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Calculation of solid-fluid phase equilibria for systems of chain molecules
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We study the first order solid-fluid phase transition of a system of semi-flexible Lennard-Jones
chains using molecular dynamics simulations. Thermodynamic integration methods are used to
calculate the free energy of the solid and fluid phases. The solid phase free energy per chain can be
calculated to an accuracy af0.0XgT with relative ease. The Gibbs-Duhem integration technique

is used to trace out the complete melting curve, starting with a single point on the curve obtained
from the free energy calculations. For the short chains studied here, we find that increasing the chain
length stabilizes the solid phase; i.e., it raises the melting temperature at fixed pressure, and lowers
the density at the transition at fixed temperature. Gibbs-Duhem integration was used also to
investigate the effects of chain stiffness on the transition. We find that increasing the stiffness also
acts to stabilize the solid phase. At fixed temperature, the transition is shifted to lower pressure and
lower density with increasing chain stiffness. Further, we find that the density gap between solid and
fluid broadens with increasing chain stiffness. 1©®98 American Institute of Physics.
[S0021-960628)50825-2

I. INTRODUCTION density can be calculated by integration along an isotherm to
zero density, at which the system behaves as an ideal gas of
Phase transitions between solid and fluid phases are typknown free energy. Obviously, such a method cannot be ap-
cally strongly first order and characterized by a high degreglied to the solid phase since expansion of the system carries
of hysteresis in the equation of state. For this reason, thg through the first-order melting transition, a nonreversible
determination of the equilibrium coexistence by computerpath through which the free energy cannot be integrated. An
simulation requires special techniques which are suitable foglternative route is to cool the solid at constant density to a
high densities. While a method such as the Gibbs ensemblew-temperature harmonic solid. The free energy of this state
techniqué provides a direct means to simulate coexistingcan be calculated analytically, and the free energy difference
phases, this method relies on the exchange of particles b&etween the two states is related to the integral of the internal
tween the phases in separate simulation cells, a move whigihergy along the isochore. However, this approach can be
is efficient only at sufficiently low densities. Instead, the cal-hampered by the presence of solid-solid phase transitions
culation of the chemical potential as a function of density inalong the isochore. Further, it is not suitable for particles
the mechanically stable regions of each phase is requireéhteracting with discontinuous potentials which do not form
The coexistence can then be calculated from the basic critérarmonic solids at low temperatures. Finally, there is an ad-
rion that temperatures, pressures and chemical potentials dftional problem in the case of complex molecules: even if
coexisting phases are equal. One approach to calculating thiee system can be cooled to become a harmonic crystal, the
chemical potential is the Widom test particle insertioncalculation of the Helmholtz free energy in this limit is
technique®® Once again, however, this is a technique whichhighly nontrivial.
relies on insertion of particles into the system; in this case, Rather than performing thermodynamic integrations
one calculates the average of the Boltzmann factor correalongnatural pathways such as isotherms and isochores, it is
sponding to the change in potential energy upon insertion gbossible and more convenient to perform an analogous inte-
a test particle. At high densities, only very few test insertionggration alongartificial reversible pathways. This involves
will have a non-negligible Boltzmann weight, leading to athe variation, not of state variables such as temperature and
large statistical error in the calculation of the average. Thereensity, but of the actual particle interactions, to transform
is an additional complication in the case of a crystallinethe system to a state of known free energy. An early appli-
solid: random insertion of a test particle into Alparticle  cation of artificial thermodynamic integration to calculate the
crystal results in the formation of an interstitial rather than afree energy of simple atomic solids was the single-
crystal withN+1 lattice sites. occupancy-cell method introduced by Hoover and Ree in
An alternative approach to the calculation of the chemi-1968, which was also applied to the hard-sphere $olid.
cal potential is the calculation of the Helmholtz free energylLater, however, some technical problems with this method
via thermodynamic integration. The essential idea behindvere discovered An alternative and more general method to
thermodynamic integration is the transformation of the syscalculate the free energy of arbitrary atomic solids was in-
tem from one state to another of known free energy, and teroduced by Frenkel and Ladd in 1984The method in-
calculate the free energy difference involved in the transforvolves the transformation of the atomic solid to a lattice-
mation. For example, the free energy of a fluid at arbitrarycoupled solid by gradually imposing an interaction coupling
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the atoms to their lattice sites, and, in the case of particled. THEORY AND METHODS

with continuous potentials, the simultaneous removal of in-5 \odel

terparticle interactions. A convenient reference solid is the

Einstein crystal, in which particles are harmonically coupled ~ The oligomeric chains considered here are semiflexible
to their lattice sites. The free energy of the Einstein crystal is P€arl-necklace” strings of bonded beads. Nonbonded sites
known, and the free energy difference associated with théteract with a truncated and shifted Lennard-Jofe} in-
transformation can be calculated in a straightforward manteraction,
ner. The method was originally applied to the hard sphere

