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Calculation of solid-fluid phase equilibria for systems of chain molecules
James M. Polson and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 9 February 1998; accepted 26 March 1998!

We study the first order solid-fluid phase transition of a system of semi-flexible Lennard-Jones
chains using molecular dynamics simulations. Thermodynamic integration methods are used to
calculate the free energy of the solid and fluid phases. The solid phase free energy per chain can be
calculated to an accuracy of60.03kBT with relative ease. The Gibbs-Duhem integration technique
is used to trace out the complete melting curve, starting with a single point on the curve obtained
from the free energy calculations. For the short chains studied here, we find that increasing the chain
length stabilizes the solid phase; i.e., it raises the melting temperature at fixed pressure, and lowers
the density at the transition at fixed temperature. Gibbs-Duhem integration was used also to
investigate the effects of chain stiffness on the transition. We find that increasing the stiffness also
acts to stabilize the solid phase. At fixed temperature, the transition is shifted to lower pressure and
lower density with increasing chain stiffness. Further, we find that the density gap between solid and
fluid broadens with increasing chain stiffness. ©1998 American Institute of Physics.
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I. INTRODUCTION

Phase transitions between solid and fluid phases are
cally strongly first order and characterized by a high deg
of hysteresis in the equation of state. For this reason,
determination of the equilibrium coexistence by compu
simulation requires special techniques which are suitable
high densities. While a method such as the Gibbs ensem
technique1 provides a direct means to simulate coexisti
phases, this method relies on the exchange of particles
tween the phases in separate simulation cells, a move w
is efficient only at sufficiently low densities. Instead, the c
culation of the chemical potential as a function of density
the mechanically stable regions of each phase is requ
The coexistence can then be calculated from the basic c
rion that temperatures, pressures and chemical potentia
coexisting phases are equal. One approach to calculating
chemical potential is the Widom test particle inserti
technique.2,3 Once again, however, this is a technique wh
relies on insertion of particles into the system; in this ca
one calculates the average of the Boltzmann factor co
sponding to the change in potential energy upon insertion
a test particle. At high densities, only very few test insertio
will have a non-negligible Boltzmann weight, leading to
large statistical error in the calculation of the average. Th
is an additional complication in the case of a crystalli
solid: random insertion of a test particle into anN-particle
crystal results in the formation of an interstitial rather than
crystal withN11 lattice sites.

An alternative approach to the calculation of the chem
cal potential is the calculation of the Helmholtz free ener
via thermodynamic integration. The essential idea beh
thermodynamic integration is the transformation of the s
tem from one state to another of known free energy, and
calculate the free energy difference involved in the trans
mation. For example, the free energy of a fluid at arbitr
3180021-9606/98/109(1)/318/11/$15.00
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density can be calculated by integration along an isotherm
zero density, at which the system behaves as an ideal ga
known free energy. Obviously, such a method cannot be
plied to the solid phase since expansion of the system ca
it through the first-order melting transition, a nonreversib
path through which the free energy cannot be integrated.
alternative route is to cool the solid at constant density t
low-temperature harmonic solid. The free energy of this st
can be calculated analytically, and the free energy differe
between the two states is related to the integral of the inte
energy along the isochore. However, this approach can
hampered by the presence of solid-solid phase transit
along the isochore. Further, it is not suitable for partic
interacting with discontinuous potentials which do not for
harmonic solids at low temperatures. Finally, there is an
ditional problem in the case of complex molecules: even
the system can be cooled to become a harmonic crystal
calculation of the Helmholtz free energy in this limit
highly nontrivial.

Rather than performing thermodynamic integratio
alongnatural pathways such as isotherms and isochores,
possible and more convenient to perform an analogous i
gration alongartificial reversible pathways. This involve
the variation, not of state variables such as temperature
density, but of the actual particle interactions, to transfo
the system to a state of known free energy. An early ap
cation of artificial thermodynamic integration to calculate t
free energy of simple atomic solids was the sing
occupancy-cell method introduced by Hoover and Ree
1968, which was also applied to the hard-sphere sol4

Later, however, some technical problems with this meth
were discovered.5 An alternative and more general method
calculate the free energy of arbitrary atomic solids was
troduced by Frenkel and Ladd in 1984.6 The method in-
volves the transformation of the atomic solid to a lattic
coupled solid by gradually imposing an interaction coupli
© 1998 American Institute of Physics
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the atoms to their lattice sites, and, in the case of parti
with continuous potentials, the simultaneous removal of
terparticle interactions. A convenient reference solid is
Einstein crystal, in which particles are harmonically coup
to their lattice sites. The free energy of the Einstein crysta
known, and the free energy difference associated with
transformation can be calculated in a straightforward m
ner. The method was originally applied to the hard sph
solid to calculate the free energy difference between fa
centered-cubic ~fcc! and hexagonal-close-packed~hcp!
lattices,6 a calculation that has been repeated recently t
higher degree of accuracy.7,8 Later, this method was ex
tended for use for particles with orientational degrees of fr
dom as well. In this case, the coupling of the particle po
tions to the lattice sites is augmented by an external fi
which induces orientational alignment. This approach
been applied to calculate solid phase free energies requ
for the calculation of the phase diagrams of ha
ellipsoids9,10 and hard spherocylinders.11,12 As well, this
method has been applied, with further refinements wh
necessary, to study the phase behavior of simple molec
solids such as N2,13–15 CO2,16 N2O,17 and H2O.18

