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A suspension of rodlike colloidal particles and rodlike liquid crystalline polymers is modelled as a
mixture of thick ~colloidal! and thin ~polymeric! hard rods. Extensive immiscibility in the fluid
phase is observed in the mixtures. For two species of polymers, one species much longer than the
other, we observe two demixing critical points. For three polymer species we find three critical
points. Polymer molecules of lengthl induce an attractive interaction of rangel between colloidal
rods. Two different polymers induce effective attractions of two different ranges. The range of the
attraction determines the density at which the demixing occurs. The attractions of different ranges
create demixing at different densities. ©1996 American Institute of Physics.
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I. INTRODUCTION

Mixtures of hard convex particles commonly show im
miscibility. In particular, mixtures of hard rods of differen
diameters demix in both the isotropic and the nema
phases.1–3Earlier work by one of us and Jackson1 has shown
that a mixture of rods of finite diameter with rods of ze
diameter shows extensive immiscibility in the isotropic flu
phase. The mixture is an idealized model of a mixture
synthetic colloidal rods4 and a rigid rodlike polymer.5 Here
we generalize the theory of Ref. 1 to two or more polym
species and consider the phase behavior of the resu
many-component mixtures. Given that polymers can be p
pared with a range of molecular weights this situation h
clear relevance. The different rodlike polymer species are
different lengths.

We find that if the lengths of the polymer species a
very different, the mixture’s phase diagram is almost a
perposition of the phase diagrams of the binary mixtu
formed from the colloid and one of the polymers. The t
nary mixture of colloid plus two polymer species then po
sesses two demixing critical points, each at almost the s
position as the critical point of a binary mixture. The tw
critical points are at the ends of two coexistence curv
these two curves meet at a triple point where three fl
phases coexist. These findings are reminiscent of thos
Stell and Hemmer6,7 for a very different model.

In the following section we derive the necessary the
and present representative phase diagrams. As the theo
simply a generalisation of that given in Ref. 1, it is not giv
in any detail~see Ref. 1 for a more thorough discussion!. We
discuss our results from a perspective in which all com
nents are considered explicitly and from a perspective
which only the colloid is considered explicitly but in whic
the colloid–colloid interaction is modified by the presence
polymer.8 We conclude with a summary and brief compa
son with other work.

a!Electronic mail: sear@amocf6.amolf.nl
b!Electronic mail: frenkel@amocf3.amolf.nl
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II. THEORY

The model mixtures are composed of one colloidal co
ponent andn polymer components. The colloid is a spher
cylinder of lengthL and diameterD ~Ref. 5! and thei th
polymer is a rod of lengthl iL and diameter 0,9 see Fig. 1.
We will consider only the case in which alll i@1. We will
consider only isotropic phases and so our rodlike polym
need not be very rigid; their persistence length could be
the same order as their lengthl iL. In the isotropic phase the
colloid–polymer interaction depends only weakly on the p
sistence length of the polymer,5 just as the interaction be
tween semi-flexible polymers depends only weakly on th
persistence length.5,10

The theoretical expressions for the thermodynamic fu
tions are straightforward generalizations of those in Ref
The free energyA for a mixture of one colloid andn poly-
mers, is

bA~Nc ,Np ,V!

V
5rc@ lnrcLc21#1 (

i51,n
rp,i@ lnrp,iLp,i21#

1rc
2v01rc (

i51,n
rp,i l iv0 , ~1!

whererc5Nc /V andrp,i5Np,i /V are the number densitie
of the colloid and of the polymers, respectively. The vec
Np represents the set of allNp,i . The leading term of the
second virial coefficient of a fluid of the colloidal rods
v05(p/4)L2D. Lc andLp,i are the thermal volumes of th
colloid and of the polymers, respectively. There are
rp,irp, j terms in Eq.~1! because the diameters of the pol
meric rods are 0; thus the volume excluded to one polym
rod by another is zero. However, even though the polym
diameter is zero, a colloidal rod excludes a polymeric r
from the finite volumel iv0. Eq. ~1! becomes exact in the
limit that the lengths of the colloid and of all the polyme
are much greater than the diameter of the colloid.5

The chemical potentialsmp,i of the polymers are

bmp,i~rc ,rp,i !5 ln zp,iLp,i5 ln rp,iLp,i1rcl iv0 , ~2!
96/105(23)/10632/5/$10.00 © 1996 American Institute of Physics
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10633R. P. Sear and D. Frenkel: Phase separation in mixtures
where the first equality defines the activity of thei th polymer
specieszp,i . It is more convenient to work with the sem
grand potentialV than with the free energy.V is a Legendre
transform11 of the free energy

V5A2 (
i51,n

Np,imp,i . ~3!

