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The van der Waals approach to predict liquid-vapor coexistence, becomes exact in the limit of weak,
long-ranged attractive forces. However, for shorter ranged attractions, the liquid range shrinks and
eventually disappears altogether. When the width of the attractive well becomes very small (less than 7%
of the diameter of particles), an iso-structural solid-solid transition, reminiscent of the liquid-vapor
transition, appears in the crystalline phase. This transition, that should be experimentally observable in
certatn colloidal suspensions, ends in a critical point. In quasi-two dimensional systems (e.g. confined
colloids), this critical point induces the formation of a stable hexatic phase.
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In his 1873 thesis, van der Waals presented the first molecular theory of the ‘Conti-
nuity of the Gaseous and Liquid States’. In this thesis, van der Waals gave the
correct explanation for a well known yet puzzling feature of liquids and gases,
namely that there is no essential distinction between the two: above a critical tem-
perature T, a vapor can be compressed continuously all the way to the freezing
point. Yet below T, a first-order phase transition separates the dilute fluid (vapor)
from the dense fluid (liquid) [1].

The thermodynamic perturbation theory that lies at the root of the van der Waals
equation, becomes exact in the limit of weak, long-ranged intermolecular interac-
tions [2]). From the work of Longuet-Higgins and Widom [3], we know that the
van der Waals model (molecules are described as hard spheres with an infinitely
weak, infinitely long-ranged attraction) is even richer than originally expected; it
exhibits not only the liquid-vapor transition but also crystallization. -

A liquid-vapor transition is possible between the critical point and the triple
point. Figure 1 shows the full phase diagram of the van der Waals model. Yet,
although the van der Waals model clearly has a liquid-vapor transition, there is no
fundamental reason why this transition should occur in every atomic or molecular
substance, nor is there any rule that forbids the existence of more than one fluid-
fluid transition (for a discussion of the ‘unexpectedness’ of the liquid state, see e.qg.
[4]).

Whether a given compound will have a liquid phase, depends sensitively on the
range of the intermolecular potential: as this range is decreased, the critical tempera-
ture approaches the triple-point temperature, and when T, drops below the latter,
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Figure 1 Phase diagram for the van der Waals model. This phase diagram is computed by using the
hard-sphere system as reference system and adding a weak, long-ranged attractive interaction. Density p
in units o~ %, where # is the diameter of the hard spheres. The ‘temperature’ 1 is defined in terms of the
second virial coefficient: B,/BY® =1 — 1/(41), where BYS is the second virial coefficient of the hard-sphere
reference system.

only a single stable fluid phase remains. This phenomenon is well known in mixtures
of spherical colloidal particles and nonadsorbing polymer, where the range of the
attractive part of the effective colloid-colloid interaction can be varied by changing
the size of the polymer [5,6,7,8,9]. Experiment, theory and simulation all suggest
that when the width of the attractive well becomes less than approximately one third
of the diameter of the colloidal spheres, the colloidal ‘liquid’ phase disappears.

Consider, for instance, the phase behavior of an a hard-core fluid with an attract-
ive Yukawa interaction:

w0 r<a

u(ry= _sexp(xa'(l —r/o)) (r>0)
ria
where ¢ is the diameter of the hard core, ¢ is the well depth, and ™ ! is a measure for
the range of the attractive part of the potential.

