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We study the phase behavior of a binary mixture of thin and thick hard platelets, using Onsager’s second
virial theory for binary mixtures in the Gaussian approximation. Higher virial terms are included by rescaling
the excluded volume part of the Onsager free energy using a modified form of the Carnahan-Starling free
energy for hard spheres (Parsons’ approach). Our calculations provide a simple explanation for the isotropic-
nematic (I-N) density inversion, as experimentally observed in systems of polydisperse gibbsite platelets by
Van der Kooij et al. (J. Phys. Chem. B2001, 105, 1696). In these systems, a nematicupperphase was found
to coexist with an isotropicbottomphase. We confirm the original conjecture of the authors, which states
that the phenomenon originates from a pronounced fractionation in thickness between the phases, such that
the thick platelets are largely expelled from the nematic phase and preferentially occupy the isotropic phase.
Our calculations show that the inverted state is found in a major part of the I-N coexistence region. In
addition, a nematic-nematic demixing transition is located at sufficiently high osmotic pressures for any
thickness ratioL2/L1 > 1. The N-N coexistence region is bounded by a lower critical point which shifts
toward lower values as the thickness ratio is increased. At high thickness ratios (L2/L1 > 3.3), a triphasic
coexistence is found at which two nematic phases coexist with an isotropic phase. We show that the demixing
transition is driven by a smallO(L/D) contribution to the excluded volume entropy.

1. Introduction

Dispersions of hard rod- or platelike colloidal particles have
been known to exhibit a spontaneous transition from an isotropic
(I) phase, in which the particles are randomly orientated, to an
orientationally ordered nematic (N) phase. The physical basis
for understanding the phase behavior of anisometrical particles
has been described in the classic work of Onsager.1 In that paper,
Onsager formulated the statistical mechanics of the problem and
showed that the transition can be explained on the basis of
repulsive interactions between the particles. On the two- particle
level, these interactions are represented by the second virial term
in an expansion of the free energy of the system. Onsager’s
theoretical approach was originally inspired by experimental
observations of I-N phase separation in suspensions of rodlike
(tobacco mosaic virus) particles2 as well as platelike clay
particles.3 Numerous other experimental investigations, starting
with the work on vanadium pentoxide,4 have confirmed the
validity of Onsager’s theory for suspensions of repulsive rodlike
particles. However, experimental evidence of an I-N transition
in systems of platelike particles is rather limited, being restricted
to the observation of an I-N transition in suspensions of clay
particles by Langmuir in 1938.3

Recently, an alternative model system for platelike colloids
has been developed, consisting of sterically stabilized gibbsite
platelets.5 The system exhibits an I-N transition at densities
that are in fair agreement with computer simulations for hard
platelets. An important feature of the gibbsite platelets however
is their polydispersity; i.e., the particles differ in size and shape.

The influence of polydispersity on the phase behavior of rod-
and platelike colloids is an important factor in the interpretation

of experimental results, as already pointed out by Onsager in
his original paper.1 Calculations on binary mixtures of long and
short rods6 within Onsager’s approach have revealed some
interesting phenomena such as the fractionation effect (with the
longer rods going preferentially to the nematic phase), a
widening of the biphasic gap, a reentrant phenomenon, and the
possibility of triphasic and nematic-nematic equilibria.7

The gibbsite systems, developed by Van der Kooij, display
a very broad size distribution in both diameter and thickness.
The polydispersityσ was found to be approximately 25% for
both diameter and thickness.5 Until recently, the effect of
polydispersity in the platelets’ thickness was considered to be
far less important than the polydispersity in diameter, since the
thickness hardly contributes to the excluded volume between
two platelets and thus cannot have a significant influence on
the phase behavior. However, a recent experimental study by
Van der Kooij et al.8 has shown that polydispersity in thickness
can have a considerable influence on the phase behavior of
platelike colloids.

