Demixing in hard ellipsoid rod-plate mixtures
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The phase behavior of fluid mixtures of hard uniaxial ellipsoids with elongatoasd 1&, and

equal molecular volume, has been studied using constant-pressure Gibbs ensemble Monte Carlo
simulations fore= 15 ande=20. Four distinct phases are observed: isotrédpicuniaxial nematic

(N, and NL) and biaxial nemati¢B). The region of stability of the biaxial phase is found to be
limited severely by demixing into two coexisting uniaxial phases. This is in agreement with recent
theoretical predictions. The theory, however, does not account for the surprising asymmetry of the
phase diagram that we find in our simulations. 1997 American Institute of Physics.
[S0021-96027)50722-1

I. INTRODUCTION and Louis have proved the existence of a first-order demix-
ing transition in a hard-core lattice mixtufayhile computer

Phase separation in simple binary fluid mixtures is often imulation studies have demonstrated oh ration in
attributed to van der Waals attractive interactions, becausg ntiation ‘studies nave demonstrated phase separatio

dispersion interactions between like species tend to be stror?—everal additive hard particle fluid mixturéS.

ger than between unlike species. An alternative mechanism Binary fluid mixtures of rod-like and plate-like particles
for phase separation in binary mixtures, based on nonadd?—Xh'b't several liquid crystal phases, which are distinguished

tivity of the molecular “hard-core” radii, was put forward by the preferred direction of alignment, the director, of each

by Widom and Rowlinsoh. The model system studied by component: the isotropic phasg); the uniaxial nematic
Widom and Rowlinson consisted of two species of sphereBhase (N, occurring in rod-rich mixtures, where the rod
(1 and 2 of diametero;,= o,. Nonadditivity of hard-core director lies along the axis and the plate director lies in the
interactions means that;,# (o11+ 07»)/2. In the Widom— XY Plane; the uniaxial discotic phase (N occurring in
Rowlinson modebr;,=0 anday;=0,,=0. In Ref. 1 itwas Plate-rich mixtures, where the plate director lies alongzhe
shown that this mixture must undergo a demixing transitionr@xis and the rod director lies in they plane; the biaxial

at sufficiently high pressures. For a long time, it was generPhase(B) where the two directors are in a fixed perpendicu-
ally assumed that a fluid mixture afiditive particles would lar relative orientation.

not demix. This belief was based on the work of Lebowitz ~ There have been many theoretical studies on such mix-
and Rowlinsorf, who showed that, within the Percus— tures of hard particles, all of which predict the appearance of
Yevick closure of the Ornstein—Zernike equation, additivea biaxial phasésee e.g. Refs. 9 and L(Recently, the biax-

[ 01,=(011F 022)/2] hard-sphere mixtures of arbitrary size- ial phase was observed in computer simulations of hard el-
ratio are stable with respect to phase separation. However, lipsoid rod-plate mixtures! The composition of the mixture
the early 90's, experimental data became available that sugs given by the rod fractionx;=1—x,=N;/(N;+N,),
gested that demixing at high temperatures and pressureghere component 1 refers to the rods and component 2 to
might occur, even in systems where the nonadditivity of in-the plates. The rods, with elongaties 10, and plates, with
teractions was believed to be rather smaRrompted by elongatione= 1/10, were of equal molecular volume,, S0
these findings, Biben and Hanéee-analysed the problem at least the simple “asymmetric” depletion interaction
of phase separation in an additive mixture of hard sphereseems unlikely to be present. These simulations were per-
using recently developed integral equations for liquid mix-formed with relatively small systems of a few hundred par-
tures. This theoretical work provided evidence that fluid—ticles, but there was still some evidence of phase separation
fluid phase separation might indeed occur in additive hardat the highest densities studied. The measured equations-of-
core mixtures. The phase separation is attributed to thetate and order parameters were compared with a modified
osmotic depletion effect, Whereby the small Spheres are E)Gnsager theor% which showed good agreement_ The pre-
cluded from between two large spheres when the surfacegicted phase diagram is symmetric abayt=1/2, since the
surface separation is comparable with the small-sphere diamwpyt of the theory is the second virial coefficient, which is
eter(for a recent review, see Ref).5’he osmotic pressure of equal for ellipsoids with conjugate elongations and equal
the small spheres causes an effective attraction between pajigiecular volumé? From previous simulation studies of the
of large spheres. The work of Biben and Hansen inspiregyne_component fluids, there is known to be considerable
new interest in such phenomena and subsequently Fre”kﬁgymmetry in the phase diagrdf.

