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Recoil growth: An efficient simulation method for multi-polymer systems
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We present a new Monte Carlo scheme for the efficient simulation of multi-polymer systems. The
method permits chains to be inserted into the system using a biased growth technique. The growth
proceeds via the use of a retractable feeler, which probes possible pathways ahead of the growing
chain. By recoiling from traps and excessively dense regions, the growth process yields high success
rates for both chain construction and acceptance. Extensive tests of the method using self-avoiding
walks on a cubic lattice show that for long chains and at high densities it is considerably more
efficient than configurational bias Monte Carlo, of which it may be considered a generalization.
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I. INTRODUCTION

Much current activity in polymer science focuses on s
tems of mutually interacting polymer chains, such as se
dilute and concentrated solutions, melts, or chains tethere
a surface. Topics of interest include chain conformatio
phase behavior, and relaxation dynamics with emphasis
entanglement, reptation and the glassy state. Besides th
of analytical methods, advances in the theoretical und
standing of such systems draw heavily on compu
simulation.1 Unfortunately, simulations of multi-chain poly
mer systems are notoriously difficult and except for the lo
est densities, are largely restricted to unrealistically sh
chains.2,3

The principal difficulty is one of chain entanglemen
Large scale conformational rearrangements of a chain
hindered by excluded volume restrictions both with itself a
with neighboring chains. This, of course, merely reflects
prevailing physical situation: Multi-chain dynamics are e
ceedingly slow on the time scales found in simple molecu
systems. Consequently, simulation methods such as mo
lar dynamics~MD! which attempt to model the true physic
dynamics, suffer from relaxation times that increase rapi
with chain length and density.2 The same problem applies t
Monte Carlo~MC! methods employing random local motio
of chain segments, such as bond rotation algorithms or
bond fluctuation model.2

In many situations however, one is not explicitly inte
ested in the intrinsic dynamics of the polymer system,
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merely its static equilibrium properties. Alternatively on
may wish to study relaxation, but lacks the means of e
ciently preparing well equilibrated starting configurations.
such instances it is expedient to forego local MD and M
algorithms in favor ofartificial MC dynamics, which permit
a much more efficient exploration of configurational pha
space. Unfortunately, most of the efficient algorithms t
lored for a single chain, such as the pivot,4 cannot be applied
in the multi-chain context. One exception is the well know
‘‘slithering snake’’ algorithm which mimics the back an
forth reptation motion of chains, without explicitly attemp
ing to model the time consuming local segment fluctuatio
For studies of chain diffusion in a dense multi-chain syste
rapid relaxation was observed5 using this method. Othe
studies, however, suggest that the slithering snake motio
prone to self-trapping6 and that chains can become locked
‘‘cages.’’3 Furthermore, the method is inapplicable for tet
ered or nonlinear polymers.

Recently there has been some effort to develop MC
gorithms specifically tailored to deal with multi-polyme
systems. One such method has been proposed7 that affects
large conformational changes by splitting and bridging pa
of chains. This approach is efficient, but necessarily int
duces chain-length polydispersity into the system. Other s
cialized multi-chain algorithms suitable for lattice chains
very high densities close to or at saturation have also b
developed.8,9 However, their general applicability is limited
and so will not be considered further here.

A more attractive class of MC algorithms suitable f
multi-polymer simulations areab initio ‘‘growth’’ algo-
rithms that attempt to engineer large scale configuratio
changes by removing a chain from the system and placin
0 © 1999 American Institute of Physics
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elsewhere, or by replacing parts of a chain. The previou
removed chain or chain portion is reinserted into the sys
with the aid of a growth algorithm. The viability of the tech
nique as a whole depends crucially on the manner in wh
this growth is implemented. Several approaches are poss
The most basic is to employ a simple~nonreversal! random
walk in which a chain of lengthN is grown as a sequence o
N randomly oriented steps. The construction fails if t
growing chain visits any point in space that is excluded d
to the presence of other particles. In practice this approac
almost useless~particularly for dense multi-chain systems!,
since a growing chain sooner or later encounters exclu
volume. As a result, the chain construction rate falls ex
nentially with N, i.e., f con.exp(2c0N).

In view of the high attrition rate for the simple rando
walk, Rosenbluth and Rosenbluth~RR!10 introduced a bias-
ing technique for increasing the chain construction rate
the original formulation of this method, one considers
single chain growing on a lattice. At thei th step of its con-
struction, the chain is accordedk possible distinct random
growth directions~on a latticek is usually taken asq21,
with q the coordination number!. Unlike the simple random
walk, however, the chain at each step does not blin
choose a random direction from the set ofk. Instead it ex-
amines allk possibilities and chooses the actual step from
subset ofwi directions that avoid excluded volume. Ifwi

50, then the growing chain has run into a dead-end
‘‘trap’’ and the construction fails. Of course, choosing t
actual step from the subset ofwi directions instead of the ful
complement ofk, for i 51, . . . N, introduces a bias. The
total construction bias accumulated overN steps is subse
quently compensated for in the calculation of averages.

