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Isotropic—Nematic Density Inversion in a Binary Mixture of Thin and Thick Hard Platelets
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We study the phase behavior of a binary mixture of thin and thick hard platelets, using Onsager’s second
virial theory for binary mixtures in the Gaussian approximation. Higher virial terms are included by rescaling
the excluded volume part of the Onsager free energy using a modified form of the Cari&ihdimg free

energy for hard spheres (Parsons’ approach). Our calculations provide a simple explanation for the-isotropic
nematic (FN) density inversion, as experimentally observed in systems of polydisperse gibbsite platelets by
Van der Kooij et al. J. Phys. Chem. B001 105 1696). In these systems, a nemataperphase was found

to coexist with an isotropibottomphase. We confirm the original conjecture of the authors, which states
that the phenomenon originates from a pronounced fractionation in thickness between the phases, such that
the thick platelets are largely expelled from the nematic phase and preferentially occupy the isotropic phase.
Our calculations show that the inverted state is found in a major part of-thedoexistence region. In
addition, a nematicnematic demixing transition is located at sufficiently high osmotic pressures for any
thickness ratid_,/L; > 1. The N-N coexistence region is bounded by a lower critical point which shifts
toward lower values as the thickness ratio is increased. At high thickness iafibs ¥ 3.3), a triphasic
coexistence is found at which two nematic phases coexist with an isotropic phase. We show that the demixing
transition is driven by a small’(L/D) contribution to the excluded volume entropy.

1. Introduction of experimental results, as already pointed out by Onsager in
his original papet.Calculations on binary mixtures of long and
short rod§ within Onsager's approach have revealed some
interesting phenomena such as the fractionation effect (with the
longer rods going preferentially to the nematic phase), a
widening of the biphasic gap, a reentrant phenomenon, and the
possibility of triphasic and nematimematic equilibrid.

Dispersions of hard rod- or platelike colloidal particles have
been known to exhibit a spontaneous transition from an isotropic
(I) phase, in which the particles are randomly orientated, to an
orientationally ordered nematic (N) phase. The physical basis
for understanding the phase behavior of anisometrical particles
has been described in the classic work of Onsagethat paper, Jo o
Onsager formulated the statistical mechanics of the problem and 1€ gibbsite systems, developed by Van der Kooij, display
showed that the transition can be explained on the basis of2 VerY bro_ad size distribution in both dlame_ter and thickness.
repulsive interactions between the particles. On the two- particle 1€ Polydispersitys was found to be approximately 25% for
level, these interactions are represented by the second virial ternf?0th diameter and thlckne§§Untll recently, the effect of
in an expansion of the free energy of the system. Onsager‘sp‘)'yd'spers'ty in the platelets th_|ckne§s was conS|der¢d to be
theoretical approach was originally inspired by experimental fa_r less important than_the polydispersity in diameter, since the
observations of+N phase separation in suspensions of rodlike thickness hardly contributes to the excluded volume between
(tobacco mosaic virus) particess well as platelike clay two platelets anq thus cannot have a S|gn|f|c§1nt influence on
particles® Numerous other experimental investigations, starting (he Phase behavior. However, a recent experimental study by
with the work on vanadium pentoxidehave confirmed the Van der Kooij et a_P. has sho_wn that polydispersity |nth|ckn(_ass
validity of Onsager’s theory for suspensions of repulsive rodlike €&" have a considerable influence on the phase behavior of
particles. However, experimental evidence of aiNltransition platelike colloids.
in systems of platelike particles is rather limited, being restricted ~ In these experiments, the phase behavior of suspensions of
to the observation of an-IN transition in suspensions of clay ~ gibbsite platelets with a particularly broad distribution in
particles by Langmuir in 1938. thickness was investigatédThe polydispersity in thickness,

Recen“y, an a|ternative mode| Sys[em for p|ate||ke CO”OidS although d|ﬁ|cu|t to determine aCCUrater, was eStimated at 50%.
has been developed, consisting of sterically stabilized gibbsite The high polydispersity is caused by the presence of a significant
platelets The system exhibits an-IN transition at densities ~ number of very thick platelets, as observed on transmission
that are in fair agreement with computer simulations for hard €lectron microscopy (TEM) micrographs of the gibbsite samples.
platelets. An important feature of the gibbsite platelets however The suspensions show arM phase separation over a wide
is their polydispersity; i.e., the particles differ in size and shape. range of particle concentrations. However, a remarkable phe-

The influence of polydispersity on the phase behavior of rod- N0menon was observed in a major part of the coexistence region
and platelike colloids is an important factor in the interpretation @ nématicupperphase was found to coexist with an isotropic
bottomphase (Figure 1), which implies that the nematic phase
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Figure 1. Samples of sterically stabilized gibbsite platelets afteN Iphase separation as observed between crossed polarizers. Volume fraction
of the samples vary from (a) = 0.22 to (b)¢ = 0.24 to (c)¢ = 0.25. Reprinted from ref 8. Copyright 2001 American Chemical Society.