An important type of system for which the lattice
coupling free energy calculation method has not yet b
applied is that of solids composed of semiflexible chain m
ecules. In principle, this should involve a relatively straig
forward extension of the existing technique. The calculat
of the solid phase free energy provides the first step in
determination of the solid-fluid equilibrium phase behav
of chain molecules. Once an initial point on the phase bou
ary has been determined, the powerful Gibbs-Duhem in
gration technique19,20 can be employed to calculate the com
plete coexistence curve in a way much less computation
demanding than by performing an additional free energy
culation for every new point on the curve. Further, this lat
method permits a relatively straightforward means to stu
the effect of molecular properties such as flexibility on t
phase behavior. In the present study, we investigate the
plication of the lattice-coupling method to an idealiz
model system composed of chains of Lennard-Jones
ticles. Clearly, the model is too crude to achieve quantita
agreement with experimental results for real molecular s
tems. Nevertheless, this approach should provide an effec
means to study the generic effects of chain length and c
stiffness on the solid-fluid phase behavior of semiflexi
chains. The long term goal of this work, however, is t
further refinement of the methods for application to mo
realistically modeled chain molecule systems.

In Sec. II we describe the theoretical background a
methods employed in the present study. In particular, in S
II A we describe the details of the molecular model; in S
II B, we present theoretical background for the calculation
the free energy in the solid and fluid phases; in Sec. II C,
discuss the application of Gibbs-Duhem integration to cal
late the phase boundaries; and in Sec. II D we describe
details of the simulations. In Sec. III, we present and disc
the results. Section IV summarizes the main results of
paper.
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II. THEORY AND METHODS

A. Model

The oligomeric chains considered here are semiflex
‘‘pearl-necklace’’ strings of bonded beads. Nonbonded s
interact with a truncated and shifted Lennard-Jones~LJ! in-
teraction,

ULJ~r !54eF S s

r D 12

2S s

r D 6

2S s

r c
D 12

1S s

r c
D 6G ,

r ,r c50,r .r c , ~1!

wheres ande are the standard LJ parameters, wherer is the
distance between beads, andr c is the cutoff distance, which
we set atr c52.5s. Bonded sites are connected with ha
monic springs with the following potential:

Ustretch~r i !5 1
2 kb~r i2r b!2, ~2!

where r i is the distance between the (i 21)th and the i th

beads,r b is the equilibrium bond length, andkb is the bond-
stretching harmonic force constant. We fixr b5s, and, un-
less otherwise stated,kbs2/e5500. Finally, we include a
bending potential given by

Ubend~u i !5 1
2 ku~u i !

2, ~3!

whereu i5cos21(ûi21•ûi), whereûi is the unit vector describ-
ing the orientation of thei th bond in the chain, and whereku

is a bending force constant.

B. Free energy calculations

The solid-fluid transition is strongly first order with
considerable degree of hysteresis in the equation of s
Consequently, it is essential to perform free energy calcu
tions in order to determine the melting curve of the syste
The conditions for the equilibrium coexistence are that
temperatures, pressures and chemical potentials of the c
isting phases be equal. The chemical potential is given b

m5
F~r!

Nch
1

nP~r!

r
, ~4!

whereF is the Helmholtz free energy of the system,Nch is
the total number of chains,P(r) is the pressure as a functio
of the density of monomersr5N/V, and n5N/Nch is the
number of monomers per chain. If the Helmholtz free ene
at a densityr0 is known, it can be calculated at any oth
densityr by the following relation:

F~r!

Nch
5

F~r0!

Nch
1nE

r0

r

dr8
P~r8!

r82
. ~5!

Thus, in order to compute the chemical potentials, one m
first calculate the absolute Helmholtz free energy at so
reference pointr0. The details of this calculation differ fo
the solid and fluid phases.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1. Solid phase

In order to calculate the Helmholtz free energy of a cr
talline solid phase, we employ a variant of the method
veloped by Frenkel and Ladd,6 which involves a thermody-
namic integration scheme to link a state of a given sys
along a reversible path to that of another system for wh
the partition function, and, hence, the Helmholtz free ener
can be calculated analytically. A convenient reference s
tem is the Einstein crystal, where individual noninteracti
particles are coupled harmonically to their equilibrium latti
positions,

UEin5
a

2(
i 51

N

~Ri2Ri
~0!!2, ~6!

whereRi is the instantaneous position of thei th particle, and
Ri

(0) is the corresponding Einstein crystal lattice positio
Note that the Einstein crystal lattice is given the same str
ture as that of the true system. Further, note that a ‘‘partic
in the context of a system of chains refers to an individ
bead on a chain. The partition function and, thus, the He
holtz free energy of the Einstein crystal of fixed center
mass, can be calculated easily,

bFEin

N
52

3~N21!

2N
lnS 2p

ba D1
3 ln N

2N
2

ln V0

N
13 ln L, ~7!

where N is the total number of particles~i.e., monomers!,
b51/kBT, andV05N/r0 is the volume of the system. Fur
ther,L5h/A2pmkBT is the de Broglie thermal wavelength
wherem is the monomer mass andh is Plank’s constant. As
shown below, the final expressions for the free energy for
solid and fluid phases at equal temperatures each con
identical terms involvingL, which, thus, plays no role in the
equilibrium phase behavior; however, we retain these te
for completeness. To carry out the thermodynamic integ
tion, we employ an effective potential,

Ũ~l!5~12l!U1lUEin , ~8!

whereU is the internal potential energy, and wherel is a
parameter employed such thatŨ(l50)5U and Ũ(l51)
5UEin . The free energy difference between the original a
reference systems may be calculated by,

F~l50!2F~l51!52E
0

1

dlS ]F~l!

