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Deviations from Fick's Law in Lorentz Gases 
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We have calculated the self-dynamic structure factor F(k, t) for tagged particle 
motion in "hopping" Lorentz gases. We find evidence that, even at long times, 
the probability distribution function for the displacement of the particles is 
highly non-Gaussian. At very small values of the wave vector this manifests 
itself as the divergence of the Burnett coefficient (the fourth moment of the dis- 
tribution never approaching a value characteristic of a Gaussian). At somewhat 
larger wave vectors we find that F(k, t )  decays algebraically, rather than 
exponentially as one would expect for a Gaussian. The precise form of this 
power-law decay depends on the nature of the scatterers making up the Lorentz 
gas. We find different power-law exponents for scatterers which exclude certain 
sites and scatterers which do not. 

KEY WORDS:  Lorentz models; random media; Burnett coefficients; self- 
dynamic structure factor; long-time tails: computer simulation. 

1. I N T R O D U C T I O N  

When Alder and Wainwright I*~ discovered the long-time tail in the velocity 
autocorrelation function of a hard-sphere fluid, they could hardly have 
expected that the stream of publications on the subject they started would 
decay so slowly. Much of our own work in this field has been moti- 
vated by the work on mode-coupling theory started by Matthieu Ernst 
and collaborators ~2~ in 1970. In the present article we would have liked 
to present a study of a correlation function that does not have a long- 
time tail. However, we feel that this would be an unwarranted break with 
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tradition, ~3-~ so we will stick to long-time tails. First let us give a brief 
summary of the story so far. 

The velocity autocorrelation function C,,(t) is defined in terms of the 
instantaneous particle velocity v(t) as follows: 

G(t) =1 (v(0). v(t)) (1) 

where d is the dimensionality of the system. It can in turn be related to a 
more macroscopically observable quantity, the mean square displacement 
J(t), 

- ~  - C, , ( t ' )  d t ' -  t 'C , , ( t ' )  dt'  (2) 

At long times the second term (almost always) goes to zero, so, from the 
Einstein definition of the diffusion coefficient D, we have 

A(t) f o  D = ,-~lim - ~ - =  Cv(t') dt' (3) 

the so-called Green-Kubo relation between the velocity autocorrelation 
function (VACF) and the diffusion coefficient. 

If a process is Markovian (i.e., what happens at any given instant is 
uncorrelated with what happened at any previous instant), then these 
correlations should decay away exponentially. What Alder and Wainwright 
found was that the VACF in a hard-sphere fluid, rather than decaying 
exponentially as expected (particle motion in fluids was assumed to be 
Markovian at the time), decayed with a power-law form, Cv(t)~t -d/2. 
They also provided a quantitative explanation for the effect in terms of the 
slow decay of the hydrodynamic fields set up by an object moving in a 
fluid. In light of this observation a rethinking of kinetic theory was 
necessary. More formal theoretical explanations, based on kinetic 1~2~ and 
mode-coupling 12~ theories, soon followed. Rather than being unique to the 
VACF, long-time tails were predicted for other time correlation functions 
(for instance, the stress-stress correlation function ~2~ and the angular 
velocity autocorrelation function ~ ~3~). In the intervening years these predic- 
tions have been extensively tested, by computer simulation ~ i. ~4~ and, 
for the VACF of colloidal particles, by experiment, cl5-~91 A computer 
simulation technique developed by Frenkel and Ernst (moment propaga- 
tion t:~ allowed the VACF for particles in lattice-based model fluids to be 
calculated to an extremely high degree of accuracy. In these fluids it proved 
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possible to test even the most subtle details of mode-coupling theory, t3-~ 
including the renormalization of the VACF in two dimensions, c4" ~ 

Following the discovery of the long-time tail in simple fluids, Ernst 
and Weijland c-'~ predicted the existence of a long-time tail in the even 
simpler system that we consider in this article--namely the Lorentz gas. 
This family of models, originally introduced by Lorentz to study diffusion 
in binary mixtures of gases, are all characterized by point particles moving 
in an array of fixed obstacles. Whereas in the simple fluids (discussed 
above) momentum is conserved, in Lorentz gases it is not. The origin of 
the long-time tail is therefore quite different and so is its sign. Ernst and 
Weijland ~2'~ predicted a negative tail of the form C ~ , ( t ) ~ - t  -~a+2~/2. 
Although initially simulations appeared to find deviations from this predic- 
tion, 122"23~ the most recent simulations ~6'7~ seem to confirm the algebraic 
decay predicted by Ernst and Weijland. The best available theory for the 
constant of proportionality, or coefficient, of the decay ~24~ predicts values in 
full agreement with simulation 125~ (although this requires the numerical 
evaluation of fluctuations in the diffusion coefficient, analytic results are 
still rather poorl71). 