inversion. It is argued that this anomalous behavior is related the ratioBs/B,? (with Bz the third virial coefficient) has been
to the platelets’ considerable polydispersity in thickness. To estimated by Onsagdeat )(1). More accurate predictions were
explain the underlying mechanism, two features are mentionedobtained from computer simulatiof&giving Bs/B,? ~ 0.51 for
by the authors. On one hand, there is a difference between thedisks with aspect ratib/D = 0.1. These results clearly indicate
number densities of the coexisting phases; the total numberthat Onsager’s approach of truncating the free energy after the
density of platelets in the nematic phase will in general be higher second virial coefficient cannot be justified (quantitatively) for
than that in the coexisting isotropic phase, and consequently,systems of platelets. To account for the effect of higher-order
the nematic phase will be more dense than the isotropic phasecorrelations between patrticles, we use Parsons’ apptbaere
On the other hand, there is clear evidence of fractionation in to incorporate higher virial terms into the Onsager free energy,
thickness between the coexisting phases, such that the thickalbeit in an approximate manner. This approach, based on the
platelets (i.e., the largest particles) accumulate in the isotropic so-called decoupling approximation in which orientational and
phase, thus increasing the mass density of the isotropic phasdranslational degrees of freedom are treated separately, comprises
relative to that of the nematic phase. The authors conjecturea rescaled form of the Carnaha8tarling free energy for hard
that an =N density inversion occurs when the fractionation is spheres to describe the (excluded volume) interactions between
strong enough to overcome the difference between the numberthe anisometrical particles. Recently, Camp and othétaave
densities of the coexisting phases. shown that the phase behavior of a mixture of hard rods and
Our objective in this paper is to study the phase behavior of plates could be described rather successfully within the Parsons
a binary mixture of thin and thick hard platelets using Onsager’s approach, showing improved agreement with computer simula-
theory. We show that our calculations indeed account for a tion over the Onsager theory. The agreement with simulations
significant fractionation effect as well as a density inversion in was shown to be within 10%.
the I-N coexistence region, thus confirming the conjecture of  |n this section we present an analytical theory based on the
Van der Kooij et al. approximate Gaussian trial orientation distribution function
Within our theoretical approach, we also locate a nematic  (ODF) as formulated by Odijk et al?, which is a simplified
nematic demixing transition. We show that a stable demixing version of the trial ODF used by OnsadeFor bidisperse
transition occurs irrespectively of the thickness ratio. At high systems of rods with different lengths, the Gaussian ODF
ratios, an associated triphasic equilibrium is found. Recently, a successfully explained features such as the fractionation effect,
similar demixing transition was found in binary mixtures of thin  the widened biphasic gdp.and, somewnhat later, the existence
and thick hard rod%;*! although it was found to be stable only  of triphasic and nematienematic equilibrid® A recent analysis
at sufficiently high thickness ratiosz@). There, even a stable by van Roif® based on elaborate numerical calculations of the
isotropic-isotropic demixing transition could be located (see exact high-density ODF essentially confirmed all conclusions
also ref 12). We will not pursue this issue in the present paper. of ref 18, thus emphasizing the virtues of the Gaussian
approximation.
2. Theory First, we will give a description of the Onsager formalism
Onsager already pointed out that the second virial approach,for binary mixtures of platelike particles. After that, the Parsons
although valid for infinitely thin needles, cannot be justified approach will be explained in more detail.
for infinitely thin disks. The reason for this is that disks, being 2.1. Onsager TheoryWe consider a binary mixture of hard
two-dimensional objects, have a nonzero probability of intersec- platelets of specieg= 1 or 2 with length (thicknessl; and
tion and thus a finite excluded volume even at zero thickness. common diameteb in a macroscopic volum¥. For the sake
The relative importance of three-body interactions in terms of of definiteness, we denote the thicker platelets by subscript 2,
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so that the composition variabke= No/(N; + N,) is the mole free energy (in unit&gT per particle) of a binary mixture within
fraction of the thick platelets. Note that, unlike for a slender the second virial approximation in terms @fand pj, leading
rod, the aspect ratib/D of a thin platelet is @mallparameter. to

In the case of platelike particles, Onsager described the
nematic phase of a dilute solution of platelets in terms of the BE_ cst—1+Inc+(1—xInL—x +xInx+
ODF, f(6), describing the distribution of the angles between N1+ N,
the normal to the platelet of typeand the nematic director.

The ODF must be normalized according §(Q) dQ = 1, (1 — X)0, + X0, + c[(1 — X015 + 2X(1 — X)p1, + X0y
whereQ is the solid angle of the platelet's normal vector. In (6)
the isotropic state, all orientations are equally probable, which

implies fiso = 1/47. wheref3 = 1/kgT in terms of Boltzmann’s constakg and the

The formation of an isotropic state (with constant) or a absolute temperatur@é. Furthermore,c is the total number
nematic state (withf; a peaked distribution) is caused by a density of platelets rendered dimensionless by relating it to
competition between orientational entropy (favoring the isotropic o3, ., in the following way:
state) and excluded volume entropy (favoring the nematic state).

