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Phase behavior of colloid plus polydisperse polymer mixtures

Richard P. Sear* and Daan Frenkel†

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands
~Received 26 June 1996!

A suspension of colloidal particles and polydisperse polymer coils is modeled using the hard-sphere poten-
tial for the colloid and the Asakura-Oosawa model for the colloid-polymer interaction@S. Asakura and F.
Oosawa, J. Chem. Phys.22, 1255 ~1954!#. The phase behavior of the mixtures is compared with that for a
monodisperse polymer@H. N. W. Lekkerkerkeret al., Europhys. Lett.20, 559 ~1992!#. Polydispersity is seen
to increase the extent of the fluid-fluid coexistence found if the radius of gyration of the polymer is sufficiently
large. The partitioning of polymer coils of different sizes between coexisting phases is studied.
@S1063-651X~97!08701-1#

PACS number~s!: 82.70.Dd, 64.60.2i
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I. INTRODUCTION

Man-made polymers are inevitably polydisperse. Ho
ever, once the polydispersity is reduced as much as pos
the polymer is often treated as if it were completely mon
disperse. This is done because polydisperse systems
much more complex than their monodisperse counterp
and much less well defined. The theoretical calculation
first-order phase transitions in polydisperse systems is
ticularly difficult due to the partitioning of the different poly
mer species among the coexisting phases@1#. For example, at
the isotropic-nematic transition of a liquid-crystalline pol
mer the polymer molecules of different lengths will be pa
titioned between the isotropic and nematic phases in su
way as to minimize the total free energy, subject to cons
vation of the total number of polymer molecules of ea
length in the system. So, at constant pressure, while we n
to solve only one nonlinear equation for a monodisperse
tem, we need to perform a functional minimization for t
polydisperse equivalent. In experiment the partitioning of
polymer occurs spontaneously, but there remains the p
lem of the polydisperse system being less well defined
understood than a pure component or even a binary mixt

A natural question to ask is: Is the complexity of polyd
perse systems hiding some interesting and perhaps even
ful behavior? Here we address this question for a spec
mixture: a mixture of colloidal particles and polydisper
polymer@2#. We find some, perhaps unexpected, results s
as a more pronounced phase separation in polydisperse
tems than in an ‘‘equivalent’’ monodisperse system. Thus
the polymer is added to the colloidal suspension specific
to induce phase separation, it may be advantageous to u
polydisperse polymer in place of a monodisperse one. C
versely, when polymer is used in protein crystallization, it
believed to be important@3# to avoid phase separation. The
it may be helpful to use a polymer that is as monodispers
possible. Equivalent is in quotations because no polydisp
system is truly equivalent to any monodisperse system;
any polydisperse system there is no unique monodisp
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system with that it may be compared. However, we can co
pare a polydisperse system to one which is monodisperse
has the same average value of a quantity such as mole
weight.

In the following section we generalize the theory of Le
kerkerkeret al. @4# to include a polydisperse polymer. Se
tion III contains some example phase diagrams along wit
discussion and Sec. IV stresses the potential usefulnes
polydispersity.

II. MODEL AND THEORY

Our models for the interaction between colloidal partic
and between colloidal particles and polymers are stand
The colloidal particles are spherical and interact with ea
other as hard spheres of diameters @2,5#; see Fig. 1~b!. The
colloid is assumed to be monodisperse. The colloid-polym
interaction is also modeled as a hard-sphere interaction:
Asakura-Oosawa model@6–8#. Each colloidal sphere ex
cludes the center of a polymer coil of size« from a sphere of
diameters(11«) centered on the colloidal sphere; see F
1~a!. « is roughly equal to twice the radius of gyration of
polymer molecule@8,9#, in units of s. The polymer is as-
sumed ideal, i.e., polymer-polymer interactions are ignor

A polydisperse mixture is a many-component mixture
the limit that the number of components tends to infinity~see
Refs.@1,10,11#! for the formalism of polydisperse mixtures
In the canonical ensemble our mixture is specified by
temperatureT, volumeV, number of colloidal spheresNc ,
and density function of the polymerrp(«). The density func-