Experimentally, biaxial phases are observed in some mi-
3E|ectronic mail: m.p.allen@bristol.ac.uk cellar solutiongsee e.g., Ref. )dbut there is some doubt as
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to whether distinct rod-like and plate-like micelles, or biaxial Il. SIMULATIONS
micelles are formed. Theoretical and simulation studies of In this studv th late ellinsoid labelled
rod-plate fluid mixture®11%and biaxial particle fluid€ n this study the prolate €lipsolds are labefled compo-
. . S nent 1, and the oblate ellipsoids component 2. The overall
have shown the phase diagrams to be isomorphic with ong o . .
. N uid composition is labelled by the rod fraction,
another. In the composition-pressure and biaxiality-pressurg

. i i S =Ny /N. The principal and perpendicular ellipsoid semi-
phase diagrams of rod-plate fluid mixtures and biaxial paryyag of component, a, and b;, were chosen such that
] | |1

ticle fluids, respectively, two first-order isotropic-nematic 8aibi2=1 and the molecular volume,= 7/6. The pressure
lines meet two second-order nematic-biaxial lines at a bicritiis reported asgP, where 8= 1/kgT. The packing fraction
cal point. n=puvg, wherep is the number density\/V.

In rod-plate mixtures it has been suggested that the re- Constant-pressure Gibbs ensemble simulatfomgere
gion of stability of the biaxial phase is bounded due to phas@erformed on systems &f= 2000 ellipsoids withk;=0.4 in
separation into coexisting Nand N_ phases® The rod- each box initially: preliminary simulations wittx;=0.5
plate mixture is nonadditive, and so phase separation ifailed due to one of the simulation cells emptying. The simu-
driven by steric forces. In the context of Onsager theory, varations with e=15 were carried out using cubic periodic
Roij and Muldet® determined the region of stability of the boundary conditions while those at=20 employed trun-
biaxial phase in mixtures of hard rectangular blocks withcated octahedral periodic boundary conditions. In each case
discretised orientations, conjugate elongatiersd 16, and ~ the Perram—-Wertheim overlap criterion was u8Et. One
equal molecular volume, allowing for the possibility of de- MC sweep consisted of the following: an attempted transla-

mixing into two uniaxial phases. They found that for5 tion and rotation of each particle; one attempted volume

the biaxial phase was absent, whereaseferl5 there was a move in each box; 1000 trial particle transfers, where the

. . . L article to be transferred was chosen at random, irrespective
small window in the phase diagram where the biaxial phasg P

table. The Ii b hich the biaxial bh demi aéits identity. Any move which resulted in an overlap was
was stable. The line above which the biaxial phase demixe jected and the displacement parameters were adjusted to

was found in this study to be parallel with the abscissa of theyie 5 40-50% acceptance ratio. The acceptance ratio of the
phase diagram in tfe,-p plane, wherg=(N,+N)/V, the  paricle transfers wag’(107%) at the highest pressures and
number density. This is purely a result of the truncation ofgensities, which was sufficient given the timescale of fluc-
the virial eXpanSion at the second virial CoefﬁCient, which intuations in the orientational order parameters; |ong simula-
this study was equal for particles with elongatiomsand  tions were required for the orientational degrees of freedom
1/e, and equal molecular volume. This symmetry is apparento equilibrate. Initial configurations were generated in the
in the phase diagram, since it is symmetric in ¥aep plane isotropic phase and then equilibrated at a series of increasing
about the equimolar mixture. It is anticipated that a theorypressures. Foe=15 an expansion sequence was also per-
which captures accurately the effect of higher-order interacformed, which provided a check for hysteresis. Run lengths
tions would yield an asymmetric phase diagram. were typically”(10°) MC sweeps per pressure.

Computer simulations do not rely on any such approxi- ~NPT-GEMC simulations provide data on the demixed
mations, and in principle yield essentially exact results. Td€dion of the phase diagram, but to examine the transition
our knowledge there are no computer simulation data availP&fween isotropic and biaxial phases, or nematic and biaxial
able which address the problem of phase separation in ro(p_hases, single-box constant-pressure simulations were run at

: tant composition over a range of pressures. Simulations
late mixtures. In the present work, we report the results of ONS ;
P p. P were performed foe=15 with x;=0.52,0.55,0.60,0.63 and
constant-pressure  Gibbs  ensemble  Monte  Carl