Computer simulations [10] show that, if the range of the attraction is larger than
approximately 20% of the hard-core diameter, a liquid-vapor transition is possible.
For example, Figure 2 shows the results of a computer simulation of a Yukawa
system with kg =39. In this case, liquid-vapor coexistence is clearly present. in
contrast, when xa =7 (see Figure 3) The liquid-vapor coexistence curve has moved
below the sublimation line, indicating the absence of a stable liquid range. In fact,
there is even numerical evidence that in a molecular compound (Cg,), the range of
the intermolecular attraction may be sufficiently short to suppress the liquid-vapor
transition [11]. Next, consider what happens in systems with a very short ranged
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Figure 2 Phase diagram of the hard-core attractive Yukawa system (see Eqn. 1) for ke=39. In this
figure the open circle denotes the critical point, the filled circle the triple point and the drawn lines
correspond to the results of first order perturbation theory (see ref. [10]). The points with error-bars are
the simulation results. The diamond indicates the critical point as obtained by Gibbs-ensemble simula-
tions.
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Figure 3 Phase diagram of the hard-core attractive Yukawa system (see Eqn. 1) for ko = 7. In this figure
the open circle denotes the critical point, the filled circle the triple point and the drawn lines correspond
to the results of first order perturbation theory (see ref. [10]). The points with error-bars are the
simulation results. The diamond indicates the meta-stable critical point as obtained by Gibbs-ensemble
simulations.

attraction, where the liquid-vapor transition is absent. Such systems cold be realized
in mixtures of uncharged colloids and short polymers. Recent computer simulations
[12,13] show that such systems may exhibit a solid-solid transition that is in many
ways reminiscent of the liquid-vapor transition: in particular,

1. the transition takes place between two phases that have the same structure,
2. the line of {first-order) solid-solid transitions ends in a critical point, and
3. the transition depends strongly on the range of the intermolecular attraction.

As a first approximation, we use the square well potential to model shortranged
interactions in mixtures of uncharged colloids and polymers. The square-well model
potential is harshly repulsive at distances less than a characteristic diameter ¢ and
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has an attractive interaction with a characteristic range §, outside the repulsive core.
The functional form of the square-well potential is:

oo Ogr<e
v(r)=<{—¢ gEr<e+d, (2)
0 r=c+3d

where £ is the depth of the attractive well.

In fact, the occurrence of the solid-solid transition in systems with short ranged
potentials is not sensitive to the precise form of the potential and is therefore likely
to be experimentally observable. Additional evidence for the insensitivity of the
solid-solid transition to the precise shape of the intermolecular potential comes from
recent theoretical work by Tejero et al. [14] and the simulations of ref. [13].

It is well known that systems with a short-ranged attraction cannot exhibit a
phase transition in one dimension. However, our simulations show that such a
transition is possible in two dimensions. As will be discussed below, this turns out to
have interesting consequences. In order to compute the phase diagram of the
square-well system, we first must determine the dependence of the Helmholtz free
energy of the solid on density and temperature. As the free energy of the solid
cannot be measured directly in a Monte Carlo simulation, we use thermodynamic
integration to relate the free energy of the square-well solid to that of a reference
hard-sphere solid at the same density [15].

In order to map out the phase diagram of the square-well solid over a wide range
of densities and temperatures as a function of the width of the attractive well, several
thousand independent simulations were required. To keep the computational costs
within bounds, we chose to simulate a relatively small system. With a small system
size, finite-size effects are expected, in particular in the vicinity of a critical point.
However, away from critical points finite-size effects should be so small that they
will not affect the conclusions that we draw below.

In what follows, we use reduced units, such that gk is the unit of temperature,
and o, the hard-core diameter of the particles, is the unit of length. Figure 4 and 5
show the computed solid-solid and fluid-solid coexistence curves in the p, T plane
for the two and three dimensional square-well models. We first focus on the solid-
solid transition. The density gap between the dense and expanded fcc solids is wide
at low temperatures and shrinks to zero when the solid-solid critical point is ap-
proached. Because of the analogy. with liquid-vapor coexistence, one would expect
that the solid-solid critical point should be of the 2D and 3D-Ising universality class.

The coexistence curves are asymmetric, especially in the limit 6 — 0. In this limit,
the reduced critical temperature T, goes to a finite limiting value of approximately
1.7 in three dimensions and 0.92 in two. This may seem surprising but, in fact, this
limit can be studied directly using a peculiar lattice model [13].