Substituting Eqs.~1! and ~2! in ~3! we obtain

bV~rc ,zp ,V!

Nc
5 ln rcLc211rcv0

2 (
i51,n

zp,i
rc

exp~2rcl iv0!. ~4!

We now neglect the colloid–colloid interactions, i.e., w
take the limit of all l i much larger than 1. This reduces th
number of parameters required to specify a mixture by 1
removes most of the driving force for a transition to a ne
atic phase. Because we now have interactions only betw
rods of different species the excluded volume interacti
can be reduced by demixing, without having to form a ne
atic phase. Indeed, without the colloid–colloid interactio
and for only one polymer species our mixture correspond
the so-called Widom-Rowlinson mixture,1,2,8,12,13treated at
the mean-field level. This mixture of two rods with only a
interaction between rods of different species almost certa
does not undergo a transition to the nematic phase.1,13 It
seems likely that increasing the number of polymer spe
does not change this picture, there is probably still no ne
atic phase. Note that the size of the colloid–polymer inter
tion term in Eq.~4! decreases exponentially with increasi
colloid density. As the formation of a nematic phase will
driven by this term it is difficult to see how a stable nema
phase can be formed. With no nematic phase present we
be sure that our phase diagrams will be correct, the demix
cannot be metastable with respect to an isotropic–nem
transition.

So, we neglect the third term of Eq.~4! and define re-
duced variables

r5rcv0l 1 , r i5rp,iv0l 1 , zi5zp,iv0l 1 ,
~5!

l5v0l 1Lc
21exp~bmc!,

wheremc is the chemical potential of the colloid. We hav
reduced the densities by the second virial coefficient of
interaction between the colloid and polymer species 1. T

FIG. 1. The models for the colloid~top! and two polymer species~middle
and bottom!. The diameter of the colloidal spherocylinder isD.
J. Chem. Phys., Vol. 105, N
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calculation of phase coexistence requires the pressurep and
the chemical potential of the colloid. In reduced units, th
are

bpv0l 15r1 (
i51,n

zi S 11r
l i
l 1

Dexp~2r l i / l 1! ~6!

and

ln l5 ln r1 (
i51,n

zi
l i
l 1
exp~2r l i / l 1!. ~7!

III. DEMIXING

A mixture of a colloid and one polymer species w
studied in Ref. 1. Extensive immiscibility in the isotrop
phase was observed, see Fig. 2 of Ref. 1. For this mixtur
was shown that the critical colloid densityr* and polymer
activity z* are1

r*5
l 1
l i
, zi*5e

l 1
l i
. ~8!

Recall that we have assumed alll i@1. Bothr* , andz* are
inversely proportional tol i . The colloid density at phase
separation is inversely proportional tol i becausel i deter-
mines the range of the indirect interaction between pairs
colloidal rods due to the polymer. Viewed from the perspe
tive of the colloid,8,12,14 the polymer induces an attractio
between two colloidal rods which are less thanl iL apart.
Each colloidal rod excludes polymer of typei from volume
v0l i surrounding it.5 When two colloidal rods are less tha
l iL apart their two excluded volumes overlap,15–17 reducing
the total volume excluded to a polymer rod. This increase

FIG. 2. The low density limit of the potential of mean forcew2 as a function
of separationr ~Ref. 14!. The system is not rods but spheres, due to
complexity of orientationally averaging the interaction between rods. T
potential of mean force is that between two ‘‘colloidal’’ spheres whi
interact via a hard-sphere potential of range 0.1. Each colloidal spher
teracts with ‘‘polymer’’ spheres of species 1 and 2 via hard-sphere inte
tions of diameters 1 and 10, respectively. The reduced activities of ‘‘po
mer’’ species 1 and 2 are 1 and 0.2, respectively.
o. 23, 15 December 1996
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FIG. 3. The phase diagram for a mixture of colloidal rods with two species of polymeric rods,l 2 / l 1516. The thick solid curves separate the one and t
phase regions, the thin solid lines connect the triple point densities and the dashed curves separate the one and two phase regions for mixtures o
with either polymer 1or polymer 2. The two phase regions are denoted by the number 2. The phase diagram of an athermal ternary mixture
dimensional. We show four slices:~a! z2 /z150.035,~b! z2 /z150.05, ~c! z2 /z150.0625 and~d! z2 /z150.1.
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the volume available to a polymer rod increases the tran
tional entropy of the polymer. The increased translatio
entropy of the polymer biases configurations in which coll
dal rods are close, acting as an attractive potential betw
them.