] ; o 12 o 6 o 12 o 6
solid to calculate the free energy difference between facey ,(r)=4e (_) _(_> _<_ +| =] |,
centered-cubic (fcc) and hexagonal-close-packe¢hcp) r r Fe Fe
lattices® lculation that h n repeated recently t
attices; a calculation that has been repeated recently to a F<r=0r>r,, )

higher degree of accurady. Later, this method was ex-
tended for use for particles with orientational degrees of freéyheres ande are the standard LJ parameters, wheigthe

dom as well. In this case, the coupling of the particle posi-istance between beads, andis the cutoff distance, which

tions to the lattice sites is augmented by an external fieldye set atr.=2.5s. Bonded sites are connected with har-
which induces orientational alignment. This approach hasnonic springs with the following potential:

been applied to calculate solid phase free energies required

for' thg calculation of the phase diagrams of .hard Ustretch Ti) = skp(ri—r1)2, 2)

ellipsoids’’® and hard spherocylindet$!? As well, this

method has been applied, with further refinements wheraherer; is the distance between thé—<{1)" and thei™

necessary, to study the phase behavior of simple moleculdreadsy, is the equilibrium bond length, ariq, is the bond-

solids such as N**~1°C0,,'® N,0,17 and H,0.1® stretching harmonic force constant. We fix=c, and, un-
An important type of system for which the lattice- less otherwise stated,o?/ e=500. Finally, we include a

coupling free energy calculation method has not yet beeending potential given by

applied is that of solids composed of semiflexible chain mol-

ecules. In principle, this should involve a relatively straight-  Upend 61) = 5K4(6))?, ()]

forward extension of the existing technique. The calculation L N

of the solid phase free energy provides the first step in thavhered;=cos *(u,_;-1;), whereu; is the unit vector describ-

determination of the solid-fluid equilibrium phase behavioring the orientation of thé" bond in the chain, and whete,

of chain molecules. Once an initial point on the phase boundis @ bending force constant.

ary has been determined, the powerful Gibbs-Duhem inte-

gration techniqu¥?° can be employed to calculate the com-

plete coexistence curve in a way much less computationallg. Free energy calculations

demanding than by performing an additional free energy cal-

culation for every new point on the curve. Further, this latter The solid-fluid transition is strongly first order with a

method permits a relatively straightforward means to stud)fOnSIderabIe dgg_ree of h_ystere3|s in the equation of state.
) . Consequently, it is essential to perform free energy calcula-
the effect of molecular properties such as flexibility on the

. : . tions in order to determine the melting curve of the system.
phase behavior. In the present study, we investigate the ap- . A :
L . : . . he conditions for the equilibrium coexistence are that the
plication of the lattice-coupling method to an idealized

. temperatures, pressures and chemical potentials of the coex-
model system composed of chains of Lennard-Jones pa P b b

[sting phases be equal. The chemical potential is given b
ticles. Clearly, the model is too crude to achieve quantitative gp g P g 4

agreement with experimental results for real molecular sys- F(p) nP(p)

tems. Nevertheless, this approach should provide an effective u®= N + . (4)

means to study the generic effects of chain length and chain oh P

stiffness on the solid-fluid phase behavior of semiflexiblewhereF is the Helmholtz free energy of the systeNy,, is

chains. The long term goal of this work, however, is thethe total number of chain®(p) is the pressure as a function

further refinement of the methods for application to moreof the density of monomerg=N/V, andn=N/N, is the

realistically modeled chain molecule systems. number of monomers per chain. If the Helmholtz free energy
In Sec. Il we describe the theoretical background andat a densitypy is known, it can be calculated at any other

methods employed in the present study. In particular, in Sedensityp by the following relation:

Il A we describe the details of the molecular model; in Sec.

Il B, we present theoretical background for the calculation of  F(p) F(pg) pP(p")

the free energy in the solid and fluid phases; in Sec. IIC,we "N, N, +njpodp o2 ®)

discuss the application of Gibbs-Duhem integration to calcu-

late the phase boundaries; and in Sec. Il D we describe thehus, in order to compute the chemical potentials, one must

details of the simulations. In Sec. Ill, we present and discusfirst calculate the absolute Helmholtz free energy at some

the results. Section IV summarizes the main results of theeference poinpy. The details of this calculation differ for

paper. the solid and fluid phases.
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1. Solid phase BF(po)

3nin A —
In order to calculate the Helmholtz free energy of a crys- Nen 2Ncp Ba

talline solid phase, we employ a variant of the method de- 3NN InV, ng[1
veloped by Frenkel and Laddwhich involves a thermody- + -0z d\(Ug,—U),. (11
namic integration scheme to link a state of a given system 2Nen Nen N Jo

along a reversible path to that of another system for whichrpe necessity of employing the fixed center-of-mass con-
the partition function, and, hence, the Helmholtz free energystraint is apparent from an examination of the last term in the
can be calculated analytically. A convenient reference sysexpression above. The calculation of the free energy requires
tem is the Einstein crystal, where individual noninteractingthe numerical calculation of the integrait) g;,— U), for
particles are coupled harmonically to their equilibrium latticegeyveral values of.. If the center of mass is free to diffuse

3(N—1) (277
- "In

positions, with respect to the fixed Einstein crystal lattice, then this
N function diverges at =0 and, though still integrable, be-
a . : . o X
Ueo=— R —R©)2, 6 comes, in practice, technically difficult to integrate.
Ein 221( R © The chemical potential at an arbitrary density can be

computed using Eqg4), (5), and(11).
whereR,; is the instantaneous position of tHe particle, and