Although considerably more efficient than the simp
random walk construction mentioned above, the RR te
nique is still inefficient for very long chains due to its sho
sightedness. By looking ahead only one step, it often bl
ders into traps. This trapping means that the attrition is s
ultimately exponential inN, i.e., f con.exp(2c1N), although
with a coefficientc1!c0 . Alternatively the attrition can be
reduced by employing the ‘‘scanning method’’ of cha
growth.11 For each of thek directions of ani th step, one
constructs a Cayley tree of all free pathways ofl further
steps. The actual next step is then made probabilistically
pendent on the number of progeny spawned by each of tk
directions. However the CPU time expended on construc
the Cayley tree increases exponentially withl , which limits
the scanning method considerably. In view of this problem
variant of the method known as Double Scanning12 has been
developed in which only a subset of all possible future pa
are explored. This improves the efficiency of the method,
both renders the sampling approximate and reduces the
ity to circumvent traps.

The RR algorithm, originally developed for the study
single chains, has recently been incorporated into a m
chain MC scheme known as configurational bias Mo
Carlo ~CBMC!.13–15 Within the canonical ensemble formu
lation of the CBMC scheme, one considers a system cont
ing a fixed number of chains, each of lengthN. A chain is
chosen at random and an attempt made to regrow it e
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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where in the system, using the RR scheme described ab
If the construction succeeds, the new chain is accepted
replaces the old chain with a probability dependent on
ratio of the total construction bias of the new and old chai
The CBMC method can be used with both lattice and c
tinuum polymer models.16

The chief advantage of the CBMC method is that lar
scale configurational changes can be performed at one
Indeed the method has proved itself very effective at low a
moderate densities for chain lengths up to a few do
monomers. Unfortunately, it transpires that the accepta
rate for chain insertions falls exponentially with increasi
chain length. This problem is symptomatic of the fact th
the RR method produces chains having a probability dis
bution that differs exponentially inN from the Boltzmann
distribution.17 Taken together with the exponential attritio
rate for chain construction, it is clear that the method will
inefficient when dealing with long chains and/or very den
systems. In such situations, the best that can be done is t
to regrow terminal or intermediate portions of chains.18,19

In this paper we propose a new MC method suitable
dense multi-chain systems. Our approach is close in spir
CBMC, but instead of using the standard RR algorithm
grow chains, we employ a more sophisticated biased gro
technique which we call ‘‘recoil growth.’’ The strength o
the recoil growth method resides in its ability to avoid tra
and excessively dense regions by deploying a retract
‘‘feeler’’ of maximum lengthl , to probe the territory ahead
of the growing chain. This feeler recoils from traps a
dense regions, and thus guides the chain along favor
pathways. The result is a substantial improvement~compared
to CBMC! in chain construction and acceptance rates at h
density and long chain lengths. Such a recoil idea has b
proposed by Alexandrowicz and is described in a rec
publication.20 The present application of recoil is, howeve
different from that of Ref. 20. In the present version, a fu
grown new chain replaces an old one with the help of a M
accept–reject step determined by their respective weig
just like in CBMC. In contrast Ref. 20 utilizes a sequence
stepwise lotteries ‘‘on the go,’’ which are applied as the n
chain is being grown and are determined by its own wei
alone. Such a procedure involves a certain approxima
~i.e., it is not exact! but is substantially more efficient.

The layout of our paper is as follows. In Sec. II w
describe our recoil growth algorithm in detail and show ho
it may be incorporated within a MC scheme that fulfills th
detailed balance condition. Then, in Sec. III we test the
lidity of the method and investigate its properties via exte
sive simulations of self avoiding walks on a cubic lattice.
comparison of efficiency with the CBMC method is als
made. Finally Sec. IV summarizes and discusses our fi
ings.

II. DESCRIPTION OF THE ALGORITHM

The form of our proposed recoil growth scheme is m
tivated by the need to address the two principal deficienc
of the RR growth method. The first deficiency is the inabil
to avoid traps. These traps have a wide distribution
depths,17,21 and owing to its myopia, the RR algorithm i
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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incapable of avoiding them. Since the number of traps
creases rapidly with density, the RR algorithm thus suff
low construction rates, particularly for long chains.

