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Phase behavior of colloid plus polydisperse polymer mixtures

Richard P. Searand Daan Frenkél
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, NL-1098 SJ Amsterdam, The Netherlands
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A suspension of colloidal particles and polydisperse polymer coils is modeled using the hard-sphere poten-
tial for the colloid and the Asakura-Oosawa model for the colloid-polymer intera¢8orAsakura and F.
Oosawa, J. Chem. Phy22, 1255(1954]. The phase behavior of the mixtures is compared with that for a
monodisperse polyméH. N. W. Lekkerkerkeret al., Europhys. Lett20, 559(1992]. Polydispersity is seen
to increase the extent of the fluid-fluid coexistence found if the radius of gyration of the polymer is sufficiently
large. The partitioning of polymer coils of different sizes between coexisting phases is studied.
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PACS numbe(s): 82.70.Dd, 64.60-i

I. INTRODUCTION system with that it may be compared. However, we can com-
pare a polydisperse system to one which is monodisperse but
Man-made polymers are inevitably polydisperse. How-ha§ the same average value of a quantity such as molecular
ever, once the polydispersity is reduced as much as possibféeight. _ _ _
the polymer is often treated as if it were completely mono- I the following section we generalize the theory of Lek-

disperse. This is done because polydisperse systems af'kerkeretal.[4] to include a polydisperse polymer. Sec-
much more complex than their monodisperse counterpar on Il contains some example phase diagrams along with a

and much less well defined. The theoretical calculation of:>cu>s1oN and Sec. IV stresses the potential usefulness of

first-order phase transitions in polydisperse systems is paROIydlSperS'ty'
ticularly difficult due to the partitioning of the different poly- Il. MODEL AND THEORY
mer species among the coexisting phd&gsFor example, at
the isotropic-nematic transition of a liquid-crystalline poly-  Our models for the interaction between colloidal particles
mer the polymer molecules of different lengths will be par-and between colloidal particles and polymers are standard.
titioned between the isotropic and nematic phases in such Bhe colloidal particles are spherical and interact with each
way as to minimize the total free energy, subject to conserother as hard spheres of diametef2,5]; see Fig. 1b). The
vation of the total number of polymer molecules of eachcolloid is assumed to be monodisperse. The colloid-polymer
length in the system. So, at constant pressure, while we nedateraction is also modeled as a hard-sphere interaction: the
to solve only one nonlinear equation for a monodisperse sysAsakura-Oosawa moddl6—8]. Each colloidal sphere ex-
tem, we need to perform a functional minimization for the cludes the center of a polymer coil of sizérom a sphere of
polydisperse equivalent. In experiment the partitioning of thediametera(1+¢) centered on the colloidal sphere; see Fig.
polymer occurs spontaneously, but there remains the prola). ¢ is roughly equal to twice the radius of gyration of a
lem of the polydisperse system being less well defined angolymer moleculd8,9], in units of o. The polymer is as-
understood than a pure component or even a binary mixturesumed ideal, i.e., polymer-polymer interactions are ignored.
A natural question to ask is: Is the complexity of polydis- A polydisperse mixture is a many-component mixture in
perse systems hiding some interesting and perhaps even usgke limit that the number of components tends to infigge
ful behavior? Here we address this question for a specifiRefs.[1,10,11) for the formalism of polydisperse mixtures.
mixture: a mixture of colloidal particles and polydisperseln the canonical ensemble our mixture is specified by the
polymer[2]. We find some, perhaps unexpected, results suctemperaturel, volumeV, number of colloidal spherel,,
as a more pronounced phase separation in polydisperse sy@d density function of the polymer,(e). The density func-
tems than in an “equivalent” monodisperse system. Thus, if
the polymer is added to the colloidal suspension specifically
to induce phase separation, it may be advantageous to use a
polydisperse polymer in place of a monodisperse one. Con-
versely, when polymer is used in protein crystallization, it is
believed to be importariB8] to avoid phase separation. Then,
it may be helpful to use a polymer that is as monodisperse as
possible. Equivalent is in quotations because no polydisperse
system is truly equivalent to any monodisperse system; for
any polydisperse system there is no uniqgue monodisperse () (b)