Ri(o) is the corresponding Einstein crystal lattice position.
Note that the Einstein crystal lattice is given the same struc—2 Fluid phase
ture as that of the true system. Further, note that a “particle™ P

in the context of a system of chains refers to an individual ~ The most convenient reference point to calculate the ab-
bead on a chain. The partition function and, thus, the Helmsolute free energy in the fluid phase is@at-0, where the
holtz free energy of the Einstein crystal of fixed center ofsystem behaves as an ideal gas of noninteracting chains. In

mass, can be calculated easily, this limit, the partition function for the system is given by,
Nen
BFen  3(N—1) (2@) 3InN InV, Zis(N VT):(Zch) 5 12
N = - 2N In IB_C( + 2N — N +31In A, (7) IG ch:» VvV Nch! ’

where Z, is the partition function for a single chain. The

whereN is the total number of particle€.e., monomers free energy of the ideal gas is given by

B=1/kgT, andVy=N/pg is the volume of the system. Fur-

—h/2amkaT i i F
ther, A=h/y2mmkgT is the de Broglie thermal wavelength, BFic = 10 Zyt In Nt/ Ny

wherem is the monomer mass afdis Plank’s constant. As Nen

shown below, the final expressions for the free energy for the

solid and fluid phases at equal temperatures each contain ~BF 4t In Ng— 1+ IN(27Ncp) (13)
identical terms involving\, which, thus, plays no role in the 2Negn

equilibrium phase behavior; however, we retain thes_e termsg here we have employed Stirling’s formula plus the first-
for completeness. To carry out the thermodynamic integrag qer correction which appears as the last term, though this

tion, we employ an effective potential, turns out to be negligible even for the relatively small sys-
tems studied here. The analytical calculatioizgfand, thus,

of F¢, for a chain with bond stretching, bond-bending and LJ
interactions is a formidable problem. Instead, we defihe
and Uy,

U\)=(1-N)U+A\Ugp, (8)

whereU is the internal potential energy, and whexes a
parameter employed such thai{A=0)=U and U(A=1)
=Ug,. The free energy difference between the original and U =(Ugyetctit Upend + Us=Uig+ Uy, (14

reference systems may be calculated by, and determine the ideal component of the single chain free

- energy due to the bonding interactiog=—kgT In 24,
L[ 9FY) N d th RE=F g F 1 tely. Th
F(A=0)—F()\=1)=—J dn :_J' d\{— ) , andthe excess componeft,,=Fc,—Fc,, separately. The
0 I\ 0 2N resulting expression for the ideal component of the single
(9) chain partition function, in the limit of stiff bonds, is given

b
where the brackets. . . ), indicate an ensemble average cal- d 2 n—1
culated for a particular value of. Thus, a_ |47V [T} 5 /27 o
s |V e) 7 Vel i
BF  BFun B[ o
NN TN, MVen— U, (10) n-2

X , (15

™ k,6?
27-rf desineex;{—ﬁa
0 2

Note that in the course of the Einstein integration, the adja-
cent bonded beads become decoupled in the limt#sfL.  where we have included the contribution to the partition
Combining Egs.(7) and (10), we can write the total free function from the integration of the momenta. Thus, the ideal
energy per chain gip=N/V, as gas free energy is given by
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BF g IN(27Ngp) first-order differential equation, it can be integrated to com-
Ng, In(p/n)—1+ T2Ng, 3nin A pute the coexistence curve provided one point on the curve is
¢ ¢ known. Generally, this starting point is determined from free

My 2 5 20 o2 energy calculations, though alternative procedures, notably
—(=1n|—| o Bk R— the Gibbs ensemble simulation method, can also provide this
o ﬁ b Bkbrb

initial point. This latter method, however, is not applicable to
m _ Bk 02 the present system since it involves particle exchange be-
—(n—2)ln{2wJ dé sin ¢ EXF{— 5 H tween coexisting phases in separate simulation boxes. At
0 high densities such moves become prohibitively difficult.
—In(4m)+ BFE. (16) Finally, we note that the Kofke integration scheme is
completely general and can be applied to the calculation of
phase boundaries other thangdrT-P space. In the present
study, we employ Gibbs-Duhem integration to investigate

Using Eq.(5), and the fact thaP,;=NgkgT/V, it is trivial
to show that

BF(p)  BFialp) o nBP(p")—p' the effect of varying the chain stiffness. The Gibbs-Duhem
N - N +f0 dp’ T (17)  equation for the system is
ch ch pP
G
The last step in the calculation of the free energy for the N du=Vd P—SdT+(W) dk,. (20
6

fluid phase is the calculation &%, the excess component of
the single chain Helmholtz free energy arising from the in-Employing the standard criteria for thermodynamically
trachain LJ interactions. To this end, we adapt a Monte Carlgtable coexistence between phases, and, considering the case
method developed by Frenket al?! based on an earlier of fixed temperature, we obtain the following relation be-
technique due to Rosenblugh al?? for the calculation of the tween pressure and chain stiffndssalong theP-k, coex-
excess chemical potential for continuously deformable chaitstence line:

molecules.
Finally, the chemical potential for the fluid phase can be (E) = M (22)
calculated using Eqg4), (16) and(17). Ko/ coexist AV