The second deficiency relates to the distribution
chains produced by the RR algorithm. In order to avoid
cluded volume and thus maintain a relatively high constr
tion rate, it is necessary to employ a rather large numbe
alternative growth directionsk. Unfortunately, this leads to
an indiscriminate growth procedure that yields an ensem
with low weight chains. As a result, the acceptance rate
CBMC moves falls exponentially with chain length. Clear
therefore, any proposed improvement to the RR growth
gorithm must strive to improve both the construction ra
and the acceptance rate. Our recoil growth algorith
achieves this by positioning at the head of the growing ch
a long retractable feeler having the ability to recoil fro
traps and excessively dense regions. The advantage c
from the fact that if the growth procedure encounters a t
or a dense region, we do not terminate the growth of
whole chain, but merely recoil back the required number
steps~up to a maximum lengthl ), and try elsewhere. In this
way the growing chain both avoids traps and finds be
pathways through the system.

In what follows we describe how the recoil grow
scheme can be incorporated into a canonical MC schem
which individual chains are regrown within the system.

A. Chain construction

A new chain is generated according to the recoil grow
procedure as follows. To begin, the first monomer~denoted
by i 51) is placed at random in the system. From this fi
monomer one attempts to grow a single step~bond! to the
second (i 52) monomer. For this purpose a maximum ofk
distinct directions are permitted. One chooses a random
rection and attempts to grow the chain a single step. If
growth is blocked, however, then another direction is chos
repeatedly if necessary, up to the maximum ofk attempts.
Possible reasons for blockages are excluded volume inte
tions with previous monomers of the chain or with oth
chains. If at thebth attempt no excluded volume is encou
tered, we place the second monomer on the lattice, record
number of unused directionsk2b1, and proceed to grow the
next step. The same process is repeated for all subseq
monomersi 51, . . . N: the chain grows at thebi attempt
and the number of unused directionsk2bi are recorded for
all i .

Suppose, however, that at thei th monomer, the chain
failed to grow to the lengthi 11 within the maximum ofk
possible attempts. In this case it returns to thei 21 monomer
and renews its attempts to grow from there, using thek
2bi 21 previously unused directions. Similarly if it fails t
grow a step at thei 21 monomer~within the total number of
k attempts!, it falls back to thei 22 monomer. In difficult
situations the chain may thus repeatedly grow and fall ba
However, it is not permitted to fall back indefinitely. Ifi max

is the greatest length that the chain attained in its who
growth history, then it may fall back no further than to th
lengthi 5 i max2( l 21). If the chain does recoil to this lengt
~or if n, l and it recoils to its starting point! and still fails,
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then the growth process terminates. We note that once
chain has grown up to the maximal lengthi max, monomers
i 51, . . . ,i max2( l 21) are fixed and no longer subject t
recoil growth. This ‘‘fixed chain’’ only advances by a ste
when the number of steps ahead of it has attained lengtl .
Chain monomersi . i max2( l 21) may be thus regarded a
constituting aretractable feeler of maximum length l, which
allows the growing chain~of fixed monomers! to ‘‘look
ahead’’ by l steps. In this sense our scheme bears some
semblence to the double scanning method of Meirovitch12

although as discussed further in Sec. IV, there are impor
differences.

An example of a possible recoil growth scenario is illu
trated schematically in Fig. 1~a!. The growth procedure can
be envisaged as taking place on a underlying random
that is revealed as the growth proceeds. The tree is forme
assigning random directions to the monomers. This conc
of a tree will be used below for demonstrating that t
method obeys the detailed balance condition. Should the
chain attain the desired lengthN, then it becomes a candi
date for replacing some randomly chosen existing chain,
one proceeds to calculate the weights of both chains.

B. Weight calculation

In order to incorporate the recoil growth scheme within
MC framework it is necessary to obtain the probability
generating a particular chain configuration on the underly
random tree, since this quantity enters into the detailed
ance condition described below. For convenience we s
work with the inverse of this probability, which we refer t
as the chain ‘‘weight.’’ The calculation of this weight pro
ceeds with the use of feelers. Since the procedure for we
calculation differs slightly for the candidate~new! chain and
the existing~old! chains, we shall describe them separate

FIG. 1. ~a! An example illustration of the recoil growth procedure describ
in the text, fork52,l 53. The underlying random tree is shown as a th
dashed line. The initial monomer is placed at pointO and the following
scenario is played out: The growing chain first tries the pathOABC, but
finds it blocked. It recoils to pointB and then succeeds to attain lengthl
along the pathOABD. The monomer atA then becomes fixed. Constructio
continues by examining the pathsDE,DF which are both blocked, so the
chain recoils again to pointA. The open pathOAG. . . is subsequently
found and the second monomer is fixed at pointG. ~b! For the weight
calculation, the backbone of the candidate chain is retraced and from
monomeri , bi feelers are grown starting from the directions that remain
unusedduring construction. FromO one feeler is grown. PathOHIJ is
blocked, and the feeler recoils to pointI , from which it subsequently attains
length l . No feeler is grown from pointA. The respective weights assigne
to pointsO andA are thus:w152, w251.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1. Candidate (new) chain

