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Do Hydrodynamic Dispersion Coefficients Exist?
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We have calculated dispersion coefficients for tracer particles in a fluid flowing through a porous
medium consisting of randomly packed spheres. At high Péclet numbers, where the motion of the tracer
is determined largely by convection, we found evidence that the dispersion coefficient is diverging and
that the dispersion process is anomalous. A transient region of anomalous dispersion has been predicted
theoretically. However, our simulations suggest that, rather than being transient, this effect persists. We
argue that our findings are consistent with the available experimental data. [S0031-9007(96)01712-7]
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Tracer dispersion is the simplest example of the flow
an inhomogeneous two-component mixture. We ass
that the two components, the “tracer” and the “solven
have identical behavior but are distinguishable in the se
that they are assigned different “colors.” The model m
be simple, but it is neither trivial nor irrelevant. For i
stance, the solvent can represent a pure fluid and the t
a contaminant. If the solvent occupies the space wi
some porous medium and is stationary, the tracer h
diffusion coefficient somewhat less than its value in
pure solvent (the latter we denote asD0). If, however, the
solvent flows through the porous medium with some m
flow velocity v̄, then, depending on the magnitude ofv̄,
the dispersion coefficientD (defined as the tracer diffusio
coefficient in a frame of reference moving with the me
flow velocity) can be very much greater thanD0. Under-
standing this phenomenon of “hydrodynamic dispersi
[1] is obviously important for modeling pollutant transpo
in ground water.

Hydrodynamic dispersion arises when the variations
the local fluid velocity spread the tracer over a larg
volume than one would expect by diffusion alone (t
is nicely illustrated in Ref. [2]). The Péclet numberPe

is a measure of the relative importance of diffusion a
convection. It is defined asPe ; UplpyD0, where Up

and lp are, respectively, a characteristic velocity and
characteristic length scale. At high values ofPe, tracer
transport over distances larger thanlp is dominated by
convection, and dispersion is dominated by the variati
in the local fluid velocity.

With the notable exception of the Taylor-Aris result f
a fluid flowing through a tube [3], there are few analy
results forD. A phenomenological argument [4] is that,
high Péclet numbers, molecular diffusion in porous me
ceases to play a role and that dispersion is determ
solely by spatial variations in the fluid velocity. In th
limit DyD0 ­ aPe. The constant,a, characteristic of a
given medium, is known as the dispersivity. This res
is derived using the Taylor hypothesis [5] which sta
that the dispersion coefficient equals the covariance
4552 0031-9007y96y77(22)y4552(4)$10.00
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the velocity variations multiplied by a correlation tim
ty . For packed spheres,ty is typically taken to be
the time it takes to convect over a particle diamet
There is experimental evidence that, at least for a med
consisting of randomly packed spheres, this descriptio
adequate for Péclet numbers ranging from3 3 102 to 1 3

105 [4,6]. The dispersivity has a value ofa ­ 1.8 6 0.4
[6,7]. Because of its apparent success on the “laborato
scale the phenomenological approach forms the basis
most models of dispersion on much larger scales [8].

Apart from the difficulty of predicting dispersivities
the physics of tracer dispersion at high Péclet numb
is, it seems, well understood. Below, we argue th
this is not the case. Some evidence that there i
problem comes from experiment. According to the Tay
view, the dispersion coefficient should reach an effectiv
constant value in the time it takes a tracer to conv
over a correlation length of the porous medium (typica
of the order of a few particle diameters). Howeve
experimentallyD is still found to increase on a muc
longer time scale [9,10]. Theoretical approaches wh
treat the solid-fluid interface more explicitly also sugge
that things might not be quite so simple [11–13]. Ko
and Brady [12] showed that for an isolated sphere (i
in the dilute limit) correlations in the fluid velocity deca
so slowly that the hydrodynamic dispersion coefficie
diverges [12]. That is, the mean square displacement,Dstd,
grows asDstd , t lnstd, rather than linearly in time. Koch
and Brady, however, went on to assume that away fr
the dilute limit the velocity field far from the surface o
a given sphere is given by the Brinkman equation. T
is a mean-field theory which predicts that correlations
the velocity decay rapidly at distances greater than
square root of the permeability (the Brinkman length
For dense beds of spheres this is a small fraction o
particle radius. This “screened” decay is rapid enou
for the dispersion coefficient to be finite. However, the
should exist a boundary layer in which the velocity fie
which gives rise to the divergence ofD in the dilute
limit persists. For the dispersion coefficient to reach
© 1996 The American Physical Society
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asymptotic value there must be time for the tracer to diff
into (or out of) this layer, the width of which scales
P21y3

e d (d is the sphere diameter). On shorter time sca
the anomalous dispersion should persist [13]. This wo
have three important consequences. First, the depend
of D on the Péclet number becomesDyD0 , Pe ln Pe.
Second, there should be a time for which the dispers
is anomalous. Third, rather than becoming irrelevan
high Péclet numbers, the molecular diffusion coeffici
actually determines the time scale on which the disper
coefficient converges. In this Letter we describe the res
of computer simulations of hydrodynamic dispersion
random arrays of spheres. We restrict ourselves to
following questions: How valid is the Taylor hypothesi
And can we find evidence for the transient anomal
dispersion predicted by Koch and Brady [12]?