Of course, the polymer induced interaction between t
colloidal rods depends on their orientations. When the t
rods are only a little underl iL apart, for almost all orienta
tions their excluded volumes do not overlap. Thus, the
entationally averaged interaction between two colloidal ro
is very weak for separations nearl iL. It is this rapid decay of
the interaction with separation that makes the interac
scale asl i not l i

3 .
The importance of the observation that the interact

range depends on the length of the polymer is that by cha
ing the polymer we can change the range of the effec
interaction, the potential of mean force,18 between the colloi-
dal rods. The importance of the range of attractive inter
J. Chem. Phys., Vol. 105, N
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tions between particles is well established. For example
has been shown that if the interaction range is made v
short the vapor–liquid critical point moves to within th
solid to become an expanded-solid–condensed-solid cri
point.19–21 So, the critical density depends on the range
the potential of mean force. What if the interaction is ch
acterized by two~or more! ranges? Such a potential is show
in Fig. 2. This will be the case for the potential of mean for
between colloidal rods in the presence of a mixture of po
mers of different lengths. If the polymer lengths are simi
then the critical density is just some average of the criti
densities in the presence of only one of the polymers. Ho
ever, if the polymers are of widely differing lengths we fin
multiplecritical points. Essentially, we find a critical point a
eachr*; l 1 / l i .

For a mixture of a colloid and two polymer species the
is only one parameter, the ratio of the lengths of the t
polymer rods,l 2 / l 1. For l 2 / l 1516 the phase behavior i
o. 23, 15 December 1996
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10635R. P. Sear and D. Frenkel: Phase separation in mixtures
shown in Fig. 3. The two critical points are obvious. Als
clear, is that in order to observe two critical points the ra
between the activities of the polymers should be appro
mately z2 /z1; l 1 / l 2. If this ratio is too large the critica
point associated with polymer 1~i.e., the high density critica
point! is within the two phase region associated with po
mer 2 and if the ratio is too small the low density critic
point is within the two phase region@see Fig. 3~a!#.

Note that the high density critical point is at almost e
actly the samer andz1 as for a mixture of the colloid and
just polymer 1. The addition of polymer 2, although it cr
ates an additional critical point at low densities has very li
effect at densities around unity. This is because, at cons
activity, the density of a polymer decays exponentially w
increasing colloid density, see Eq.~2!. Thus, at the high den
sity critical point the density of polymer 2 is;exp(216), far
too small to effect the phase behavior. At the low dens
critical point although the density of the shorter polym
polymer 1, is larger than that of polymer 2 it plays little ro
in inducing demixing because the contribution of polyme
to the colloid’s chemical potential is almost constant. Tw
phases with different colloid densities can only coexist if t
differences in pressure and colloidal chemical potential
duced by the difference in colloidal density are counterb
anced by changes in the polymer density. Consider the e
tion of the spinodal1

S ] ln l

]r D
zp ,T

5r212 (
i51,n

zi S l il 1D
2

exp~2r l i / l 1!50. ~9!

For two polymer species and forz2 /z15 l 1 / l 2, Eq. ~9! be-
comes

r212z1exp~2r!2z1
l 2
l 1
exp~2r l 2 / l 1!50. ~10!

For r; l 1 / l 2 andz1;1 there are two solutions of Eq.~10! in
which the third term dominates the second, forl 2@ l 1. At the
two lower densities at the triple point of Fig. 3~b! the densi-
ties of polymer 1 are 3.28 and 2.58. Even here, at the hig
polymer activity at which there are two distinct coexisten
curves, the drop in the density of polymer 1 between
phases with the low and high colloid density is small.
contrast the densities of polymer 2 are 1.1631021 and
4.0431023, a drop of almost 2 orders of magnitude. The
are also two solutions of Eq.~10! with r;1, in which the
third term is very small, forl 2@ l 1. These relate to the highe
density coexistence.

We can also describe the appearance of two crit
points using the language of colloidal rods interacting via
effective potential, i.e., we treat the mixture as a fluid
colloidal rods interacting via a potential of mean force. T
potential of mean force between colloidal rods has associ
with it an effective energy.8 We thus have an effective the
modynamic energy and can view demixing as separation
a dilute~gas! phase with high entropy but high energy and
dense~liquid! phase with low entropy and low energy. Th
is simply the classical van der Waals picture. With a pot
J. Chem. Phys., Vol. 105, N
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tial of the form of Fig. 2 the energy will decrease in tw
steps, whenr; l 2 / l 1 andr;1.19,20Each decrease creates
two phase coexistence region.