Onsaget defined o; as a measure of the (negative of the) c—lo Ni N, 72 Nt N, @
orientational entropy T plexdisa T 16 Vv

- The last term in (6) can be identified as the (dimensionless
9= ffj(a) In[471;(6)] d€2 1=12 (1) second virial coef(ﬁc)ienéz multiplied by the corfcentration. )
which has its minimum ¢ = 0) in the isotropic state but ~ Note thatcB, constitutes the excess part of the free energy,
increases as the orientational entropy decreases. In the seconWhich accounts for the interactions between the hard particles.
virial approximation, the interactions between hard particles may Using (5), together with the isotropic valug,= 0, we get the
be expressed as an excluded volume entropy depending on thdollowing expression for the free energy in the isotropic phase:
excluded volume between two particles. Onsager gives us the BFe

following expression for the excluded volume between two — = ~ ¢cst+ (Inc— 1)+ (1 — X) In(1 — x) + xIn x +

platelets (i.e., circular disks) with thicknessgsand Ly as a N; + N,

function of their mutual angle: 6 L, L,
1+(2+;) (L-X5+x2|| ©)

Z/excl(’}/) = EDS sin Y + . . .
2 In the nematic phase, matters are more complicated since the

L+ LDAZ + E(siny) + & } + LD) (2 ODF is no longer a constant but a sharply peaked function. The
S ) {4 (siny) 4|cosy| L) ) excluded volume entropy is now given by

whereE(K) is the complete elliptic integral of the second kind. 4 ) , , 2Lt Ly
For the isotropic phase, the excluded volume can be readily Pﬁem:;fﬂs'n V|fj(9) f(0") d2 dQ +;T X
calculated using the isotropic averdgg(sin y)M, = 748 (see 1 .,

ref 1) [ [3 ~Ssirty + |COS)/|] £(0) £,(0) dQ d +

> > ) JI(LID)] (9)
Z/excl,is;oz %Ds + (Lj + Lk)Dz{% + %T} + (Q(LZD) (3) . . . T
Here, the following asymptotic expansion of the elliptic integral
Note that the leading order term does not depend on the is useck”
thicknesd. so that the®’(L/D) term must be included to account . T 1 . 4
for the different thicknesses. A measure of the average excluded E(siny) = E{ 1- 2 sinfy + (sin 7)} (10)
volume interaction between platelets of tygeendk is given
by the average of its angular dependénce which is valid for very small angleg. This approximation is
) justified when the ODF is a sharply peaked function. Obviously,
VexclY ' , we must specify the ODF, to calculatepy. As in ref 17, we
o= J =5 . fi(0) 1,(6") d€2 a2 ) use Gaussian trial ODFs with variational parametgrto
excliso describe the angular distribution of the platejetsthe nematic
where 105, = D37%8 is the average excluded volume state
between two randomly orientated platelets with zero thickness. o 1 T
The definition of pj is slightly different from the one used by L ex;{— —(1-92] 0=60=7
- : . ) _J4n 271 2
Onsager, since we only retain the leading order telyy . in fi(0)={ o (11)
the denominator instead of the full expression (3). This leads 4_711 ex;{— % aj(n _ 9)2 gs 0<m
ISO

to pj = 1+ ((L/D) whereas in Onsager’s theopi° = 1, by
definition. Note that both definitions are equivalent up to leading A great advantage of using a Gaussian trial ODF is thand
order. Substituting (3) into (4) yields for the isotropic phase pi are now analytically tractable. Substituting (11) in (1) gives
P =1+ I'J'Ll'k(l + §) + O(L2D?) ) " -
Ik D T o~hoy—1 [j=1,2 (12)
Note that the second contribution is on the ordel/&f smaller for the orientational entropy. For the excluded volume entropy
than the leading order term. We can express the total Helmholtzin the nematic phase, we will only retain the leading order terms
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of its asymptotic expansion for largs

L +L

pjrll(emN [§(l + aik) 8 & k
]

T\ D
Henceforth, we will neglect the’(a~1) contribution in the
second term, which is justified for very large valuesxoNote
that this is a crucial step in our calculations, since tt&/D)
term now becomes independentogfand thus independent of
the width of the angular distributiori(6). An important

12

[1+ oy )] (13)
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is essentially given by terms like

cpe"~ 2+ = ¢ (19)

7 D
Note that the terntB, in the free energy (6) can be obtained
from cpy™*™by taking the average over all pairs of components
jk, using the product of mole fractioms as a weight function.

In the leading order term of (14), thedependence vanishes
due to the fact that. ~ c?, according to (15). As a result, the

consequence is that, in our approximation, the orientation of |ga4ing order contribution to the excess free energy, i.e., for

the platelets in the nematic phase is solely determined by the

diameter of the platelets, which is identical for both components.
It is important to realize that the thickness does not enter into
the free energy anywhere else than via ti{&/D) term in (13).

So, we can simplify our calculations considerably by using a
single variational parametex,= o = ay, which holds for both
components. The above expression then reduces to

§LJ--|-Lk
D

__ 4

Note that theL/D contribution top"™is simply the excluded
volume between two perfectly parallel platelegs= 0) in the
nematic phaserD?(Lj + L), divided by the excluded volume
between two randomly oriented platelets with zero thickness
in the isotropic phaseugxc,,ist). The L/D contribution remains
constant up to order’)(y?) as can easily be seen from (9) by
substituting the asymptotic expressions for the trigonometric
functions involved. Inserting (12) and (14) into the Helmholtz
free energy (6) and minimizing with respectdogives

nem

Pik

= (14)

o~ 4cln (15)

independent of the mole fraction We see thatt exhibits a
simple ¢ dependence which is frequently encountered in

platelets with zero thickness, is simply 2 and thus independent
of the concentration. The?(L/D) term gives an additional
contribution which is linear in c. In the osmotic pressure (17),
this leads to an additiona? contribution to the common linear
term 3c. Hence, the thickness of the platelets will have a
considerable influence on the osmotic pressure of a concentrated
nematic phase.