In our simulations we calculated the velocity autoc
relation function (VACF) for tagged particle motion in
flowing fluid. The VACF, which we denoteCystd, was
calculated along the flow direction and in a frame of r
erence moving with the velocity,̄v. We therefore have
Cystd ­ kfys0d 2 ȳg fystd 2 ȳgl, whereystd is the com-
ponent of the particle velocity parallel tōv. It is conve-
nient to introduce a time-dependent dispersion coeffici
Dstd ;

Rt
0 dt0 Cyst0d. The dispersion coefficient, if it ex

ists, is given as the limit ofDstd for t ! `.
The fluid was described by a lattice Boltzmann mod

This is a preaveraged version of a lattice gas [14], in wh
the state of the fluid is specified by the average num
of particles,nisr, td, with velocity ci , at each siter. The
time evolution of the distribution functions is describ
by the discretized analog of the Boltzmann equation [1
Tagged particle motion in the lattice Boltzmann syst
can be treated as follows. The probability that a part
moves with a velocityci after a collision, which we denot
as pisrd, is given bynisrdyrsrd, wherersrd is the total
number of particles at the node (here we consider a fl
which is in a steady state so there is no time dependen
Once we knowpisrd it is possible to calculate the VAC
averaged over all possible tagged particle trajectories u
the moment propagation method [16]. This has b
described elsewhere [17].

Our calculations proceeded as follows. Having gen
ated an appropriate solid geometry we applied a cons
force density to the lattice Boltzmann fluid. Once the flo
reached a steady state, we calculatedDstd. We tested the
scheme against the few known analytic results and fo
it to reproduce accurately, even with a relatively crude
tice, both the time dependence and the value of the
persion coefficient. We also calculatedDstd for a simple
cubic array of spheres where we can compare with
experimental results of Gunn and Pryce [18]. We fou
somewhat better agreement than that reported by S
et al. [19]. A detailed description of this will be give
elsewhere; here we are primarily interested in the rando
packed spheres. Configurations of spheres, with a s
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volume fraction of 0.45, were generated by a Monte Ca
simulation of a hard sphere fluid. This volume fracti
is somewhat lower than that of the beds used experim
tally. Salleset al. [19] reported only a weak dependen
of the dispersivity on the volume fraction (at least at h
densities). We also found this to be the case so we
pect to be able to make a meaningful comparison with
periment. At the faces of the simulation box we appl
periodic boundary conditions. However, in all cases
were careful to eliminate the effects of the periodic bou
ary conditions on the VACF by comparing data for vario
system sizes. At high Péclet numbers it was only poss
to exclude the influence of the periodic boundary con
tions up until the time required for particles to convect,
average, one quarter of the box length. This in itself s
gests that correlations in the fluid velocity persist beyo
the Brinkman length. The simulations were performed
a rectangular box with lengths 28 particle diameters (pa
lel to the flow direction) and 10 particle diameters (perp
dicular to the flow direction), a particle diameter being 5
9 lattice units. The lattice spacing corresponds to just
than the Brinkman length for the particles of diamete
and just more than the Brinkman length for particles of
ameter 9. However, the dispersion coefficients calcula
using the different sizes of sphere differed by only a f
percent and both gave the same time dependence forDstd.

Figure 1 shows a plot of the dispersion coefficient a
function of the Péclet number. The Péclet number w
defined with the velocity equal to the mean fluid veloc
and the length equal to the particle diameter. We have
plotted experimental values measured on similar syst
by Pfannkuch [6]. Both the simulations and experime
were conducted at low Reynolds numbers. By using
moment propagation technique the errors in the VAC

FIG. 1. Hydrodynamic dispersion coefficients,D, as a func-
tion of the Péclet number,Pe. The dotted line is a guide to
the eye through the (uncorrected) simulation results (cros
The diamonds are the experimental results of Pfannk
[6]. The solid line shows the simulation results corrected
extrapolating the “tail” effect to experimental time scales.
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for a given configuration, are essentially zero. We d
however, need to average over a number of differ
configurations of spheres which introduces a statisti
error. The number of configurations we used depen
on the Péclet number, ranging from a minimum of 5
the lowest Péclet numbers) to a maximum of 24 (at
highest). For the values shown in Fig. 1 the error due
ensemble averaging is at most 5%. A second source
error comes from integratingCystd up to a timetcut rather
than over all times. At low Péclet numbers (Pe # 80)
the VACF has decayed to less than 2% of its initial val
by t ­ tcut. The error incurred by truncating the integr
should therefore be small (unless, of course, the integ
diverges). This truncation of the integral becomes m
problematic at high Péclet numbers (see Fig. 2). Howev
we should bear in mind that the experimental dispersivit
are also measured in a finite time interval. Although o
measurements ofD are obtained by truncating the tim
integral at what is, by experimental standards, a short ti
Fig. 1 shows that our numerical values forD agree rather
well with experiment. Our value for the dispersivity a
the highest Péclet number we studied (Pe ­ 1280) is 1.35.
This is towards the lower end of the experimental ran
a ­ 1.8 6 0.4. The dispersivity,a, is not yet constant
but is still increasing slightly with the Péclet numbe
This is despite the fact that we are well into the regim
where dispersion is commonly assumed to be domina
by convection.