FIG. 1. Models for the~a! polymer and~b! colloid. The dashed
circle in ~a! represents the effective hard-sphere diameter for
colloid-polymer interaction.
1677 © 1997 The American Physical Society
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1678 55RICHARD P. SEAR AND DAAN FRENKEL
tion rp(«) is defined such that the number density of po
mer coils of size« is rp(«)d«. The chemical potential of the
polymer is given by an activity functionzp(«), where
zp(«) is the activity of polymer coils of size«. Finding phase
coexistence in a polydisperse mixture using the canon
ensemble is complicated by the fact that it is necessar
vary the functionsrp(«) in the coexisting phases in orde
that the functionszp(«) be the same in each phase@1,10#.
Here, however, because the polymer coils do not inte
with each other it is a simple matter to transform from t
canonical ensemble to a semigrand ensemble@4,9,12# in
which the polymer is specified not byrp(«) but by zp(«).
The variables are thenNc , V, T, andzp(«) and determining
phase coexistence is no more difficult than in a pure fluid;
that is necessary is to equate the pressure and the che
potential of the colloid.

The semigrand potentialV is given by a straightforward
generalization of that used for monodisperse polymer~see
Refs.@4,8,9#!

bV~Nc ,V;zp#5bAc~Nc ,V!2VE
0

`

d~«!zp~«!a~«,Nc /V!,

~1!

whereb51/kBT, with kB Boltzmann’s constant, andAc is
the Helmholtz free energy of a pure system of colloid
spheres.a(«,Nc /V) is the free volume of a polymer with
size « in a system of colloidal spheres of densityNc /V.
Equation~1! is, of course, approximate@8#. For Ac in the
fluid phase we use a free energy derived from the Carna
Starling @13# equation for the pressure of a fluid of ha
spheres and in the solid phase we use the fit to simula
data of Hall @14#. In both cases we denote the hard-sph
free energy per sphere bykBTaHS. For the free volumea we
use the scaled particle theory expression@4,15,16#. The ac-
tivity function is expressed as the product of a normaliz
distribution functionf z and a total densityr r /v0 (r r is the
product of the density and a factor ofv0, which makes it
dimensionless!. We choose the Schultz distribution functio
f z(«) @1,10#; then

zp~«!5~r r /v0! f z~«!, ~2!

wherev05(p/6)s3 is the volume of a colloidal sphere. Th
volume will be used to make our densities dimensionless.
f z(«) is normalized, the integral ofzp(«) over « is equal to
r r /v0. In the absence of a colloid the polymer is an ideal g
and the total polymer number density of a polydisperse po
mer with zp(«) given by Eq.~2! is r r . The subscriptr of
r r stands for reservoir; fixing the activity function of th
polymer is equivalent to placing the system in contact wit
reservoir of pure polymer with a density function given
the right-hand side of Eq.~2! @17#. The reservoir is separate
from the system by a membrane that is permeable to a p
mer but not to a colloid. The Schultz distribution functio
f z has two parameters@1#; «1 the first moment off z andz,
which determines the width of the distribution. The varian
of « var(«) is given by

var~«!5
«1
2

z11
. ~3!
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In Sec. III we perform calculations for three values ofz: 2, 5,
and 20. We show Schultz distributions with«151 for all
three values ofz in Fig. 2. Finally,V is given by

bV~Nc ,V,r r ,z,«1!

Nc
5aHS~h!2

r r
h E

0

`

d~«! f z~«!a~«,h!,

~4!

where the colloidal density is expressed in terms of its v
ume fractionh5(Nc /V)v0. In the limit of z→` the Schultz
distribution tends to ad function centered on«5«1 and Eq.
~4! reduces to

bV~Nc ,V,r r ,«1!

Nc
5aHS~h!2

r r
h

a~«1 ,h!. ~5!

