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Can stacking faults in hard-sphere crystals anneal out spontaneously?
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We estimate the rate at which randomly stacked hard-sphere crystals transform into the
thermodynamically stable face-centered cubic phase. As an input for this estimate we need both the
free-energy difference between bulk face-centered c(fb and hexagonal close packedcp

phases, and the hcp—fcc interfacial free energy. The latter quantity was computed using a
lattice-switch Monte CarldMC) simulation method. We find the interfacial free energy to be
nonzero but extremely small: 265- 10 °kT/a?, whereo is the particle diameter. The free energy
difference between the bulk phases was calculated using two different techniques. On the basis of
our simulation results we estimate that in hard-sphere colloidal suspensions millimeter-sized
randomly stacked crystal will anneal to form essentially pure fcc crystal on a time scale of months
to years. ©1999 American Institute of Physids$s0021-96069)51709-]

I. INTRODUCTION nm range. In other words, for a typical hard-sphere colloid, it
would take months to transform a one-millimeter crystallite

The freezing of hard spheres is one of the most dramatigrom rhep to fec. For a 50—10 crystallite, the time would
illustrations that the emergence of crystalline order can bge gays, rather than months. However, fcc crystallites that
entropy driven. Ever since the early simulations of Alder,are found to form much faster, cannot be pure hard-sphere
Wainwright' and Wood and Jacobsdrard-sphere freezing crystals.
has been studied extensively, both theoreticaflyand To estimate the rate at which the fcc phase grows from
experimentally.® Hard spheres can occur in two different the rhcp phase, we need to estimate the relative free energy
crystal structures, face-centered cubicc) and hexagonal of the latter. The free energy of the rhcp phase contains
close packedhcp). These two phases differ in the stacking several ingredients: First of all\f=fpcp—free, the differ-
of the hexagonal close-pack¢till] layers. The fcc phase ence in bulk free energies per particle of the pure fcc and hep
has ABCABC:- stacking, while the hcp phase has phases. Secondly, the interfacial free eneygy, i, Which
ABABAB:- stacking. Of the two crystal structures, the fcC is the measure of the additional free-energy cost to create an
phase is the most stable. Recent simulations suggest that, @t_ncp interface. And thirdly, the stacking entropy of the
the melting density £/ po~0.736, wherep, is the density at  ncp phaseKg In 2 per plang Although Af is known from
regular close packinghe fcc phase is more stable than hcprecent simulation® its value has been subject to
by an amount of the order 0f92-10 *ksT per particle?®  gepate?®910We, therefore, recomputed it using two differ-
As the free-energy difference between the two phases is Velynt techniques. We find that the different approaches do in-
small, the spontaneous generation of stacking faults is quitgeed yield the same answer. To compyitg,_.cwe used a
common. In fact, recent experiments on the crystallizationattice-switch Monte Carlo technique that is described in
under micro-gravity conditions of suspensions of harshly resome detail below. Finally, to estimate the actual growth
pulsive colloidal sphereghenceforth referred to as “hard- rate we make use of the version of the Wilson—Frenkel
sphere colloids), found that randomly stacked hexagonal |y 15 a5 applied to colloids by several authdfs’®
close-packedrhcp) crystallites were formedf Yet, there is
fecxcpenmen_tal evidence that, in slowly grown crystallltesz thew LATTICE-SWITCH MONTE CARLO

phase is favored over the hcp phase, and fcc stacking o
hexagonal close-packed planes occurs with a higher than ran- To compute the free energy of the fcc—hcp interface, we
dom probability*>=* The aim of the present paper is to es- used the lattice-switch method proposed by Bruce and
timate the driving force for the formation of a pure fcc phaseWilding.'° This method is particularly suited to compute the
from the randomly stacked phase. Using some simple adree-energy difference between two different solid structures,
sumptions about the rate of crystal growth, we can then arprovided they have the same number of degrees of freedom.
rive at an estimate of the growth velocity of essentially pureAs a test, we used the same method to compute the free-
fcc crystals from a poly-crystalline mixture of randomly energy difference between the bulk fcc and hcp phases. In
stacked crystals. Our main conclusion is that the drivingthe lattice-switch simulations, we consider two realizations
force, although weak, is large enough to account for eof the crystal structure that are related through a simple one-
growth rate of fcc crystals that is of the order ofigsttons  to-one particle mapping. The configuration of the system is
per second, for colloids with a hard-core diameter in the 10@enoted by an index. The particle positions in configura-
tion « are denoted by?i“+ 5, Where)zi“ is the lattice posi-

dElectronic mail: frenkel@amolf.nl tion for particlei in configurationa, and ; is the displace-

0021-9606/99/110(9)/4589/4/$15.00 4589 © 1999 American Institute of Physics

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4590 J. Chem. Phys., Vol. 110, No. 9, 1 March 1999 S. Pronk and D. Frenkel

TABLE I. Simulation results for the free energy difference between fcc and
hcp structures of the hard-sphere crystal. The system size is denotéd by
El stands for Einstein integration, and LS for the lattice-switch method.
Except for the last line, all data correspond to a reduced densip/ mf
=0.7778. The data in the bottom line are foip,=0.736.

