals in the above equation are evaluated numerically.
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