The VACF tells us something, but not everything, about tagged par- 
ticle motion. If one knows the VACF one can determine the mean square 
displacement using Eq. (2). Of course, this is only part of the story. The 
mean square displacement is one property of the distribution function 
P(r, t), defined as the probability that a particle initially located at the 
origin is at position r at some later time t. The function P(r, t) tells us 
everything we could hope to know about tagged particle motion. If Fick's 
law is valid (i.e., the process is Markovian), then P(r, t) will be a solution 
of the diffusion equation, 

dP(r, t) 
= D V2P(r, t) (4) 

dt 

with the diffusion coefficient given by Eq. (3). But, as Eq. (3) shows, the 
diffusion "constant" can only be considered constant on time scales long 
compared to the time it takes the VACF to decay. On these grounds alone, 
Fick's law, Eq. (4), can only be valid on certain time scales. 

Rather than studying P(r, t) itself, we have studied its Fourier trans- 
form, F(k, t), 

F(k, t) = P(r, t) exp(ik �9 r) dr (5) 
- - o 7 .  

This quantity, known as the self-dynamic structure factor (SDSF), can be 
determined experimentally by, for instance, photocorrelation spectroscopy. 
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The SDSF provides a particularly convenient means of extracting the 
moments of P(r, t) because, by expanding the exponential in Eq. (5) in 
terms of k, F(k, t) can itself be expressed in terms of the moments for 
P(r, t). This is most conveniently done by means of a cumulant expansion 
about a Gaussian, for which the first two terms are 

k2 k ~ ) 
F(k, t) =exp  - ~ .  (G( t )  -~) +4.v ( (G( t )4 )  - 3(G(t )2)2)  + O(k~') (6) 

and the 0c subscripts refer to one component. 
If the distribution is Gaussian, then only the first term in the expan- 

sion is nonzero. The solution to the diffusion equation, Eq. (4), starting 
from a delta function initial distribution, is itself a Gaussian--so Fickian 
behavior corresponds to 

F(k, t) =exp( - k  2 Dt) (7) 

The higher order terms in Eq. (6) reflect deviations in P(r, t) from a 
Gaussian or, equivalently, deviations from Fick's law. A more general form 
of Eq. (7), which accounts for the deviations of the first and second terms 
in the cumulant expansion from Fickian values, is 

F(k,t)=exp - k  2 D(t')dt' +k 4 B(t')dt' +O(U') (8) 
I 

from which it is convenient to define a "time- and wavevector-dependent" 
diffusion coefficient D(k, t), 

D(k, t)= - ~  ' =D(t)-B(t )  + O(k 4) (9) 

If a process is Fickian, then D(k, t) reduces to the diffusion coefficient. By 
definition the functions D(t) and B(t), the time-dependent diffusion and 
Burnett coefficients, respectively, are given by 

l d  
D(t) =~..dt (G(t)2) (I0) 

l d  
B(t) = ~  ( (G( t )  ~) - 3 (G( t ) z )  2) (11) 

At long times the time derivative of D(t), which we denote Co(O, is 
directly proportional to the VACF [see Eq. (2)]. Similarly, the time 
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derivative of B(t), which we denote by CB(t), is proportional to a (four- 
point) velocity correlation function. Interestingly, the theoretical prediction 
is that B(t) diverges logarithmically in two dimensions, or, equivalently, 
that the correlation function C~(t) decays as lit. This implies that in a two- 
dimensional Lorentz gas the fourth moment is never characteristic of a 
Gaussian. This prediction was tested in a computer simulation of a con- 
tinuous Lorentz gas by Alley. 126~ The results, while strongly suggesting that 
the Burnett coefficient was indeed diverging, did not confirm the form of 
the divergence. Similar observations of large non-Gaussian effects in 
Lorentz gases have recently been reported by Cohen and Wang. 127~ 

Our aim in this article is to examine deviations from Fick's law in a 
variant of the Lorentz gas known as the "hopping" Lorentz gas. We will 
start by describing the two versions of this model that we have studied (the 
"excluded-site" and "broken-bond" models) and the method that we have 
used to calculate the SDSF. We then describe the results of our calcula- 
tions (performed in both two and three dimensions) and discuss what they 
imply with respect to Fick's law. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

