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Do Hydrodynamic Dispersion Coefficients Exist?
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We have calculated dispersion coefficients for tracer particles in a fluid flowing through a porous
medium consisting of randomly packed spheres. At high Péclet numbers, where the motion of the tracer
is determined largely by convection, we found evidence that the dispersion coefficient is diverging and
that the dispersion process is anomalous. A transient region of anomalous dispersion has been predicted
theoretically. However, our simulations suggest that, rather than being transient, this effect persists. We
argue that our findings are consistent with the available experimental data.  [S0031-9007(96)01712-7]

PACS numbers: 47.55.Mh, 05.60.+w

Tracer dispersion is the simplest example of the flow otthe velocity variations multiplied by a correlation time
an inhomogeneous two-component mixture. We assume,. For packed spheres;, is typically taken to be
that the two components, the “tracer” and the “solvent,"the time it takes to convect over a particle diameter.
have identical behavior but are distinguishable in the sens€here is experimental evidence that, at least for a medium
that they are assigned different “colors.” The model mayconsisting of randomly packed spheres, this description is
be simple, but it is neither trivial nor irrelevant. For in- adequate for Péclet numbers ranging from 10% to 1 X
stance, the solvent can represent a pure fluid and the traci9® [4,6]. The dispersivity has a value ef = 1.8 = 0.4
a contaminant. If the solvent occupies the space withiri6,7]. Because of its apparent success on the “laboratory”
some porous medium and is stationary, the tracer has stale the phenomenological approach forms the basis for
diffusion coefficient somewhat less than its value in themost models of dispersion on much larger scales [8].
pure solvent (the latter we denoteg). If, however, the Apart from the difficulty of predicting dispersivities,
solvent flows through the porous medium with some mearhe physics of tracer dispersion at high Péclet numbers
flow velocity v, then, depending on the magnitudevwf s, it seems, well understood. Below, we argue that
the dispersion coefficie® (defined as the tracer diffusion this is not the case. Some evidence that there is a
coefficient in a frame of reference moving with the meanproblem comes from experiment. According to the Taylor
flow velocity) can be very much greater th&y. Under-  view, the dispersion coefficient should reach an effectively
standing this phenomenon of “hydrodynamic dispersion’constant value in the time it takes a tracer to convect
[1] is obviously important for modeling pollutant transport over a correlation length of the porous medium (typically
in ground water. of the order of a few particle diameters). However,

Hydrodynamic dispersion arises when the variations irexperimentallyD is still found to increase on a much
the local fluid velocity spread the tracer over a largerdonger time scale [9,10]. Theoretical approaches which
volume than one would expect by diffusion alone (thistreat the solid-fluid interface more explicitly also suggest
is nicely illustrated in Ref. [2]). The Péclet numbBy  that things might not be quite so simple [11-13]. Koch
is a measure of the relative importance of diffusion andand Brady [12] showed that for an isolated sphere (i.e.,
convection. It is defined a®, = U*l*/D,y, where U* in the dilute limit) correlations in the fluid velocity decay
and [* are, respectively, a characteristic velocity and aso slowly that the hydrodynamic dispersion coefficient
characteristic length scale. At high valuesRf, tracer diverges[12]. Thatis, the mean square displacenidn},
transport over distances larger th&nis dominated by grows asA(z) ~ ¢In(z), rather than linearly in time. Koch
convection, and dispersion is dominated by the variationand Brady, however, went on to assume that away from
in the local fluid velocity. the dilute limit the velocity field far from the surface of

