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The phase behavior of fluid mixtures of hard uniaxial ellipsoids with elongationse and 1/e, and
equal molecular volume, has been studied using constant-pressure Gibbs ensemble Monte Carlo
simulations fore515 ande520. Four distinct phases are observed: isotropic~I!, uniaxial nematic
(N1 and N2) and biaxial nematic~B!. The region of stability of the biaxial phase is found to be
limited severely by demixing into two coexisting uniaxial phases. This is in agreement with recent
theoretical predictions. The theory, however, does not account for the surprising asymmetry of the
phase diagram that we find in our simulations. ©1997 American Institute of Physics.
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I. INTRODUCTION

Phase separation in simple binary fluid mixtures is of
attributed to van der Waals attractive interactions, beca
dispersion interactions between like species tend to be st
ger than between unlike species. An alternative mechan
for phase separation in binary mixtures, based on nona
tivity of the molecular ‘‘hard-core’’ radii, was put forward
by Widom and Rowlinson.1 The model system studied b
Widom and Rowlinson consisted of two species of sphe
~1 and 2! of diameters115s22. Nonadditivity of hard-core
interactions means thats12Þ(s111s22)/2. In the Widom–
Rowlinson models12[s ands115s2250. In Ref. 1 it was
shown that this mixture must undergo a demixing transit
at sufficiently high pressures. For a long time, it was gen
ally assumed that a fluid mixture ofadditiveparticles would
not demix. This belief was based on the work of Lebow
and Rowlinson,2 who showed that, within the Percus
Yevick closure of the Ornstein–Zernike equation, addit
@s125(s111s22)/2# hard-sphere mixtures of arbitrary siz
ratio are stable with respect to phase separation. Howeve
the early 90’s, experimental data became available that
gested that demixing at high temperatures and press
might occur, even in systems where the nonadditivity of
teractions was believed to be rather small.3 Prompted by
these findings, Biben and Hansen4 re-analysed the problem
of phase separation in an additive mixture of hard sphe
using recently developed integral equations for liquid m
tures. This theoretical work provided evidence that flui
fluid phase separation might indeed occur in additive ha
core mixtures. The phase separation is attributed to
osmotic depletion effect, whereby the small spheres are
cluded from between two large spheres when the surfa
surface separation is comparable with the small-sphere d
eter~for a recent review, see Ref. 5!. The osmotic pressure o
the small spheres causes an effective attraction between
of large spheres. The work of Biben and Hansen inspi
new interest in such phenomena and subsequently Fre

a!Electronic mail: m.p.allen@bristol.ac.uk
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and Louis have proved the existence of a first-order dem
ing transition in a hard-core lattice mixture,6 while computer
simulation studies have demonstrated phase separatio
several additive hard particle fluid mixtures.7,8

Binary fluid mixtures of rod-like and plate-like particle
exhibit several liquid crystal phases, which are distinguish
by the preferred direction of alignment, the director, of ea
component: the isotropic phase~I!; the uniaxial nematic
phase (N1), occurring in rod-rich mixtures, where the ro
director lies along thez axis and the plate director lies in th
xy plane; the uniaxial discotic phase (N2), occurring in
plate-rich mixtures, where the plate director lies along thz
axis and the rod director lies in thexy plane; the biaxial
phase~B! where the two directors are in a fixed perpendic
lar relative orientation.

There have been many theoretical studies on such m
tures of hard particles, all of which predict the appearance
a biaxial phase~see e.g. Refs. 9 and 10!. Recently, the biax-
ial phase was observed in computer simulations of hard
lipsoid rod-plate mixtures.11 The composition of the mixture
is given by the rod fractionx1512x25N1 /(N11N2),
where component 1 refers to the rods and component 2
the plates. The rods, with elongatione510, and plates, with
elongatione51/10, were of equal molecular volume,v0, so
at least the simple ‘‘asymmetric’’ depletion interactio
seems unlikely to be present. These simulations were
formed with relatively small systems of a few hundred p
ticles, but there was still some evidence of phase separa
at the highest densities studied. The measured equation
state and order parameters were compared with a mod
Onsager theory,11 which showed good agreement. The pr
dicted phase diagram is symmetric aboutx151/2, since the
input of the theory is the second virial coefficient, which
equal for ellipsoids with conjugate elongations and eq
molecular volume.12 From previous simulation studies of th
one-component fluids, there is known to be considera
asymmetry in the phase diagram.13