Equation~5! is for a monodisperse polymer of size«1 @4#;
r r is its activity anda(«1 ,h) the fraction of the volume
available to a polymer coil. We now briefly discuss the a
proximations made in deriving Eqs.~4! and ~5!. There are
two approximations; the first is decoupling the motion of t
colloidal spheres and polymer coils so that the colloid
spheres move just as if the polymer was not there and
polymer coils move in the spaces left to them by the collo
@4,9#. With this approximation the change in semigrand p
tential on adding polymer, i.e., on increasing the polym
chemical potential from zero, are just equal to the total nu
ber of polymer coils in the system. The last terms of Eqs.~4!
and ~5! are just the ratios of the number of polymer coils
the number of colloidal particles. Thus the density functi
of the polymerrp(«) is

rp~«!5~r r /v0! f z~«!a~«,h!5r~«!/v0 , ~6!

where the second equality merely defines a reduced poly
density function. The total reduced polymer densityr is just
the integral ofr(«) over «. The second approximation con
sists of using approximate expressions foraHS and a. Al-
though ouraHS is known to be very accurate, our expressi
for a was derived in the fluid phase@15,16# and yet we also

FIG. 2. Schultz distribution functionf z with «151 and z52
~solid curve!, z55 ~dot-dashed curve!, andz520 ~dashed curve!.
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55 1679PHASE BEHAVIOR OF COLLOID PLUS POLYDISPERSE . . .
use it in the solid phase. See Ref.@8# for an evaluation of the
accuracy of our expression fora in both the fluid and the
solid phases.

For finitez the integral in Eq.~4! is an effectivea for the
polymer; it is the average free volume for polymer coils d
tributed according tof z . So we denote the integral of Eq.~4!
by aeff ; then

bV~Nc ,V,r r ,z,«1!

Nc
5aHS~h!2

r r
h

aeff~z,«1 ,h!. ~7!

Whereasr r is the total number density in a pure polym
system in equilibrium with our polymer-colloid mixture, th
total polymer density in the actual mixture isr5r raeff . The
pressurep and colloidal activityl may be derived from the
semigrand potential~7!; they are

bpv05bpHSv01r rFaeff2hS ]aeff

]h D G , ~8!

where pHS is the pressure of the fluid or solid of har
spheres, and

lnl5
bV

Nc
1

bpv0
h

. ~9!

III. PHASE BEHAVIOR

Our approximate theory for the colloid plus polydisper
polymer mixture yields a pressure~8! and chemical potentia
~9! that are analytical functions of the field variabler r and
the density variableh ~for fixed z and«1). ~See Ref.@18# for
a discussion of field and density variables.! This is com-
pletely analogous to a one-component system in the can
cal ensemble, withr r taking the place ofT. Thus our mix-
ture, as described by Eq.~7!, must obey the Gibbs phase ru
for a one-component system. Although, in principle, an in
nite number of phases can coexist in a polydisperse sys
our approximateV will give coexistence between a max
mum of three phases. Note that, for a fixed value ofz, we
have only two degrees of freedomr r andh and so we would
not expect to get more than three-phase coexistence from
exactV.

With a monodisperse polymer Lekkerkerkeret al. @4#
found fluid-fluid coexistence for«1>0.32. As this coexist-
ence is the most characteristic feature of the colloid p
polymer mixtures it is of interest to see how it is affected
polydispersity of the polymer. We will compare a monod
perse mixture with polydisperse mixtures withz520, 5, and
2. We choose the mixtures such that a colloidal sphere
cludes the same volume on average to each of the four p
mer systems, i.e., the polymer-colloid second virial coe
cient is the same for all mixtures; see the Appendix. The fi
momentse1 of the polymer mixtures are 0.4193, 0.4136, 0
and 0.3829 forz5` ~monodisperse!, 20, 5, and 2, respec
tively. Their second momentse2, which are proportional to
their average molecular weights, are 0.1738, 0.1792, 0.1
and 0.1955.