With the notable exception of the Taylor-Aris result for a given sphere is given by the Brinkman equation. This
a fluid flowing through a tube [3], there are few analyticis a mean-field theory which predicts that correlations in
results forD. A phenomenological argument [4] is that, at the velocity decay rapidly at distances greater than the
high Péclet numbers, molecular diffusion in porous mediasquare root of the permeability (the Brinkman length).
ceases to play a role and that dispersion is determineior dense beds of spheres this is a small fraction of a
solely by spatial variations in the fluid velocity. In this particle radius. This “screened” decay is rapid enough
limit D/Dy = aP,. The constante, characteristic of a for the dispersion coefficient to be finite. However, there
given medium, is known as the dispersivity. This resultshould exist a boundary layer in which the velocity field
is derived using the Taylor hypothesis [5] which stateswhich gives rise to the divergence @ in the dilute
that the dispersion coefficient equals the covariance dimit persists. For the dispersion coefficient to reach its
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asymptotic value there must be time for the tracer to diffusevolume fraction of 0.45, were generated by a Monte Carlo
into (or out of) this layer, the width of which scales as simulation of a hard sphere fluid. This volume fraction
P;1/3d (d is the sphere diameter). On shorter time scaless somewhat lower than that of the beds used experimen-
the anomalous dispersion should persist [13]. This wouldally. Salleset al. [19] reported only a weak dependence
have three important consequences. First, the dependengkthe dispersivity on the volume fraction (at least at high
of D on the Péclet number becom®yDy, ~ P.InP,. densities). We also found this to be the case so we ex-
Second, there should be a time for which the dispersiopect to be able to make a meaningful comparison with ex-
is anomalous. Third, rather than becoming irrelevant aperiment. At the faces of the simulation box we applied
high Péclet numbers, the molecular diffusion coefficientperiodic boundary conditions. However, in all cases we
actually determines the time scale on which the dispersiowere careful to eliminate the effects of the periodic bound-
coefficient converges. In this Letter we describe the resultary conditions on the VACF by comparing data for various
of computer simulations of hydrodynamic dispersion insystem sizes. At high Péclet numbers it was only possible
random arrays of spheres. We restrict ourselves to tht® exclude the influence of the periodic boundary condi-
following questions: How valid is the Taylor hypothesis? tions up until the time required for particles to convect, on
And can we find evidence for the transient anomalousiverage, one quarter of the box length. This in itself sug-
dispersion predicted by Koch and Brady [12]? gests that correlations in the fluid velocity persist beyond

In our simulations we calculated the velocity autocor-the Brinkman length. The simulations were performed in
relation function (VACF) for tagged particle motion in a a rectangular box with lengths 28 particle diameters (paral-
flowing fluid. The VACF, which we denot€,(¢), was lel to the flow direction) and 10 particle diameters (perpen-
calculated along the flow direction and in a frame of ref-dicular to the flow direction), a particle diameter being 5 or
erence moving with the velocity. We therefore have 9 lattice units. The lattice spacing corresponds to just less
C,(1) = (v(0) — v][v(r) — ©]), wherev(r) is the com- than the Brinkman length for the particles of diameter 5
ponent of the particle velocity parallel sa It is conve- and just more than the Brinkman length for particles of di-
nient to introduce a time-dependent dispersion coefficienameter 9. However, the dispersion coefficients calculated
D(1) = [ydt' C,(¢"). The dispersion coefficient, if it ex- using the different sizes of sphere differed by only a few
ists, is given as the limit oD (¢) for ¢ — oo. percent and both gave the same time dependend2(fgr

The fluid was described by a lattice Boltzmann model. Figure 1 shows a plot of the dispersion coefficient as a
This is a preaveraged version of a lattice gas [14], in whicHunction of the Péclet number. The Péclet number was
the state of the fluid is specified by the average numbedefined with the velocity equal to the mean fluid velocity
of particles,n;(r, t), with velocity ¢;, at each sitee. The  and the length equal to the particle diameter. We have also
time evolution of the distribution functions is described plotted experimental values measured on similar systems
by the discretized analog of the Boltzmann equation [15]by Pfannkuch [6]. Both the simulations and experiments
Tagged particle motion in the lattice Boltzmann systemwere conducted at low Reynolds numbers. By using the
can be treated as follows. The probability that a particlenoment propagation technique the errors in the VACF,
moves with a velocity; after a collision, which we denote
as p;(r), is given byn;(r)/p(r), wherep(r) is the total
number of particles at the node (here we consider a fluid
which is in a steady state so there is no time dependence)
Once we knowp;(r) it is possible to calculate the VACF
averaged over all possible tagged particle trajectories using
the moment propagation method [16]. This has been
described elsewhere [17]. 2

Our calculations proceeded as follows. Having gener- §
ated an appropriate solid geometry we applied a constant £
force density to the lattice Boltzmann fluid. Once the flow
reached a steady state, we calculaidd). We tested the
scheme against the few known analytic results and found
it to reproduce accurately, even with a relatively crude lat-
tice, both the time dependence and the value of the dis- _1.0 ' : ' :
persion coefficient. We also calculatédr) for a simple -10 0.0 1'°log (Pe) 20 80 40
cubic array of spheres where we can compare with the ¥
experimental results of Gunn and Pryce [18]. We foundFIG. 1. Hydrodynamic dispersion coefficient, as a func-

n of the Péclet number?,. The dotted line is a guide to
somewhat better agreement than that reported by Sa”%ﬁe eye through the (uncorrected) simulation results (crosses).