]l
D 52E

0

1

dlK ]Ũ

]l
L

l

,

(9)

where the bracketŝ. . . &l indicate an ensemble average c
culated for a particular value ofl. Thus,

bF

N
5

bFEin

N
2

b

NE0

1

dl^UEin2U&l . ~10!

Note that in the course of the Einstein integration, the ad
cent bonded beads become decoupled in the limit ofl51.
Combining Eqs.~7! and ~10!, we can write the total free
energy per chain atr05N/V0 as
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bF~r0!

Nch
53n ln L2

3~N21!

2Nch
lnS 2p

ba D
1

3 ln N

2Nch
2

ln V0

Nch
2

nb

N E
0

1

dl^UEin2U&l . ~11!

The necessity of employing the fixed center-of-mass c
straint is apparent from an examination of the last term in
expression above. The calculation of the free energy requ
the numerical calculation of the integrand^UEin2U&l for
several values ofl. If the center of mass is free to diffus
with respect to the fixed Einstein crystal lattice, then th
function diverges atl50 and, though still integrable, be
comes, in practice, technically difficult to integrate.

The chemical potential at an arbitrary density can
computed using Eqs.~4!, ~5!, and~11!.

2. Fluid phase

The most convenient reference point to calculate the
solute free energy in the fluid phase is atr→0, where the
system behaves as an ideal gas of noninteracting chain
this limit, the partition function for the system is given by

ZIG~Nch,V,T!5
~Zch!

Nch

Nch!
, ~12!

where Zch is the partition function for a single chain. Th
free energy of the ideal gas is given by,

bF IG

Nch
52 ln Zch1 ln Nch!/Nch

'bFch1 ln Nch211
ln~2pNch!

2Nch
, ~13!

where we have employed Stirling’s formula plus the fir
order correction which appears as the last term, though
turns out to be negligible even for the relatively small sy
tems studied here. The analytical calculation ofZch and, thus,
of Fch for a chain with bond stretching, bond-bending and
interactions is a formidable problem. Instead, we defineU id

andUex,

U5~Ustretch1Ubend!1ULJ[U id1Uex, ~14!

and determine the ideal component of the single chain
energy due to the bonding interactions,Fch

id 52kBT ln Zch
id ,

and the excess component,Fch
ex[Fch2Fch

id , separately. The
resulting expression for the ideal component of the sin
chain partition function, in the limit of stiff bonds, is give
by

Zch
id 5F4pV

L3n GF S r b

s D 2

s3A2p

bkb
S 11

s2

bkbr b
2D G n21

3F2pE
0

p

du sin u expF2
bkuu2

2 G G n22

, ~15!

where we have included the contribution to the partiti
function from the integration of the momenta. Thus, the id
gas free energy is given by
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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bF IG

Nch
5 ln~r/n!211

ln~2pNch!

2Nch
13n ln L

2~n21!lnF S r b

s D 2

s3A2p

bkb
S 11

s2

bkbr b
2D G

2~n22!lnF2pE
0

p

du sin u expF2
bkuu2

2 G G
2 ln~4p!1bFch

ex. ~16!

Using Eq.~5!, and the fact thatPIG5NchkBT/V, it is trivial
to show that

bF~r!

Nch
5

bF IG~r!

Nch
1E

0

r

dr8FnbP~r8!2r8

~r8!2 G . ~17!

The last step in the calculation of the free energy for
fluid phase is the calculation ofFch

ex, the excess component o
the single chain Helmholtz free energy arising from the
trachain LJ interactions. To this end, we adapt a Monte C
method developed by Frenkelet al.21 based on an earlie
technique due to Rosenbluthet al.22 for the calculation of the
excess chemical potential for continuously deformable ch
molecules.

Finally, the chemical potential for the fluid phase can
calculated using Eqs.~4!, ~16! and ~17!.

C. Calculation of the phase boundaries

We use molecular dynamics~MD! computer simulations
to calculateP(r) vs r isotherms for the solid and fluid
phases. Further, we calculate the average quantity in the
stein integration scheme appearing in Eqs.~10! and~11! em-
ploying a ten-point Gauss-Legendre integration procedur
order to evaluate the integral. Using the expressions der
in the previous section, we can calculate them(P) for fixed
T for each phase. The intersection of these functions de
mines the location where the conditions for thermodynam
coexistence are satisfied and gives a single point on the m
ing curve. Since the free energy calculations required to
tain this single point are computationally very expensive,
do not repeat them in order to obtain a full line of poin
Instead, we employ the Gibbs-Duhem integration scheme
veloped by Kofke19,20 to trace out the phase boundarie
without the need to compute further free energies. The s
plest variant of this method involves the integration of t
standard Claussius-Clapeyron equation,

S dP

db D
coexist

52
Dh

bDv
, ~18!

where Dh5hII2hI and Dv5v II2v I are the differences in
molar enthalpy and volume of the two phases, respectiv
To implement the Kofke integration scheme, it is more co
venient to rewrite Eq.~18! in the following form:

S d ln~bP!

db D
coexist

52
De

bPDv
, ~19!

whereDe5eII2eI is the difference in molar energy betwee
the two phases. As the Claussius-Clapeyron equation
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
e

-
lo

in

e

in-

in
ed

r-
c
lt-

b-
e
.
e-
,
-

y.
-

a

first-order differential equation, it can be integrated to co
pute the coexistence curve provided one point on the curv
known. Generally, this starting point is determined from fr
energy calculations, though alternative procedures, nota
the Gibbs ensemble simulation method, can also provide
initial point. This latter method, however, is not applicable
the present system since it involves particle exchange
tween coexisting phases in separate simulation boxes
high densities such moves become prohibitively difficult.