Results are shown in Fig. 3 for monodisperse polym
with «1.0.4193 and three polymer mixtures with differe
polydispersities but the same polymer-colloid second vi
-

ni-
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t
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coefficient. Clearly, increasing the polydispersity increa
the extent of the fluid-fluid coexistence. This is also appar
in the r-h plane; see Fig. 4. In Fig. 3 we see that as t
polydispersity increases the polymer activityr r at the critical
point decreases, while that at the triple point increases.
range ofr r over which there is coexistence between collo
poor and colloid-rich fluid phases is only.1.75 for mono-
disperse polymer, but forz52 it is.5.97. In addition, as the
polydispersity increases the volume fraction of the colloid
the demixing critical point decreases. In Fig. 4 the total a
enclosed by the fluid-fluid coexistence curve and an edg
the three-phase triangle is considerably larger for the po
disperse polymer than for the monodisperse one.

Also worthy of note is the much larger total polymer de
sity of the polydisperse polymer at the two colloid-rich co
ners of the three-phase triangle in Fig. 4. In order to see w

FIG. 3. Phase diagram in ther r-h plane for the monodispers
polymer «1.0.4193 ~solid curve! and polydisperse polyme
z520, «1.0.4136 ~short-dashed curve!, z55, «150.4 ~long-
dashed curve!, andz52, «1.0.3829~dot-dashed curve!. The thin
horizontal lines connect the three coexisting densities at the tr
points.

FIG. 4. Phase diagram in ther-h plane for monodisperse poly
mer «1.0.4193 ~solid curve! and polydisperse polymerz55,
«150.4 ~dashed curve!. The thin lines are the edges of the thre
phase triangles.
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1680 55RICHARD P. SEAR AND DAAN FRENKEL
this is so we examine the full density function of the polym
rp(«); it is is plotted in Fig. 5 for the three coexisting phas
at the triple point of the mixture with«50.4 andz55. Of
course the polymer density is much higher in the collo
poor phase, but note that the position of the maximum
r(«) shifts to smaller values of« at larger colloid volume
fractions. In the colloid-poor phase~solid curve in Fig. 5! the
polymer density is highest near«'0.4, but in the highest-
h phase~dashed curve! there is very little polymer for these
values of«; most of the polymer is near«'0.2. This is due
to the fact that at highh, a is a rapidly decreasing functio
of «; there is very little free volume available to polym
coils of size«'0.4 at highh, but much more for coils with
«'0.2. The very small value ofa for «50.4 is also the
reason why the polymer density is so low in the colloid ri
phases at the triple point of the monodisperse polymer.
conclude that the polymer density is much higher at hig
colloid volume fractions if the polymer is polydisperse b
cause the polydisperse polymer contains some coils con
erably smaller than«1 that have much more free volume
high colloidal densities than do coils with«5«1.

There are~at least! two ways of thinking about the in
crease in fluid-fluid coexistence found for polydisperse po
mer compared with that for monodisperse. The first is
recall that on going from a pure system to a mixture
density jump at first-order transitions almost always
creases. This is due to partitioning of the components of
mixture between the two coexisting phases. Here partition
of the different polymer sizes actually encourages the form
tion of the first-order phase separation. Polydispersity sho
quite generally encourage first-order transitions as the p
ence of two coexisting phases allows the polydisperse c
ponent to distribute itself between the two phases in suc
way as to minimize the semigrand potential or free ener
Second, in Fig. 5, we can see that the large-« tails of the
polymer distributions are almost completely excluded fro
the colloid-rich phases. Ash increases,a at these large val-
ues of« decreases very rapidly, so creating the condition
coexistence between a colloid-poor, polymer-rich and
colloid-rich, polymer-poor phase. On increasing the polyd

FIG. 5. Density functionr(«) for the three coexisting phases
the triple point for«50.4 andz55. The solid curve is for the
lowest colloid volume fractionh and the dashed curve is for th
highesth.
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persity we increase the number of large and small polym
coils at the expense of polymer coils of average size. It is
introduction of these large polymer coils that is the predom
nant way in which polydispersity increases the driving for
towards phase separation.

Finally, if polydispersity encourages fluid-fluid coexis
ence then we should be able to find coexistence for sma
~average! polymer sizes than for monodisperse polymer.
Fig. 6 we show that, indeed, we can find coexistence e
when a monodisperse polymer with the same polym
colloid second virial coefficient or the same average mole
lar weight is too small to induce fluid-fluid coexistence.