Experimentally, biaxial phases are observed in some
cellar solutions~see e.g., Ref. 14! but there is some doubt a
106(22)/9270/6/$10.00 © 1997 American Institute of Physics
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9271Camp et al.: Demixing in rod-plate mixtures
to whether distinct rod-like and plate-like micelles, or biax
micelles are formed. Theoretical and simulation studies
rod-plate fluid mixtures10,11,15and biaxial particle fluids16,17

have shown the phase diagrams to be isomorphic with
another. In the composition-pressure and biaxiality-press
phase diagrams of rod-plate fluid mixtures and biaxial p
ticle fluids, respectively, two first-order isotropic-nema
lines meet two second-order nematic-biaxial lines at a bic
cal point.

In rod-plate mixtures it has been suggested that the
gion of stability of the biaxial phase is bounded due to ph
separation into coexisting N1 and N2 phases.18 The rod-
plate mixture is nonadditive, and so phase separation
driven by steric forces. In the context of Onsager theory,
Roij and Mulder19 determined the region of stability of th
biaxial phase in mixtures of hard rectangular blocks w
discretised orientations, conjugate elongationse and 1/e, and
equal molecular volume, allowing for the possibility of d
mixing into two uniaxial phases. They found that fore55
the biaxial phase was absent, whereas fore515 there was a
small window in the phase diagram where the biaxial ph
was stable. The line above which the biaxial phase demi
was found in this study to be parallel with the abscissa of
phase diagram in thex1-r plane, wherer5(N11N2)/V, the
number density. This is purely a result of the truncation
the virial expansion at the second virial coefficient, which
this study was equal for particles with elongationse and
1/e, and equal molecular volume. This symmetry is appar
in the phase diagram, since it is symmetric in thex1-r plane
about the equimolar mixture. It is anticipated that a the
which captures accurately the effect of higher-order inter
tions would yield an asymmetric phase diagram.

Computer simulations do not rely on any such appro
mations, and in principle yield essentially exact results.
our knowledge there are no computer simulation data av
able which address the problem of phase separation in
plate mixtures. In the present work, we report the results
constant-pressure Gibbs ensemble Monte Ca
(NPT-GEMC! simulations20 of hard ellipsoid rod-plate mix-
tures. For the method to be successful the density mus
low enough to ensure sufficient particle transfers between
two simulation cells. As the eccentricity of the particles
increased, the liquid crystal phase transitions occur at lo
densities. Realistic molecular elongations fall typically in t
rangee55 to e510, but to make theNPT-GEMC method
tractable we have studied two systems with eccentrici
e515 ande520. To aid the interpretation of the simulatio
results, we calculate the phase diagram using Ons
theory, with Parsons–Lee free energy scaling.

This paper is organised as follows. In Section II we d
scribe the simulations and the calculation of the order par
eters used in identifying the phases. The Onsager the
with the Parsons–Lee free energy scaling, is descri
briefly in Section III. The results are presented in Section
and Section V concludes the paper.
J. Chem. Phys., Vol. 106
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II. SIMULATIONS

In this study the prolate ellipsoids are labelled comp
nent 1, and the oblate ellipsoids component 2. The ove
fluid composition is labelled by the rod fraction
x15N1 /N. The principal and perpendicular ellipsoid sem
axes of componenti , ai and bi , were chosen such tha
8aibi

251 and the molecular volumev05p/6. The pressure
is reported asbP, whereb51/kBT. The packing fraction
h5rv0, wherer is the number density,N/V.