FIG. 1. Models for thga) polymer and(b) colloid. The dashed
*Electronic address: sear@amocf6.amolf.nl circle in (a) represents the effective hard-sphere diameter for the
TElectronic address: frenkel@amocf3.amolf.nl colloid-polymer interaction.
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tion py(e) is defined such that the number density of poly- 20

mer coils of sizes is p,(¢)de. The chemical potential of the I8 N

polymer is given by an activity functiorgy(e), where / \\

z,(¢) is the activity of polymer coils of size. Finding phase 16 1 I,’ !

coexistence in a polydisperse mixture using the canonical 14 o

ensemble is complicated by the fact that it is necessary to ,:' !

vary the functionsp,(&) in the coexisting phases in order 127 ] 4

that the functionsz,(¢) be the same in each phagg10]. £®) 10} /,7’"‘\\ 4

Here, however, because the polymer coils do not interact 08 | L Y

with each other it is a simple matter to transform from the / ! AN

canonical ensemble to a semigrand ensenidl®,12 in 081 ," ! \\

which the polymer is specified not by,(¢) but by z,(¢). 04 | I N\

The variables are theN,, V, T, andz,(¢) and determining o2l /7 RN

phase coexistence is no more difficult than in a pure fluid; all / // AR

that is necessary is to equate the pressure and the chemical  *%5™ o5 10 15 20 25 3.0

potential of the colloid. €

The semigrand potentid) is given by a straightforward

generalization of that used for monodisperse polyiiser EIG. 2. Schultz distribution functiori, with ¢,=1 andz=2

Refs.[4,8,9)) (solid curve, z=5 (dot-dashed curyeandz= 20 (dashed curve
o In Sec. Il we perform calculations for three valueszo®, 5,

BQ(NC,V:ZpFBAc(Nc,V)—VJ

. d(e)zp(e)a(e,Nc/V),  and 20. We show Schultz distributions with=1 for all

(1) three values of in Fig. 2. Finally, () is given by

where 8= 1/kgT, with kg Boltzmann’s constant, and; is BN, V,p;.2,e1) Pr Wd ¢

the Helmholtz free energy of a pure system of colloidal N, =aps( 7])—; . (e)f(e)a(e,n),
spheres.a(e,N;/V) is the free volume of a polymer with

! . . 4
size ¢ in a system of colloidal spheres of densiy./V.

Equation(1) is, of course, approximatf8]. For A; in the  \yhere the colloidal density is expressed in terms of its vol-
fluid phase we use a free energy derived from the Carnahanqye fraction=(N./V)vy. In the limit of z— the Schultz