Finally, we note that the Kofke integration scheme
completely general and can be applied to the calculation
phase boundaries other than inr-T-P space. In the presen
study, we employ Gibbs-Duhem integration to investiga
the effect of varying the chain stiffness. The Gibbs-Duhe
equation for the system is

Nchdm5VdP2SdT1S ]G

]ku
Ddku . ~20!

Employing the standard criteria for thermodynamica
stable coexistence between phases, and, considering the
of fixed temperature, we obtain the following relation b
tween pressure and chain stiffnessku along theP-ku coex-
istence line:

S ]P

]ku
D

coexist

52
D~]G/]ku!

DV
, ~21!

where D(]G/]ku) and DV denote the differences in thes
quantities between the coexisting phases. The former qu
tity is given simply by,

]G/]ku5 1
2 Nch~n22!^u2&, ~22!

where^u2& is the average of the square of allNch3(n22)
internal bending angles in the system. Such a procedure
been used by Dijkstraet al.23 to investigate the effects o
chain stiffness on the nematic-isotropic phase transition
semiflexible hard spherocylinders using the rigid rod res
obtained from a Gibbs ensemble simulation, as the ini
reference point.

D. Simulation details

The focus of this study is the determination of fluid-so
phase equilibrium for systems of short chain molecules
problem associated with the simulation of the fluid phase
chain molecule systems in general is the inefficiency of
generation of significantly different system configurations
quired to adequately explore phase space. Recent adva
simulation techniques, such as the configurational-b
Monte Carlo~CMBC! method, provide a means to regrow
partially or completely, individual chains far more efficient
than via a completely random sampling of configuratio
This method has been shown to be useful especially for l
chains at moderate densities. However, since the densit
the solid-fluid transition is expected to be high in the pres
study, this method is not expected to be particularly eff
tive. We choose instead to employ the molecular dynam
~MD! method. We expect that following the ‘‘natural’’ dy
namics of the system, in which collective motions involvin
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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large-scale conformational changes could be importan
the most straightforward and effective approach to efficien
explore phase space. Although entanglement effects c
result in sluggish dynamics for long chains, the chains st
ied here are sufficiently short to avoid this problem.

To calculate the isotherms for the fluid phase requi
for the free energy calculations described above, we perf
constant-volume constant-temperature~NVT! MD simula-
tions using a Nose´-Hoover thermostat to regulate th
temperature.24–26We employ the reversible time-propagatio
integrators described by Martynaet al.27 In most cases we
employ a time step ofdt* [dtAe/ms250.005, wherem is
the monomer mass, and a thermostat frequency ofvp*
[vpAms2/e540.0, from which the thermostat mass
given by Qp5NfkBT/vp

2 , whereNf is the number of de-
grees of freedom.27 We also investigated the application
multiple-time-step~MTS! methods to improve the energ
conservation of the system.27–29In particular, we applied the
reference system propagator~RESPA! technique using the
bond-stretching force as the reference force. However,
the value of the associated force constant employed in m
of the simulations (kb* [kbs2/e5500.0!, the time step was
still short enough relative to the period of the bond-stretch
vibration mode that the MTS method did not significan
improve energy conservation.

At low densities, the chains were initially aligned para
lel with centers of mass on a fcc lattice stretched in
~111!-axis, and were allowed to ‘‘melt’’ into the fluid phase
However, at higher densities, the considerable hysteres
the solid-fluid transition inhibits this process. Consequen
we compress an equilibrated low density fluid to higher d
sity using a method due to Berendsenet al.30 In this tech-
nique, the system is brought to a particular pressure by s
ing the box dimensions independently at each time step
way such that the pressure grows or decays exponential
the desired value. The compression was performed typic
in increments ofDP* [DP(s3/e)55–10. At each pressur
the fluid was typically equilibrated for a time o
Dt* 550.0–100.0~longer times for longer chains and high
densities!, followed by production runs of comparable dur
tion.

