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A Monte Carlo simulation study is made of the phase diagram of the 
restricted primitive model and of the solid-liquid and solid-solid phase 
coexistence curves in particular. At low temperatures, there is liquid-bcc 
coexistence and with increasing density there is bcc-fcc coexistence. These 
coexistence curves end in a triple point (liquid bcc-fcc above which only 
liquid-fcc coexistence is observed. 

1. Introduction 

The nature of  the l iquid-vapour critical point of  ionxc systems is one of  the 
outstanding problems in liquid state physics [1-7]. Computer simulations have played 
an important  role in testing the quality of the various theoretical descriptions of  the 
liquid-vapour coexistence curve [8-13]. In contrast, not much attention has been paid 
to the melting transition. This is not surprising, since the melting behaviour of ionic 
solids should not differ qualitatively from the melting of other substances. 

The aim of the present paper is to map out the melting curve of  the most widely 
studied model for ionic fluids, viz. the restricted primitive model. The critical 
temperature of this model is quite low and it is not obvious therefore whether the 
liquid phase is thermodynamically stable. For  example, in the case of  C60 or colloid 
polymer mixtures, the triple point is preempted by freezing [14, 15]. 

2. Model 

The restricted primitive model consists of a two-component mixture of  hard 
spheres. All spheres have a diameter a and carry a charge of magnitude Izel, where e 
is the charge of  an electron. To ensure charge neutrality half of  the spheres have a 
positive charge and the other half a negative one. The potential energy between two 
ions i a n d j  can be written as: 

r~: <<, 0 '  (1) 

where r~: is the distance between the two ions i and j, e is the dielectric constant of the 
medium, and t 0 is the permeability of vacuum. 

It is convenient to introduce reduced units; the energy is expressed in units 
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(ze)2/(4~eeo a) and the distance in units a. This gives for the unit of temperature 
(ze)2/(4~eeo akB), where k B is Boltzmann's constant. The density is expressed in units 
o f ~  3. 

3. Simulations 

3.1. Preliminaries 

We assume that the restricted primitive model can be in two stable solid phases: the 
fcc (face centred cubic) phase and the bcc (body centred cubic) phase. 

At high temperatures the Coulombic interactions are less important than the hard- 
sphere repulsion. For  the hard-sphere model it is assumed that the stable solid phase 
has an fcc structure [16-18]. We therefore expect to observe in the restricted primitive 
model at sufficiently high temperatures fcc-fluid phase coexistence. 

The restricted primitive model can be considered as a model of an ionic salt. Cs + 
and C1- have nearly identical radii, and it can therefore be expected that the crystal 
structure of  the restricted primitive model will be closely related to the CsC1 structure. 
At low temperatures and zero pressure the crystal structure of CsC1 is the bcc structure 
[19]. This can be rationalized by comparing the energies of  the fcc and bcc structures. 
In the fcc structure it is impossible to have each anion 12-fold coordinated with cations 
while maintaining an electrically neutral unit cell. Therefore, at a given density the 
energy of the fcc lattice is larger than the energy of  the bcc structure, in which each 
anion is 8-fold coordinated with cations. One can expect the bcc structure to be stable 
at sufficiently low temperatures and pressures. Note that at high temperatures the 
entropy becomes dominant. Since at a given density the free volume (the volume 
spanned by the neighbouring atoms in which an atom is free to move) of the bcc 
structure is smaller than the corresponding free volume of the fcc structure; the fcc 
structure has a higher entropy than the bcc structure. We can therefore expect a 
bcc-fcc transition when the temperature or pressure is increased. 

The maximum densities for the bcc and fcc structures are p = 3~/3/4 and p = ~/2, 
respectively. Therefore at sufficiently high pressures the fcc structure will be more 
stable at any temperature. 

The above arguments give a qualitative description of  the expected phase diagram 
of the restricted primitive model. Below, we show how the phase boundaries can be 
determined quantitatively using computer simulations. 

3.2. Description of the simulations 

To calculate the fluid-solid and solid-solid coexistence curves, we have determined 
the equations of  state and the chemical potential of the various phases at various 
temperatures (T = 1.0, 0"5, 0.375, 0.25, 0" 1, 0-075, 0.05, and 0-04). The current estimate 
of  the vapour liquid critical temperatures is T~ = 0.057 [20]. 

All simulations were performed in a cubic simulation box using periodic boundary 
conditions. The long range interactions were handled using the Ewald summation 
technique with ' t in-foil '  boundary conditions [21, 22]. 