A rough estimate of the solid-solid critical point can be obtained using the -
van-der-Waals-like theory proposed by Daanoun etal [14]. Let us consider a
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Figure 4 Simulated T, p phase diagrams for a two-dimensional triangular lattice of 200 square well
particles. Starting with the coexistence curve on the right, from right to left the curves correspond to the
well width d/0 = 0.01,0.02,0.03,0.04,0.05,0.06 and 0.07. Solid-fluid coexistence curves are shown for all
systems with é/¢ 2 0.03. The critical points are indicated by filled circles, the triple points by open circles.
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Figure 5 Phase diagrams for a three-dimensional fec lattice of 108 square well particles. From right to
left the curves correspond to the well widths &/o = (1.01,0.02,0.03,0.04,0.05 and 0.06. The upper dashed
fuid-solid coexistence curve refers to a well width of &/a = .07 and shows that the solid-solid transition
has become meta-stable at this point. Symbols as in Figure 4. The critical point at for §/o =0 was
computed using the lattice model described in ref [13].

hardsphere system with a short-range attractive interaction of exponential form:

Uy (F) /e = —exp(—(r — 6)/8)

where & is the range of the attraction. In what follows, we express all distances in the
hard-core diameter o and all energies in terms of the well depth & Following the
approach of ref. [14], we approximate the potential energy of the system by the
potential energy of a crystal with all particles at their lattice positions,

The distance between two neighboring lattice points, 7. depends on the volume
of the crystal

Tan = VIVii=(1+A VIV, ) (3)
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where V) is the volume of the crystal at close packing and d is the dimensionality.
Near close packing, we may write
AV
=1 . 4
a4 g O

The important thing to note is that we can write the nearest-neighbor distance as
r., =1+, where « is a linear function of the volume V. We can now write the
potential energy per particle of the crystal as

thpo = — (2/2)exp(— /) =(z/2)exp(—X) )

where z is the coordination number of a particle in a (close-packed) crystal (z= 6 in
two dimensions and 12 in three) and x is defined as /8. The entropic contribution
to the Helmholtz free energy per particle can be approximated using an uncor-
related cell model [16]:

F., =constant —k, T In(a)
Ignoring constants, the total Helmholtz free energy per particle is
F=—(z/2)exp(—x)—dT*in(x) {6)

where T* the reduced temperature. The critical point is corresponds to the highest
temperature for which the derivative of the pressure with respect to volume vanish-
es. However, as ¥V~ a ~x, we need only consider the second derivative of the
Helmholtz free energy with respect to x: )

O*F

Sz =(—2/Dexp(=x)+ dT*/x* ™

We look for the largest value of T* for which the equation
x?exp(— x)=2dT*/z ®)

has a real solution. The maximum value of the left hand side is reached for x=2
and has the value, 4 exp(— 2) =0.54134113... and our estimate for the critical tem-
perature is therefore T* =1.0826... in three dimensions and 0.8120117... in two
dimensions. We recall that the simulation results for square-well particles yielded
T* = 1.7 and 0.92 respectively. For the three dimensional Yukawa system, simula-
tions yield a critical temperature T*=0.67 in the limit of infinitely short-ranged
attraction [13]. In view of the extreme crudeness of our theoretical estimate, the
overall agreement with the simulation results is satisfactory.

The solid-solid coexistence region shifts to lower densities as the well-width is
increased. This effect can easily be understood by noting that a dense square-well
solid can be expanded at virtually no cost in potential energy, up to the point where
the nearest-neighbor separation is ¢+ 8. It is only when the solid is expanded
beyond this limit that the potential energy increases steeply and a transition to the
expanded solid may occur. Hence, the larger 4, the lower the density where the
phase transition will take place. When 6 becomes larger, the vapor-solid-solid triple
point shifts to higher temperatures and densities, until it reaches the critical
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temperature. At that point the solid-solid transition disappears because for larger
values of 4 it is pre-empted by the melting transition. Both in two and three dimen-
sions, this happens when & > 0.06. It should be noted that iso-structural solid-solid
transitions are known to occur in dense Cs and Ce [17]. However, in this case the
intermolecular potential is too long ranged to induce the mechanism described
above and the transition is believed to be due to the softness of the intermolecular
potential associated with a pressure-induced change in the electronic state of the
metal ions.