where A(9G/dky) and AV denote the differences in these

C. Caleulation of the phase boundaries quantities between the coexisting phases. The former quan-
We use molecular dynami¢D) computer simulations tity is given simply by,
to calculateP(p) vs p isotherms for the solid and fluid 9GI 3k y=ENgy(n—2)(62), (22)

phases. Further, we calculate the average quantity in the Ein- )

stein integration scheme appearing in E¢$) and(11) em- yvhere<62> is the average of the square of &ll,x (n—2)
ploying a ten-point Gauss-Legendre integration procedure ifltérnal bending angles in g?e system. Such a procedure has
order to evaluate the integral. Using the expressions deriveB€en used by Dijkstrat al™ to investigate the effects of

in the previous section, we can calculate feP) for fixed cham st|.ffness on the nematic-isotropic pha:;e_ transition of
T for each phase. The intersection of these functions dete®miflexible hard spherocylinders using the rigid rod result,
mines the location where the conditions for thermodynamic@Ptained from a Gibbs ensemble simulation, as the initial
coexistence are satisfied and gives a single point on the melieference point.

ing curve. Since the free energy calculations required to ob-

tain this single point are computationally very expensive, we

do not repeat them in order to obtain a full line of points.p. Simulation details

Instead, we employ the Gibbs-Duhem integration scheme de- . . o ) )
veloped by Kofké®2° to trace out the phase boundaries, The focus of this study is the determination of fluid-solid

without the need to compute further free energies. The simPase equilibrium for systems of short chain molecules. A
plest variant of this method involves the integration of theProblem associated with the simulation of the fluid phase of
standard Claussius-Clapeyron equation, chain moleculg sygtems |n.general is the mefﬂuency of the
generation of significantly different system configurations re-
d_P) __Ah 1g Ouired to adequately explore phase space. Recent advanced

dg - BAv’ (18) simulation techniques, such as the configurational-bias

) . Monte Carlo(CMBC) method, provide a means to regrow,

where Ah=h, —h, and Av=v,—v, are the differences in 5ially or completely, individual chains far more efficiently
molar enthalpy and volume of the two phases, respectivelyy,an via a completely random sampling of configurations.

To implement the Kofke integration scheme, it is more con—rpis method has been shown to be useful especially for long

coexist

venient to rewrite Eq(18) in the following form: chains at moderate densities. However, since the density of
d In(BP) Ae the solid-fluid transition is expected to be high in the present
(T) =T BPAD’ (19 study, this method is not expected to be particularly effec-
coexist tive. We choose instead to employ the molecular dynamics

whereAe=eg, — ¢, is the difference in molar energy between (MD) method. We expect that following the “natural” dy-
the two phases. As the Claussius-Clapeyron equation is mamics of the system, in which collective motions involving
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large-scale conformational changes could be important, iable time scale, a process which can give some insight into
the most straightforward and effective approach to efficientlythe stable structure of the solid. Further, if the equilibration
explore phase space. Although entanglement effects coulstarts with a crystalline solid, we expect the solid to relax to
result in sluggish dynamics for long chains, the chains studa structure which is highly dependent on the initial configu-
ied here are sufficiently short to avoid this problem. ration and for which there is no guarantee of thermodynamic
To calculate the isotherms for the fluid phase requiredstability. Thus, the best that can be done is to carry out
for the free energy calculations described above, we perfornaquilibration runs starting from different, though sensible,
constant-volume constant-temperatulvT) MD simula-  jpitial solid structures. A free energy analysis of the resulting
tions using a Noséloover thermostat to regulate the “gquilibrated” metastable structures can determine which is
temperaturé’~**We employ the reversible time-propagation likely to be thermodynamically stable. To choose an initial

: - 27
integrators described bz_Martyr&t al”™" In most cases We  giarting configuration, we make two assumptions about the
employ a time step obt™ = 5t\e/mo”=0.005, wherem is g4 cyyre of the stable solid. First, we assume that the chains

tj‘e r\r;ﬂ)zme_r mass, and a thermostat frequencywpf — 4rq fylly extended. We expect this to be the lowest energy
=wpyMo /6—_401;0’ from V;’]h'Ch the trr:ermostat m?ss 'S single-chain configuration, with the probable exception of
given by Q,=NikgT/wy, whereNy is the number of de- ooy flexible limit. Second, we assume that the chains are

greﬁ_s loft_freed(t)rﬁ.(h\jlv_lt_as?lso er]]vzsugt]at(_ad the aptpr)]hcauon of hexagonally packed in distinct layers. Note that both of these
multiple-ime-step meliods to improve the energy properties are observed in alkane solids, though the latter

conservation of the systefi-2°In particular, we applied the iy is | US| for th ;
reference system propagat@RESPA technigue using the SSPeCially is less obviously true for the present system o
§emiflexible LJ chains.

bond-stretching force as the reference force. However, fo . . S -
the value of the associated force constant employed in mos We investigate the effect of initially tilting the extended
of the simulations K =k,o?/e=500.0, the time step was chains with respect to the layer normal. In each case, the

still short enough relative to the period of the bond—stretchingfha'ns wher_e aligned along teeaxis, one of the t_hree_ vec-

vibration mode that the MTS method did not significantly (S that define the tensdr={a,b,c}, each of which is an

improve energy conservation. edge of th_e parallelepiped smulaﬂon box, where the chain
At low densities, the chains were initially aligned paral- layers lie in thea-b plane. Initially, we setal b and c-a

lel with centers of mass on a fcc lattice stretched in the=C:b and use a variety of-axis tilting angles. Further, we