One visits the successive monomers of the new ch
and from each one attempts to grow~in turn! feelers of
length l , exploring thek2bi first step directions that re
mained untried in the construction process~a feeler already
exists along the chain backbone itself!. These feelers are
grown using exactly the same recoil growth procedure
employed for chain construction. Thus they are allowed
retreat if necessary, because of blockage by monomers
longing to the same feeler, to the candidate chain~up to
where the feeler starts!, and to other chains. However if
feeler recoils byl steps back to its starting point, it is deem
to have failed; successful feelers attain the lengthl . ~For the
last i 5N2 l 11¯N monomers, the feelers are progressive
shortened by one step!. Examples of feeler growth scenario
are given in Fig. 1~b!. The weight~inverse construction bias!
at each step of the new chain is given by the number
alternative directions in which thei th to i 11th step could
have been taken under the rules of our recoil growth sch
~we shall elaborate on this point at the end of this sectio!.
The total chain weight is, therefore,

Wn5 )
i 51

N21
wi

k
, ~1!

where wi is the number of successful feelers starting
monomeri ~including the one along the existing chain! and
for convenience we have normalized byk.

2. Existing (old) chain

When an existing chain is selected for possible repla
ment by the candidate new chain, its weightWo is computed
by constructing new feelers alongk21 directions randomly
assigned to the monomers~the direction along the existing
chain is of course not examined!. Otherwise the calculation
of Wo proceeds exactly as for the candidate new chain,
with the help of Eq.~1!.

C. Detailed balance and acceptance probability

In a MC phase space trajectory, microstates are vis
with the appropriate equilibrium probability distribution
one imposes the detailed balance condition, which dema
equality of the transition rates from some initial~old! stateo
to some final~new! staten, and back again, i.e.,

qnP~n→o!5qoP~o→n!, ~2!

whereq is the equilibrium probability~Boltzmann! distribu-
tion to which the old and new states belong, andP(n→o) is
the transition probability from staten to stateo.

Our canonical ensemble Monte Carlo procedure invol
attempting to exchange an old chain with a new chain.
the purposes of demonstrating detailed balance, one
imagine this to occur with the help of random trees as f
lows.

~i! A random treetn is generated havingk bifurcations at
each step, cf. Fig. 1.
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~ii ! The recoil growth process is executed upon the r
dom treetn and a new chain configuration is gene
ated.

~iii ! A random treeto is generated around the old chai
such that the old chain configuration lies on the tre

As we shall see, the last step~iii ! is necessary so that one ca
define a reverse Monte Carlo move.

Clearly within this formulation, the probability of gener
ating given random trees for both the newand old chains
enters the expression for the transition probability, which
given by

P~n→o!5 (
to ,tn

Pg~cn ,tn!Pg~ touco!Pa~~co ,to!→~cn ,tn!!.

~3!

Here, Pg(cn ,tn) is the probability of generating the new
chain configurationcn on the treetn with the recoil growth
algorithm. This may be written Pg(cn ,tn)
5Pg(tn)Pc(cnutn) where Pg(tn) is the a priori probability
of generating a given treetn and Pc(cnutn)51/Wn is the
probability of constructing the new chain on that tre
Pg(touco) in Eq. ~3! is the probability of generating the ol
tree to given the old chain configuarionco . The probability
of accepting the exchange of chains (o→n) is given by
Pa((co ,to)→(cn ,tn)), and the sum extends over all possib
combinations of new and old trees. The probability of t
reverse moveP(n→o) is simply obtained by subsititutingn
by o and vice versa in Eq.~3!.

Detailed balance@Eq. ~2!# is satisfied if one imposes th
stronger condition of ‘‘superdetailed balance,’’16,22 namely
that microscopic reversibility is fulfilled foreveryparticular
choice of random treesto and tn . If we set the tree genera
tion probabilityPg(t) to be uniform for all trees, one readil
finds that the new state should be accepted with a probab

P~o→n!5minS 1,
qoWn

qnWo
D . ~4!

This is the acceptance probability used in the Metropolis s
of the MC scheme.

D. Remarks on the algorithm

Having completed our definition of the recoil growt
MC method, the following remarks are appropriate.

The use of the random tree concept in the detailed b
ance condition simply constitutes a generalization of the c
cept of a specific random choice of possible one-step di
tions, which was introduced in Ref. 16 to demonstrate
validity of continuum CBMC. Indeed, for feeler lengthl
51, our method simply reduces to CBMC. However, the tr
concept also serves to clarify a somewhat subtle point c
cerning the way we have formulated the construction al
rithm in Sec. II A. Clearly an alternative chain constructio
procedure would be to attempt to grow at each stepj of the
fixed chain,all k feelers, and to choose thej 11 monomer
randomly from among the set of first step directions of t
successful feelers. However, the picture of chain growth
an underlying random tree shows that since all feeler dir
tions are chosen randomly, it is permissible~and indeed
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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much more computationally efficient! to work with just one
feeler at a time during construction. Thus the fixed ch
grows from thej to j 11 monomer along the first step of
successful feeler. The remaining steps of this feeler then c
stitute an incomplete feeler of lengthl 21 with respect to the
j 11 monomer. One then proceeds to attempt to extend
feeler to lengthl using the normal recoil growth prescription
If successful, the chain grows to thej 12 step along the firs
step of the feeler and the process repeats. Only if the exis
feeler cannot be extended to lengthl need one attempt to
grow another feeler from scratch. Of course, if the ch
successfully attains lengthN, it is necessary to return an
attempt to grow the remaining feelersk2bj from each
monomer in order to calculate the weight of the candid
new chain.