Constant-pressure Gibbs ensemble simulations20 were
performed on systems ofN52000 ellipsoids withx150.4 in
each box initially: preliminary simulations withx150.5
failed due to one of the simulation cells emptying. The sim
lations with e515 were carried out using cubic period
boundary conditions while those ate520 employed trun-
cated octahedral periodic boundary conditions. In each c
the Perram–Wertheim overlap criterion was used.21,22 One
MC sweep consisted of the following: an attempted trans
tion and rotation of each particle; one attempted volu
move in each box; 1000 trial particle transfers, where
particle to be transferred was chosen at random, irrespec
of its identity. Any move which resulted in an overlap wa
rejected and the displacement parameters were adjuste
give a 40–50% acceptance ratio. The acceptance ratio o
particle transfers wasO (1025) at the highest pressures an
densities, which was sufficient given the timescale of flu
tuations in the orientational order parameters; long simu
tions were required for the orientational degrees of freed
to equilibrate. Initial configurations were generated in t
isotropic phase and then equilibrated at a series of increa
pressures. Fore515 an expansion sequence was also p
formed, which provided a check for hysteresis. Run leng
were typicallyO (106) MC sweeps per pressure.

NPT-GEMC simulations provide data on the demixe
region of the phase diagram, but to examine the transi
between isotropic and biaxial phases, or nematic and bia
phases, single-box constant-pressure simulations were ru
constant composition over a range of pressures. Simulat
were performed fore515 with x150.52,0.55,0.60,0.63 and
for e520 at x150.5,0.525. Run lengths were typicall
O (106) MC sweeps.

A. Order parameters

The orientational order parameters for this system w
calculated within the eigenvector frame of the instantane
second rankrod order tensor,23,24

Q5
1

2N1
(
i51

N1

~3ViVi2I !, ~1!

whereV is the unit orientation vector andI is the second-
rank unit tensor. Order parameters for componenti used in
identifying isotropic, nematic and biaxial phases are thus
fined as follows:10,11

Si5^P2~cosu!& i5
1
2^3az

221& i , ~2!

D i5
1
3^P2

2~cosu!cos 2f& i5^ax
2& i2^ay

2& i , ~3!
, No. 22, 8 June 1997
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9272 Camp et al.: Demixing in rod-plate mixtures
whereaa is the projection of the director onto thea axis of
the rod eigenvector frame, andu andf are the correspond
ing polar and azimuthal angles. Thus thez axis is defined by
the rod director. The plates are assumed, by convention
order along they axis of this frame. Pn(cosu) and
Pn
m(cosu) are, respectively, Legendre and associated L

endre polynomials. In Table I are shown limiting values
the order parameters used in identifying isotropic and liq
crystal phases within the convention adopted here.

In the simulations, the order parameters were calcula
by diagonalising the prolate ellipsoid second-rank order
tensor and evaluating the oblate ellipsoid order parame
within the resultant eigenvector frame, consistent with th
outlined above. The rod director, which defines thez axis of
the rod eigenvector frame, is identified as the eigenve
corresponding to the largest positive eigenvalue,l1 . The
y axis of the rod eigenvector frame is identified as the eig
vector corresponding to the most negative eigenvalue,l2 .
This choice is arbitrary in the uniaxial phase, where the s
ondary eigenvectors of the rod orientation tensor are deg
erate ~apart from finite system size effects!. In the biaxial
phase, this choice reflects the greater facility for rod orien
tional fluctuations in the plane perpendicular to the plate
rector; taking the plates to order along they axis, the rod
eigenvalue corresponding to thex axis will be less negative
than that corresponding to they axis. Thus, thex axis is
identified with the middle eigenvalue,l0. The prolate ellip-
soid order parameterS1, corresponds tol1 while D1 corre-
sponds to23(l02l2). S2 andD2 were calculated as projec
tions of the plate orientation vectors onto the rod eigenve
frame. Finite-size effects are expected to be apparent in
order parameters in the sense that, even in the isotr
phase, they will take values of magnitudeO (1/AN).23,25

III. THEORY

The Onsager theory, with Parsons–Lee free energy s
ing, has been described in detail elsewhere11 and here we
give a brief summary. The Helmholtz free energy of a bina
fluid mixture containingNi5xiN particles of componenti , at
reciprocal temperatureb51/kBT and number density
r5N/V is

TABLE I. Characterisation of the isotropic and liquid crystal phases.