IV. CONCLUSION

Polydispersity has been found to increase the exten
fluid-fluid coexistence. Thus, if a polymer is added to a c
loidal suspension in order to induce phase separatio
would be advantageous to use a polydisperse, not mono
perse, polymer. Although this finding is not particularly su
prising, it does go against the prevailing tendency to try
minimize the polydispersity of polymer. Traditionally, th
inevitable polydispersity of polymers is regarded as an i
tation. In the sense that polydispersity complicates the th
retical study and understanding of polymeric systems i
reasonable to regard it as a problem. However, from
point of view of using the polymer to produce a speci
effect polydispersity is,a priori, as likely to help as to
hinder.

The partitioning of the polymer between the colloid-ric
and colloid-poor phases is similar to that found in a polym
solution in contact with a porous medium@19#. In the porous
medium the ratio of the density of small coils to the dens
of large polymer coils is larger than in the pure polyme
Here we found that this ratio is larger in the colloid-ric

FIG. 6. Phase diagram in ther r-h plane for the monodispers
polymer «150.3 ~solid curve! and polydisperse polymerz55,
«1.0.2890 ~dashed curve! and z55, «1.0.2777 ~dot-dashed
curve!. The thin horizontal lines connect the three coexisting d
sities at the triple points. The first polydisperse polymer has
sameBp as the monodisperse polymer. The second polydispe
polymer~dot-dashed curve! hase250.09, the same second mome
of e, and hence the same average molecular weight, as the m
disperse polymer.
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55 1681PHASE BEHAVIOR OF COLLOID PLUS POLYDISPERSE . . .
phase than in the colloid-poor phase. Thus a colloidal s
pension could be used to selectively extract part of the p
mer distribution. From Fig. 5 we see that the colloid-ri
phases have predominantly small polymer coils and so if
separate the coexisting phases and remove the colloid w
left with two polymer solutions. The solution that wa
colloid-rich now contains polymer coils with an average s
«1 about half that we started with.
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APPENDIX

The second virial coefficientB2
m for the interaction be-

tween a colloidal sphere and a polymer coil of size« is

B2
m5~p/6!~11«!3s3. ~A1!

Using the Asakura-Oosawa@6,7# model of the colloid-
polymer interaction a colloidal sphere interacts with t
polymer coil as if the coil was a hard sphere of diame
«s. The second virial coefficient is then the volume e
cluded by a hard-sphere of diameters to one of diameter
«s. If the polymer is monodisperse then Eq.~A1! gives the
second viral coefficient straightaway. However, if the po
mer is polydisperse we must average the excluded volu
over the distribution of polymer sizes
e

.

k-

s

s-
-

e
are

e
k
-

e
a-

r
-

-
e

B2
p5S p

6 Ds3E d~«! f z~«!~11«!3

5S p

6 Ds3~113«113«21«3!, ~A2!

where« i is thei th moment off z(«) @1# andB2
p is the second

virial coefficient for polydisperse polymer, i.e., the coef
cient ofrh/v0

2 in the density expansion for the pressure. F
the Schultz distribution we can express all moments
f z(«) in terms ofz and«1, then

B2
p55S p

6 Ds3S 113«11
3~z12!

z11
«1
21

~z13!~z12!

~z11!2
«1
3D .
~A3!

When comparing mixtures of different polydispersities a
poly- and monodisperse mixtures we keepB2

p the same for
all mixtures and equal toB2

m for the monodisperse polymer
This is easily achieved as givenB2

p we can choose a value fo
z and then solve Eq.~A3! for «1. The value of«1 thus ob-
tained decreases with increasingz.

We are assuming that the polymer coils are ideal and
the size of a coil« is proportional to its radius of gyration
@8,9#. The radius of gyration of ideal polymer coils scales
Nm
1/2 whereNm is the number of monomers of the coil. S

Nm;«2 and the average number of monomers of a polym
in our polydisperse polymer mixtures is proportional to«2.
Increasing the polydispersity at constantB2

p causes«2 to in-
crease. Therefore, the polydisperse mixtures of Fig. 3 ha
higher averageNm and therefore a higher average molecu
weight than the the monodisperse polymer.
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