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A suspension of rodlike colloidal particles and rodlike liquid crystalline polymers is modelled as a
mixture of thick (colloidal) and thin (polymerig hard rods. Extensive immiscibility in the fluid
phase is observed in the mixtures. For two species of polymers, one species much longer than the
other, we observe two demixing critical points. For three polymer species we find three critical
points. Polymer molecules of lengthinduce an attractive interaction of rangéetween colloidal

rods. Two different polymers induce effective attractions of two different ranges. The range of the
attraction determines the density at which the demixing occurs. The attractions of different ranges
create demixing at different densities. ®96 American Institute of Physics.
[S0021-960806)51146-3

I. INTRODUCTION Il. THEORY

Mixtures of hard convex particles commonly show im- The model mixtures are composed of one colloidal com-
miscibility. In particular, mixtures of hard rods of different ponent anch polymer components. The colloid is a sphero-
diameters demix in both the isotropic and the nematiccylinder of lengthL and diameteD (Ref. 5 and theith
phaseg: 2 Earlier work by one of us and Jackddmas shown  polymer is a rod of lengtt;L and diameter 8,see Fig. 1.
that a mixture of rods of finite diameter with rods of zero We will consider only the case in which di>1. We will
diameter shows extensive immiscibility in the isotropic fluid consider only isotropic phases and so our rodlike polymers
phase. The mixture is an idealized model of a mixture ofneed not be very rigid; their persistence length could be of
synthetic colloidal rodsand a rigid rodlike polymet.Here  the same order as their lengt.. In the isotropic phase the
we generalize the theory of Ref. 1 to two or more polymercolloid—polymer interaction depends only weakly on the per-
species and consider the phase behavior of the resultingjstence length of the polym@rjust as the interaction be-
many-component mixtures. Given that polymers can be preaveen semi-flexible polymers depends only weakly on their
pared with a range of molecular weights this situation haersistence length'°
clear relevance. The different rodlike polymer species are of  The theoretical expressions for the thermodynamic func-
different lengths. tions are straightforward generalizations of those in Ref. 1.

We find that if the lengths of the polymer species areThe free energyA for a mixture of one colloid and poly-
very different, the mixture’s phase diagram is almost a sumers, is
perposition of the phase diagrams of the binary mixtures
formed from the colloid and one of the polymers. The ter-BANc, Ny, V)
nary mixture of colloid plus two polymer species then pos- \%
sesses two demixing critical points, each at almost the same
position as the critical point of a binary mixture. The two +P§vo+Pc_2 ppilivo, (1)
critical points are at the ends of two coexistence curves, i=1n
these two curves meet at a triple point where three fluid

: - . herep.=N./V andp,;=N,;/V are the number densities
phases coexist. These findings are reminiscent of those g . p. P. .
7 . of the colloid and of the polymers, respectively. The vector
Stell and Hemmér' for a very different model. .
. : . N, represents the set of al,;. The leading term of the
In the following section we derive the necessary theory - . s . .
. . second virial coefficient of a fluid of the colloidal rods is
and present representative phase diagrams. As the theory 1S~

simply a generalisation of that given in Ref. 1, it is not givenv0 (m/4L7D. Ac andA,; are the thermal volumes of the

in any detail(see Ref. 1 for a more thorough discusgidive COI_IOId_ '?e r:(rdnsoifntge (E?Igzczrjger?ﬁgedﬁg\r/ﬁgér?:;':rtehearemn.o
discuss our results from a perspective in which all compofnpé'ﬁg'#ods are 0- tﬂ.us the volume excluded to one pol meric
nents are considered explicitly and from a perspective in ’ poly

which only the colloid is considered explicitly but in which r(_)d by anpther IS Z€r0. I-_|owever, even though the p(_)lymer
. s o o diameter is zero, a colloidal rod excludes a polymeric rod
the colloid—colloid interaction is modified by the presence of

3 . . - from the finite volumel,vy. Eq. (1) becomes exact in the
polymer? We conclude with a summary and brief compari- . . .
. limit that the lengths of the colloid and of all the polymers
son with other work.

are much greater than the diameter of the colfoid.
The chemical potentiala,; of the polymers are

=pc[InpcAc—1]+ i ;n Pp,i[lnpp,iAp,i —1]
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FIG. 1. The models for the colloittop) and two polymer speciegniddle W,(I)
and bottom. The diameter of the colloidal spherocylinderDs -0.5
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where the first equality defines the activity of flle polymer 07 ]
speciesz, ;. It is more convenient to work with the semi- 08 I
grand potentiaf) than with the free energyl is a Legendre
1 -0.9 L L L L
transfornt! of the free energy 0.0 5.0 100 15.0 20.0 25.0
r
O=A- Np it - 3
i;,n pittpi ®) FIG. 2. The low density limit of the potential of mean forwe as a function
of separatiorr (Ref. 14. The system is not rods but spheres, due to the
Substituting Eqgs(1) and(2) in (3) we obtain complexity of orientationally averaging the interaction between rods. The
potential of mean force is that between two “colloidal” spheres which
BQ(pC Zp V) interact via a hard-sphere potential of range 0.1. Each colloidal sphere in-
N— =In pCAC— 1+pcvg teracts with “polymer” spheres of species 1 and 2 via hard-sphere interac-
¢ tions of diameters 1 and 10, respectively. The reduced activities of “poly-
7 mer” species 1 and 2 are 1 and 0.2, respectively.
p.i
= 2 —=exp(—pcivo). (@)
i=1n Pc