We have calculated the self-dynamic structure factor for two versions 
of the "hopping" Lorentz gas. In the hopping Lorentz gas a point particle 
(the "walker") performs a random walk on a lattice until it encounters a 
fixed scatterer. At this point it is reflected (see Fig. 1). The fixed scatterers 
themselves are randomly distributed on the lattice (in our case a face- 
centered hypercube projected onto either two or three dimensions). The 
two variants we consider differ only in the type of scatterer. The first type 
of scatterers consist of excluded lattice sites. Any random walker which 
tries to reach one of these excluded sites is reflected at half a time step and, 
over a full time step, returns to its original site. The second type of scat- 
terers are just bonds which are "broken" at random. Any random walker 
which tries to travel along one of these broken bonds is reflected at half a 
time step, so, again, over a full time step, it returns to its original site. The 
fundamental difference between the two systems is that for the excluded site 
model ther6 are excluded areas (or volumes) which no walker can ever 
visit, whereas for the bond model all sites are accessible (if the density is 
low enough to avoid trapping). Consequently the stationary distribution 
for the bond model is uniform, whereas for the site model it is not. This is 
known to influence the behavior of the VACF, c61 although not the 
asymptotic exponent of the algebraic decay. 

For  a given configuration of scatterers, the best possible statistics we 
could obtain would come from averaging over all possible random walks 
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Fig. I. Schematic representation of the hopping Lorentz gas with excluded-site scatterers 

(left) and broken-bond scatterers (right). 

in the system. To do this explicitly would be prohibitively time-consuming, 
but fortunately, by taking a given wave vector, the moment  propagation 
method 12~ allows us to do this in one go. The technique has been 
employed to calculate the VACF in both Lorentz gases and lattice gases 
and can be applied in essentially the same manner  to calculate the SDSF. 
The SDSF, defined in Eq. (5), is just a time correlation function with the 
same form as the VACF, but involving the particle positions ri rather than 
velocities 

F(k, t) = (exp(  -- ik" r~.(0)) exp( ik ,  r a t ) ) )  (12) 
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The trick for the VACF is to propagate in time a quantity Pt~(r, t), defined 
as the weighted sum of the probabilities of all trajectories ending at position 
r at time t. Once specified, Pt~(r, t) can be propagated forward in time 
according to 

Pt~(r,t+l)=~'p_i,h(r+j,t)Ptr(r+j,t)+~Pih(r,t)Pt,(r,t)  (13) 
Jnh Jb 

where J,b is the set of unbroken links connecting each site to its neighbours, 
Jb is the set of broken links, and pi(r, t) is the probability that a particle 
located at position r at time t subsequently moves along link j. The second 
term in Eq. (13) reflects the fact that a particle which sets off along a 
broken link returns to is original site. For an unbiased random walk, the 
probability pi(r, t) is particularly simple--it is just equal to lib, where b is 
the number of directions along which the particle can travel. In the case of 
the VACF the weight applied to the trajectories is just equal to the initial 
velocity component of the particles, u~(0). It is specified by directly 
calculating Ptr(r, 1)--which can then be propagated forward in time using 
Eq. (13). Once we know P,r(r, t), the contribution to the VACF from all 
trajectories ending at r is just equal to the sum of the weighted probabilities 
correlated with the particle velocities u~(t) at position r. All that remains is 
to sum over the N (free) sites in the system and average. Examining 
Eq. (12), it follows that, in order to calculate the SDSF at a fixed value of 
k, we follow the same procedure as for the VACF, but weight the trajec- 
tories with e x p ( - i k "  ri(0)) and correlate with exp(ik" ri(t)). The latter is 
of course the same for all trajectories ending at r, so can be replaced by 
exp(ik- r). The equations we explicitly solve in order to calculate the SDSF 
in the hopping Lorentz gas are therefore 

1 1 Pt~(r, I) =~ .~, exp( - i k - ( r  +j)) +~ .~ exp( - k -  r) 
Jnh Jh 

1 ~.Pt~(r+j, t)+~ ~ P,~(r, t) Ptr(r, t+ 1)=~ . 
Jnb Jb 

(I4) 

(15) 

1 
F(k, t) = ~  ~, Pit(r, t) exp(ik, r) (16) 

r 

For the broken-bond model the set of sites r consists of all the nodes 
on the lattice, whereas for the excluded site model it consists of just the 
nonexcluded sites. There are two things to note about Eq. (15). First, it 
conserves the sum over the system of Ptr(r, t). Second, it has a uniform 
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equilibrium distribution (within the accessible space). At infinitely long 
times it will therefore decay to a constant value P't~- given by 