For systems of chains in the solid phase, we perfo
Parrinello-Rahman constant-stress MD simulations in wh
the shape, as well as the volume, of the simulation box
dergoes fluctuations.31 This method is essential for crysta
line solid systems where the equilibrium crystal structure
not knowna priori, since use of standard periodic bounda
conditions, together with the imposition of a simulation b
shape which is incommensurate with the unit cell of the cr
tal, can distort the crystal from its equilibrium structure. W
employ reversible time-propagator integrators for
isothermal-isobaric ensemble derived by Martynaet al.27

Further, we set the barastat frequency tovb* 51.0, with the
barostat mass given byWg5(Nf1d)kBT/vb

2d, whered53
is the dimensionality of the system.27

The equilibration of the solid phase is, in principl
much less straightforward than that of the fluid phase. In
present case, we are confronted by the problem that th
chains could not be crystallized from the fluid over a reas
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able time scale, a process which can give some insight
the stable structure of the solid. Further, if the equilibrati
starts with a crystalline solid, we expect the solid to relax
a structure which is highly dependent on the initial config
ration and for which there is no guarantee of thermodyna
stability. Thus, the best that can be done is to carry
equilibration runs starting from different, though sensib
initial solid structures. A free energy analysis of the resulti
‘‘equilibrated’’ metastable structures can determine which
likely to be thermodynamically stable. To choose an init
starting configuration, we make two assumptions about
structure of the stable solid. First, we assume that the ch
are fully extended. We expect this to be the lowest ene
single-chain configuration, with the probable exception
the fully flexible limit. Second, we assume that the chains
hexagonally packed in distinct layers. Note that both of th
properties are observed in alkane solids, though the la
especially is less obviously true for the present system
semiflexible LJ chains.

We investigate the effect of initially tilting the extende
chains with respect to the layer normal. In each case,
chains where aligned along thec-axis, one of the three vec
tors that define the tensorhJ5$a,b,c%, each of which is an
edge of the parallelepiped simulation box, where the ch
layers lie in thea-b plane. Initially, we seta'b and c–a
5c–b and use a variety ofc-axis tilting angles. Further, we
investigated three different layer stacking configurations:~i!
AAA, in which the positions of individual chains in on
layer transform to those in adjacent layers by a single-la
translation along thec-axis; ~ii ! ABAB, an alternating chain-
stacking structure, analogous to the hard-sphere hexago
close-packed~hcp! lattice stretched along thec-axis; and~iii !
ABC, which is analogous to the hard sphere face-cente
cubic ~fcc! lattice, also stretched along thec-axis, where the
structure repeats itself every third layer. Interestingly, for
choice of parameter values used here, we find only a sin
‘‘stable’’ crystal structure, regardless of the initial structur
an AAA lattice within which thec axis is tilted at approxi-

mately 33° with respect to thea-b plane cos21(â•b̂)590°,

cos21(ĉ•â)'73°, and cos21(ĉ•b̂)'61°, though these value
vary very slightly with temperature, chain stiffness and ch
length. This structure is body-centered-cubic~BCC!-like
with respect to the environment of a single monomer, w
the bonded nearest neighbor sites slightly closer than
nearest nonbonded sites. While there is no other straigh
ward technique to prove that this structure is the thermo
namically stable one, the fact that it was the only crys
structure observed to be mechanically stable for a variety
initial starting configurations strongly suggests that it is.

In order to calculate the free energy of the solid, w
compute the integral appearing in Eqs.~10! and ~11! using
the ten-point Gauss-Legendre quadrature method. Thus
average energy differencêUEin2U&l is evaluated for ten
values ofl at constant volume. The average box shape
chain coordinates are first calculated in order to provide
reference lattice used in the Einstein integration. In the sim
lations used to calculate the integrand, it was found that
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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use of the Nose´-Hoover thermostat was unsuitable, esp
cially in the limit of l→1, where the particles interact ver
weakly with each other and are strongly coupled to the
tice sites. In this limit, the system is essentially a set
decoupled harmonic oscillators, a well-known pathologi
case for the Nose´-Hoover method. While the problem can b
avoided by using a chain of coupled Nose´-Hoover
thermostats,32 we chose instead to employ an Anders
thermostat.33 Finally, for these simulations, we correct fo
the diffusion of the center of mass in the calculation ofUEin

in the manner described in Ref. 6.
To perform the Gibbs-Duhem integrations by integrati

the pressure with respect tob51/kBT and the chain stiffness
parameterku via Eqs.~19! and~21!, respectively, we employ
the fourth-order Runge-Kutta method. Alternate integrat
procedures~e.g., predictor corrector! should be equally ap
plicable. Note that the present procedure involves eight se
rate simulations for each time step~four for each phase! in
the integrations in order to evaluateDe andDv in Eq. ~19!,
andD(]G/]ku) andDV in Eq. ~21!. While this still requires
considerable computational effort to calculate a ph
boundary over a reasonable range, it is still much more e
cient than performing a separate free energy calculation
each point on the boundary. We employ steps ofdb* [e
•db50.05 anddku* [(s2/e)ku55.0. In each case, we als
performed Gibbs-Duhem integrations with larger step si
to test the accuracy of the integration. Step sizes of dou
the magnitude employed here were found to give ident
results.

III. RESULTS AND DISCUSSION

Snapshots of systems of semiflexible LJ chains in
fluid and solid phases are shown in Figs. 1 and 2, resp
tively. In each case, chains are shaded in different tone
help distinguish beads which are part of the same chain,
in the case of Fig. 2, to distinguish chains which lie in d
ferent layers. There are six beads per chain, and 270 ch
comprising the system. In Fig. 2, the origin for the tilt of th
chains with respect to the layer normal in the solid phas
evident: it provides a means for the LJ beads to interdigi
with those of adjacent chains, allowing them to pack dens
in layers while maintaining a low-energy extended ch
conformation.