N Afpeprcd 107 %KkgT) Method
216 10t-4 LS (Ref. 10
1728 833 LS (Ref. 10
5832 86-3 LS (Ref. 10
216 132:4 LS (this work
1728 112-4 LS (this work
1728 1134 El (this work)
12096 90:20 El (Ref. 9

replacing the lattice position¥; but retaining the displace-
mentsd; , the probability of finding the system in configura-
tion « is

Z(N,V,T,a)

P(a|N,V,T)=W. (2)

The Helmholtz free energy of configuration is f,
=N"1F,=N"1kTInZ(N,V,T,e) and the free energy differ-
ence between the initial and final configuratiqdenoted by
a; and a¢) can be written as

KT, P(efIN,V,T)
"N "P(aNV,T) ®)

Af

FIG. 1. To compute the fcc—hcp interfacial free energy, we used the lattice-

switch Monte Carlo method to evaluate the free-energy difference betweeiThe probabilitiesP(«|N,V,T) are sampled using the histo-
structures(a) (left) and (b) (right), shown in side view. Crysta contains gram method of Ref. 10.

one fcc slab and an hcp slab of equal thickness. In strugh)ethe total . .
amount of fcc and hcp is the same, but now there are four crystal slabs. As For the calculations on the free-energy difference be-
a consequence, the total area of the fcc—hcp interfaée)iis twice thatin ~ tween fcc and hep structures we have used an fcc crystal as
(a. configuratione; and an hcp crystal as configuratienn. To
calculate the interfacial free energy between fcc and hcp we
have used a system where the layer stacking for configura-
. . . . . . __tion «; is the structure denoted in Fig(d), while configu-
ment relative to its lattice position. The different crystalline . : . ,

) ) ) ) - i HorEe = 1.--N ration a; corresponds to Fig.(b) in the same figure. We
configurations differ in their lattice positions”,i = obtain the hcp—fcc interfacial free energy density by com-
Below, we discuss two lattice switches. In the first, we CONuting the free energy difference between Fig&) Jand

sider a lattice switch from a pure fcc to a pure hep phase. 13y and dividing this difference by the difference in inter-
the second, the initial configuration corresponds to a crystal.i5 area of Figs. () and Xb).

structure in which the first half of the hexagonal layers have
fcc stacking and the second half in hcp, while the final con-
figuration has the middle two quarters swapped, creating §; RESULTS
crystal which has four parts: fcc, hep, fcc, and H8ee Fig.
1). In this case, the net result is that the initial configuration ~ Most simulations were performed at a reduced density of
has two interfaces between fcc and hcp, while the final on@/po=0.7778, (packing fraction »=0.5760), a density
has four(with periodic boundary conditionsYet, the total somewhat higher than the melting density. This density was
amount of fcc and hcp both configurations is the same.  chosen because, at the melting density, mechanical instabili-
We can define a global partition functioA(N,V,T) as  ties can occur for intermediate values of the lattice-switch
the sum of the partial partition functions for the different parametera—i.e., the various crystal stackings themselves
configurationsa are mechanically stable, but tHanphysical states in be-
tween may exhibit a shear instability. Another reason to se-
N lect the reduced densipyfp=0.7778 is that it allowed us to
Z(INV,T)=2>, Z(N,V,T,a)=> f dé [J e ®@®, (1) compare our data with those of Ref. 10. In all simulations,
« a JV ‘ periodic boundary conditions were used.
We first calculated the free energy difference per particle
where® represents the configurational energy in uki3. between fcc and hcp stackinga f(,c,_tco. In Table | we
If the system can switch between different configurations bypresent our results. In the same table, we also show the free-
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energy difference at a reduced density of 0.7tB& melting  stacking. In a randomly stacked crystal, there is a 50% prob-
density, as computed by Bolhuist al.® using the Einstein ability that the first stacking fault will appear at the next
integration method.Our results differ by a small but statis- layer. 25% for the following, and so on. It is easy to verify
tically significant amount from those of Bruce and that the average domain thickness is four layers. The factor
Wilding.!® This is troubling because the present simulations0.25 in the second term on the right-hand side of &.
are only marginally longer than those of Ref. @0e longest accounts for the fact that there is, on average, one stacking
runs in Ref. 10 sampled overx&10’ MC cycles—all our  fault per four layers. The factax, appears because we have
runs were about 30% longeiVe, therefore, felt it necessary to convert form free energy per unit areg,{,_t.J to free
to check our results using a completely different numericaknergy per particle. Our simulations suggest that for small
technique. To this end, we performed an Einstein integratiorrystals (less than a thousand particles per plarep is
on the 1728-particle system, using the same code that wasore stable than fcc. Hence, only after the crystallites have
employed for the calculations in Ref. 9. grown beyond this sizécorresponding to lateral dimensions
The results of these simulations agreed to within theof some ten microns for real colloidal crystatsan the slow
(small statistical error with our lattice-switch MC results. In annealing towards the stable phase commence. Let us, there-
Ref. 10 it was suggested that the lattice-switch technique ifore, consider crystals that are sufficiently large, that we can
substantially more precise than the Einstein integratiorignore the stacking entropy. Then the driving force per par-
method—we find that, for simulations of comparable lengthicle to convert from rhcp to fcc is
the two methods are about equally accurate. We can use our .
results forN=216 andN= 1728 to estimate fy.,_in the A =08 Fep_toct 0.25¥hep-1oSo,
limit N—co. If we assume that finite-size corrections scale asvhich, in the present case, is approximately equal to
1/N, then the results foN= 1728 are, to within the statistical 6.104.
error, equal to the results for the infinite system. Let us now consider the growth of fcc crystallites at the
The calculation of the interfacial free energy was per-expense of rhcp crystallites. It is plausible to assume that fcc
formed on a 1X 12X 24=3456 particle system at a reduced crystallites grow where @111]-grain boundary of the fcc
densityp/po,=0.7778. The total length of the simulation was crystal is in contact with an rhcp crystal. That is, we assume
6-10° Monte Carlo cycles. The hcp—fcc interfacial free en-that the rate of restacking that occurs in the bulk is negli-
ergy was found to be 266-10 °kgT/c?, with o the par-  gible. We also ignore shear-induced transformation from
ticle diameter. In what follows, all free energies will be ex- rhcp to fccl® In the case of colloidal crystal growth from
pressed in units okgT and all distances in units of the solution, the velocity of the crystal front is, to a good ap-