The occurrence of a solid-solid critical point in two-dimensional crystals turns out
to have interesting implications for the meiting transition in such solids [18]. The
debate about the nature of the melting transition in (quasi) two-dimensional systems
dates back to the seminal work of Landau and Peierls, who showed that there is no
long-ranged positional order in two-dimensional crystals (see e.g. [19]). In the early
seventies, Kosterlitz and Thouless suggested that melting in two dimensions might
proceed via a continuous dislocation-unbinding transition [20]. Subsequently,
Halperin and Nelson [21] argued that the phase that results after dislocation-
unbinding is not an isotropic liquid, as it still has quasi-long ranged bond-orienta-
tional order. A second (disclination-unbinding) transition is required to go from this
bond-ordered phase, termed ‘hexatic’ in ref. [21], to the isotropic fluid. The continu-
ous dislocation-unbinding transition can only occur when the dimensionless combi-
nation of elastic constants K equals 16x:

o dule+ 4]

1 9
2uti o ®)

The quantities 4 and y are the Lamé elastic constants, rendered dimensionless
through multiplication by a2/k, T, where a, is the lattice spacing,

It should be realized that the theory only predicts the point at which the solid
becomes unstable to a spontaneous generation of free dislocations. The theory does
not exclude the possibility that a first-order melting transition to the isotropic fluid
phase intercedes at a point where the solid is still stable with respect to dislocation
unbinding (i.e. for K > 16x). Unfortunately, in most simulation studies, the point
where K reaches the value 16z is depressingly close to point where first-order
melting seems to take place.

An alternative possibility is that two-dimensional solids melt by a spontaneous
proliferation of grain boundaries. Fisher er al. [22] showed that the grain-boundary
melting should only be expected if E,, the core energy of dislocations, is not large
compared to kzT. A more quantitative prediction was subsequently made by Chui
[23] who argued that grain boundary proliferation is the preferred melting mechan-
ism if E,, is less than 2.84 k, T Simulation of a defect Hamiltonian by Saito [24]
confirm this picture: for E, less than 2.84 k, T, there is a first order transition caused
by a nucleation of grain boundary loops; when E, exceeds 2.84k, T, melting takes
place via a continuous transition of the Kosterlitz-Thouless type. It appears, then,
that the defect core energy is the vital predictor of the melting mechanism. In the
systems simulated to date, there has been no opportunity to systematically vary the
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defect core energy, and therefore no opportunity to explore the region of parameter
space where the dislocation-unbinding theory should be valid (for a review, see e.g.
[25,26]). ‘

Extensive simulation studics of a variety of two-dimensional model systems have
thus far failed to provide compelling evidence for the dislocation-unbinding melting
scenario and some even come close to proving the opposite [25,26,27]. However, if
we consider two dimensional solids that exhibit a first-order solid-solid transition
ending in a critical point, we find that there is now a completely different possibility
to form a hexatic phase. The reason why this should be so can be understood by
considering the equation for K (see Eqn. 9). In two dimensions the bulk modulus
equals B = A + i (we use the symbol B for the bulk modulus to avoid confusion with
the Kosterlitz-Thouless elastic constant K). Well away from the critical point B is
relatively large. Close to the critical point, where B vanishes,

K=£~4B(1—~E+...), (10)
u+B u

can be made arbitrarily small. Note that the shear modulus, g, is not strongly
affected by a solid-solid critical point. Hence, there will be a finite region around the
critical point where K < 16z and the solid will, necessarily, become unstable with
respect to dislocation-unbinding.

We have studied the possibility for dislocation unbinding in the same two-dimen-
sional square well model that was discussed above in the context of the solid-solid
transition. These simulations showed that solid-solid coexistence is possible if the
width & of the square well is less than ~ 7% of the particle diameter. For longer
ranged attraction the triple-point temperature becomes greater than the critical-
point temperature, and the low density solid disappears.