With regard to the chain weightW defined in Eq.~1!, we
note that this is simply the product of the number of allo
able directionswi in which the chain could have grown a
each step. However, it is important to appreciate that
criterion for what constitutes an allowable direction
arbitrary—it effects only the efficiency and is irrelevant
detailed balance. In our recoil growth scheme, the criter
adopted requires that an allowable first step direction may
continued for l 21 further steps, such that the entire s
quence avoids excluded volume. Therefore, the numbe
surviving feelerswi at each monomer constitutes the numb
of single step directions~out of the maximum number ofk)
that satisfy our criterion. Accordingly, the weightW defined
in Eq. ~1! is the total inverse bias of a chain’s constructi
and by compensating forW in the acceptance probabilities
we ensure that detailed balance is obeyed. Of course, o
criteria for the number of allowable directions at each s
are also possible. Less stringent than ours is the RR crite
of CBMC, which requires that an allowable growth directio
be able to continue for only one step~i.e., l 51). Still more
lenient is the construction of self avoiding chains with t
help of the simple random walk which allows all direction
including those that do encounter excluded volume. All th
methods satisfy detailed balance, but they calculateWs that
increase, respectively, and pay the price in decreasing
struction efficiency. Thus our intricate recoil growth proc
dure is merely an information gathering device that enab
us to make a ‘‘good’’ decision in the sense of efficient sa
pling.

Finally, we note that if we makek smaller than the co-
ordination q21, our calculation of weightW for a given
chain configuration is stochastic in the sense that a fee
survival depends to some extent on the random choice o
k directions at each step of thel-step feelers. Thus, some
times the weight of a chain will be underestimated, while
other times it will be over-estimated with respect to a m
surement using the full complementk5q21. On average,
however, one expects that the correct distribution ofWs will
be produced. Stochastic sampling ofW is also unavoidable in
the continuum implementations of the CBMC method.16 In-
cidentally,k need not be an integer. Thus, for example,^k&
53.5 is obtained by half the time assigningk53 and half the
time assigningk54. For long chains we show below that th
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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algorithm’s efficiency can be rather sensitive to the choice
^k&.

III. RESULTS

To study the properties of the proposed recoil grow
MC method we have performed canonical ensemble sim
tions of self avoiding walks on a simple cubic lattice. W
begin by describing tests to establish the validity of t
method and then proceed to examine its characteristics
respect to chain construction and acceptance. Finally, we
sess the methods efficiency at relaxing the sample and c
pare it to that of the CBMC algorithm.

Our first task was to verify that the method produc
chains with the correct statistical properties. This w
achieved by means of a comparison with the CBMC meth
for the following two sets of chain length and density co
sisting of 100 chains:

~i! N5100 at a monomer density ofr50.1 .
~ii ! N540 at a monomer densityr50.6 .

These are conditions for which CBMC operates reas
ably well and should, therefore, supply bountiful statistic
A large number of independent equilibrated system confi
rations were generated using both the CBMC meth
(k55, l 51), and the recoil growth method withk53,
l 55. For both schemes we monitored the distributio
of two quantities, namely the square of the gyration rad
Rg

2 , and the logarithm of the Rosenbluth weightWRR of the
chains. This latter quantity is defined asWRR5P i 51

N wi /k,
wherewi is the number of free first-step continuations fro
the i th monomer, including the step of the main cha
itself. The results for system~i! are shown in Fig. 2. Clearly
there is a high degree of accord between the CBM
and recoil growth methods with respect to the distrib
tions of Rg

2 and lnWRR. For the averages, we obtai
^Rg

2&532.25(4), ^ ln WRR&528.252(8) for CBMC and

^Rg
2&532.22(4), ^ ln WRR&528.263(12) for recoil growth.

For system~ii ! we obtain for the averages of the distributio
^Rg

2&511.120(26), ^ ln WRR&5219.86(6) for CBMC and
^Rg

2&511.136(13), ^ ln WRR&5219.84(3) for recoil growth.
We now turn to an examination of theN dependence of

the chain construction and exchange acceptance r
f con(N) and f acc(N), respectively, for various values of^k&
and l . Later we will see that for given choice ofN andr, a
relatively fast search locates compromise values of^k& and l
which ensure the good performance of the recoil grow
method. At present, however, we wish to elucidate syste
atically the role played by these parameters. To this end
instructive to fix the feeler length at a moderate value ol
55 and consider the effect of varyingk.