(111)-axis, and were allowed to “melt” into the fluid phase. investigated three different layer stacking configuratidis:

However, at higher densities, the considerable hysteresis dfAA, in which the positions of individual chains in one

the solid-fluid transition inhibits this process. Consequentlylayer transform to those in adjacent layers by a single-layer

we compress an equilibrated low density fluid to higher dentranslation along the-axis; (i) ABAB, an alternating chain-

sity using a method due to Berendsenal In this tech-  stacking structure, analogous to the hard-sphere hexagonal-

nique, the system is brought to a particular pressure by scatlose-packedhcp) lattice stretched along theaxis; and(iii )

ing the box dimensions independently at each time step in ABC, which is analogous to the hard sphere face-centered-

way such that the pressure grows or decays exponentially toubic (fcc) lattice, also stretched along tleeaxis, where the

the desired value. The compression was performed typicallgtructure repeats itself every third layer. Interestingly, for the

in increments ofAP* =AP(o°%/€)=5-10. At each pressure choice of parameter values used here, we find only a single

the fluid was typically equilibrated for a time of “stable” crystal structure, regardless of the initial structure:

At*=50.0-100.0Qlonger times for longer chains and higher an AAA lattice within which thec axis is tilted at approxi-

densities, followed by production runs of comparable dura- mately 33° with respect to tha-b plane cos(a-b)=90°,

tlon.For systems of chains in the solid phase, we erformcos_l(e.é)%no’ and cos'(c-B)~61°, though these values
Parrinello)—/Rahman constant-stress MD s[i)mulat’ions i?] whicflvary very slightly with temperature, chain stiffness and chain
ength. This structure is body-centered-culiBCC)-like

the shape, as well as the volume, of the simulation box un-

dergoes fluctuation®. This method is essential for crystal- with respect to the environment of a single monomer, with

line solid systems where the equilibrium crystal structure isthe bonded nearest neighbor sites slightly closer than the

not knowna priori, since use of standard periodic boundaryneareSt nopbonded sites. While. there is no .other straightfor-
conditions, together with the imposition of a simulation box Ward technique to prove that this structure is the thermody-
shape which is incommensurate with the unit cell of the cryshamically stable one, the fact that it was the only crystal
tal, can distort the crystal from its equilibrium structure. We Structure observed to be mechanically stable for a variety of
employ reversible time-propagator integrators for aninitial starting configurations strongly suggests that it is.
isothermal-isobaric ensemble derived by Martyegal?’ In order to calculate the free energy of the solid, we
Further, we set the barastat frequencyuth=1.0, with the ~ compute the integral appearing in E¢$0) and (11) using
barostat mass given bwg=(Nf+d)kBT/wﬁd, whered=3 the ten-point Gauss-Legendre quadrature method. Thus, the
is the dimensionality of the systefh. average energy differendgJgi,—U), is evaluated for ten
The equilibration of the solid phase is, in principle, values of at constant volume. The average box shape and
much less straightforward than that of the fluid phase. In the&hain coordinates are first calculated in order to provide the
present case, we are confronted by the problem that the Ligference lattice used in the Einstein integration. In the simu-
chains could not be crystallized from the fluid over a reasoniations used to calculate the integrand, it was found that the
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use of the Nosé¢loover thermostat was unsuitable, espe-
cially in the limit of A — 1, where the particles interact very
weakly with each other and are strongly coupled to the lat-
tice sites. In this limit, the system is essentially a set of
decoupled harmonic oscillators, a well-known pathological
case for the Noseloover method. While the problem can be
avoided by using a chain of coupled Nedeover
thermostat$? we chose instead to employ an Andersen
thermostaf® Finally, for these simulations, we correct for
the diffusion of the center of mass in the calculatior g,

in the manner described in Ref. 6.

To perform the Gibbs-Duhem integrations by integrating
the pressure with respect B= 1/kgT and the chain stiffness
parametek, via Egs.(19) and(21), respectively, we employ
the fourth-order Runge-Kutta method. Alternate integration
procedurege.g., predictor correctprshould be equally ap-
plicable. Note that the present procedure involves eight sepa
rate simulations for each time stéfour for each phagen
the integrations in order to evaluate andAv in Eq. (19),
andA(dG/dky) andAV in Eqg. (21). While this still requires
considerable computational effort to calculate a phase
boundary over a reasonable range, it is still much more effi-
cient than performing a separate free energy calculation fol
each point on the boundary. We employ stepségf =e¢
-8=0.05 andsk} = (0?/€)k,=5.0. In each case, we also
performed Gibbs-Duhem integrations with larger step sizes
to test the accuracy of the integration. Step sizes of double
the magnitude employed here were found to give identical
results.