In these experiments, the phase behavior of suspensions of
gibbsite platelets with a particularly broad distribution in
thickness was investigated.8 The polydispersity in thickness,
although difficult to determine accurately, was estimated at 50%.
The high polydispersity is caused by the presence of a significant
number of very thick platelets, as observed on transmission
electron microscopy (TEM) micrographs of the gibbsite samples.
The suspensions show an I-N phase separation over a wide
range of particle concentrations. However, a remarkable phe-
nomenon was observed; in a major part of the coexistence region
a nematicupperphase was found to coexist with an isotropic
bottomphase (Figure 1), which implies that the nematic phase
has a lower mass density than the coexisting isotropic phase.
Henceforth, we will refer to this phenomenon as theI-N density
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inVersion. It is argued that this anomalous behavior is related
to the platelets’ considerable polydispersity in thickness. To
explain the underlying mechanism, two features are mentioned
by the authors. On one hand, there is a difference between the
number densities of the coexisting phases; the total number
density of platelets in the nematic phase will in general be higher
than that in the coexisting isotropic phase, and consequently,
the nematic phase will be more dense than the isotropic phase.
On the other hand, there is clear evidence of fractionation in
thickness between the coexisting phases, such that the thick
platelets (i.e., the largest particles) accumulate in the isotropic
phase, thus increasing the mass density of the isotropic phase
relative to that of the nematic phase. The authors conjecture
that an I-N density inversion occurs when the fractionation is
strong enough to overcome the difference between the number
densities of the coexisting phases.

Our objective in this paper is to study the phase behavior of
a binary mixture of thin and thick hard platelets using Onsager’s
theory. We show that our calculations indeed account for a
significant fractionation effect as well as a density inversion in
the I-N coexistence region, thus confirming the conjecture of
Van der Kooij et al.

Within our theoretical approach, we also locate a nematic-
nematic demixing transition. We show that a stable demixing
transition occurs irrespectively of the thickness ratio. At high
ratios, an associated triphasic equilibrium is found. Recently, a
similar demixing transition was found in binary mixtures of thin
and thick hard rods,9-11 although it was found to be stable only
at sufficiently high thickness ratios (J4). There, even a stable
isotropic-isotropic demixing transition could be located (see
also ref 12). We will not pursue this issue in the present paper.

2. Theory

Onsager already pointed out that the second virial approach,
although valid for infinitely thin needles, cannot be justified
for infinitely thin disks. The reason for this is that disks, being
two-dimensional objects, have a nonzero probability of intersec-
tion and thus a finite excluded volume even at zero thickness.
The relative importance of three-body interactions in terms of

the ratioB3/B2
2 (with B3 the third virial coefficient) has been

estimated by Onsager1 at O(1). More accurate predictions were
obtained from computer simulations,13 giving B3/B2

2 ≈ 0.51 for
disks with aspect ratioL/D ) 0.1. These results clearly indicate
that Onsager’s approach of truncating the free energy after the
second virial coefficient cannot be justified (quantitatively) for
systems of platelets. To account for the effect of higher-order
correlations between particles, we use Parsons’ approach14 here
to incorporate higher virial terms into the Onsager free energy,
albeit in an approximate manner. This approach, based on the
so-called decoupling approximation in which orientational and
translational degrees of freedom are treated separately, comprises
a rescaled form of the Carnahan-Starling free energy for hard
spheres to describe the (excluded volume) interactions between
the anisometrical particles. Recently, Camp and others15,16have
shown that the phase behavior of a mixture of hard rods and
plates could be described rather successfully within the Parsons
approach, showing improved agreement with computer simula-
tion over the Onsager theory. The agreement with simulations
was shown to be within 10%.

In this section we present an analytical theory based on the
approximate Gaussian trial orientation distribution function
(ODF) as formulated by Odijk et al.,17 which is a simplified
version of the trial ODF used by Onsager.1 For bidisperse
systems of rods with different lengths, the Gaussian ODF
successfully explained features such as the fractionation effect,
the widened biphasic gap,17 and, somewhat later, the existence
of triphasic and nematic-nematic equilibria.18 A recent analysis
by van Roij19 based on elaborate numerical calculations of the
exact high-density ODF essentially confirmed all conclusions
of ref 18, thus emphasizing the virtues of the Gaussian
approximation.

First, we will give a description of the Onsager formalism
for binary mixtures of platelike particles. After that, the Parsons
approach will be explained in more detail.

2.1. Onsager Theory.We consider a binary mixture of hard
platelets of speciesj ) 1 or 2 with length (thickness)Lj and
common diameterD in a macroscopic volumeV. For the sake
of definiteness, we denote the thicker platelets by subscript 2,

Figure 1. Samples of sterically stabilized gibbsite platelets after I-N phase separation as observed between crossed polarizers. Volume fraction
of the samples vary from (a)φ ) 0.22 to (b)φ ) 0.24 to (c)φ ) 0.25. Reprinted from ref 8. Copyright 2001 American Chemical Society.
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so that the composition variablex ) N2/(N1 + N2) is the mole
fraction of the thick platelets. Note that, unlike for a slender
rod, the aspect ratioL/D of a thin platelet is asmallparameter.