calculation of phase coexistence requires the pregsaned

We now neglect the colloid—colloid interactions, i.e., we . . ) .
g the chemical potential of the colloid. In reduced units, they

take the limit of alll; much larger than 1. This reduces the
number of parameters required to specify a mixture by 1 and"®

removes most of the driving force for a transition to a nem-

atic phase. Because we now have interactions only between :3pU0|1:P+i=§l:n Z
rods of different species the excluded volume interactions '
can be reduced by demixing, without having to form a nem-and

atic phase. Indeed, without the colloid—colloid interactions I,
and for only one polymer species our mixture correspondsto In A=In p+_2 Z I—exr(—plill 1)- @

the so-called Widom-Rowlinson mixtuté;®123treated at =in ol

the mean-field level. This mixture of two rods with only an

interaction between rods of different species almost certainly;;. pEMIXING

does not undergo a transition to the nematic pHasdt

seems likely that increasing the number of polymer species A Mixture of a colloid and one polymer species was
does not change this picture, there is probably still no nemstudied in Ref. 1. Extensive immiscibility in the isotropic
atic phase. Note that the size of the colloid—polymer interacPhase was observed, see Fig. 2 of Ref. 1. For this mixture, it
tion term in Eq.(4) decreases exponentially with increasing Was shown that the critical colloid densi} and polymer
colloid density. As the formation of a nematic phase will be activity z* aré
driven by this term it is difficult to see how a stable nematic l,
phase can be formed. With no nematic phase present we can p* =1 zr =er. (8
be sure that our phase diagrams will be correct, the demixing : :

cannot be metastable with respect to an isotropic—nematigecall that we have assumed g#-1. Bothp*, andz* are

exp(—pli/l1) (6)

|
l+pﬁ

transition. inversely proportional td;. The colloid density at phase
So, we neglect the third term of E(4) and define re- separation is inversely proportional tp becausd; deter-
duced variables mines the range of the indirect interaction between pairs of
colloidal rods due to the polymer. Viewed from the perspec-
p=pcvoli, pi=ppivol, Zi=2Zpvoly, tive of the colloid®'?1*the polymer induces an attraction
N=vol 1A texp Buc), () between two colloidal rods which are less thiah apart.

Each colloidal rod excludes polymer of typdrom volume
where i is the chemical potential of the colloid. We have vgl; surrounding i€ When two colloidal rods are less than
reduced the densities by the second virial coefficient of thé;L apart their two excluded volumes overf&p?!’ reducing
interaction between the colloid and polymer species 1. Théhe total volume excluded to a polymer rod. This increase in
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FIG. 3. The phase diagram for a mixture of colloidal rods with two species of polymericlradis=16. The thick solid curves separate the one and two

phase regions, the thin solid lines connect the triple point densities and the dashed curves separate the one and two phase regions for mixtures of the colloid
with either polymer lor polymer 2. The two phase regions are denoted by the number 2. The phase diagram of an athermal ternary mixture is three
dimensional. We show four slice&@) z,/z,=0.035,(b) z,/z,=0.05,(c) z,/z;=0.0625 andd) z,/z,=0.1.

the volume available to a polymer rod increases the translaions between particles is well established. For example, it
tional entropy of the polymer. The increased translationahas been shown that if the interaction range is made very
entropy of the polymer biases configurations in which colloi-short the vapor—Iliquid critical point moves to within the
dal rods are close, acting as an attractive potential betweesolid to become an expanded-solid—condensed-solid critical
them. point®~21 So, the critical density depends on the range of
Of course, the polymer induced interaction between twahe potential of mean force. What if the interaction is char-
colloidal rods depends on their orientations. When the twaacterized by twdor more ranges? Such a potential is shown
rods are only a little unddrL apart, for almost all orienta- in Fig. 2. This will be the case for the potential of mean force
tions their excluded volumes do not overlap. Thus, the oribetween colloidal rods in the presence of a mixture of poly-
entationally averaged interaction between two colloidal rodsners of different lengths. If the polymer lengths are similar
is very weak for separations ndak . It is this rapid decay of then the critical density is just some average of the critical
the interaction with separation that makes the interactiorensities in the presence of only one of the polymers. How-
scale ad; not Ii3. ever, if the polymers are of widely differing lengths we find
The importance of the observation that the interactiormultiple critical points. Essentially, we find a critical point at
range depends on the length of the polymer is that by changeachp* ~1,/1;.
ing the polymer we can change the range of the effective For a mixture of a colloid and two polymer species there
interaction, the potential of mean fort&between the colloi- is only one parameter, the ratio of the lengths of the two
dal rods. The importance of the range of attractive interacpolymer rods,l,/l,. For |,/I;=16 the phase behavior is
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shown in Fig. 3. The two critical points are obvious. Also 6.0
clear, is that in order to observe two critical points the ratio
between the activities of the polymers should be approxi- 35 )
mately z,/z,~14/1,. If this ratio is too large the critical
point associated with polymer(ie., the high density critical >0
point) is within the two phase region associated with poly- as | \ A
mer 2 and if the ratio is too small the low density critical
point is within the two phase regidisee Fig. 83)]. Z, 49|
Note that the high density critical point is at almost ex-
actly the same andz; as for a mixture of the colloid and 357
just polymer 1. The addition of polymer 2, although it cre-
ates an additional critical point at low densities has very litle 39
effect at densities around unity. This is because, at constant |
activity, the density of a polymer decays exponentially with '
increasing colloid density, see EQ). Thus, at the high den- 20 L o - S . . - 1
sity critical point the density of polymer 2 is exp(—16), far o~ 10 100 10 1op 1o° 100 1000