1 
Pt=~ = ~  ~ Ptr(r, 1) (17) 

r 

This means that the SDSF decays to 

lim F(k, t) P't~ . . . .  =--~- ~ exp(ik-  r) (18) 
r 

which, for any given realization of the excluded-site model, is only zero in 
the thermodynamic limit. This is physically sensible--the SDSF decays to 
the Fourier transform of the nonexcluded area of the system (multiplied by 
a constant), which, if the scatterers are randomly distributed, is only zero 
in this limit. In order to correct for this in the (finite-sized) simulation, the 
function we actually calculate is 

F~,,c(k, t ) = F ( k ,  t ) -  lim F(k, t) (19) 

although for future purposes we drop the subscript. No similar correction 
is required for the broken-bond model. 

3. RESULTS 

First we consider the results of simulations performed on a two- 
dimensional lattice consisting of 502-" lattice sites. Applying periodic 
boundary conditions, we used the scheme outlined above to calculate 
F(k, t). The position vectors r were calculated from an origin located at 
one corner of the simulation square. All the periodic images of a random 
walker make the same contribution to F(k, t), so we can just consider the 
walkers within the simulation square. We only performed the calculation 
for times up to the minimum time required for a random walker to cross 
the simulation square (i.e., 502 time steps), so we can completely exclude 
the influence of the periodic boundary conditions from our results. The 
wave vector k was chosen to lie along one of the Cartesian axes (so from 
now on we can treat it as a scalar, k) and we performed the calculation 
over a wide range of k values. The scatterer density was chosen to be high 
enough to be able to see any interesting effects, but still well below the 
critical density (at which the diffusion coefficient vanishes and trapped par- 
ticles might make an anomalous contribution to the SDSF). Specifically, 
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for the excluded-site model we studied a system in which 10% of the total 
number of sites were excluded and for the broken-bond model a system in 
which 10% of the bonds were broken. All the results described in this 
article were obtained by averaging the SDSF over 10-20 configurations of 
scatterers. 

For  the excluded-site model we first tested the procedure outlined 
above for excluding finite-size effects. To do this we repeated the calcula- 
tion on a smaller system (201-') where the finite-size correction is larger. 
We found that, up to the minimum time required for a walker to cross the 
box, the corrected SDSF for the two systems (2012 and 5022) was identical. 
From this we concluded that our approach was satisfactory. The results we 
obtained for the time- and wavevector-dependent diffusion coefficient in the 
larger system are shown in Fig. 2. The values have also been normalized by 
the diffusion coefficient of the walkers in the absence of any obstacles, Do. 
Defining our units such that the time step and lattice spacing are both 
unity, the "bare" diffusion coefficient Do is equal to 1/4 for all the work we 
report here. Remembering that Fick's law corresponds to D(k, t) being a 
constant (a horizontal line in Fig. 2), the deviations, particularly at large 
values of k, are clearly pronounced. We start our analysis by looking at 
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small values of k (for which k 2 <  l/Dt), corresponding to (real-space) 
length scales greater than the mean-squared displacement. In Fig. 3 we 
have plotted the time- and wavevector-dependent diffusion coefficient at 
small values of k as a function of k ~-. On the basis of the cumulant expan- 
sion (8), the data should be linear with the intercept at k =  0, giving D(t) 
and minus the slope giving the Burnett coefficient. The straight lines in 
Fig. 3 are linear fits to the data and it is clear that the intercepts are 
moving to lower values of D(t) at longer times. This is the effect of the 
(negative) long-time tail in the VACF. What is less obvious is that the 
(negative) slope of the lines is increasing. From the fits shown in Fig. 3 we 
have calculated the correlation functions Cry(t) and CB(t), associated with 
the time-dependent diffusion and Burnett coefficients, respectively. These 
are plotted in log-log form in Fig. 4. Performing linear fits to the data, we 
obtained exponents of -1.95-I-0.06 and -1 .02 _+ 0.04, compared with the 
theoretically predicted values of - 2  and - 1 .  The exponent of - 1  in the 
decay of Cs(t) confirms that the time-dependent Burnett coefficient is 
diverging as In t. Since Co(t) is proportional the the VACF, extracting it 
from the SDSF amounts to a rather inefficient calculation of the long-time 
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tail in VACF. The fact that we do get the correct power law does, however, 
serve as a useful test. 