We are, in principle, ready to construct the phase diagram
by equating the osmotic pressure and the chemical potentials
of the isotropic and nematic phases and solve these equations
iteratively. However, as we already pointed out in the Introduc-
tion, one has to be very careful in adopting Onsager’s second
virial theory to describe a system of platelike particles since
higher virial coefficients will undoubtedly play a role, even at
low concentrations. Therefore, to make quantitative comparison
with experiments possible, we have to somehow account for
the effect of higher virial terms. A method which has proved to
be remarkably accurate up to now is to rescale the excess part
of the Onsager free energy using a modified form of the
Carnahan-Starling excess free energy for hard spheres. This
approach, which is known as the Parsons approach, will be
discussed in the next section.

2.2. The Parsons ApproachThis approach due to Parséhs
from the late 1970s yields an extension of the Carnahan

Onsager’s approach. Substituting all expressions back into theStarling expression for the excess free energy of hard spheres
free energy (6) yields a simple expression for the free energy to anisometrical particles. The well-known Carnak&tarling

in the nematic phase

ﬁFnem

4
~ cst+ +In=+ +
N, + N, cst+3lInc Inn xIn x

(1—x)In(L—x) + 1—fc[(1 - x)LB1 + xLBZ] (16)

To locate phase transitions, we must know the osmotic

pressure and chemical potential of both types of platelets. These
are calculated as derivatives of the free energy. In the nematic
phase we obtain for the osmotic pressure (in dimensionless

notation)

~ 1 9Fem
1—InemE - éﬁygxcl,isn( v )N N, T
LN,

PSR 1! R L_z]
3cn+ﬂcn[<1 X5 g A7)

wherec, andx, refer to the concentration and composition of

the nematic phase. The chemical potentials (also in dimension-

less notation) can be obtained from

aFnem) -
j=1,2 (18)
8Nj NV T

;aj,nemE ﬂ(

(CS) equation of state gives a very accurate description of a
hard-sphere fluid at volume fractions up to the freezing fraction
(¢ ~ 0.5). In fact, in that regime, the equation of state is almost
indistinguishable from the one obtained from computer simula-
tions. About 10 years later L&eshowed that Parsons’ approach
gave an accurate description of the isotropic to nematic transition
in a system of hard ellipsoidal particles. The success of the
approach relies on the incorporation of many higher order
interactions, albeit approximately. As an example, for hard
spherocylinders with aspect ratidD = 5, the third virial
coefficient calculated from Parsons’ theH§2is B; = 0.2978,2
compared tdB; = 0.434@,? from Monte Carlo simulation&?

The Parsons approach involves an expression of the excess
free energy in terms of the semiempirical Carnah8tarling
excess free energy for hard sphéfes

PFes™ _ ¢4 — 39)
N o (1-9¢)

where ¢ is the volume fraction of hard spheres. For a
one-component system of hard anisometrical particles, this free
energy is multiplied by the prefact@iex.8vo, With vo the
particle volume andlle«[the average excluded volume. Note
that MlexBvo = 1, in the case of hard spheres. For binary
mixtures of anisometrical particles, the prefactor could be

fes(9) = (20)

Expressions for the isotropic phase can be obtained likewise rewritten asiiex: o in terms of the following mole fraction

from (8). The excess free energy in the nematic phase

averages?
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0o — )2 _ TABLE 1: Typical Dimensions and Aspect Ratios of the
Wy T Veyclisd(1 = X) 11 + 2X(1 — X)pg, + X2p22] Thick and Thin Platelets Used in the Present Calculation®
= 00cisB2 D (nm) Ly (nm) Lz (nm) D/Ly DIL,
T = (1 _ X)Uo,l + XUy 5 (21) 180 20 45 9 4
100 . T T T

¢ = (1= X)¢p; + x¢,

whereg is the total volume fraction of particles, related to the
dimensionless concentration and composition via

H(Cx) = %c[(l - x)LBl + x%] 22)

Having established this, we can write the excess free energy
within the Parsons approach as follows:

Fex 2 ~
B — (1~ %01, + 2X(1 ~ Xpr, + CpalTedd) 0 —
0.0 0.2 0.4 0.6 0.8 1.0
= cf{#)B, (23) D/L, = D/L, =4
= _ . = Figure 2. Phase diagram in thEl—x plane of a binary mixture of
wherefcs(¢) = fes(¢)/44. Replacing the excess free eneugy thin platelets P/ L, = 9) and thick plateletsOy/L, = 4), calculated
in (6) by (23) gives us the OnsageParsons free energy for a  from the OnsagerParsons free energy. Note the significant degree of
binary mixture of hard platelets. Accordingly, for the isotropic fractionation between the phases.

phase, we must replace by cfcs in the last term of (8). . . .
Recalculation of the osmotic pressure and chemical potentials0€Xisting phases, where the pressure and chemical potential

for the isotropic phase is now straightforward, using the follow from the OnsagerParsons equilibrium free energy.
definitions (17) and (18). Recall that the volume fraction However, we are still left with two important, yet unspecified,
depends ort andx via (22) so that the resulting expressions Parameters: the typical aspect ratios of the thin and thick
involve additional derivatives ofics with respect toc and x. platelets,L./D andL2/D, respectively. Since it is our primary