The VACF at higher Péclet numbers is shown in Fig.
The dimensionless time,t, is the time divided by the
average time required for the tracer to convect a part
diameter. If the Taylor hypothesis is correct then t
VACF should become independent ofD0 at high Péclet
numbers; i.e., the curves shown in Fig. 2 should collap
onto a single curve. On going fromPe ­ 640 to Pe ­
1280 the curves are, however, still distinguishable. The

FIG. 2. The velocity autocorrelation function,Cystd, at vari-
ous (high) Péclet numbers, plotted as a function of the redu
time t.
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are two further points to note from Fig. 1. First, at hig
Péclet numbers we are starting to miss a significant pa
the integral by only integrating up totcut. This means
that our values forD are underestimated. Second, t
decay of the VACF is not the exponential characteris
of hydrodynamic dispersion in simple geometries.
particular, the initial rate of decay is rather slow.
detailed analysis shows that it is in fact proportion
to D0 —even at very short times molecular diffusion
playing a role.

We now move to our second question, can we fi
evidence for transient anomalous dispersion? In Fig. 3
have plotted the VACF multiplied byt. If the dispersion
is anomalous the VACF decays as1yt and the plot should
show a plateau. For Péclet numbersPe $ 480 we see
that the VACF is indeed decaying as1yt. The existence
of this region of anomalous dispersion is in agreem
with the theoretical prediction of Koch and Brady [12,13
However, we find no evidence that this1yt decay is only
transient. The Koch and Brady prediction is that the1yt
decay persists only for a time proportional toP1y3

e , after
which the decay should be more rapid. We find that
Pe ­ 320 the decayis more rapid than1yt, but appears
to approach a1yt decay at longer times. However, whe
increasing the Péclet number by only a factor of 1.5
Pe ­ 480) we find that1yt decay persists right up unt
tcut. At higher Péclet numbers we find evidence for on
1yt decay. The fact that the anomalous dispersion pers
once it appears seems more consistent with it being
true asymptotic behavior, rather than a transient effect
scales weakly with the Péclet number.

There is a way toexcludethe possibility that the disper
sion coefficient is diverging. Our simulations cover a tim
scale that, experimentally, is very short. We can, howe
take our data and extrapolate the value of the disper
coefficient to experimental time scales,assuming that the

FIG. 3. The velocity autocorrelation function,Cystd, at vari-
ous (high) Péclet numbers, multiplied by the reduced timet
and plotted as a function oft. A plateau in this plot means
that Cystd is decaying as1yt.
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1yt decay persists. If this procedure leads to an incon
sistency, we could conclude that the1yt decay must dis-
appear on longer time scales than those accessible i
simulation. In the experiments performed by Pfannku
[6] the (dimensionless) cutoff time,tcut, varied from 400
to 1500. Our extrapolated values ofD for tcut ­ 400
are also shown in Fig. 1. The important point to no
is that the assumption that the1yt decay persists (an
hence thatD diverges) leads to estimates forD that are,
at least, consistent with experiment (and even margin
better than if we simply ignore the1yt decay beyondtcut).
Our data suggest that, in the range320 # Pe # 1280, the
tail effect leads to an increase of about 25% in the
parent dispersivity on going fromtcut ­ 400 to tcut ­
1500. Pfannkuch’s data in this range givesa ­ 1.5 6 0.2
(tcut ­ 400) and2.2 6 0.1 (tcut ­ 1500), an increase o
some 50%. This is subject to appreciable statistical er
although not as much as Fig. 1 might, at first sight, sugg
(a is obtained by averaging over all data points within
specified range of Péclet numbers; this reduces the err
a as compared to the error in the individual data poin
We can at least conclude that this trend is in agreem
with the simulation.

In conclusion, our simulations suggest that at high Pé
numbers there isat leasta region of anomalous dispersio
This means that the Taylor hypothesis is incorrect and
the modified relation predicted by Koch and Brady is m
appropriate. However, our results are more consistent
the conclusion that the hydrodynamic dispersion coe
cient actually diverges. A detailed experimental study
the limiting behavior ofDstd would clearly be desirable
We stress that there is no reason why a dispersion c
ficient must exist—there are several limiting cases wh
it does not (in a two-dimensional fluid [17], in a turbule
fluid [20], and even, in the dilute limit, for hydrodynam
dispersion itself [12]). Moreover, there is experimen
evidence that the dispersion coefficient often does
reach a constant in time. Explanations that have been
forward to account for this observation are that the med
has a fractal structure [21] or that the dispersion mec
nism is locally nonlinear [22]. Our results provide a mu
simpler explanation.
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