Starling [13] equation for the pressure of a fluid of hard gistripution tends to @ function centered os=z, and Eq.
spheres and in the solid phase we use the fit to simulatiofy) reduces to
data of Hall[14]. In both cases we denote the hard-sphere
free energy per spht_are by Tays. For the free volumer we BNV, p; 161) o,
use the scaled particle theory expresdidri5,16. The ac- N =ays(n)——aleq,n). (5)
tivity function is expressed as the product of a normalized c Y
distribution functionf, and a total density, /v (p, is the ) . ) .
product of the density and a factor of, which makes it ~Equation(5) is for a monodisperse polymer of sizg [4];
dimensionless We choose the Schultz distribution function Pr S its activity anda(ey,7) the fraction of the volume
f(e) [1,10]; then available to a polymer coil. We now briefly discuss the ap-
proximations made in deriving Eq#4) and (5). There are
zy(e)=(prlvo)f (&), 2) two approximations; the first is decoupling the motion of the
colloidal spheres and polymer coils so that the colloidal
wherev = (7/6)c? is the volume of a colloidal sphere. This spheres move just as if the polymer was not there and the
volume will be used to make our densities dimensionless. Apolymer coils move in the spaces left to them by the colloid
f (&) is normalized, the integral af,(¢) overe is equal to [4,9]. With this approximation the change in semigrand po-
pr lvo. In the absence of a colloid the polymer is an ideal gagential on adding polymer, i.e., on increasing the polymer
and the total polymer number density of a polydisperse polychemical potential from zero, are just equal to the total num-
mer with z,(¢) given by Eq.(2) is p,. The subscript of  ber of polymer coils in the system. The last terms of E45.
p, stands for reservoir; fixing the activity function of the and(5) are just the ratios of the number of polymer coils to
polymer is equivalent to placing the system in contact with athe number of colloidal particles. Thus the density function
reservoir of pure polymer with a density function given by of the polymerp,(e) is
the right-hand side of Eq2) [17]. The reservoir is separated
from the system by a membrane that is permeable to a poly- pp(e)=(p lvo)f,(e)ale, 7)=p(e)lvy, (6)
mer but not to a colloid. The Schultz distribution function
f, has two parametelld]; e, the first moment off, andz,  where the second equality merely defines a reduced polymer
which determines the width of the distribution. The variancedensity function. The total reduced polymer dengitis just
of & var(e) is given by the integral ofp(e) overe. The second approximation con-
) sists of using approximate expressions &Js and «. Al-
var(e)= &1 3) though oura, 5 is known to be very accurate, our expression
z+1° for « was derived in the fluid phagé5,16 and yet we also
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use it in the solid phase. See R] for an evaluation of the
accuracy of our expression fer in both the fluid and the 12.0
solid phases. o {77
For finite z the integral in Eq(4) is an effectivex for the 10.0 g i
polymer; it is the average free volume for polymer coils dis- N _
tributed according tdé,. So we denote the integral of E@) 8.0 ;‘\‘\\’ """"""""""""""" Pl
by aef; then p, 5 \‘\\‘\\‘\\\ ‘
NN el Bt
BQ(N¢,V,p;,2,61) pr Nt
N =ans(7) —— ae(Z,e1,7).  (7)
c 7 40
Whereasp, is the total number density in a pure polymer 20
system in equilibrium with our polymer-colloid mixture, the
total polymer density in the actual mixtureds= p, a. The 00 , ‘ ‘ , , ‘
pressurep and colloidal activity. may be derived from the 00 01 0.2 03 04 05 0.6
semigrand potentigl7); they are N
At eg FIG. 3. Phase diagram in thg-» plane for the monodisperse
BPvo= BPusVot Pr| Xeri— 17( a7 ) , (8) polymer £,;=0.4193 (solid curve and polydisperse polymer

z=20, £,=0.4136 (short-dashed curye z=5, £;,=0.4 (long-
dashed curye andz=2, £,=0.3829(dot-dashed curye The thin

where pys is the pressure of the fluid or solid of hard horizontal lines connect the three coexisting densities at the triple

spheres, and

points.
In\ = @+ pro' (9) coefficient. Clearly, increasing the polydispersity increases
N¢ n the extent of the fluid-fluid coexistence. This is also apparent
in the p-n plane; see Fig. 4. In Fig. 3 we see that as the
Il. PHASE BEHAVIOR polydispersity increases the polymer activgyat the critical

point decreases, while that at the triple point increases. The

Our approximate theory for the colloid plus polydisperserange ofp, over which there is coexistence between colloid-
polymer mixture yields a pressu(@) and chemical potential poor and colloid-rich fluid phases is onty1.75 for mono-
(9) that are analytical functions of the field variale and  disperse polymer, but far= 2 it is =5.97. In addition, as the
the density variable; (for fixed z ande,). (See Ref[18] for  polydispersity increases the volume fraction of the colloid at
a discussion of field and density variab)e3his is com-  the demixing critical point decreases. In Fig. 4 the total area
pletely analogous to a one-component system in the canonénclosed by the fluid-fluid coexistence curve and an edge of
cal ensemble, witlp, taking the place off. Thus our mix-  the three-phase triangle is considerably larger for the poly-
ture, as described by E(), must obey the Gibbs phase rule disperse polymer than for the monodisperse one.
for a one-component system. Although, in principle, an infi-  Also worthy of note is the much larger total polymer den-
nite number of phases can coexist in a polydisperse systemsity of the polydisperse polymer at the two colloid-rich cor-
our approximateQ) will give coexistence between a maxi- ners of the three-phase triangle in Fig. 4. In order to see why
mum of three phases. Note that, for a fixed valuezofve