I1l. RESULTS AND DISCUSSION
FIG. 1. Snapshot of a system of semiflexible Lennard-J@dbh&schains in

Snapshots of systems of semiflexible LJ chains in thehe fluid phase near coexistencePdt=Po>/e=35.0 andT* =kgT/e=2.5.

fluid and solid phases are shown in Figs. 1 and 2, respeél'_he_ total numbc_ar of chains isl,,=270, and there ar(_a:6 Lq sites per
tivelv. In each case. chains are shaded in different tones chain. The LJ sites have been drawn as spheres with a diametedi-
Y ! t\Qdual chains have been randomly shaded in four different tones as an aid to

help distinguish beads which are part of the same chain, andistinguish bonded and nonbonded sites.
in the case of Fig. 2, to distinguish chains which lie in dif-
ferent layers. There are six beads per chain, and 270 chains
comprising the system. In Fig. 2, the origin for the tilt of the solid phase with respect to the fluid phase. The thick hori-
chains with respect to the layer normal in the solid phase igontal line segment connecting the two branches marks the
evident: it provides a means for the LJ beads to interdigitatéocation of the equilibrium coexistence.
with those of adjacent chains, allowing them to pack densely  To calculate the free energy of the solid phase, we em-
in layers while maintaining a low-energy extended chainploy the thermodynamic integration method outlined in Sec.
conformation. IIB 1. To evaluate the integral in Eq$10) and (11), we
Figure 3 shows the fluid and solid branches of Tife  evaluate the integrand for ten values)osuitable for a ten-
=kgT/e=2.5 isotherm for a system of 270 six-segmentpoint Gauss-Legendre integration. This is illustrated in Fig.
chains characterized by a stiffnek§=k,0°/ e=10.0. We 4, which shows a plot of Au* ), =(Ugin—U), /(Ne) vs \
note that the fluid phase of systems of LJ chains demixes intfor the same system corresponding to Figs. 2 and 3. The
gas and liquid phases below some critical temperaflife, solid squares define the points used in the Gauss-Legendre
Using configurational-bias Gibbs ensemble-Monte Carlantegration. In the measurements @u*),, we have set
(MC) simulations, Mooijet al3* have calculated the critical a* = ac?/e=k} =500.0. The function varies slowly fox
temperature for a system of fully flexible eight-segment LJ<0.8, after which the slope increases to a large negative
chains to beTy =2.07. Further, the value off has been value, and the function decreases much more rapidly. This
observed to decrease with decreasing number of mondmerdeature is due to a rapid increase(id), as the strength of
and increasing stiffnes§. Thus, the isotherm temperature is the contribution to the potential from the internal interactions
almost certainly above the critical temperature. The hysterdecreases, which permits more configurations with consider-
esis in the isotherm extends over a considerable pressuable overlap of the LJ beads with large positive values of
range. The lowest pressure and density for the solid brancfUgyeicnty @nd, especially{U, ), . To ensure that this does
marks the approximate limit of mechanical stability of the not introduce a large contribution to the integral that is
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FIG. 3. Fluid and solid branches of ti& =2.5 isotherm for a system of LJ
chains. The system h&,,=270 LJ chains oh=6 LJ sites per chain. The
solid horizontal line segment connecting the two branches marks the equi-
librium coexistence point. The reduced pressure and density are defined as
P*=Pg%/e and p* =pa?, respectively, wherp=N/V is the density of
monomers.

this peak, it would also induce a negative peak atl, due

to large limiting values of Ugyecp When bonded beads be-
come decoupled. Another alternative would be to modify the
form of Ug;, to employ different spring constantg and«,

for directions parallel and transverse to the chain axis, and
setaj =k, and e, =(B(48r?)) ~*. However, this approach is
only relevant to this particular model of chain molecules. A
more general approach is to simply change the integration
FIG. 2. Snapshot of a system of semiflexible Lennard-Jén@schains in ~ variable to another such that the integrand is a more

the solid phase a&* =Po% e=50.0 andT*=kgT/e=2.5. As in Fig. 1, the  smoothly varying function. We choose the following trans-
total number of chains i8l,=270, and there ara=6 LJ sites per chain. formation:

Individual chains are aligned along the longest edge of the parallelepiped

simulation box. There are three layers of chains, which have been shaded in

different tones as an aid to the eye. As well, one chain in the central layer

has been shaded in a lighter tone to help distinguish bonded and nonbonded

sites within the layer. 8.0 : | : : | : | :

6.0 - .
poorly approximated by employing an insufficient number of
points, we also performed a 20-point Gauss-Legendre inte-
gration. Both calculations give identical results: ~
JsdN(Au*),=2.81+0.01, or3(Fgin— F)/N¢,=6.74+0.03. ;\

In the system studied above, we employed a relatively g 0.0
weak bond-stretching constant for convenience in the simu-

4.0
2.0

- . . . . -2.0
lations. However, simulations employing more realistic mod- L .
els for molecular systems require much stiffer bonds. We -4.0 -
note, however, that the problem of divergences nea0.0 6.0 C s T
ar_1d/or>\=1.0 |s_expe<_:ted to increase with increasing bond 0.0 0.2 0.4 0.6 0.8 1.0
stiffnessky, . To investigate this, we have also carried out a A

free energy calculation on a LJ-chain solid identical to that
of the previous free energy calculation, except with a bondFIG. 4. Plot of(Au*), vs \, where(Au*),=(Ugj,—U), /(Ne), andN is

stiffness Oﬂ(f; =10 000, 20 times that of the previous system.the number qf monomers. This function appears as an integrand iff1Bys.
and(11) and is proportional to the free energy difference between the crys-