Phase Symbol S1 D1 S2 D2

Isotropic I 0 0 0 0
Uniaxial nematic N1 1 0 21/2 0
Uniaxial nematic N2 1/4 1/2 21/2 21

Biaxial B 1 0 21/2 21
J. Chem. Phys., Vol. 106
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bF

N
5 ln rL3211x1 ln x11x2 ln x2

1x1E dV c1~V!ln 4pc1~V!

1x2E dV c2~V!ln 4pc2~V!

1 (
n52

`
Bn

n21
rn21. ~4!

c i(V) is the orientational distribution function~ODF! of
componenti , andBn is then

th virial coefficient.B2 is given
by

B25x1
2B2

1112x1x2B2
121x2

2B2
22, ~5!

where

B2
i j5 1

2E dV dV8c i~V!c j~V8!v i j ~V,V8!, ~6!

andv i j (V,V8) is the excluded volume of two particles, on
of type i and the other of typej , with relative orientations
V andV8. In the original Onsager theory for a pure fluid o
nonspherical particles26 the summation in Eq.~4! is truncated
at B2. This approximation becomes exact in the lim
e→`, but is inaccurate for intermediate elongations and
e,1. To take account of higher order interactions, alb
approximately, we use Parsons–Lee free energy scaling27–29

where the Carnahan–Starling excess free energy for h
spheres is scaled byB2/4v0:

bF

N
5 ln rL321

1x1E dV c1~V!ln 4pc1~V!

1x2E dV c2~V!ln 4pc2~V!

1
B2

4v0

h~423h!

~12h!2
. ~7!

In the spherical limit,e51, B2/4v051 and the Carnahan–
Starling free energy is recovered, which is known to be
curate to within a few percent of simulation results.30 For
one-component fluids the I–N transition occurs at lower d
sity as the elongation is increased, and so in the li
e→` the original Onsager functional is recovered.

The application of this theory to hard ellipsoid rod-pla
mixtures is given in Ref. 11. The equilibrium ODF for
density and composition is that which minimises the fr
energy functional ~7!, and is found by numerica
techniques.11 Once the equilibrium ODF is calculated, ord
parameters and thermodynamic quantities can be calcul
and the conditions for phase coexistence solved.11
, No. 22, 8 June 1997
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9273Camp et al.: Demixing in rod-plate mixtures
IV. RESULTS

In Tables II, III, and IV the results ofNPT-GEMC
simulation are presented, fore515, ande520 respectively.
The expansion sequence fore515 is reported in Table II and
the compression sequence in Table III. In Figures 1 and 2
show the phase diagrams in thex1-bP plane fore515 and
e520, respectively. Fore515 at bP.1.62 the system
clearly demixes, while fore520 the demixing occurs for a
pressurebP.1.125. In Figures 3 and 4 we show the pha
diagrams in thex1-h plane for e515 ande520, respec-
tively. In both cases the demixing transition is clearly ind
cated. In thee520 case, Figures 2 and 4 also show t
I–N1 coexistence data for the pure prolate ellipsoid flu
(x151) determined by thermodynamic integration in R
31. The compression and expansion sequences withe515
show no discernible hysteresis. Equilibration was slugg
but the absence of any hysteresis in thee515 case indicates

TABLE II. Coexistence data fromNPT-GEMC simulations withe515 -
expansion sequence.