The results forf con(N) are presented in Fig. 3~a!. They
show that if the construction utilizes the full complement
directionsk5q21, the growing chain avoids almost all trap
and we findf con(N)'1 over the entire range ofN studied.
As ^k& decreases it still suffices to compensate the aver
loss of continuations due to excluded volume, but owing
fluctuationsf con(N)5const&1. Figure 3~a! shows that this is
indeed the case fork55,3. However, if we set ‘‘starvation’’
values of^k&52.0, or ^k&51.8, which do not compensat
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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for the average loss due to excluded volume, we pass
strong exponential attrition. The sharpness of the transi
between the compensation and the starvation regime m
it easy to determine the marginal value ofk that ensures tha
excluded volume is just compensated.

Having demonstrated that for a given moderatel , a large
^k& helpsf con, we now show that a minimal^k& close to~but
not within! the starvation regime serves to benefit the
change acceptance rate,f acc. As mentioned in the preceedin
section, a largê k& leads to an indiscriminate growth tha
yields many low quality chains having relatively sma
weights. This implies a random sampling which differs e
ponentially from the correct Boltzmann distribution, whic
in turn leads to an acceptance ratef acc(N) that falls exponen-
tially with N. However, a minimal value of̂k& causes the
construction to recoil from relatively dense regions, a
grow anew along a less difficult path, thus produci
‘‘higher quality’’ ~relatively large weight! chains. Figure
3~b! shows f acc(N) for l 55 at various^k&. One sees tha
although the acceptance rate still decreases approxim
exponentially with chain length, it improves markedly ask
decreases.

It transpires, however, that in many casesf acc is a highly
misleading indicator of the sampling efficiency because
majority of chain exchanges are confined to small disti
regions of the system, leaving the other chains mostly
touched. The problem is traceable to the fact that so
chains~those having low weight! are easily removed from
the system. When such a chain is removed, a large vac

FIG. 2. Histograms showing~a! the logarithm of the Rosenbluth weights
for CBMC and recoil growth (k53,l 55). ~b! The radius of gyration
squared. The length of the MC run is 23108 cycles.
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is created into which another chain will preferentially gro
shortly afterwards. Since the new chain is necessarily hig
correlated with that it replaced, it too is quickly remove
This creates the illusion of a brisk turnover of chains, wh
in fact the configuration as a whole remains substantia
unaltered. This effect has also been recently noted by o
authors in connection with the CBMC method.3,23

In view of the unreliability off acc for indicating the true
rate of relaxation, we have adopted an alternative measur
efficiency, namely the effective chain turnover rate, defin
as the CPU time required to replace 95% of some arbitr
starting sample of chains. Optimal values of^k& and l are
thus those that maximize this effective turnover rate, or
deed any other suitably chosen time autocorrelation funct
In fact, in practice this optimization is not difficult to achiev
and suitable values can be readily gauged from very s
runs on small systems. In most cases we find that a choic
feeler length in the range 3& l &8 is a good starting point
The optimal choice of̂ k& depends on the density~and to a
much smaller degree on the choice ofl ). Larger^k& values,
approaching the coordination number are required at hig
densities. The sensitivity of the efficiency to the assignm
of ^k& increases with chain length, so that for short cha
(N'40) ^k& should be correctly estimated to within60.5,
while for longer chains (N*100) the value should be chose

FIG. 3. ~a! Construction ratef con(N) for various values of̂k&. All simula-
tions were carried out for 100 chains at densityr50.5, usingl 55. ~b! The
corresponding exchange acceptance ratef acc(N).
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to within 60.1. It should be pointed out that since the op
mal ^k& value is often much less than the lattice coordinat
number 5, the cost of growing feelers is surprisingly lo
This point is illustrated in Fig. 4 where we plot for a numb
of ^k& values the CPU timet feel( l ) ~normalized with respec
to CBMC! to grow feelers of lengthl ~for N530r50.5).
One sees from the figure that for smalll the time rises at
most linearly inl ~for large l the curves round off due to th
progressive shortening of the feelers as the chain end is
proached!; in general we expect the time expended on fee
growth to increase approximately linearly in their leng
with a slope that decreases markedly with^k&.

To demonstrate that recoil growth method leads to
efficiency gains we have studied the decay of the autoco
lation function of the radius of gyration as a function of CP
time for a system of 100 chains of lengthN540 at density
r50.6. Figure 5 shows that under these conditions, the e
ciency of the recoil scheme is some three times higher t
CBMC. As another example we have studied the rate
which the method replaces a given equilibrated starting c

FIG. 4. The feeler construction timet feel( l ) normalized with respect to
CBMC (k55,l 51) for various values of̂k&, for N530, r50.5.