For the nematic phase, matters are slightly more complicated@m t0 account for the experimentally observed features, we
because of the minimization step. Hence, minimization with restrict ourselves to a single combination of aspect ratios, rather
respect too. now yields than scanning the entire parameter space. We have chosen a

particular combination of dimensions for the platelets under
o~ ﬂczf 2 (d) (24) consideration, shown in Table 1. These values should resemble
a ¢ the experimental system, studied by Van der Kooij et al.a
reasonable way. The corresponding phase diagram is depicted
in Figure 2. The diagram clearly displays a considerable degree
of fractionation between the coexisting phases. The thick

The OnsagerParsons free energy (denoted by superscript “P”)-
for the nematic phase thus reads

P platelets are largely expelled from the nematic phase and prefer
o nem  est+3Inc+In 4 +xInx+ 1 —x) In1— to inhabit the isotropic phase instead. Another notable feature
N; + N, T of Figure 2 is the strong increase of the equilibrium osmotic

- 16 - L, L, pressure at increasing mole fractions, indicating that the isotropic
X) + 2Infed¢) +—Cled@)| 1 —X)5 + x5 (29) to nematic transition in a pure system of platelets shifts to higher
number densities as the thickness is increased.

Note the additional Irf contribution arising from the orienta- When we want to study the possibility of ar-N density
tional entropy (12). Expressions for the osmotic pressure andinversion, we have to calculate the total mass density of the
chemical potentials can be obtained similarly from the free isotropic and the nematic phases. The mass density of the phases
energy by straightforward derivations. To facilitate comparison is linearly proportional to the effective core volume fraction of
with (17), we will only give the osmotic pressure of the nematic the platelets

phase ) e |
- ~ L L =21 - 17 + 22 27
M., ~ ¢, + [ZCn + %cnzfcs{ 1- X")Bl + anZ}] % Peore=_C{ (1 =X D 27)
1+c a1 fes (26) which stems from the fact that, experimentally, the colloidal
"oac platelets consist of a (dense) gibbsite (Al(@Hjore surrounded

. o . . by a grafted polymer layer. The polymer layer approximatel

Note that the linear contributioncgis retained. However, the hzls tﬁe sameF:) dgnsity a)é the soh?en% in WhiB(/:h thgpplatelets gre
presence of and' Its derivatives .Ieads to a more compllcated immersed and hence does not contribute to the total density of
dependence. Similar expressions can be obtained for theyq piatelets. However, the grafted polymer layer does participate
chemical potentials and the pressure in the isotropic phase. ;. the mutual excluded volume between two platelets. The
dimensions given in Table 1 thus apply to theftedgibbsite
platelets. The thickness of the polymer layer has been estimated
at 4 nmé and the ratio of the core volume,e to the total

We can construct the phase diagram by imposing the standardvolumew of the platelet can thus be calculated using the values
conditions of equal pressure and chemical potentials in the two from Table 1, givingy;*°¥y ~ 0.55 andv,**"9v, ~ 0.75.

3. Isotropic—Nematic Phase Coexistence: Density
Inversion
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Figure 3. Core volume fractionpcore Of the coexisting phases versus 0.40 -
%. In the area between the vertical lines the phase densities are inverted,
i.e., the isotropic phase is more dense than the nematic phase. On the
right axis, the extent of fractionatiom (— x,) is plotted versus. 0.35 4
Figure 3 clearly reveals that a density inversion will indeed 0.30 4

take place during the-IN phase separation. A marked feature Poore
is that the area in which the isotropic and nematic phase densities

are inverted covers a major part of the phase diagram. Only
when the overall mole fraction is close to zero or one, i.e., in

the case of an almost pure system of either thin or thick platelets,

is fractionation apparently not strong enough to accomplish a
density inversion. In these situations, an isotropic upper phase 0.15
will be found as in the regular cases. Equal phase densities are

found at coexisting mole frqctlorjzi(_xn) = (0.181, 0.041) and Figure 4. (a, top) Phase diagram in the phase denrsigncentration
(_0'954' 0.747), corresponding 1é = 37.7 and 81.2, respec- (¢core—C) plane. The outer dilution lines correspond to the pure
tively. components. Thick lines indicate phase boundaries; thin lines represent
We can also represent the phase diagram by plotting the coretie lines connecting coexisting phases. The horizontal tie lines (dotted
volume fraction versus the concentration, as shown in Figure lines) denote equal phase densities. In the area between the dotted lines
4. Recall that the core volume fraction is directly proportional the tie lines have negative slopes, which correspond to the inverted
to the mass density of the phases. In this representation, weState- (b, bottom) Magnification of the biphasic area.
can draw dilution lines, i.e., straight lines radiating from the
origin, along which the overall compositiox of the parent
system remains constant. From this representation we im-
mediately see that the total number density of platelets in the
nematic phase is always higher than the number density in the
isotropic phase, irrespective of the slope of the dilution line.
This clearly indicates that the density inversion is not stimulated
by the difference between the thermodynamic number densities
of the coexisting phases and hence must be driven by fraction-
ation. Furthermore, the slopes of the tie lines now indicate the
relative densities of the coexisting isotropic and nematic phases,
such that, in the case of a negative slope, the inverted state will
be found. Note that the evolution of the slopes of the tie lines
gives the impression of a “spiral staircase” in which the slopes
gradually change from positive to negative back to positive, as
one goes from a pure system of thin platelets to a pure system
of thick platelets. Another marked feature in Figure 4 is the
widening of the biphasic gap, although less pronounced here
than in the case of rods with different lengfi<.The widening
of the I-N biphasic gap appears to be a typical property o
bidisperse (and polydisperse) systems of anisometrical pafticles
as well as mixtures of different (polydisperse) species, such as
rod—plate mixture$®27 and plate-polymer mixtures?®