. . L : For e=20 at x =0.5,0.525. Run lengths were typicall

(NPT-GEMC) simulationg® of hard ellipsoid rod-plate mix- ! 9 ypically

_ (10°) MC sweeps.
tures. For the method to be successful the density must be
low enough to ensure sufficient particle transfers between th&. Order parameters
two simulation cells. As the eccentricity of the particles is  The orientational order parameters for this system were
increased, the liquid crystal phase transitions occur at lowegalculated within the eigenvector frame of the instantaneous
densities. Realistic molecular elongations fall typically in thesecond rankod order tensof>24

rangee=5 to e=10, but to make th&lPT-GEMC method

N
tractable we have studied two systems with eccentricities Q= 1 21 (30,0, 1) 1)
e=15 ande=20. To aid the interpretation of the simulation 2N;i=1 e

results, we calculate the phase diagram using Onsagerh Qs th it orientati ‘ dis th q
theory, with Parsons—Lee free energy scaling. wheres2 IS the unit orientation vector andis the second-

This paper is organised as follows. In Section Il we de_rank unit tensor. Order parameters for comporiensed in

. . : . identifying isotropic, nematic and biaxial phases are thus de-
scribe the simulations and the calculation of the order paramg Zs ]%”OWSIE'H P

eters used in identifying the phases. The Onsager theory,

with the Parsons—Lee free energy scaling, is described S =(P,(cos6));=%3a2—1);, 2
briefly in Section Ill. The results are presented in Section IV - ) 5
and Section V concludes the paper. Aj=3(P3(cos 0)cos 2p); =(ay)i—(ay);, 3
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TABLE |. Characterisation of the isotropic and liquid crystal phases. BF
“—=In pA3—1+x; In X;+X, In X,
Phase Symbol S, Aq S, A, N
Isotropic | 0 0 0 0
Uniaxial nematic N 1 0 12 0 +Xq J dQ 1 (2)In 471 ()
Uniaxial nematic N 1/4 1/2 -1/2 -1
Biaxial B 1 0 -1/2 -1

+X2f dQ ¢, (2)In 47 ),(£2)

— " @)

wherea,, is the projection of the director onto theaxis of _ _ ) o _

the rod eigenvector frame, artdland ¢ are the correspond- ¥i(€2) is the orientational tr§1|§trlbutlon functiofODF) of
ing polar and azimuthal angles. Thus thaxis is defined by componeni, andB,, is then™ virial coefficient.B, is given
the rod director. The plates are assumed, by convention, t%y
order along they axis of this frame.P,(cosd) and
P.'(cos#) are, respectively, Legendre and associated Leg-
endre polynomials. In Table | are shown limiting values of\where
the order parameters used in identifying isotropic and liquid
crystal phases within the convention adopted here.

In the simulations, the order parameters were calculated
by diagonalising the prolate ellipsoid second-rank ordering ] )
tensor and evaluating the oblate ellipsoid order paramete@dvij(£2,€") is the excluded volume of two particles, one
within the resultant eigenvector frame, consistent with thosé)f typei and the Ot_h?r of typ¢, with relative orlentat|o_ns

. . . . . Q andQ’'. In the original Onsager theory for a pure fluid of
outlined above. The rod director, which defines thaxis of , ic1@&th tion in Ec() is t ted
the rod eigenvector frame, is identified as the eigenvectorrlonslohem?al particl >the summation In d: IS runcated

: . . at B,. This approximation becomes exact in the limit
corrgspondmg to _the largest posm_ve_ elge_r_wal}ue,. Thg e—oo, but is inaccurate for intermediate elongations and for
y axis of the rod eigenvector frame is identified as the eigen

; i ) e<1. To take account of higher order interactions, albeit
vector corresponding to the most negative eigenvalue, approximately, we use Parsons—Lee free energy séaliffy

This choice is arbitrary in the uniaxial phase, where the secynere the Carnahan—Starling excess free energy for hard
ondary eigenvectors of the rod orientation tensor are degepheres is scaled H§,/4v,:

erate (apart from finite system size effegtdn the biaxial
phase, this choice reflects the greater facility for rod orienta- SF

B,=x2B3M+ 2x,x,B3%+ x3B3?, (5

Bj=3 f dQ dQ' 4 (Q) (2 )v; (2, Q), ©

tional fluctuations in the plane perpendicular to the plate di- N In pAS-1

rector; taking the plates to order along theaxis, the rod

eigenvalue corresponding to theaxis will be less negative

than that corresponding to the axis. Thus, thex axis is +X1j dQ 41 (Q)In 471 (2)

identified with the middle eigenvalua,. The prolate ellip-

soid order paramete®;, corresponds ta . while A; corre- +x2f dQ ,(Q)In 4, (Q)

sponds to3(Ao—\_). S, andA, were calculated as projec-

tions of the plate orientation vectors onto the rod eigenvector B, n(4—37)

frame. Finite-size effects are expected to be apparent in the ﬁ ﬁ 7)
o (1—

order parameters in the sense that, even in the isotropic

: H - 23,25
phase, they will take values of magnitudg1/VN). In the spherical limite=1, B,/4v,=1 and the Carnahan—