In the case of platelike particles, Onsager described the
nematic phase of a dilute solution of platelets in terms of the
ODF, fj(θ), describing the distribution of the angles between
the normal to the platelet of typej and the nematic director.
The ODF must be normalized according to∫fj(Ω) dΩ ≡ 1,
whereΩ is the solid angle of the platelet’s normal vector. In
the isotropic state, all orientations are equally probable, which
implies fiso ≡ 1/4π.

The formation of an isotropic state (withfj constant) or a
nematic state (withfj a peaked distribution) is caused by a
competition between orientational entropy (favoring the isotropic
state) and excluded volume entropy (favoring the nematic state).
Onsager1 defined σj as a measure of the (negative of the)
orientational entropy

which has its minimum (σj ) 0) in the isotropic state but
increases as the orientational entropy decreases. In the second
virial approximation, the interactions between hard particles may
be expressed as an excluded volume entropy depending on the
excluded volume between two particles. Onsager gives us the
following expression for the excluded volume between two
platelets (i.e., circular disks) with thicknessesLj and Lk as a
function of their mutual angleγ:

whereE(k) is the complete elliptic integral of the second kind.
For the isotropic phase, the excluded volume can be readily
calculated using the isotropic average〈〈E(sinγ)〉〉iso ) π2/8 (see
ref 1)

Note that the leading order term does not depend on the
thicknessL so that theO(L/D) term must be included to account
for the different thicknesses. A measure of the average excluded
volume interaction between platelets of typesj andk is given
by the average of its angular dependence1

where Vexcl,iso
0 ) D3π2/8 is the average excluded volume

between two randomly orientated platelets with zero thickness.
The definition ofFjk is slightly different from the one used by
Onsager, since we only retain the leading order termVexcl,iso

0 in
the denominator instead of the full expression (3). This leads
to Fjk

iso ) 1 + O(L/D) whereas in Onsager’s theoryFiso ≡ 1, by
definition. Note that both definitions are equivalent up to leading
order. Substituting (3) into (4) yields for the isotropic phase

Note that the second contribution is on the order ofL/D smaller
than the leading order term. We can express the total Helmholtz

free energy (in unitskBT per particle) of a binary mixture within
the second virial approximation in terms ofσj andFjk, leading
to

whereâ ) 1/kBT in terms of Boltzmann’s constantkB and the
absolute temperatureT. Furthermore,c is the total number
density of platelets rendered dimensionless by relating it to
Vexcl,iso

0 in the following way:

The last term in (6) can be identified as the (dimensionless)
second virial coefficientB̃2 multiplied by the concentrationc.
Note thatcB̃2 constitutes the excess part of the free energy,
which accounts for the interactions between the hard particles.
Using (5), together with the isotropic value,σj ≡ 0, we get the
following expression for the free energy in the isotropic phase:

In the nematic phase, matters are more complicated since the
ODF is no longer a constant but a sharply peaked function. The
excluded volume entropy is now given by

Here, the following asymptotic expansion of the elliptic integral
is used:20

which is valid for very small anglesγ. This approximation is
justified when the ODF is a sharply peaked function. Obviously,
we must specify the ODFfj to calculateFjk. As in ref 17, we
use Gaussian trial ODFs with variational parameterRj to
describe the angular distribution of the plateletsj in the nematic
state

A great advantage of using a Gaussian trial ODF is thatσj and
Fjk are now analytically tractable. Substituting (11) in (1) gives
us

for the orientational entropy. For the excluded volume entropy
in the nematic phase, we will only retain the leading order terms

σj ≡ ∫fj(θ) ln[4πfj(θ)] dΩ j ) 1, 2 (1)

Vexcl(γ) ) π
2

D3 sin γ +

(Lj + Lk)D
2{π

4
+ E(sin γ) + π

4
|cosγ|} + O(L2D) (2)

Vexcl,iso) π2

8
D3 + (Lj + Lk)D

2{π2

8
+ 3π

8 } + O(L2D) (3)

Fjk ≡ ∫∫Vexcl(γ)

Vexcl,iso
0

fj(θ) fk(θ′) dΩ dΩ′ (4)

Fjk
iso ) 1 +

Lj + Lk

D (1 + 3
π) + O(L2/D2) (5)

âF
N1 + N2

∼ cst- 1 + ln c + (1 - x) ln(1 - x) + x ln x +

(1 - x)σl + xσ2 + c[(1 - x)2F11 + 2x(1 - x)F12 + x2F22]