bP x1 h Phase

1.62
0.386 0.164 N2
0.413 0.165 B

1.80
0.374 0.175 N2
0.424 0.174 B

1.98
0.281 0.191 N2
0.514 0.186 B

2.16
0.296 0.196 N2
0.497 0.194 B

2.34
0.179 0.220 N2
0.624 0.209 B

2.52
0.138 0.233 N2
0.669 0.221 B
J. Chem. Phys., Vol. 106
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that the simulations were of sufficient length. Also shown
the figures are the results of the Parsons–Lee theory as
scribed in Section III. The theory predicts a phase diagr
symmetric aboutx150.5, due to the second virial coefficien
approximation. By contrast, the simulation data show th
to be considerable asymmetry.

TABLE III. Coexistence data fromNPT-GEMC simulations withe515 -
compression sequence.

bP x1 h Phase

1.62
0.39~1! 0.165~1! N2

0.41~1! 0.164~1! B

1.80
0.36~1! 0.178~1! N2

0.43~1! 0.177~2! B

1.89
0.33~1! 0.186~1! N2

0.46~1! 0.184~1! B

1.98
0.30~2! 0.194~1! N2

0.49~2! 0.191~1! B

2.05
0.26~1! 0.201~1! N2

0.528~6! 0.196~1! B

2.16
0.25~2! 0.200~7! N2

0.48~3! 0.193~7! B

2.25
0.28~4! 0.210~2! N2

0.50~3! 0.206~2! B

2.34
0.21~2! 0.216~4! N2

0.56~1! 0.208~3! B

2.43
0.17~4! 0.225~3! N2

0.60~2! 0.215~3! B

2.52
0.17~2! 0.231~3! N2

0.55~1! 0.220~2! B

2.61
0.123~6! 0.238~3! N2

0.569~9! 0.224~3! B
TABLE IV. Coexistence data fromNPT-GEMC simulations withe520.

bP x1 h S1 D1 S2 D2 Phase

1.000
0.40~1! 0.116~1! 0.37~8! 0.25~4! 20.36(2) 20.62(2) N2

0.40~1! 0.116~1! 0.34~5! 0.28~3! 20.36(2) 20.65(3) N2

1.125
0.40~1! 0.128~1! 0.48~5! 0.23~4! 20.408(7) 20.71(3) N2

0.40~1! 0.128~2! 0.42~3! 0.27~2! 20.405(8) 20.73(3) N2

1.250
0.47~2! 0.137~1! 0.69~4! 0.10~3! 20.432(6) 20.61(5) B
0.32~2! 0.140~1! 0.37~6! 0.34~4! 20.420(7) 20.81(2) N2

1.375
0.49~2! 0.148~1! 0.77~2! 0.06~2! 20.447(4) 20.60(8) B
0.29~3! 0.150~2! 0.41~8! 0.32~5! 20.434(5) 20.84(2) N2

1.500
0.58~4! 0.156~2! 0.85~1! 0.02~1! 20.457(3) 20.38(1) N1/B
0.22~2! 0.162~2! 0.36~7! 0.37~5! 20.446(4) 20.879(9) N2

1.750
0.58~2! 0.172~1! 0.87~1! 0.02~1! 20.465(2) 20.57(7) N1/B
0.16~1! 0.182~2! 0.36~6! 0.39~4! 20.459(3) 20.910(7) N2

2.000
0.62~3! 0.187~2! 0.903~9! 0.012~5! 20.471(2) 20.41(6) N1/B
0.106~8! 0.202~2! 0.36~7! 0.40~4! 20.467(2) 20.931(5) N2
, No. 22, 8 June 1997
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9274 Camp et al.: Demixing in rod-plate mixtures
For each pressure simulated, the identities of the
coexisting phases were determined by reference to Tab
and are shown in Tables II, III, and IV. In each case t
phase with lowerx1 is clearly uniaxial discotic N2 . The
situation in the higher-x1 phase is not so clear. On increasin
the pressure it is evident that the plate biaxial order par
eter,D2, decreases, thus signalling a decreasing degre
biaxiality. The values ofD2 at the highest pressures are co
siderably lower than those observed in the biaxial phas
Ref. 11. The fact thatD2 does not fall to zero can be ex
plained in terms of the effect of finite-size on the order p
rameters. In Section II A it was noted that errors in the or
parameters areO (1/AN). The reduction of the number o
plates in the rod-rich phases will have some effect on
measured values ofD2. Nonetheless,D2 decreases with in-
creasing pressure and therefore at high enough press
N2/N1 coexistence should occur. The simulation of high
pressures is precluded by the poor acceptance rate of pa
transfers.