Throughout  this work we have used the ordinary Monte Carlo technique in 
various ensembles [23]. The simulations were performed in cycles. Each cycle consists 
of  some attempts to displace a randomly selected particle, and some attempts to 
change the volume of  the system. At each cycle it is decided with a prescribed 
probability which type of  move is attempted; these probabilities are chosen such that 
on average per cycle Ndi s attempts to displace a particle and Nvo 1 attempts to change 
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Figure 1. Energy per particle U/N of the restricted primitive model as a function of the density 

p; temperature T = 1/p = 0"1; a comparison of simulation results of Orkoulas and 
Panagiotopoulos [12], the fit of Graham and Valleau [8], and the present work. 

the volume are performed. The maximum displacement of  a particle was set to a value 
such that ~ 30 % of the moves were accepted. For  the simulations presented in this 
work we used Na, s = 250 and Nvol = 5. A total simulation consisted of at least 20000 
cycles at the highest temperature, and 60000 at the lowest temperature. The first half 
of  every run was used for equilibration and was ignored in the calculation of thermal 
averages. An estimate of  the error was made using the method of  Flyvbjerg and 
Petersen [24]. 

Below we describe the simulation procedure of each phase in detail. 

3.3. Liquid phase 

For the liquid phase the equation of  state was determined using standard NPT 
simulations of  a system of 250 particles. The difference between the excess free energy 
of the liquid at two densities can be obtained by integrating the equation of  state: 

flA[ ~x flF~ flF Po) f J ,flP(P )--P 
- - -  = __ LoOp , (2) N 

where fl = 1/(k~ T) and the excess free energy is defined as 

~ g  ox _ ~ r ( p )  BF*~(p) 

N -  N N (3) 

In this work we define the ideal gas contribution to the free energy to be 

flF*~(P) - In (p/2) - 1, (4) 
N 

where p is the total number density, and the factor of  2 arises from the fact that we 
consider a 50:50 mixture. 

Equation (2) allows us to determine the free energy at a given density provided that 
the free energy at density P0 is known. Normally, P0 is chosen sufficiently low such that 
the system behaves like an ideal gas. Here, we use the results of Graham and Valleau 
[8] and Orkoulas and Panagiotopoulos [12] to determine FeX(po). 

For T =  0 . 1 0 r k o u l a s  and Panagiotopoulos [12] have determined the excess 
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Figure 2. Equation of state of the restricted primitive model T = 0'1; a comparison of 

simulation results (open symbols) with the fit of Graham and Valleau; P is the pressure 
and p is the density. 

chemical potential and energy at low densities (p < 0.1). Orkoulas and Panagio- 
topoulos have shown that under these conditions their results are in good agreement 
with the results of  Graham and Valleau [8]. Figures 1 and 2 show that our simulation 
results for the energy and pressure are in excellent agreement with the results of  
Orkoulas and Panagiotopoulos and Graham and Valleau. Note that the results of  
Graham and Valleau are calculated from equation (6) of[8] ; this equation is a fit to the 
data of Graham and Valleau and is valid only for densities smaller than p = 0" 1. To 
calculate the excess free energy we use the low density (p < 0.09) results for the free 
energy of Graham and Valleau and the equation of  state obtained from our simulations 
for the higher densities. 

A check of  the consistency of the excess free energy data can be made by comparing 
the previous calculation with one in which we determine the free energy by calculating 
the energy as a function of the temperature at a given density from NVT simulations. 
The free energy difference between a state at temperature fl and one at temperature fl0 

is given by flF(fl)N_ ,6OF(NflO) = flo dfl, NU(fl') (5) 

For  fl = 0 the free energy of the restricted primitive model is equal to the free energy 
of a hard-sphere fluid, for which the free energy can be calculated from the 
Carnahan-Starling equation [25]. In figure 3 the results of  this calculation are shown 
for p -- 0.4 and p = 0.6. These results are in good agreement with the results obtained 
from the equation of  state (2). We use the results of figure 3 to determine F(po) for the 
other temperatures. For  these temperatures we have to determine the equation of state 
of  the liquid phase for p > 0.6. 

3.4. Solid phases 
For  the solid phase we have also used standard NPT Monte Carlo simulations to 

determine the equation of state. The number of particles for the bcc phase was 250 and 
for the fcc phase 256. 

To determine the absolute free energy of  the solid phases, we have used the method 
of  Frenkel and Ladd [17]. In this method the solid is transformed slowly into an 
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Einstein crystal  for  which we know the free energy exactly. The  potent ia l  tha t  can 
m a k e  this t r ans fo rma t ion  is 

N 

U(rN, 2) = Uo+U~S(r~V)+(1--2)[UC~176 ~, (6) 

where UUS(r N) is the hard-sphere  pa r t  o f  the potent ia l  (1), UC~ N) the Cou lombic  
part ,  and U o is the energy o f  the static lattice, r ~ is a posi t ion o f  the Einstein lattice 
assigned to particle i and 2 is a coupl ing constant .  No te  that  for  2 = 0 we recover  the 
original potent ia l  (1). F o r  2 = 1 the Cou lombic  interact ions are ' r e m o v e d '  and  we are 
left with hard  spheres that  are coupled with ha rmonic  springs (with spring cons tan t  7) 
to a lattice po in t  r ~ which is an Einstein crystal.  The  free energy o f  the solid of  interest 
can be calculated f rom the reversible work  of  t ransferr ing this solid into an Einstein 
crystal. I f  we use equat ion  (6) as our  potential ,  the free energy difference follows f rom 