0.25 1

0.20

T T T T T T T T T T T
19 20 21 22 23 24 25 26 27 28 29 30
[¢

of a binary mixture of thin and thick platelets to demix into
two nematic phases at sufficiently high concentrations.

In this section we intend to study the relation between the
thickness bidispersity, quantified by the thickness réatif.;,
and the topology of the phase diagram, in particular the existence
of a nematie-nematic coexistence region. The occurrence of a
demixing transition at a particular osmotic pressure can easily
be identified by the presence of an instability region (or van
der Waals loop) in the chemical potential curve (plotted versus
the mole fraction) in whichu;/dx; < 0. When we study the
possible coexistence between two nematic phases, we have to
realize that the osmotic pressure and chemical potentials are
given by the same expressions (17, 18) in both phases. To obtain
two different nematic phases, there must be two states, denoted
by I and II, with differentc, and/orx, values, having the same
osmotic pressure and chemical potential.

We will proceed in the following way: The aspect-ratio of
the thick platelets will be fixed at 4 while the aspect ratio of
¢ the thin platelets is subject to variation. This implies that we
increase the degree of bidispersity by making the thin platelets
thinner while keeping the thickness of the thick platelets fixed.
In Figure 5, the resulting phase diagrams are depicted for
different values oD/L;.

A remarkable feature is that the nematitematic transition
is always present, irrespective of the thickness tatib; (> 1).

As mentioned earlier in this paper, the thickness of the Thus, even systems with a low degree of bidispersity (Lg.,
platelets has a considerable influence on the osmotic pressurd_; close to 1) exhibit a nematienematic demixing transition,
of a concentrated nematic phase, as we can see from (17)albeit at very high osmotic pressures. For instance, in our
Naturally, one may ask whether this can cause the nematic phasexperimentally considered syste/[; = 9, D/L, = 4), a

4, Nematic—-Nematic Phase Coexistence
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Figure 5. (a, top) Phase diagram in tlie—x plane of a binary mixture

of thin platelets,D/L; = 13, and thick plateletd)/L, = 4 (LJ/L:s =
3.25). The nematienematic coexistence region is bounded by a lower
critical point (cp). (b, bottom) Same as (a), I9fL; = 15 andD/L, =

4 (Lo/L; = 3.75). Full curves denote stable phase boundaries, while
the dotted curve represents a metastable phase boundary-—TNpe |

N, triple point is indicated by.

nematic-nematic critical point is located at a coexistence
pressurd] = 208. Note that several other (liquid) crystalline

Wensink et al.

gy ~ 2 Inc(x) + |n§+ 1 (30)

9o~ 2+ e x)[(l ot xL—Z] (31)
ex a7 D D

where gmix, or, @nd gex refer to mixing entropy, orientational
entropy, and excluded volume entropy, respectively. The
subscripts for the nematic phase are left out for notational
convenience. Note that the translational entropy contribution
(~In c) is omitted here, since it has essentially the same
dependence as the orientational part.

It is advantageous to rescale the Gibbs free energy by
subtracting the chemical potentials of the pure components,
weighed by their mole fractions

g (Ix) = g(1x) — [(1 — ¥ef(ID) + xuD)]  (32)
Obviously, the same rescaling procedure can be applied to the
individual entropic contributions. The motivation behind the
rescaling ofy is to uncover the exact curvature of the free energy
by subtracting the dominant linear trend. Note that the rescaling
is fully justified since only a linear contribution is subtracted
from the Gibbs free energy. Hence, the usual double tangent
construction for the determination of the coexistence composi-
tions can still be applied here. We can now plot the rescaled
Gibbs free energy versus the mole fraction for any particular
osmotic pressure and combination of aspect ratios. Recall that
the osmotic pressure should remain fixed upon variatior. of
Figure 6 clearly reveals that the demixing transition originates
from a competition among translational entropy, mixing entropy,
and orientational entropy on one hand (all favoring the mixed
state) and excluded volume entropy on the other hand (favoring
demixing). At sufficiently high osmotic pressures, the latter
contribution will become dominant and demixing occurs.

5. Discussion

phases may come into play at these high pressures. When the

thickness ratio is increased, the critical point shifts to lower
values of the osmotic pressure, untillafl; ~ 3.3 the N-N
and N coexistence regions start to overlap, giving rise to a
triple point at which two nematic phases,(dhd N;) coexist
with an isotropic phase (I) (Figure 5b).