have only two degrees of freedgm and » and so we would

not expect to get more than three-phase coexistence from an 140
exact(). 120 |
With a monodisperse polymer Lekkerkerket al. [4]
found fluid-fluid coexistence fog;=0.32. As this coexist- 100 L
ence is the most characteristic feature of the colloid plus -~
polymer mixtures it is of interest to see how it is affected by g0\ \\\
polydispersity of the polymer. We will compare a monodis- p \ AN
perse mixture with polydisperse mixtures witk 20, 5, and 60 N\ \\\\\\\\
2. We choose the mixtures such that a colloidal sphere ex- N NN
cludes the same volume on average to each of the four poly- 40 | \\\ \\\\\\\
mer systems, i.e., the polymer-colloid second virial coeffi- TS ™ 2 e
cient is the same for all mixtures; see the Appendix. The first 20t - S
momentse; of the polymer mixtures are 0.4193, 0.4136,0.4, |  T=II=® :—\*:1\\\
and 0.3829 forz=o (monodispersg 20, 5, and 2, respec- 0000 o1 03 03 v 05 06
tively. Their second moments,, which are proportional to n
their average molecular weights, are 0.1738, 0.1792, 0.1867,
and 0.1955. FIG. 4. Phase diagram in the» plane for monodisperse poly-

Results are shown in Fig. 3 for monodisperse polymeimer &,~0.4193 (solid curvé and polydisperse polymer=5,
with £,=0.4193 and three polymer mixtures with different £;=0.4 (dashed curve The thin lines are the edges of the three
polydispersities but the same polymer-colloid second virialphase triangles.
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FIG. 5. Density functiorp(e) for the three coexisting phases at FIG. 6. Phase diagram in thg-» plane for the monodisperse
the triple point fore=0.4 andz=5. The solid curve is for the polymer £,=0.3 (solid curvg and polydisperse polymez=5,
lowest colloid volume fractiory; and the dashed curve is for the ¢,=0.2890 (dashed curve and z=5, &,=0.2777 (dot-dashed
highest». curve). The thin horizontal lines connect the three coexisting den-
. . . . sities at the triple points. The first polydisperse polymer has the
this is ?0_ W_e examme the full density function O_f the pOIymersameBp as the monodisperse polymer. The second polydisperse
pp(e); itis is plotted in Fig. 5 for the three coexisting phaseso\ymer(dot-dashed curyehase,=0.09, the same second moment

at the triple point of the mixture witle=0.4 andz=5. Of  of ¢ and hence the same average molecular weight, as the mono-
course the polymer density is much higher in the colloid-gisperse polymer.