FIG. 1. The phase diagram fore515 in the x1-bP plane: Parsons–Lee
theory ~dashed lines!, NPT-GEMC simulations@expansion~open circles!,
compression~filled circles!#, NPT-MC simulations ~squares!. The solid
lines are drawn in to be consistent with the simulation data.

FIG. 2. The phase diagram fore520 in the x1-bP plane: Parsons–Lee
theory ~dashed lines!, NPT-GEMC simulations~filled circles!, NPT-MC
simulations~squares!. The diamond atx151 is from Ref. 31. The solid lines
are drawn in to be consistent with the simulation data.
J. Chem. Phys., Vol. 106
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The fact that the N2 phase can coexist with the B phas
implies that the demixing line is not horizontal, in contra
with the predictions of the Onsager theory.19 This is due to
the truncation of the virial expansion in the theory, as no
in Section I.

To bracket the region of stability of the biaxial phas
the N1–B coexistence line must be located. To this en
single-box constant-pressure MC simulations were perfom
at a range of compositions and pressures, and the orde
rameters monitored. For a given composition the N1–B tran-
sition was located on the basis of the biaxial order para
eters,D i . The results are shown in Figures 1, 2, 3 and 4.
the figures, straight lines have been drawn to indicate
topology of the phase diagram. Clearly, the region of sta
ity of the biaxial phase is small. Onsager theory predicts t
region to decrease in size as the elongation of the particle
reduced,19 but conventional Gibbs ensemble simulations a
intractable at elongations low enough to confirm this.

FIG. 3. The phase diagram fore515 in thex1-h plane: Parsons–Lee theor
~dashed lines!, NPT-GEMC simulations@expansion~open circles!, com-
pression~filled circles!#, NPT-MC simulations~squares!. The solid lines are
drawn in to be consistent with the simulation data.

FIG. 4. The phase diagram fore520 in thex1-h plane: Parsons–Lee theor
~dashed lines!, NPT-GEMC simulations~filled circles!, NPT-MC simula-
tions ~squares!. The diamonds atx151 are from Ref. 31. The solid lines ar
drawn in to be consistent with the simulation data.
, No. 22, 8 June 1997
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9275Camp et al.: Demixing in rod-plate mixtures
V. CONCLUSIONS

The range of stability of the biaxial phase with respect
phase separation into two uniaxial nematic phases, in m
tures of hard ellipsoids with conjugate elongation and eq
molecular volume, has been investigated by computer si
lation. The phase diagrams in thex12bP andx12h planes
show the line above which demixing occurs to be skew
recent Onsager theory predicts this line to be horizontal,
this is a result of the second virial coefficient approximatio
The theoretical phase diagrams calculated by van Roij
Mulder, and those calculated here, are symmetric ab
x151/2 for the same reason. Our simulations confirm t
hard-particle mixtures can demix; this is a further count
example to the hypothesis that attractive interactions
needed to observe such a transition.

Biaxial phases have been observed experimentally
micellar solutions, but it is not clear whether this is due
the presence of micelles with biaxial geometry, or to m
tures of rod-like and plate-like micelles. However, una
biguous rod-plate mixtures could be prepared in colloi
systems. The present work shows that biaxial phases are
expected in a narrow range of compositions and aspec
tios. The results presented here should help the experim
talist in selecting the appropriate conditions to observe sta
biaxial phases.
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