Starling free energy is recovered, which is known to be ac-
curate to within a few percent of simulation restiftsFor
one-component fluids the I1-N transition occurs at lower den-
sity as the elongation is increased, and so in the limit
e— o the original Onsager functional is recovered.
. The application of this theory to hard ellipsoid rod-plate
The Onsager theory, with Parsons—Lee free energy scaixiures is given in Ref. 11. The equilibrium ODF for a
ing, has been described in detail elsewfeand here we  density and composition is that which minimises the free
give a brief summary. The Helmholtz free energy of a binaryenergy functional (7), and is found by numerical
fluid mixture containing\;=x;N particles of componernt at  techniques?! Once the equilibrium ODF is calculated, order
reciprocal temperatureB=1/kgT and number density parameters and thermodynamic quantities can be calculated
p=N/V is and the conditions for phase coexistence solfed.

lll. THEORY
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TABLE II. Coexistence data frontNPT-GEMC simulations withe=15 - TABLE Ill. Coexistence data fro-NPT-GEMC simulations withe=15 -
expansion sequence. compression sequence.
BP Xq n Phase BP Xq 7 Phase
0.386 0.164 N 0.391) 0.1651) N_
162 0.413 0.165 B 162 0.411) 0.1641) B
0.374 0.175 N 0.3612) 0.1781) N_
1.80 0.424 0.174 B 1.80 0.431) 0.1772) B
0.281 0.191 N 0.331) 0.1841) N_
1.98 0.514 0.186 B 1.89 0.461) 0.1841) B
0.296 0.196 N 0.302) 0.1941) N_
2.16 0.497 0.194 B 1.98 0.492) 0.1911) B
0.179 0.220 N 0.262) 0.2011) N_
2.34 0.624 0.209 B 2.05 0.5286) 0.1961) B
0.138 0.233 N 0.252) 0.20Q7) N_
2.52 0.669 0.221 B 2.16 0.4873) 0.1937) B
225 0.294) 0.2142) N_
: 0.503) 0.2062) B
IV. RESULTS 234 0.21(2) 0.2164) N_
: 0.561) 0.2083) B
In Tables II, Ill, and IV the results oNPT-GEMC
. . - . 0.174) 0.2253) N_
simulation are presented, fer=15, ande= 20 respectively. 2.43
. . . 0.602) 0.2153) B
The expansion sequence 15 is reported in Table 1l and
the compression sequence in Table Ill. In Figures 1 and 2 we 555 0.172) 0.2313) N_
show the phase diagrams in tke 3P plane fore=15 and 0.551) 0.2202) B
e=20, respectively. Fore=15 at P>1.62 the system 0.1236) 0.2383) N_

clearly demixes, while foe=20 the demixing occurs for a 261 0.5699) 0.2243) B

pressureBP>1.125. In Figures 3 and 4 we show the phase
diagrams in thex;-# plane fore=15 ande=20, respec-
tively. In both cases the demixing transition is clearly indi-
cated. In thee=20 case, Figures 2 and 4 also show thethat the simulations were of sufficient length. Also shown in
I-N, coexistence data for the pure prolate ellipsoid fluidthe figures are the results of the Parsons—Lee theory as de-
(x;=1) determined by thermodynamic integration in Ref.scribed in Section Ill. The theory predicts a phase diagram
31. The compression and expansion sequences ewithS  symmetric abouk; = 0.5, due to the second virial coefficient
show no discernible hysteresis. Equilibration was sluggishapproximation. By contrast, the simulation data show there
but the absence of any hysteresis in ##15 case indicates to be considerable asymmetry.

TABLE IV. Coexistence data frolNPT-GEMC simulations withe= 20.

BP Xy 7 S: Ag S, A, Phase
1.000 0.4011) 0.1141) 0.378) 0.254) —0.36(2) —0.62(2) N