FIG. 5. Autocorrelation function of the square of the gyration radius vs C
time for a system of 100 chains of lengthN540 at densityr50.5. The
dashed line and the solid line represent the CBMC and the recoil gro
scheme fork53,l 55, respectively. The subscriptn in the average denote
that the correlation function is normalized to 1.
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figuration of 100 chains each of lengthN5100 at density
r50.5. Figure 6 shows the fraction of chains replaced a
function of CPU time for various values of^k& and l as
detailed in the caption. We find that the effective chain tu
over rate is maximized for a choicêk&52.7, l 510, being
some six times faster than CBMC. A more comprehens
comparison of the relative efficiency of recoil growth an
CBMC is presented in Fig. 7, which shows the relative e
ciency of the two methods in achieving 95% turnover a
function of chain lengthN for three different densitiesr
50.3, 0.5, and 0.7. One sees that at high densities and l
chain lengths, optimized recoil growth is more efficient
up to a factor of 50. In Table I the parameters of the rec
growth used to construct Fig. 7 are presented.

th

FIG. 6. The remaining fraction of the original sample of 100 chains
lengthN5100, densityr50.5 as a function of CPU time~s/ALPHA!. The
solid, long dashed, and dotted lines correspond to the recoil growth
(k,l )5(2.7,10),(3,10),(5,4), respectively. The short dashed line corr
sponds to the CBMC results. The inset shows the associated constru
and the percentage of acceptance rates on a log scale. The diamond, s
and circle refer to recoil growth with (k,l )5(2.7,10),(3,10),(5,4), and the
triangle to CBMC.

FIG. 7. The efficiency of recoil growth relative to CBMC, measured as
ratio of the CPU times required to remove 95% of a given equilibra
starting sample of 100 chains. Data are shown for a number of chain len
at densitiesr50.3, 0.5, and 0.7. In each instance, the recoil growth para
eters^k& and l were chosen to yield the fastest relaxation rate.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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IV. DISCUSSION AND CONCLUSIONS

In summary we have proposed a new simulation met
for dense, long-chain multi-polymer systems based on ‘
coil growth.’’ If a chain fails during the construction due t
excluded volume, it is permitted to recoil a step and try
grow anew in another direction up to a total ofk trials at each
step. If still unsuccessful it may recoil a further step etc.,
to a maximal predetermined lengthl 21. The construction
bias is compensated for in the chain insertion–deletion s
in the same manner as for CBMC. The recoil allows t
chain to avoid traps of length up tol 21 and hence benefit
the construction ratef con. However, it also allows the chai
to avoid excessively dense regions of the system, growth
which would otherwise produce low quality~low weight!
chains that fail the accept–reject lottery. Thus recoil a
benefitsf acc, an effect that becomes more pronounced as
numberk of directions is reduced to the barest minimum th
still yields a reasonable construction ratef con. The time ex-
pended on feelers also decreases markedly with decrea
k, making it possible to find~by means of a rapid prelimi
nary search!, values ofk and l that optimize the relaxation
rate and thus yield a substantial improvement in CPU ti
efficiency over CBMC. In this way the method extends t
range of densities and chain lengths that can effectively
studied.

Although the major factor in the faster relaxation of r
coil growth is its ability to build chains that more close
match the Boltzmann distribution, one may speculate that
stochastic nature of the weight determination procedure
plays a role in this regard. Random downward fluctuation
the weight assignments to old chains may help to dislo
high-weight chains which would not otherwise be exchang
using CBMC. Additionally, the nonlocal sampling resultin
from use of long feelers may mean that relaxation~chain
exchanges! in one area of the system influences the wei
calculations for other quite distant chains, thus promot
their exchange too.

It is instructive to compare and contrast our method w
the double scanning method~DSM! of Meirovitch12 since, in
a sense, both strive to achieve the same end, namely a
chastic look ahead scheme designed to seek out favor
pathways for the growing chain. However, the manner
which these paths are chosen differs greatly between the
methods. In the DSM, at each step of the growing chain
typically large number (50– 200) of feelers are grown a
cording to the RR prescription. The next step direction of
growing chain is decided probabilistically dependent on
proportion of feelers surviving along each possible next s
direction. In the RG scheme, however, only a single feele
required during the construction process and the weight

TABLE I. The (^k&,l ) values that correspond to Fig. 7.