AflFMc _ flF(2 = 0) flF(2 = 1) _ -- . - (X=~  \ 
N - N N fl2=1 \ ~ /2  

f i(  ) = d2 - [UC~ N) - Uo] + E ~(r, - r~ 2 ~=1 ~" (7) 

To  avoid a divergence o f  the in tegrat ion for  2 ~ 0 [17] it is convenient  to pe r fo rm the 
s imulat ions in such a way tha t  the posi t ion o f  the centre of  mass  is fixed. The  free 
energy of  an Einstein crystal  with fixed centre o f  mass  is given by [17] 

flF~i~(oO flU o 3(N- -  ~ N  
N - N 2N 1 ) ln ( r t /~ f l )+__ .  InN.  (8) 

The  excess free energy is given by 

flF~X(fl, p) flU o . flAF, ac f lr~n (~) In V flF~(p) 
- +-' N~"~-~ (9)  N N N fiN N ' 

where the te rm In V/(flN) is a correct ion te rm to take into account  tha t  the s imulat ions 
have been pe r fo rmed  with a fixed centre o f  mass.  

Table  1 presents the results o f  the free energy calculations. The  consistency o f  the 
calculat ion has been checked by calculating the free energy via the equa t ion  of  state;  
if  we use for  F(po) the excess free energy given in table 1, the excess free energy at  o ther  
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Table 1. Excess free energy per particle (flFe"/N) of the fcc and bcc solid phases of the 
restricted primitive model at density p and temperatures T. The subscript gives the 
accuracy of the last digit(s), e.g., 5"332 means 5'33 _+ 0"02. 

T 0"95 1-0 1'1 1'2 

1"00 fcc 6"502 7'781 
1"00 bcc 5"532 
0"50 fcc 5"752 7"001 
0"50 bcc 4'802 6'002 
0'375 fcc 5'282 6"531 
0"375 bcc 3'812 4'292 5'444 
0"25 fcc 4"312 5'521 
0'25 bcc 2"812 3"252 
0" 1 fcc - 0"0761 0"992 
0" 1 bcc - 1-722 - 1"401 
0'075 fec -2-532 - 1'521 
0'075 bcc - 4.062 - 3.212 
0"05 fcc - 7.422 - 7.411 - 6'561 
0"05 bcc - 9.362 - 8.692 
0-04 fcc - 11.112 - 10"342 
0-04 bcc - 13'35z - 12.80~ 
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Figure 4. Excess free energy per particle flFeX/N as a function of the density p at T = 0"1. The 

symbols are the results from an absolute free energy calculation, the lines are obtained 
from the equation of state with one point P0 for each curve. For  comparison the excess 
free energy of the liquid phase is also shown. 

densit ies can be de te rmined  f rom equa t ion  (2). F igure  4 shows the results  o f  this 
ca lcu la t ion  for  T = 0.1 for  bo th  the fcc and  the bcc s t ructures ;  the free energy da t a  
ca lcu la ted  f rom the equa t ion  o f  s tate agree very well wi th  the d a t a  f rom table  1. 

4. Phase diagram 

H a v i n g  thus o b t a i n e d  the pressure  and  chemical  po ten t ia l  o f  the l iquid and  solid 
phases,  the  coexistence curve fol lows by  equa t ing  the chemical  po ten t ia l s  and  the 
pressures  o f  the two phases.  The  ca lcu la ted  phase  d i a g ra m is shown in figure 5. A t  high 
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Phase diagram of the restricted primitive model; the data for the liquid coexistence 

densities are taken from [12]. 

temperatures we observe fluid-fcc coexistence. The fluid-fcc line ends at a triple point 
where we find three-phase coexistence (fluid-bcc-fcc). This occurs at a temperature 
T ~ 0.3. The temperature range of our simulations is not sufficiently low to estimate 
the vapour-liquid bcc triple point. 

The triple point is located outside the temperature range that we could conveniently 
study. A rough estimate is T~ R ~ 0"025. The important point to note is that the triple 
point is located well below the best estimate of  the l iquid-vapour critical point. Hence 
our simulations indicate that freezing does not preempt the liquid-vapour transition 
of  this model system. 

This information makes it possible to give a simple prediction of the phase diagram 
of simple ionic crystals with a CsC1 ground state structure. It would also provide a 
convenient check for density functional theories of dense ionic systems. 

The work of  the FOM Institute is part of  the research program of  FOM and is 
supported by 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek'  (NWO). 
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