et al.[19]. A detailed de-scrip_tioln of this V,Vi” be given The diamonds are the experimental results of Pfannkuch
elsewhere; here we are primarily interested in the randomljs].  The solid line shows the simulation results corrected by

packed spheres. Configurations of spheres, with a soligxtrapolating the “tail” effect to experimental time scales.
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for a given configuration, are essentially zero. We doare two further points to note from Fig. 1. First, at high
however, need to average over a number of differenPéclet numbers we are starting to miss a significant part of
configurations of spheres which introduces a statisticalhe integral by only integrating up te.,.. This means
error. The number of configurations we used dependethat our values forD are underestimated. Second, the
on the Péclet number, ranging from a minimum of 5 (atdecay of the VACF is not the exponential characteristic
the lowest Péclet numbers) to a maximum of 24 (at theof hydrodynamic dispersion in simple geometries. In
highest). For the values shown in Fig. 1 the error due tgarticular, the initial rate of decay is rather slow. A
ensemble averaging is at most 5%. A second source afetailed analysis shows that it is in fact proportional
error comes from integrating, (¢) up to a timer.,, rather to Dp—even at very short times molecular diffusion is
than over all times. At low Péclet numberB,(= 80)  playing a role.
the VACF has decayed to less than 2% of its initial value We now move to our second question, can we find
by t = t.,.. The error incurred by truncating the integral evidence for transient anomalous dispersion? In Fig. 3 we
should therefore be small (unless, of course, the integrdiave plotted the VACF multiplied by. If the dispersion
diverges). This truncation of the integral becomes morés anomalous the VACF decays k& and the plot should
problematic at high Péclet numbers (see Fig. 2). Howeveishow a plateau. For Péclet numbéts = 480 we see
we should bear in mind that the experimental dispersivitieg¢hat the VACF is indeed decaying &g:. The existence
are also measured in a finite time interval. Although ourof this region of anomalous dispersion is in agreement
measurements ab are obtained by truncating the time with the theoretical prediction of Koch and Brady [12,13].
integral at what is, by experimental standards, a short time;lowever, we find no evidence that thigs decay is only
Fig. 1 shows that our numerical values foragree rather transient. The Koch and Brady prediction is that the
well with experiment. Our value for the dispersivity at decay persists only for a time proportional Ry, after
the highest Péclet number we studiéd & 1280) is 1.35.  which the decay should be more rapid. We find that at
This is towards the lower end of the experimental rangeP, = 320 the decayis more rapid thanl /¢, but appears
a = 1.8 = 0.4. The dispersivity,«, is not yet constant to approach d/¢ decay at longer times. However, when
but is still increasing slightly with the Péclet number. increasing the Péclet number by only a factor of 1.5 (to
This is despite the fact that we are well into the regimeP, = 480) we find thatl/s decay persists right up until
where dispersion is commonly assumed to be dominated..,. At higher Péclet numbers we find evidence for only
by convection. 1/t decay. The fact that the anomalous dispersion persists
The VACF at higher Péclet numbers is shown in Fig. 2.once it appears seems more consistent with it being the
The dimensionless timer, is the time divided by the true asymptotic behavior, rather than a transient effect that
average time required for the tracer to convect a particlscales weakly with the Péclet number.
diameter. If the Taylor hypothesis is correct then the There is a way t@xcludethe possibility that the disper-
VACF should become independent bfy at high Péclet sion coefficient is diverging. Our simulations cover a time
numbers; i.e., the curves shown in Fig. 2 should collapsscale that, experimentally, is very short. We can, however,
onto a single curve. On going fro, = 640 to P, =  take our data and extrapolate the value of the dispersion
1280 the curves are, however, still distinguishable. Therecoefficient to experimental time scalessuming that the

0.8 T
1.0 T T T
Pe=1280
0.8 J 0.6 |- Pe=640 |
Pe=480
= Pe=320
- S
_ 06| Pe =80 | >
S " Pe=160 204 i
€ Pe =320 2
© 04 " Pe =640 1 Pe=160
0.2
7 Pe=1280
02 | 1
0‘0 1 ] 1 !
0.0 ‘ . : 0.0 2.0 40 6.0 8.0
0.0 2.0 4.0 6.0 8.0 T

" FIG. 3. The velocity autocorrelation functio,,(¢), at vari-

FIG. 2. The velocity autocorrelation functiod;,(¢), at vari-  ous (high) Péclet numbers, multiplied by the reduced time
ous (high) Péclet numbers, plotted as a function of the reducednd plotted as a function of. A plateau in this plot means
time 7. that C, (¢) is decaying ad /¢.
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