Let us now elaborate on the nematimematic demixing
transition for a while and try to gain more insight into the
underlying mechanism. A convenient way to study the mech-
anism behind a demixing transition is to construct the Gibbs

free energy of the nematic phase and investigate the behavio

of the individual entropic contributions. For the sake of
simplicity, we will use the expressions from the Onsager free

energy (16) here, rather than the elaborate formulas obtained
from the Parsons rescaling step. The Gibbs free energy (in units

of kgT per patrticle) is given by
(1) = % + e () 28)

where thNe concentration is now a function of the osmotic
pressurd] and the mole fractiox. This function can readily

be obtained by inverting the expression for the osmotic pressure;; (A(ND3V) >

in the nematic phase (17), which is simply quadratic.ifhe
individual entropic contributions are given by

Omix ~ (@ —x) In(1 —x) +xInx (29)

Our calculations based on the Gaussian approximation provide
us with a fairly simple interpretation of the isotropinematic
density inversion, as observed in experimental systems of
polydisperse gibbsite plateleéttt appears that this phenomenon
indeed originates from a pronounced fractionation with respect
to thickness between the isotropic and the nematic phases, as
already suggested by van der Kooij e &lence, an isotropie
nematic density inversion can only be accomplished when the
fractionation is strong enough to overrule the difference between

|lhe coexistence number densities of the isotropic and the nematic

phases, for which we have shown tlat< c,, irrespective of

the overall composition. In this respect, we stress the importance
of the Parsons rescaling procedure. It is obvious that the
possibility of a density inversion strongly depends on the
difference between the coexistence densities (miscibility gap)
as found from the solutions of the coexistence equations. It turns
out that including higher virial terms by means of Parsons’
approach leads to a significant narrowing of the miscibility gap
and therefore strongly promotes fractionation to dominate, giving
rise to an inversion of densities.

It is a known feature that the Onsager theory overestimates
the miscibility gap, predicting a strong first-order phase transi-
1), whereas Monte Carlo simulations only
show a weak first-order transitidAIn fact, the Onsager theory
also overvalues the coexisting number densities as compared
to the simulations. It turns out that Parsons’ approach both
narrows the miscibility gap and shifts the coexisting densities
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T T T T with the same composition as before, even in the case of a
polydisperse system. Therefore, if the fractionation experiment
would be performed with infinitesimally small dilutions (which

is obviously not feasible), the inverted state would inevitably
be recovered after dilution of the isolated nematic phase. We
therefore believe that the experimental observation can be
accounted for by considering the following: First, the gap
between the sample volume fraction and the phase boundary is
not infinitesimally small A¢ ~ 0.01), and consequently, the
discarded isotropic phase has a finite volume. Second, the
fractionation is believed to be particularly strong, such that
practically all thick species will accumulate in the isotropic
phase (with a finite volume), leaving a nematic phase with

Figure 6. Rescaled Gibbs free energj of the nematic phase (in reduced polydispersity in which no density inversion can be

units ofkgT per particle) versus mole fractionof a binary mixture of accompllshed after dllutlo.n. .
thin plateletsP/Ly = 13, and thick plateletD/L, = 4 (L,/L; = 3.25), We believe that the particularly strong tendency to fractionate

at coexistence pressurk= 140 (dotted curve). The solid curves depict IS @ manifestation of the polydisperse nature of a colloidal

the contributions from the individual entropies: excluded volugig ( system of gibbsite platelets, meaning that the system essentially

orientation @or), and mixing @mi). The local minima ingto: indicate comprises infinitely many platelike species with continuous

that the system will demix into two nematic phases. variations in thickness (and diameter), rather than a number of

) o o distinct species. Obviously, mapping a truly polydisperse system

to lower values, thus being a significant quantitative improve- |ixe this onto a simple binary model system implies a serious

ment over the Onsager theory. It is therefore not surprising thatsimplification. However, we believe that our model, despite its

our preliminary calculations solely based on the Onsager theorysimplicity, is capable of capturing the essential features of the

could not establish a density inversion at any point in the phasephase behavior of colloidal platelets with polydispersity in

diagram; the difference between the coexisting densities wasipickness.

simply too Iar_ge to _be overruled by fr_actionation, and hence an | addition to the inversion of phase densities at thé\|

I=N density inversion was not possible. transition, our calculations show that the nematic phase of a
As pointed out earlier in this paper, we intend to compare pinary mixture of thin and thick platelets can split into two

our results with the experimental observations obtained by van nematic phases at Sufﬁcienﬂy h|gh concentrations. The\N

der Kooij8 For this purpose, we have drawn a particular dilution demixing is essentially driven by the relatively smai{L/D)

line in Figure 4 which should resemble the experimental contribution to the excluded volume part of the free energy. At

observations in a reasonable way. This “experimental” dilution syfficiently high osmotic pressures, the gain in excluded volume

line corresponds to a mole fractionof 0.07. When a dilute  entropy will outweigh the loss of mixing and orientational

system is concentrated along this dilution line, phase separationentropy due to demixing and demixing occurs. At high thickness

starts to occur at an overall volume fractignof 0.305. The  ratios(L,/L; = 3.3), an additional triphasic equilibrium is found

slope of the inital tie line is positive, indicating that an isotropic  at which two nematic phases coexist with an isotropic phase.