. e L P
Aga'n- we fixa __kb - The results are shown in Flg(ﬁ. In talline solid phase of the LJ chain system and the reference Einstein crystal.
this case, there is a very strong peak\atO, which could  The solid squares define the points used for a ten-point Gauss-Legendre
present problems for the integration_ This peak is due to éntegration. The calculation was done for a system characterized by
. . . . = i = iny* = 2 e, — *
rapidly increasing Ug;,) due to large LJ bead displacement Nen=270 chains,n=6 segments per chaim*=ao"/e=k,=500.0, T

. . . =kgT/e=2.5, and p*=po®=1.3362, wherep=N/V is the density of
fluctuations transverse to the long axis of the chains whep =" o Gauss-Legendre integration yielgsA(Au*),=2.81

U~U. While decreasing the magnitude Igf would reduce  +0.01, which givesB(Fgj,— F)/Ng=6.74+0.03.
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50,0 T T T T T T T 200‘0 T T T I T T T T T T T T T T T
400 - I i
L 1 150.0 -
*5 1000 -
500
0.0 ‘I 1 1 | 1 1 1 | 1 1 1 | 1 1 Il
50.0 . : S 0.0 20.0 40;0 60.0 80.0
_ P
% 400 - N FIG. 6. Reduced chemical potentigl*=u/e, vs reduced pressur@®*
L“\, 1 =Pg? e, for the solid(solid line) and fluid (dotted ling phases of a system
g 300 - - of LJ chains. The intersection of the two curves defines the coexistence
L; g point and is labeled by an open circle.
< 200 -
*A& - -H .—.—._H .. )
2 100 - . L . .
I | | from Egs.(4), (5) and(11). The Einstein integration yields
00 L— L 11 the Helmholtz free energy at one density via Efjl), and
00 02 04 0.617 08 1.0 the measurement of the(p) vs p isotherm enables the cal-
(o) A+C) culation of F(p) and u(p), and, thusu(P), from Egs.(4)

FIG. 5. (&) Plot of(AU*), vs X, where(Au*), =(Ug—UY, /(Ne), andN and (5}. For the fluid phase, _the free energy and chemical
is tHe ﬁumber of monor:ﬁers. ,The solid squ%res ggﬁne tAhe poiﬁts used for%o'[entlal can be calculated with qu’)' (16 and_(17)' Th_e
ten-point Gauss-Legendre integration. The calculation was done for a syd€sults for then=6 segment system corresponding to Figs. 3
tem characterized byN.,=270 chains,n=6 segments per chairl* and 4 is shown in Fig. 6. Note that the chemical potential
=kgT/e=2.5, p* EZPU3:1-3151v wherep=N/V is the density of mono-  cyryes for each phase are very nearly parallel, i.e., the chemi-
mers, andx* =ao*/e=k,=10 000.0. The chain bonds are 20 times stiffer 5| notential difference between the phases varies very
than those of Fig. 4. As a result of the high valuesedf andkj , it was . . . . .
necessary to reduce the time step in the MD simulation fébin=0.005 to SlOle with pressure. This is consistent with the hystereS|s
5t*=0.0015. The ten-point Gauss-Legendre integration yieldsobserved over a wide pressure range in Fig. 3, since the
SAN(Au*), =11.39+0.01, or B(Fgin— F)/Ng=27.34+0.03. (b) Plot of height of the free energy barrier between the two phases,
éé;’;ﬁxégsgz)"g(oll; ;ﬂg ;’i d(:]\ +OCZ())l;m fgtfait:ea SST;"\‘; 5\3/’;:9:11 E;in(gl ] which governs the hysteresis, is also expected to vary slowly
which is use(zj to .integrate E@3). ;rhe [rJeguIts are ident)i/cal tg tr?ose(ej.o Wlth_ pressure. Finally, the mtersec.tlon of the solid curve
(solid phasg and the dotted curvéluid phaseg, labeled by
the open circle, marks the location of the coexistence point at
pP*=37.8+1.
1 To calculate the complete melting curve, we integrate
f dr(Au™)y Eqg. (19, employing the one point obtained from the free
energy calculations above as the initial starting point. We
1 d\x have also repeated the free energy calculations above for a
Jo m(AU*>x(K+C2)m (23)  system of chains composed wf10 monomers. Results for
2 the two systems oh=6 andn=10 are shown in Fig. 7.
(AU*), (A +Cy)™ Figure Ta) shows the melting temperature as a function of
, pressure, and Fig.(§) shows the corresponding coexistence
regions in theT*-p* plane. For these systems of short
where we have chose@,=0.014 66 andn=0.40. Figure chains, the variation of chain length has two notable effects:
5(b) shows that the transformed integrand is a smoothlyi) The melting temperature increases with increasing chain
varying function of § + C,)1~™ and should therefore yield a length at fixed pressure. This is consistent with experimental
better estimate of the integral than before. However, in bothiesults for alkanes, for example, where the melting tempera-
cases we obtain identical values $dr(Au*),=11.39 ture is observed to increase with increasing number of me-
+0.01, orB(Fgin— F)/N=27.34+0.03. This suggests that thylene groups. As wellkji) the density at the transition de-
the calculation of the free energy for solids composed oftcreases for increasing chain length at fixed temperature.
chains with very stiff bonds, the case for real molecules, is  To investigate the effect of chain stiffness on the solid-
relatively straightforward. fluid phase behavior, we again employ the Gibbs-Duhem in-
To calculate the equilibrium solid-fluid coexistence tegration technique and integrate E82). The results of the
point, we require the chemical potential as a function of presealculations for systems with chain lengths w6 and
sure for both phases. For the solid phase, this can be obtained=10 are shown in Fig. 8. The MD simulations for the