Figure 3 shows the fluid and solid branches of theT*
[kBT/e52.5 isotherm for a system of 270 six-segme
chains characterized by a stiffnessku* [kus3/e510.0. We
note that the fluid phase of systems of LJ chains demixes
gas and liquid phases below some critical temperature,Tc* .
Using configurational-bias Gibbs ensemble-Monte Ca
~MC! simulations, Mooijet al.34 have calculated the critica
temperature for a system of fully flexible eight-segment
chains to beTc* 52.07. Further, the value ofTc* has been
observed to decrease with decreasing number of monom35

and increasing stiffness.36 Thus, the isotherm temperature
almost certainly above the critical temperature. The hys
esis in the isotherm extends over a considerable pres
range. The lowest pressure and density for the solid bra
marks the approximate limit of mechanical stability of t
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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solid phase with respect to the fluid phase. The thick ho
zontal line segment connecting the two branches marks
location of the equilibrium coexistence.

To calculate the free energy of the solid phase, we e
ploy the thermodynamic integration method outlined in S
II B 1. To evaluate the integral in Eqs.~10! and ~11!, we
evaluate the integrand for ten values ofl suitable for a ten-
point Gauss-Legendre integration. This is illustrated in F
4, which shows a plot of̂Du* &l[^UEin2U&l /(Ne) vs l
for the same system corresponding to Figs. 2 and 3.
solid squares define the points used in the Gauss-Lege
integration. In the measurements of^Du* &l , we have set
a* [as2/e5kb* 5500.0. The function varies slowly forl
,0.8, after which the slope increases to a large nega
value, and the function decreases much more rapidly. T
feature is due to a rapid increase in^U&l as the strength of
the contribution to the potential from the internal interactio
decreases, which permits more configurations with consid
able overlap of the LJ beads with large positive values
^Ustretch&l and, especially,̂ULJ&l . To ensure that this doe
not introduce a large contribution to the integral that

FIG. 1. Snapshot of a system of semiflexible Lennard-Jones~LJ! chains in
the fluid phase near coexistence atP* [Ps3/e535.0 andT* [kBT/e52.5.
The total number of chains isNch5270, and there aren56 LJ sites per
chain. The LJ sites have been drawn as spheres with a diameters. Indi-
vidual chains have been randomly shaded in four different tones as an a
distinguish bonded and nonbonded sites.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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poorly approximated by employing an insufficient number
points, we also performed a 20-point Gauss-Legendre i
gration. Both calculations give identical result
*0

1dl^Du* &l52.8160.01, orb(FEin2F)/Nch56.7460.03.
In the system studied above, we employed a relativ

weak bond-stretching constant for convenience in the si
lations. However, simulations employing more realistic mo
els for molecular systems require much stiffer bonds.
note, however, that the problem of divergences nearl50.0
and/orl51.0 is expected to increase with increasing bo
stiffnesskb . To investigate this, we have also carried ou
free energy calculation on a LJ-chain solid identical to t
of the previous free energy calculation, except with a bo
stiffness ofkb* 510 000, 20 times that of the previous syste
Again, we fixa* 5kb* . The results are shown in Fig. 5~a!. In
this case, there is a very strong peak atl50, which could
present problems for the integration. This peak is due t
rapidly increasinĝ UEin& due to large LJ bead displaceme
fluctuations transverse to the long axis of the chains w
Ũ'U. While decreasing the magnitude ofkb* would reduce

FIG. 2. Snapshot of a system of semiflexible Lennard-Jones~LJ! chains in
the solid phase atP* [Ps3/e550.0 andT* [kBT/e52.5. As in Fig. 1, the
total number of chains isNch5270, and there aren56 LJ sites per chain.
Individual chains are aligned along the longest edge of the parallelep
simulation box. There are three layers of chains, which have been shad
different tones as an aid to the eye. As well, one chain in the central l
has been shaded in a lighter tone to help distinguish bonded and nonbo
sites within the layer.
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this peak, it would also induce a negative peak atl51, due
to large limiting values of̂ Ustretch& when bonded beads be
come decoupled. Another alternative would be to modify
form of UEin to employ different spring constantsa i anda'

for directions parallel and transverse to the chain axis,
seta i* 5kb anda'5(b^dr 2&)21. However, this approach is
only relevant to this particular model of chain molecules.
more general approach is to simply change the integra
variable to another such that the integrand is a m
smoothly varying function. We choose the following tran
formation:

ed
in

er
ded

FIG. 3. Fluid and solid branches of theT* 52.5 isotherm for a system of LJ
chains. The system hasNch5270 LJ chains ofn56 LJ sites per chain. The
solid horizontal line segment connecting the two branches marks the e
librium coexistence point. The reduced pressure and density are defin
P* [Ps3/e and r* [rs3, respectively, wherer[N/V is the density of
monomers.

FIG. 4. Plot of^Du* &l vs l, where^Du* &l[^UEin2U&l /(Ne), andN is
the number of monomers. This function appears as an integrand in Eqs.~10!
and~11! and is proportional to the free energy difference between the c
talline solid phase of the LJ chain system and the reference Einstein cry
The solid squares define the points used for a ten-point Gauss-Lege
integration. The calculation was done for a system characterized
Nch5270 chains,n56 segments per chain,a* [as2/e5kb5500.0, T*
[kBT/e52.5, and r* [rs351.3362, wherer[N/V is the density of
monomers. The Gauss-Legendre integration yields*0

1dl^Du* &l52.81
60.01, which givesb(FEin2F)/Nch56.7460.03.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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E
l50

1

dl^Du* &l

5E
0

1 dl

~l1C2!m
^Du* &l~l1C2!m

5E
C2

12m

~11C2!12m

d~l1C2!12m ^Du* &l~l1C2!m

12m
,

~23!

where we have chosenC250.014 66 andm50.40. Figure
5~b! shows that the transformed integrand is a smoot
varying function of (l1C2)12m and should therefore yield
better estimate of the integral than before. However, in b
cases we obtain identical values of*0

1dl^Du* &l511.39
60.01, orb(FEin2F)/Nch527.3460.03. This suggests tha
the calculation of the free energy for solids composed
chains with very stiff bonds, the case for real molecules
relatively straightforward.