If we now examine the origin of the pronounced deviations from 
Gaussian behavior at larger values of k(k2~ 1/Dt), corresponding to real- 
space length scales smaller than the root mean squared displacement, then 
we find a surprising result. In Fig. 5 we have plotted the SDSF in log-log 
form. Clearly the SDSF itself is approaching an algebraic decay with an 
exponent of - 1 .  To our knowledge this has not been predicted theoreti- 
cally. One further thing to notice is that the coefficient of the "tail" in the 
SDSF appears to be independent of k. This suggests that, in real space, this 
effect is localized near the origin. One would not expect the distribution to 
be Gaussian on very short length scales because of the excluded area of the 
scatterers themselves. For  instance, any particle which starts on the surface 
of a scatterer must, even at infinitely long times, have a distribution con- 
taining a "hole" adjacent to the origin. The Fourier transform does not 
distinguish between a distribution with a hole to the left of the origin and 
a distribution with a hole to the right, so it is unlikely this effect will cancel 
due to ensemble averaging. 
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This brings us to the broken-bond model, which contains no excluded- 
area effects. The results we obtained for the time-and wavevector- 
dependent diffusion coefficient are shown in Fig. 6. Qualitatively, they look 
similar to the results for the excluded site model. We have a plateau, at suf- 
ficient small values of k, but pronounced non-Gaussian effects at large k. 
For this model we have not tried to extract the time dependence of the 
Burnett coefficient. The divergence, while still visible, is rather weak com- 
pared to the level of statistical error in the results at small k. However, for 
this model we are more interested in the larger k region (k2> 1/Dt). 
Specifically, does the tail effect we saw in the excluded-site model dis- 
appear? In Fig. 7 we have plotted F(k, t) against t in log-log form for 
various (large) values of k and the answer appears to be: not quite. Once 
more we see an approach to a power-law decay, but with a different exponent. 
This time the exponent is - 2  (for the excluded-site model it was - 1 ) .  It 
is also clear from Fig. 7 that this time the tail coefficient is not inde- 
pendent of k. A careful analysis suggests that it is proportional  to 1/k ~. 

To see if the above observations are unique to a two-dimensional 
system we repeated the calculation for two relatively large wave vectors in 
a three-dimensional system. Again we limited the time up to which we 
calculated F(k, t) to the time taken for a walker to cross the simulation 
box. The density of  objects was 10% of excluded sites or 10% of broken 
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bonds, again well below the critical density. The results are plotted in 
log-log form in Fig. 8. Again we see an asymptotic power-law decay; this 
time the exponents are -1.5 (for the excluded-site model) and -2.5 (for 
the broken-bond model). In each case the decay is half a power faster than 
the equivalent decay in two dimensions. The coefficient of the tail for the 
excluded-site model appears to be independent of k, while for the broken- 
bond model the coefficient of the tail increases with decreasing k. This is 
the same kind of behavior that we observed in two dimensions. 

4. D I S C U S S I O N  

By using the moment propagation technique it proved possible, with 
modest computational effort, to calculate the self-dynamic structure factor 
accurately enough to allow us to extract the time-dependent Burnett coef- 
ficient B(t). By examining the time dependence of B(t) it was possible to 
confirm theoretical predictions that the Burnett coefficient diverges 
logarithmically in two dimensions. The long-time tails we found in 
F(k, t) were completely unexpected and have not, to our knowledge, been 
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predicted theoretically. 3 Where these tails, if genuine, make a significant 
contribution to F(k, t) it is clear that the cumulant expansion does not 
exist. Our results would imply that, at long times, the SDSF takes the form 

F(k, t )~ ff_L (20) 
t 

f12 
F(k, t )~(kt )  2 (21) 

for the excluded-site and broken-bond models, respectively. In both cases 
fl is a constant, independent of k. The interesting question is, how does the 
relative importance of this effect scale with time? If we introduce a dimen- 
sionless time parameter r(=k2Dt), then, on dimensional grounds, one 
would expect that Eq. (20) and (21) can be written as 

F(k, r) ~ k 2 7~ (22) 
2" 

F(k, 2-)~k 2 ~'--~ (23) 
l"- 

respectively, with 7 a constant independent of k. In terms of r the short- 
time exponential decay of F(k, t) is independent of k. This suggests that, in 
both cases, the tail becomes less important at smaller values of k. 

To summarize, the divergence of the Burnett coefficient tells us that, in 
two-dimensional Lorentz gases, Fickian behavior is never reached. Our 
results would also suggest that not only is the distribution not Gaussian at 
long times, but neither can it be expanded about a Gaussian, other than in 
the limit of small k. 
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