particle diametewr, unless otherwise noted. proximation given by* 7815
{D AulkgT
IV. DISCUSSION ver=p- (74711, (5)

Using the numerical data presented above, we can estivhere A u is the chemical-potential difference between lig-
mate the free-energy difference between the stable fcc phasgd and solid.D, the (short-time self-diffusion constant in
and the rhcp phase. If we assume that the stacking in the rhape dense colloidal suspension, is typically one to two orders
phase is truly random, then the free-energy difference pesf magnitude smaller than the self-diffusion constant in a
particle is dilute suspension\ is a characteristic distance over which a

_ _ particle should diffuse in order to be incorporated in the

Afinep-toc= 058 Fhep-toct 0-25Vhcp-teSo I 2/Niayer, (4) crystal, andZ is a factor of order unity. In order to arrive at
where s, is the surface area per particlesoE(1/3/2)  an estimate for,,, we assume that grain boundaries are
X(polp)?Po?~1.0202, for p/po=0.7778) andNpye is the  Jiquidlike, and the characteristic distandeis of the order of
number of particles in a single close-packed layer. In(Bg.  the particle diameters. Moreover, we replaceAu by
we have assumed that the interfacial free energy does nagif, . ... Fora 200 nm colloid, a typical value f@ would
depend on the density of stacking faults—in other words, wehe D~2.10"1% cn? s 1. The resulting estimate for, is
ignore the interaction between successive interfaces. Morey  ~6-10"° cms . Hence, this rough estimate suggests
over, we assume that all stacking faulighich are fcc—hcp,  that it would take several months to gra 1 mm fccerystal,
fecc—fce, or hep—hcphave the same interfacial free energy. starting from a rhep crystallite. It is, therefore, hardly sur-
This is, of course, an approximation. However, as theprising that only random stacking was observed in the micro-
stacking-fault free energy itself is small, the resulting error isgravity experiments of Zhet al!* However, many studies
probably negligible. of crystallization in colloidal suspensions last months or

In a randomly stacked crystal, both fcc and hcp domaingven years. The present analysis suggests that the fcc crys-
will occur with equal probability. This explains the first term tallites observed under those conditions could indeed be

on the right-hand side of E¢4): “true” hard-sphere crystal fcc phases. A second conclusion
frogt fi is that small crystallitegcontaining less than 36-3.10*
%— free=0.8AFpep_fece particles will never become fcc-likémost likely, these will

eventually ‘“evaporate” due to Ostwald ripening
The minimum thickness of such a domain is three layerdntermediate-sized crystallitecontaining less than 160
(because it takes three layers to distingudBC from ABA  =1C° particles can be fcc-like, but will always have an
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appreciable equilibrium concentration stacking faults. Inponential decay. Stretched exponentials often arise as a su-
practice, one would expect that a poly-crystalline sample willperposition of simple exponentials with a wide distribution
contain crystallites of many different size. As E4) shows, of time constants. However, as we do not know the
the driving force depends on the crystallite size. This is beerystallite-size distribution in these experiments, we cannot
causeN .y, the number of particles per close-packed layermake a direct comparison between theory and the experi-
is proportional to the cross section of the crystal. The smallemental data.

the linear dimensions of the crystal, the smaller the thermo-
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