To calculate the equilibrium solid-fluid coexistenc
point, we require the chemical potential as a function of pr
sure for both phases. For the solid phase, this can be obta

FIG. 5. ~a! Plot of ^Du* &l vs l, where^Du* &l[^UEin2U&l /(Ne), andN
is the number of monomers. The solid squares define the points used
ten-point Gauss-Legendre integration. The calculation was done for a
tem characterized byNch5270 chains,n56 segments per chain,T*
[kBT/e52.5, r* [rs351.3151, wherer[N/V is the density of mono-
mers, anda* [as2/e5kb510 000.0. The chain bonds are 20 times stiff
than those of Fig. 4. As a result of the high values ofa* and kb* , it was
necessary to reduce the time step in the MD simulation fromdt* 50.005 to
dt* 50.0015. The ten-point Gauss-Legendre integration yie
*0

1dl^Du* &l511.3960.01, or b(FEin2F)/Nch527.3460.03. ~b! Plot of
^Du* &l(l1C2)m/(12m) vs (l1C2)12m for the same system as in~a!.
We chooseC250.014 66 andm50.40 to obtain a slowly varying function
which is used to integrate Eq.~23!. The results are identical to those of~a!.
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from Eqs.~4!, ~5! and ~11!. The Einstein integration yields
the Helmholtz free energy at one density via Eq.~11!, and
the measurement of theP(r) vs r isotherm enables the ca
culation of F(r) and m(r), and, thusm(P), from Eqs.~4!
and ~5!. For the fluid phase, the free energy and chemi
potential can be calculated with Eqs.~4!, ~16! and~17!. The
results for then56 segment system corresponding to Figs
and 4 is shown in Fig. 6. Note that the chemical poten
curves for each phase are very nearly parallel, i.e., the che
cal potential difference between the phases varies v
slowly with pressure. This is consistent with the hystere
observed over a wide pressure range in Fig. 3, since
height of the free energy barrier between the two phas
which governs the hysteresis, is also expected to vary slo
with pressure. Finally, the intersection of the solid cur
~solid phase! and the dotted curve~fluid phase!, labeled by
the open circle, marks the location of the coexistence poin
P* 537.861.

To calculate the complete melting curve, we integra
Eq. ~19!, employing the one point obtained from the fre
energy calculations above as the initial starting point. W
have also repeated the free energy calculations above f
system of chains composed ofn510 monomers. Results fo
the two systems ofn56 and n510 are shown in Fig. 7.
Figure 7~a! shows the melting temperature as a function
pressure, and Fig. 7~b! shows the corresponding coexisten
regions in theT* -r* plane. For these systems of sho
chains, the variation of chain length has two notable effe
~i! The melting temperature increases with increasing ch
length at fixed pressure. This is consistent with experime
results for alkanes, for example, where the melting tempe
ture is observed to increase with increasing number of m
thylene groups. As well,~ii ! the density at the transition de
creases for increasing chain length at fixed temperature.

To investigate the effect of chain stiffness on the sol
fluid phase behavior, we again employ the Gibbs-Duhem
tegration technique and integrate Eq.~22!. The results of the
calculations for systems with chain lengths ofn56 and
n510 are shown in Fig. 8. The MD simulations for th

r a
s-

s

FIG. 6. Reduced chemical potential,m* [m/e, vs reduced pressure,P*
[Ps3/e, for the solid~solid line! and fluid~dotted line! phases of a system
of LJ chains. The intersection of the two curves defines the coexiste
point and is labeled by an open circle.
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longer chain system became very sluggish with increas
chain stiffness and could only be performed forku* <20,
whereku* [kus2/e. Figure 8~a! shows the phase boundary
the solid-fluid transition in theku* -P* plane forT* 52.5, and
Fig. 8~b! shows the corresponding coexistence regions in
ku* -r* plane. There are three notable results:~i! Increasing
the chain stiffness increases the stability of the solid ph
with respect to the fluid phase in that it shifts the transition
lower pressures for fixed temperature. This effect is prim
rily due to an increase in the liquid phase chemical poten
with ku* , which, especially at lowerku* , varies considerably
more rapidly than the chemical potential in the solid pha
From Eqs.~20!, ~21! and ~22!, the rate of change ofm* at
constant pressure and temperature is proportional to^u2&. In
the solid phase, where the chains are fully extended, a
thus, whereu deviates only ever by small amounts fro
zero, the derivative in Eq.~22! is small. However, the chain
are considerably more flexible in the fluid phase, and thus
derivative in Eq.~22! is larger. As the increase inm* with
ku* is greater for the fluid phase, the intersection of the cur
shown in Fig. 6 would therefore shift to lower pressur
Table I lists the values and the ratio of values^u2& in the
solid and fluid phases. Note that^u2&solid is essentially inde-