poor phase, but note that the position of the maximum in

p(e) shifts to smaller values of at larger colloid volume  persity we increase the number of large and small polymer
fractions. In the colloid-poor phageolid curve in Fig. $the  coils at the expense of polymer coils of average size. It is the
polymer density is highest near~0.4, but in the highest- introduction of these large polymer coils that is the predomi-
n phase(dashed curvethere is very little polymer for these nant way in which polydispersity increases the driving force
values ofe; most of the polymer is near~0.2. This is due towards phase Separation_
to the fact that at highy, « is a rapidly decreasing function  Finally, if polydispersity encourages fluid-fluid coexist-
of &; there is very little free volume available to polymer ence then we should be able to find coexistence for smaller
coils of sizes~0.4 at high», but much more for coils with  (average polymer sizes than for monodisperse polymer. In
e~0.2. The very small value ok for e=0.4 is also the Fig. 6 we show that, indeed, we can find coexistence even
reason why the polymer density is so low in the colloid richwhen a monodisperse polymer with the same polymer-
phases at the triple point of the monodisperse polymer. Weolloid second virial coefficient or the same average molecu-
conclude that the polymer density is much higher at highefar weight is too small to induce fluid-fluid coexistence.
colloid volume fractions if the polymer is polydisperse be-
cause the polydisperse polymer contains some coils consid-
erably smaller thare; that have much more free volume at
high colloidal densities than do coils with=¢;. Polydispersity has been found to increase the extent of
There are(at leas}t two ways of thinking about the in- fluid-fluid coexistence. Thus, if a polymer is added to a col-
crease in fluid-fluid coexistence found for polydisperse polyHoidal suspension in order to induce phase separation it
mer compared with that for monodisperse. The first is towould be advantageous to use a polydisperse, not monodis-
recall that on going from a pure system to a mixture theperse, polymer. Although this finding is not particularly sur-
density jump at first-order transitions almost always in-prising, it does go against the prevailing tendency to try to
creases. This is due to partitioning of the components of theninimize the polydispersity of polymer. Traditionally, the
mixture between the two coexisting phases. Here partitioningnevitable polydispersity of polymers is regarded as an irri-
of the different polymer sizes actually encourages the formatation. In the sense that polydispersity complicates the theo-
tion of the first-order phase separation. Polydispersity shouldetical study and understanding of polymeric systems it is
quite generally encourage first-order transitions as the preseasonable to regard it as a problem. However, from the
ence of two coexisting phases allows the polydisperse compoint of view of using the polymer to produce a specific
ponent to distribute itself between the two phases in such affect polydispersity is,a priori, as likely to help as to
way as to minimize the semigrand potential or free energyhinder.
Second, in Fig. 5, we can see that the lazgeails of the The partitioning of the polymer between the colloid-rich
polymer distributions are almost completely excluded fromand colloid-poor phases is similar to that found in a polymer
the colloid-rich phases. Ag increasesg at these large val- solution in contact with a porous mediJrm9]. In the porous
ues ofe decreases very rapidly, so creating the condition fomedium the ratio of the density of small coils to the density
coexistence between a colloid-poor, polymer-rich and af large polymer coils is larger than in the pure polymer.
colloid-rich, polymer-poor phase. On increasing the polydis-Here we found that this ratio is larger in the colloid-rich

IV. CONCLUSION
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phase than in the colloid-poor phase. Thus a colloidal sus- LA 5
pension could be used to selectively extract part of the poly- BY= (g) o f d(e)f(e)(1+e)
mer distribution. From Fig. 5 we see that the colloid-rich

phases have predominantly small polymer coils and so if we T 4
separate the coexisting phases and remove the colloid we are = (g) 0°(1+3e;+3ey+e3), (A2)
left with two polymer solutions. The solution that was
colloid-rich now contains polymer coils with an average size ] ) )
e, about half that we started with. whereg; is theith moment off ,(¢) [1] andB} is the second
virial coefficient for polydisperse polymer, i.e., the coeffi-
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When comparing mixtures of different polydispersities and
APPENDIX poly- and monodisperse mixtures we keBp the same for
all mixtures and equal t8J' for the monodisperse polymer.
This is easily achieved as giv@&} we can choose a value for
z and then solve EqA3) for ¢4. The value ofeg; thus ob-
m_ 3.3 tained decreases with increasin
Bz =(mlB)(1+8)%0™ A1) We are assuming that the poI?/mer coils are ideal and that
Using the Asakura-Oosaw$6,7] model of the colloid- the size of a coik is proportional to its radius of gyration
polymer interaction a colloidal sphere interacts with thel8.9]. The radius of gyration of ideal polymer coils scales as
polymer coil as if the coil was a hard sphere of diameteNy> whereN,, is the number of monomers of the coil. So,
eo. The second virial coefficient is then the volume ex-Nm~&? and the average number of monomers of a polymer
cluded by a hard-sphere of diameterto one of diameter in our polydisperse polymer mixtures is proportionaletp
eo. If the polymer is monodisperse then H&1) gives the  Increasing the polydispersity at const&$t causes to in-
second viral coefficient straightaway. However, if the poly-crease. Therefore, the polydisperse mixtures of Fig. 3 have a
mer is polydisperse we must average the excluded volumbigher averag®\,, and therefore a higher average molecular
over the distribution of polymer sizes weight than the the monodisperse polymer.

The second virial coefficienB)' for the interaction be-
tween a colloidal sphere and a polymer coil of sizes
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