L 20 40 60 80 100
r

0.3 ~2.5,3! ~2.5,3! ~2.5,4! ~2.3,6! ~2.4,6!
0.5 ~2.7,3! ~2.5,5! ~2.7,6! ~2.7,9! ~2.7,10!
0.7 ~3.1,4! ~3.9,4! ~3.75,6! ~3.5,8! ~4.9,10!
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culation differs from that of DSM in that next step direction
receive either a weight of zero or unity. The need for ma
RR-type feelers to scan the future pathways is obviated
the ability of the RG feeler to recoil from excluded volum
and the fact that a successful feeler is ‘‘recycled’’ at the n
step of the main chain as an incomplete feeler~see Sec. II A!.
We, therefore, believe RG to be considerably more effici
than DSM at locating favorable pathways for the growi
chain. To date, the DSM growth method has not been inc
porated within an exact multipolymer Monte Carlo schem

It is interesting to note also a resemblance between
recoil growth and an optimized enrichment algorithm.26 The
latter constructs the ensemble of configurations for an
lated chain by allowinĝ k& alternative growth directions a
each step. As with recoil growth,^k& is chosen so that the
number of alternative growth directions equals the aver
loss per step due to excluded volume. Both methods req
a tuning of^k& to avoid wild fluctuations of ‘‘W. ’’ However,
one enrichment construction produces a tree ofW alternative
~correlated! chain configurations, while recoil growth con
verts W into the weight of a single configuration. In fac
very recently a new MC growth scheme based on enrichm
has been proposed.27 The weights of the chains are confine
within a desired range by eliminating probabilistically co
figurations with very small weight, while at the same tim
enriching the sample with copies of high weight chains
such a way that the resulting sample is unbiased. The me
allows one to study very large chain lengths at low to mo
erate densities. Unfortunately we know of no reported te
of the method at high densities and can, therefore, not c
pare with the recoil growth method in this regime.

A number of extensions to the recoil growth method c
also be envisaged. As with CBMC there should be no pr
lem in applying the method to continuum systems. The
fects of temperatures can also be incorporated by introdu
a threshold for feeler survival based on its total Boltzma
weight. The construction rate for very long chains in t
dense regime could also be improved by adopting a ‘‘div
and conquer’’ approach in which one tries to regrow on
short chain sections at a time. Although we have presen
our method within a canonical framework, it is also easy
generalize to other ensembles such as the grand cano
~constant-mVT) or Gibbs ensemble as has been done
CBMC.24,25 In such cases, one is obliged to insert ent
chains into the system~rather than regrow chain portion as
often done in canonical simulations of long chain system!,
and the advantages of recoil growth over CBMC are
pected to exceed those of the canonical ensemble case.

Finally, there are a number of interesting physical pro
lems to which the recoil growth method can be applied, su
as chains tethered to a surface, or branched and star p
mers. Use of an open ensemble would also permit the st
of phase behavior of polymer solutions and melts.28
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APPENDIX

In this Appendix, we present a more formal descripti
of the various factors affecting the efficiency of the rec
growth method. A similar method for CBMC has been p
sented in Ref. 29.

The success of the recoil-growth method relies on
ability to tune the parametersk and l in order to obtain a
good chain turnover rate for low computational cost. T
efficiency of any MC scheme can be estimated by (tatMC)21

whereta is the autocorrelation time in number of MC ste
and tMC is the CPU time for an MC step.6 Thus the param-
eters of the recoil growth scheme should be optimized
minimize the producttatMC . The additional cost in extend
ing the fixed chain by one monomer is given by:

Cost~ l 11!5Cost~ l !1Cp3P~ l !1kl 113P~ l !3Cost~ l p!,
~5!

where Cost(l ) is the average cost of inserting a chain
length l and is determined by the number of calls to t
subroutine determining the energy,P( l ) is the probability
that a chain of lengthl is grown, andCp is the cost of
extending the existing feeler by one step. The third term
Eq. ~5! refers to the additional cost in computing the weigh
wherekl 11 and l p denote the number of directions and t
probe length assigned to monomerl 11. The efficiency of an
insertion is then expressed as

Eff~ l !5
P~ l !

Cost~ l !
. ~6!

Also P( l ) is given by P( l 11)5P( l )3^Padd(kl 11 ,l p)&
where Padd is the probability of adding a monomer. Usin
the recursive relations forP( l ) and Cost(l ) we can arrive at

Eff~ l 11!

Eff~ l !
5

^Padd~kl 11 ,l p!&
11~Cp1kl 113Cost~ l p!!3Eff~ l !

. ~7!
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In practice a number of equilibriated configurations for
polymer system are generated. The first monomer is inse
randomly in the system and the next is added using the re
growth. The quantitiesPadd, Cp , and Cost(l p) are computed
for the addition of a third monomer to the chain backbone
different l andk. This procedure gives an initial estimate
the parameters for optimal efficiency with respect to ins
tion of chains. It does not include dynamical informatio
regarding the efficient sampling of the phase space. The m
efficient sampling is achieved when the overlap of distrib
tions of weights for the new and old chains is maximize
This is achieved by choosing as small a value ofk as pos-
sible consistent with a reasonable construction rate.
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