FIG. 7. ~a! T* [kBT/e vs P* [Ps3/e melting curves for two systems o
n56 segment chains~solid squares! and n510 segment chains~open tri-
angles!. ~b! T* vs r* coexistence regions for the same systems as in~a!.
The curves were obtained by a numerical integration of Eq.~19! starting
from an initial point atT* 52.5 for each system. A fourth-order Rung
Kutta integration scheme with a step size ofdb50.05 e21 was used.
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pendent ofku* . The high ratio of̂ u2&fluid /^u2&solid at low ku*
indicates a rapid increase in the coexistence pressure
ku* . Note that this levels off at higherku* . ~ii ! Increasing the
chain stiffness decreases the density at which the solid-fl
transition takes place. Note that the transition asymptotic
approaches a fixed pressure and density, the rigid chain li
as the flexibility decreases with increasingku* . ~iii ! The
width of the coexistence region, a discontinuity which giv
a measure of the strength of the first-order phase transit
also increases with increasing chain stiffness. Note that
quantity also asymptotically approaches the rigid-chain lim
with increasingku* , though this is more apparent for then56
phase coexistence region which could be calculated to hig
ku* than that ofn510.

For systems like the semiflexible chains considered
this work, liquid crystal mesophases, in principle, can
thermodynamically stable for sufficiently large stiffness
low temperature. In the MD simulation studies of Wilso
et al.37 and Wilson,38 a similar system of short chains, in th
case composed of a string of seven hard spheres, was
served to form nematic and smectic phases for sufficie

FIG. 8. ~a! ku* [kus2/e vs P* [Ps3/e equilibrium melting curves for two
systems ofn56 segment chains~solid squares! andn510 segment chains
~open triangles!. ~b! ku* vs T* coexistence regions for the same systems a
~a!. The curves were obtained from a numerical integration of Eq.~21!
starting from an initial point atT* 52.5 obtained from a free energy calcu
lation for each system. A fourth-order Runge-Kutta integration scheme
used, with a step size ofdku* 55.0. For then510 system, we employ step
sizes ofdku* 52.0 for ku* ,5.0.
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stiff chains upon compression from the isotropic fluid. T
isotropic-nematic transition of semiflexible hard-sphe
chains was also studied recently by MC simulation39 and
theoretically,40 where the transition was observed to shift
lower densities with increasing chain stiffness and decre
ing chain length. As well, as in Refs. 37 and 38, the nem
phase was only stable for chains for sufficient stiffness. I
difficult to compare quantitatively the results of these stud
with those here because of the different molecular mod
employed. In the present study, no orientational ordering
observed upon compression, though this could, in princi
be due to insufficiently long run times. Further, the m
sophases observed for the systems of hard-sphere chain
probably less likely for the present case of semiflexible
chains. We expect that the presence of the attractive com
nent of the LJ pair potential would help stabilize the so
phase with respect to any fluid mesophase; that is, the
tropic fluid is more likely to freeze to a solid upon compre
sion or cooling rather than undergo a transition to a m
sophase in the case of the LJ chains than in the cas
hard-sphere chains. While we certainly do not rule out
possibility of mesophase regions in the phase diagram
Figs. 7 and 8, we pursue the matter no further here:
principal aim of the present study is to investigate the
neric effects of chain length and stiffness on the solid-fl
phase transition of a system of semiflexible chains rat
than a detailed determination of the complete phase diag
for this particular model.

IV. CONCLUSIONS

In this study, we have shown that the equilibrium sol
fluid phase behavior of a system of short chain molecu
can be measured using a combination of a straightforw
extension of existing thermodynamic integration free ene
calculation techniques and the Gibbs-Duhem integra
method. In the solid phase, the free energy per chain co
be measured very accurately, thus permitting an accurate
termination of a point on the melting curve. We find th

TABLE I. Dependence of mean-square angles^u2&a (rad2) on chain
stiffness.

n ku* ^u2&solid ^u2&fluid ^u2&fluid /^u2&solid

6 5 0.0396 0.7261 18.4
10 0.0479 0.4728 9.9
15 0.0528 0.3225 6.1
20 0.0592 0.2344 4.0
25 0.0569 0.1785 3.1
30 0.0543 0.1481 2.7
35 0.0509 0.1220 2.3

10 1 0.0635 1.087 17.1
3 0.0550 0.914 16.6
5 0.0623 0.695 11.2
10 0.0661 0.450 6.8
15 0.0697 0.329 4.7
20 0.0692 0.251 3.6

au is the angle between adjacent bond segment vectors on the LJ c
defined in the text below Eq.~3!.
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increasing the chain length increases the melting tempera
and decreases the density at the transition. Further, we
that increasing the chain stiffness effects a stabilization
the solid phase with respect to the fluid, reducing both
pressure and density at the transition for fixed temperat
and broadens the density gap between the solid and
phases. Finally, we note that the methods employed here
completely general and can, in principle, be used to de
mine the solid-fluid phase behavior of more realistica
modeled chain molecules.

Note added in proof.After the submission of this article
we became aware of a recently published paper by A
Malanoski and P. A. Monson@J. Chem. Phys.107, 6899
~1997!# on the solid-fluid phase transition for systems
fully flexible tangent hard-sphere chains, which also emplo
free energy calculations, and which is highly relevant to t
study.
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