There is no restriction to only two polymer species. F
three polymer species the mixture is specified by two para
eters,l 2 / l 1 and l 3 / l 1, and the phase diagram is four dime
sional. We show a slice through the phase diagram
l 2 / l 15102 andl 3 / l 15104 in Fig. 4. For these large ratios o
the polymer lengths the coexistence curves are almost id
tical, except for their different density scales. The dens
scales of the three coexistence curves in Fig. 4 arel 1 / l 3,
l 1 / l 2 and 1, and are set by the lengths of the polymers.
expected we find three critical points and two triple poin
Note that Fig. 3 is for fixed ratios between the three polym
activities. We can tune these ratios and bring the two tri
points together to create a quadruple point, i.e., four pha
in coexistence.

If the number of polymer species is further increased
can create more and more critical points, and by fine-tun
the activity ratios, coexistence between larger and lar
numbers of phases. As the number of polymer specie
increased the polymers will interfere with each other: dem
ing which we consider to be driven by polymer speciesi will
be affected by polymer species which are shorter thani .
However, we are free to make the differences in length
tween the polymer species arbitrarily large. Making the d
ference in length large reduces the interference between
ferent coexistence curves. As the polymer’s length
increased the colloid density at the critical point decrease
l i

21 . The interactions between the colloid and the remain
polymer species are proportional to the colloid density a
so they decrease. This decrease also reduces the driving
for ordering. In earlier work on symmetrical mixtures,13 the
number of phases which could coexist was limited becaus
the number of species was sufficiently large demixing w

FIG. 4. The phase diagram for a mixture of colloidal rods with three spe
of polymeric rods,l 2 / l 15102 and l 3 / l 15104. The thick solid curves sepa
rate the one and two phase regions and the thin solid lines connect the
point densities. The two phase region is denoted by the numbe
z2 /z151022 andz3 /z151024.
o. 23, 15 December 1996
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10636 R. P. Sear and D. Frenkel: Phase separation in mixtures
preempted by solidification. Here, it may be possible to h
any ~finite! number of critical points and, by fine-tuning th
activity ratios, any~finite! number of fluid phases coexisting

IV. CONCLUSION

Colloidal suspensions with one polymer present ha
been extensively studied both experimentally a
theoretically.4,17,22 The strong dependence of the phase
havior on the size of the polymer has been stressed;1,19,21–23

below a certain minimum polymer size there is no demix
in the fluid phase. Varying the size of the polymer allows t
effective colloid–colloid interaction to be varied in a wa
which is impossible for simple substances such as arg
Both polymers and colloidal particles, because they are c
posed of many molecules, can be made in a range of s
This allows the preparation of an infinite number of mi
tures, with a consequently almost limitless potential for d
ferent effective colloid–colloid interactions. In the precedi
sections we have studied some rather extreme mixtures.
have seen that by introducing polymers of very differe
lengths we can induce effective colloid–colloid interactio
of very different ranges. The phase behavior is then ra
unusual. We see in Fig. 3 that for a range of polymer act
ties, on increasing the colloid density we go from a on
phase region to a two-phase, back to one-phase, into an
two phase region and finally back to one phase.

Stell and Hemmer6 studied a van der Waals fluid in on
dimension; they introduced steps into the repulsive core
the rods. They were able to show that the fluid showedn
transitions if the core hadn steps. The results presented he
are analogous to those of Stell and Hemmer although
model is very different. In both Ref. 6 and here the parts
the potential or potential of mean-force with different rang
dominate at different densities producing a series of alm
independent phase transitions.

For mixtures of thick and thin hard rods, in the limit th
all rod lengths are much greater than the diameter of
thick rod and the thick rod is much shorter than any of
thin rods, the free energy Eq.~1! is exact.5 Our results, Figs.
3 and 4, are therefore exact for these mixtures. Howeve
course, mixtures which have free energies similar to tha
Eq. ~1! will show similar behavior. For example, virus pa
ticles are charged, have diameters which are not neglig
and may not have very large length to diameter ratio24
J. Chem. Phys., Vol. 105, N
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None of these problems really change the phase behavio
virus particles qualitatively5,3 and the phase behavior of Fig
3 is simply a consequence of introducing two length sca
into the colloid–colloid potential of mean force. We a
therefore confident that our results can be reproduced exp
mentally.
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