upper phase is formed initially. Ab = 0.32 the dilution line | theoretical and simulation studies, demixing of the nematic

and the equal density tie line intersect, indicating that both phase into two separate nematic phases of differing densities

phases are equally dense at that point. At higher volume and compositions has been found for binary mixtures of short

fractions, the slopes of the tie lines become negative, indicating and long rod<81° for thick and thin rod$;%-2° and for rods

that the densities of the phases are inverted and a nematic uppegiffering in both length and diameté?.However, no experi-

phase will be formed. Ap = 0.351 the system is fully nematic.  mental efforts have been made so far to study the phase behavior

The experimental phase boundaries are found to be somewhaf g binary mixture of thin and thick hard platelets. Considering

lower (¢ = 0.18 andp = 0.30)® Equal phase densities are found  the results of our present calculations, we believe it is a future

at a volume fraction of approximately 0.24. challenge for experimentalists to verify the possibility of a
We finally discuss a peculiar observation in relation with the nematie-nematic demixing transition in real (colloidal) binary

aforementioned dilution experiments. Van der Kooij performed systems.

an additional fractionation experiment in which a suspension

was brought to a volume fractiog & 0.29) close to the nematic

phase boundaryp(= 0.30) and left to phase separate. The

nematic upper phase was separated from the isotropic bottomReferences and Notes

phase and subsequently diluted. A remarkable observation was (1) Onsager, LAnn. N. Y. Acad. Scl949 51,627

that this system did not exhibit a density inversion at any point (2) Bernal, J. D.; Fankuchen, J. Gen. Physiol1941, 25, 111.

in the isotropie-nematic coexistence region. This striking (3) Langmuir, I.J. Chem. Physl1938 6, 873.

observation however cannot be explained on the basis of our ggg 6;’?\“;; 'Q-OZC;”,A?:‘_’VEA-_ ﬂ'gl-(kcefslfgigﬁ_ﬁﬁ' 3&]-_ Phys. Chen. B

model for a binary mixture of thin and thick platelets. Figure 4 1995702 7829.

clearly shows that any dilution line close to the experimental (6) Lekkerkerker, H. N. W.; Coulon, P.; van der Hagen, R.; Deblieck,

dilution line will inevitably intersect the horizontal tie line  R.J. Chem. Phys1984 80, 3427. o ,

denoting equal phase densities. This means that, according tolgggég'gslhgf"nm M.; Kolegov, B. |.; Pryamitsin, V. A2olym. Sci. USSR

our phase diagram, splitting off the nematic phase from a system  (8) van der Kooij, F. M.; van der Beek, D.; Lekkerkerker, H. N. W.

close_ to the n_ematic ph_asg boundary wiI_I a_llv_vay_s give rise to Physé Chemhgizogy %/(Idet?g.P hys. Re. E 1996 54 6430

density inversion after dilution. In fact, an infinitesimally small (io)) ‘E)ei‘jrl‘(straf’M_-;' van Roj RPKy-S_ Re. E 1097 56, 5594,

dilution of an isolated upper nematic phase infinitesimally close  (11) van Roij, R.; Mulder, B.; Dijkstra, MPhysica A1998 261,374.

to the phase boundary showhivaysresult in an isotropic phase (12) Hemmer, P. CJ. Stat. Phys200Q 100, 3.

0.84

Acknowledgment. We thank Patrick Warren for helpful
discussions.



10618 J. Phys. Chem. B, Vol. 105, No. 43, 2001

(13) Veerman, J. A. C.; Frenkel, [Phys. Re. A 1992 45, 5632.

(14) Parsons, J. CPhys. Re. A 1979 19, 1225.

(15) Camp, P. J.; Allen, M. FPhysica A1996 229, 410.

(16) Camp, P.; Allen, M. P.; Bolhuis, P. G.; Frenkel, DChem. Phys.
1997 106, 9270.

(17) Odijk, T.; Lekkerkerker, H. N. WJ. Phys. Cheni985 89, 2090.

(18) Vroege, G. J.; Lekkerkerker, H. N. W. Phys. Chem. B993 97,
3601.

(19) van Roij, R.; Mulder, BJ. Chem. Phys1996 105, 11237.

(20) Gradshteyn, I. S.; Ryzhik, I. MTable of Integrals, Series and
Products;Academic Press: San Diego, 1994.

(21) Lee, S. DJ. Chem. Phys1989 89, 7036.

(22) Lee, S. DJ. Chem. Phys1987 87,4972.

(23) Frenkel, DJ. Phys. Cheml988 92, 3280.

Wensink et al.

(24) Hansen, J. P.; McDonald, |. Rheory of Simple Liquid#Academic
Press: London, 1986.

(25) Vroege, G. J.; Lekkerkerker, H. N. \Rep. Prog. Physl992 55,
1241.

(26) van der Kooij, F. M.; Lekkerkerker, H. N. WWhys. Re. Lett.200Q
84,781.

(27) van der Kooij, F. M.; Lekkerkerker, H. N. W.angmuir200Q 16,
10144.

(28) van der Kooij, F. M.; Vogel, M.; Lekkerkerker, H. N. Whys.
Rev. E 200Q 62, 5397.

(29) Sear, R.; Jackson, G@. Chem. Phys1995 103, 8684.

(30) Hemmer, P. CMol. Phys.1999 96, 1153.

(31) van der Kooij, F. M. Personal communication.