A=0

1+C,)L—m
=J( et

c; " 1-m
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FIG. 7. (8 T*=kgT/e vs P*=Po?/e melting curves for two systems of FIG. 8. (a) ki =k,0%/ e vs P*=Pg> e equilibrium melting curves for two
n=6 segment chaingsolid squaresand n=10 segment chaingpen tri- systems on=6 segment chainésolid squaresandn=10 segment chains

angles. (b) T* vs p* coexistence regions for the same systems a®)in  (open triangles (b) k§ vs T* coexistence regions for the same systems as in

The curves were obtained by a numerical integration of @#§) starting (@). The curves were obtained from a numerical integration of @4)

from an initial point atT*=2.5 for each system. A fourth-order Runge- starting from an initial point al* =2.5 obtained from a free energy calcu-

Kutta integration scheme with a step sized#=0.05¢"* was used. lation for each system. A fourth-order Runge-Kutta integration scheme was
used, with a step size afk} =5.0. For then=10 system, we employ step
sizes of sk} =2.0 forkj <5.0.

longer chain system became very sluggish with increasing

chain stiffness and could only be performed fdf=<20,

wherek® =k,o?/e. Figure §a) shows the phase boundary of pendent ok} . The high ratio o 6?)qyia/( 6°)soiia at low Kj

the solid-fluid transition in thé&} -P* plane forT* =2.5, and indicates a rapid increase in the coexistence pressure with
Fig. 8(b) shows the corresponding coexistence regions in thé&}, . Note that this levels off at highddj . (i) Increasing the

ki -p* plane. There are three notable results:Increasing chain stiffness decreases the density at which the solid-fluid
the chain stiffness increases the stability of the solid phast#ansition takes place. Note that the transition asymptotically
with respect to the fluid phase in that it shifts the transition toapproaches a fixed pressure and density, the rigid chain limit,
lower pressures for fixed temperature. This effect is primaas the flexibility decreases with increasihg . (i) The

rily due to an increase in the liquid phase chemical potentialvidth of the coexistence region, a discontinuity which gives
with k% , which, especially at lowek , varies considerably a measure of the strength of the first-order phase transition,
more rapidly than the chemical potential in the solid phasealso increases with increasing chain stiffness. Note that this
From Egs.(20), (21) and (22), the rate of change of* at  quantity also asymptotically approaches the rigid-chain limit
constant pressure and temperature is proportionédtp. In with increasingk , though this is more apparent for the-6

the solid phase, where the chains are fully extended, anghhase coexistence region which could be calculated to higher
thus, whered deviates only ever by small amounts from kj than that ofn=10.

zero, the derivative in Eq22) is small. However, the chains For systems like the semiflexible chains considered in
are considerably more flexible in the fluid phase, and thus théhis work, liquid crystal mesophases, in principle, can be
derivative in Eq.(22) is larger. As the increase in* with  thermodynamically stable for sufficiently large stiffness or
ki is greater for the fluid phase, the intersection of the curvetow temperature. In the MD simulation studies of Wilson
shown in Fig. 6 would therefore shift to lower pressures.et al*” and Wilson® a similar system of short chains, in this
Table | lists the values and the ratio of valug®) in the  case composed of a string of seven hard spheres, was ob-
solid and fluid phases. Note thé#?);q4 is essentially inde- served to form nematic and smectic phases for sufficiently
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TABLE I. Dependence of mean-square angle)® (radf) on chain  increasing the chain length increases the melting temperature
stiffness. and decreases the density at the transition. Further, we find
n K () uia (g (0 a1 0 e that increasing th(_a chain stiffness effe_cts a sta_lblhzatlon of
the solid phase with respect to the fluid, reducing both the
pressure and density at the transition for fixed temperature,

6 5 0.0396 0.7261 18.4 . i .
10 0.0479 0.4728 9.9 and broadens the density gap between the solid and fluid
15 0.0528 0.3225 6.1 phases. Finally, we note that the methods employed here are
20 0.0592 0.2344 4.0 completely general and can, in principle, be used to deter-
25 0.0569 0.1785 31 mine the solid-fluid phase behavior of more realistically
gg g-gggg 8-1‘2‘2(1) Z; modeled chain molecules.

‘ ' ' Note added in proofAfter the submission of this article,

10 1 0.0635 1.087 17.1 we became aware of a recently published paper by A. P.
3 0.0550 0.914 16.6 Malanoski and P. A. MonsofJ. Chem. Phys107, 6899
5 0.0623 0.695 11.2 (1997] on the solid-fluid phase transition for systems of
10 0.0661 0.450 638 fully flexible tangent hard-sphere chains, which also employs
15 0.0697 0.329 4.7 . R d
20 0.0692 0.951 36 free energy calculations, and which is highly relevant to this

study.

@0 is the angle between adjacent bond segment vectors on the LJ chains
defined in the text below Ed3).
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