: 0.401) 0.1161) 0.3405) 0.293) —0.36(2) —0.65(3) N
1125 0.401) 0.1281) 0.4905) 0.234) —0.408(7) —0.71(3) N

’ 0.401) 0.1282) 0.423) 0.272) —0.405(8) —0.73(3) [\
1250 0.472) 0.1371) 0.694) 0.103) —0.432(6) —0.61(5) B

' 0.322) 0.14Q1) 0.376) 0.344) —0.420(7) -0.81(2) N
1375 0.492) 0.1481) 0.772) 0.062) —0.447(4) —0.60(8) B

' 0.293) 0.1502) 0.41(8) 0.325) —0.434(5) —0.84(2) N
1500 0.584) 0.1562) 0.851) 0.021) —0.457(3) —0.38(1) N./B

: 0.222) 0.1622) 0.367) 0.375) —0.446(4) —0.879(9) N
1.750 0.582) 0.1721) 0.8711) 0.021) —0.465(2) —0.57(7) N./B

’ 0.161) 0.1822) 0.366) 0.394) —0.459(3) —0.910(7) N
2000 0.623) 0.1872) 0.9039) 0.0125) -0.471(2) —0.41(6) N./B

’ 0.1068) 0.2022) 0.367) 0.404) —0.467(2) —0.931(5) N
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FIG. 1. The phase diagram fa=15 in the x,-8P plane: Parsons—Lee
theory (dashed lines NPT-GEMC simulationsexpansion(open circley
compression(filled circleg], NPT-MC simulations (squares The solid
lines are drawn in to be consistent with the simulation data.

FIG. 3. The phase diagram fer=15 in thex;-» plane: Parsons—Lee theory
(dashed lines NPT-GEMC simulations[expansion(open circley com-

pression(filled circleg], NPT-MC simulations(squares The solid lines are
drawn in to be consistent with the simulation data.

For each pressure simulated, the identities of the two The fact that the N phase can coexist with the B phase
coexisting phases were determined by reference to Table |, . - pnase ¢ . ebep
and are shown in Tables Il Il and IV. In each case the|mpI|es that the demixing line is not horizontal, in contrast
hase with lowerx. is clearly uniaxial discotic N. The Wit the predictions of the Onsager thedfyThis is due to
phase wi 1 y L . _the truncation of the virial expansion in the theory, as noted
situation in the higher,; phase is not so clear. On increasing in Section |
the pressure it is evident that the plate biaxial order param- To braéket the region of stability of the biaxial phase
eter, A,, decreases, thus signalling a decreasing degree F1e N,—B coexistence line must be located. To this end’
biaxiality. The values ofA, at the highest pressures are con- _. i } X ) ' '
. ; o .single-box constant-pressure MC simulations were perfomed
siderably lower than those observed in the biaxial phase in o
Ref. 11, The fact that. does not fall to zero can be ex- at a range of compositions and pressures, and the order pa-
o 2 . rameters monitored. For a given composition the-8 tran-
plained in terms of the effect of finite-size on the order pa-_... : o )
. . : sition was located on the basis of the biaxial order param
rameters. In Section Il A it was noted that errors in the order A Th | h in Ei 12 3and4. |
parameters are’(1/y/N). The reduction of the number of eters,A; . The results are shown In Figures 1, 2, 3 and 4. In
lates in the rod-rich .h will hav me effect on th the figures, straight lines have been drawn to indicate the
Enzzfssure d v?iluoes a(; ?\l(?r?eetsheless Aa Zeséieaesees xthoin opology of the phase diagram. Clearly, the region of stabil-
creasing pressure azﬁd therefore atzhi h enouah ressur?e% of the biaxial phase is small. Onsager theory predicts this
NN g pre : hould Th 9 lati 9 fph' h €gion to decrease in size as the elongation of the particles is
~ /N COexis enlcedsdobu thoccur. € 5|£nu a |ont N ¢ '9 (ta.rreducedl,9 but conventional Gibbs ensemble simulations are
FrfnS;‘::is IS preciuded by the poor acceptance rate ot par 'clpﬁractable at elongations low enough to confirm this.

2.25

— T T T
\ |
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2.00 - \ ‘,’ ]
\ ;
\ ,
1 I
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1.75 | Y / ]
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\ /
\ /
\\ /
215+ N- N 7 N+ 1 =
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N /
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125 b \ / J
Rz / Pd
AN \ Pt
RN \ g —_:;.’
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1.00 | SSeaal_ Y memEET 1
075 . . . . 0.08 . . . A
0.00 0.20 0.40 0.60 0.80 1.00 0.0 0.2 0.4 0.6 0.8 1.0
X'

FIG. 2. The phase diagram f@=20 in the x,-B8P plane: Parsons—Lee FIG. 4. The phase diagram fer=20 in thex;-7 plane: Parsons—Lee theory
theory (dashed lines NPT-GEMC simulations(filled circleg, NPT-MC (dashed linegs NPT-GEMC simulations(filled circles, NPT-MC simula-
simulations(squares The diamond ax,=1 is from Ref. 31. The solid lines  tions(squares The diamonds at,=1 are from Ref. 31. The solid lines are
are drawn in to be consistent with the simulation data. drawn in to be consistent with the simulation data.
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