In order to map out the regions in the phase diagram that are unstable to
dislocation unbinding, we performed extensive MD simulations of the two-dimen-
sional square-well system in the vicinity of the solid-solid critical point. Having
measured the elastic constants B and y as a function of density and temperature it is
a simple matter to obtain K and delincate the regions of the phase diagram where
dislocation unbinding should occur. We find that the defect density in our simula-
tions is always effectively zero. This greatly facilitates the numerical calculations as
the simulations can be relatively short, since there is no need to equilibrate defect
structures. Even for a system of 6400 particies with & = 0.06, simulations show that
at the critical point, the density of defects is negligible. The low concentration of
defects is, in fact, the prime feature that makes the present model a suitable candi-
date for exhibiting a true dislocation-unbinding transition, as it indicates the dislo-
cation core enctgy must be very large. In fact by decreasing & and moving the
solid-solid transition to higher densitites the core energy, E,, can be made arbitrarily
large.

As there are, in practice, no defects in the system studied by simulation, the ¢lastic
constants that we measure are the ‘bare’ or ‘unrenormalized’ elastic constants of the
Kosterlitz-Thouless theory.
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However, these represent an upper bound to the true, renormalized elastic con-
stants of the infinite system. The presence of defects always renormalizes K down-
wards, This is particularly obvious in that part of the phase diagram where we find
K to be less than 16x. In an infinite system, such values of K are renormalized to
zero. Hence, the range of stability of the hexatic phase will be larger than follows
from the present simuliations.

Figure 6 shows the relevant part of the phase diagram for § = 0.03. The region of
solid unstable to dislocation unbinding has been shaded black, and is localized in
the region immediately surrounding the eritical point. Figure 7 shows the phase
diagram for é =0.06. Here the critical point is much closer to the melting line, and
the triple-point temperature is much closer to the critical temperature. The lower
critical density for 6= 006 causes the bulk modulus to be a much more slowly
increasing function of density than is the case for é = 0,03, The system is ‘softer’ and
the region of unstable solid extends over a much larger region around the critical
point. The effect of the approaching melting line can clearly be seen.

To the left of the critical point, the bulk modulus is approximately constant when
compared to the rapid decrease of the shear modulus with decreasing density. This
lowers K towards unstable values as the melting curve is approached. It would be
premature to conclude that the hexatic in this region melts via a disclination un-
binding mechanism, as it is quite possible that the hexatic phase undergoes a first
order transition to the isotropic fluid.

The dislocation-unbinding transition described above should be experimentally
observabie in quasi two-dimensional systems, such as colloids between glass plates.
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Figure 6 The phase diagram for the 2D square well system with § =0.03. The region of unstable solid
around the solid-solid critical point—the hexatic region—is shaded black. Regions of two-phase coexist-
ence are shaded grey. The density and temperature are expressed in units ¢~ 2 and g/k, respectively. At
this high density, the critical point is far from the melting line confining the hexatic region to a small area
around the critical point.
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Figure7 The phase diagram for the 2D square well sysiem with § =0.06. The region of unstable solid
around the solid-solid critical point—the hexatic region—is shaded black. Regions of two-phase coexist-
ence are shaded grey. The density and temperature are expressed in units o2 and e/ky respectively. At
this value of & the critical temperature is close to the triple point temperature, causing the hexatic region
to extend as far as the melting line.

There are several ways to make colloids interact through an effective potential that
has a deep and narrow attractive minimum, for instance by adding small, non-
adsorbing polymers. It should be noted that, even if the attractive well is too wide to
induce a critical point in the solid phase, the vicinity of a critical point in the
meta-stable solid should enhance the tendency towards dislocation unbinding in the
stable solid. It is tempting to speculate that short-ranged attraction between charge-
stabilized colloids [28] facilitates the formation of a hexatic phase in a quasi-two-
dimensional system of polystyrene spheres studied by Murray and van Winkle (for a
review, see [29]).
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