too small to effect the phase behavior. At the low density

critical point althoth the denSIty of the shorter ponmer, FIG. 4. The phase diagram for a mixture of colloidal rods with three species

polymer 1, is larger than that of polymer 2 it plays little role of polymeric rods), /l,=1C? andl;/1,=10. The thick solid curves sepa-
in inducing demixing because the contribution of polymer 1rate the one and two phase regions and the thin solid lines connect the triple

to the colloid’s chemical potential is almost constant. TwoPOINt densities. The two phase region is denoted by the number 2.
phases with different colloid densities can only coexist if the?/%=10 " andz/2,=10"".
differences in pressure and colloidal chemical potential in-
duced by the difference in colloidal density are counterbaltial of the form of Fig. 2 the energy will decrease in two
anced by changes in the polymer density. Consider the equateps, whemp~1,/1; andp~1.1%2°Each decrease creates a
tion of the spinodai two phase coexistence region.
) There is no restriction to only two polymer species. For
(‘9 In }‘) —-1_ 2 Z(I_I) exp(—pl; /1,)=0. (9) three polymer species the mixture is specified by two param-
ap |, ; PoiE, Al PR eters,l, /I, andl3/l,, and the phase diagram is four dimen-
sional. We show a slice through the phase diagram for
For two polymer species and fap/z,=1,/1,, Eq. (9) be- |2/|1=102 andlz/l{= 10%in Fig. 4. For these large ratios of
comes the polymer lengths the coexistence curves are almost iden-
tical, except for their different density scales. The density
. I5 B scales of the three coexistence curves in Fig. 4laré;,
P —zlexp(—p)—zlnexp(—pI2/I1)—0. (100 | /1, and 1, and are set by the lengths of the polymers. As
expected we find three critical points and two triple points.
Forp~1,/l, andz;~1 there are two solutions of E¢LO) in Note that Fig. 3 is for fixed ratios between the three polymer
which the third term dominates the second, lfor1,. Atthe  activities. We can tune these ratios and bring the two triple
two lower densities at the triple point of Fig(l8 the densi- points together to create a quadruple point, i.e., four phases
ties of polymer 1 are 3.28 and 2.58. Even here, at the highedt coexistence.
polymer activity at which there are two distinct coexistence  If the number of polymer species is further increased we
curves, the drop in the density of polymer 1 between thecan create more and more critical points, and by fine-tuning
phases with the low and high colloid density is small. Inthe activity ratios, coexistence between larger and larger
contrast the densities of polymer 2 are IXIB) ! and numbers of phases. As the number of polymer species is
4.04x 103, a drop of almost 2 orders of magnitude. Thereincreased the polymers will interfere with each other: demix-
are also two solutions of Eq10) with p~1, in which the ing which we consider to be driven by polymer spediesil|
third term is very small, fof,>1,. These relate to the higher be affected by polymer species which are shorter than
density coexistence. However, we are free to make the differences in length be-
We can also describe the appearance of two criticatween the polymer species arbitrarily large. Making the dif-
points using the language of colloidal rods interacting via arference in length large reduces the interference between dif-
effective potential, i.e., we treat the mixture as a fluid offerent coexistence curves. As the polymer’s length is
colloidal rods interacting via a potential of mean force. Theincreased the colloid density at the critical point decreases as
potential of mean force between colloidal rods has associateldl. The interactions between the colloid and the remaining
with it an effective energf.We thus have an effective ther- polymer species are proportional to the colloid density and
modynamic energy and can view demixing as separation inteo they decrease. This decrease also reduces the driving force
a dilute (ga9 phase with high entropy but high energy and afor ordering. In earlier work on symmetrical mixturEsthe
dense(liquid) phase with low entropy and low energy. This number of phases which could coexist was limited because if
is simply the classical van der Waals picture. With a potenthe number of species was sufficiently large demixing was
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preempted by solidification. Here, it may be possible to haveNone of these problems really change the phase behavior of
any (finite) number of critical points and, by fine-tuning the virus particles qualitativeR® and the phase behavior of Fig.
activity ratios, any(finite) number of fluid phases coexisting. 3 is simply a consequence of introducing two length scales
into the colloid—colloid potential of mean force. We are
IV. CONCLUSION therefore confident that our results can be reproduced experi-
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