(6)

c ) 1
2

Vexcl,iso
0

N1 + N2

V
) π2

16
D3

N1 + N2

V
(7)

âFiso

N1 + N2
∼ cst+ (ln c - 1) + (1 - x) ln(1 - x) + x ln x +

c{1 + (2 + 6
π)[(1 - x)

L1

D
+ x

L2

D]} (8)

Fjk
nem) 4

π∫∫|sin γ|fj(θ) fk(θ′) dΩ dΩ′ + 2
π

Lj + Lk

D
×

∫∫[3 - 1
2

sin2 γ + |cosγ|] fj(θ) fk(θ′) dΩ dΩ′ +

O[(L/D)2] (9)

E(sin γ) ) π
2{1 - 1

4
sin2γ + O(sin4 γ)} (10)

fj(θ) ≡ { Rj

4π
exp[- 1

2
Rjθ

2] 0 e θ e
π
2

Rj

4π
exp[- 1

2
Rj(π - θ)2] π

2
e θ e π

(11)

σj ∼ ln Rj - 1 j ) 1, 2 (12)
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of its asymptotic expansion for largeRj

Henceforth, we will neglect theO(R-1) contribution in the
second term, which is justified for very large values ofR. Note
that this is a crucial step in our calculations, since theO(L/D)
term now becomes independent ofRj and thus independent of
the width of the angular distributionfj(θ). An important
consequence is that, in our approximation, the orientation of
the platelets in the nematic phase is solely determined by the
diameter of the platelets, which is identical for both components.
It is important to realize that the thickness does not enter into
the free energy anywhere else than via theO(L/D) term in (13).
So, we can simplify our calculations considerably by using a
single variational parameter,R ) Rj ) Rk, which holds for both
components. The above expression then reduces to

Note that theL/D contribution toFnem is simply the excluded
volume between two perfectly parallel platelets (γ ) 0) in the
nematic phase,πD2(Lj + Lk), divided by the excluded volume
between two randomly oriented platelets with zero thickness
in the isotropic phase (Vexcl,iso

0 ). The L/D contribution remains
constant up to orderO(γ2) as can easily be seen from (9) by
substituting the asymptotic expressions for the trigonometric
functions involved. Inserting (12) and (14) into the Helmholtz
free energy (6) and minimizing with respect toR gives

independent of the mole fractionx. We see thatR exhibits a
simple c2 dependence which is frequently encountered in
Onsager’s approach. Substituting all expressions back into the
free energy (6) yields a simple expression for the free energy
in the nematic phase

To locate phase transitions, we must know the osmotic
pressure and chemical potential of both types of platelets. These
are calculated as derivatives of the free energy. In the nematic
phase we obtain for the osmotic pressure (in dimensionless
notation)

wherecn andxn refer to the concentration and composition of
the nematic phase. The chemical potentials (also in dimension-
less notation) can be obtained from

Expressions for the isotropic phase can be obtained likewise
from (8). The excess free energy in the nematic phase

is essentially given by terms like

Note that the termcB̃2 in the free energy (6) can be obtained
from cFjk

nemby taking the average over all pairs of components
jk, using the product of mole fractionsxjxk as a weight function.
In the leading order term of (14), thec dependence vanishes
due to the fact thatR ∼ c2, according to (15). As a result, the
leading order contribution to the excess free energy, i.e., for
platelets with zero thickness, is simply 2 and thus independent
of the concentration. TheO(L/D) term gives an additional
contribution which is linear in c. In the osmotic pressure (17),
this leads to an additionalc2 contribution to the common linear
term 3c. Hence, the thickness of the platelets will have a
considerable influence on the osmotic pressure of a concentrated
nematic phase.

We are, in principle, ready to construct the phase diagram
by equating the osmotic pressure and the chemical potentials
of the isotropic and nematic phases and solve these equations
iteratively. However, as we already pointed out in the Introduc-
tion, one has to be very careful in adopting Onsager’s second
virial theory to describe a system of platelike particles since
higher virial coefficients will undoubtedly play a role, even at
low concentrations. Therefore, to make quantitative comparison
with experiments possible, we have to somehow account for
the effect of higher virial terms. A method which has proved to
be remarkably accurate up to now is to rescale the excess part
of the Onsager free energy using a modified form of the
Carnahan-Starling excess free energy for hard spheres. This
approach, which is known as the Parsons approach, will be
discussed in the next section.

2.2. The Parsons Approach.This approach due to Parsons14

from the late 1970s yields an extension of the Carnahan-
Starling expression for the excess free energy of hard spheres
to anisometrical particles. The well-known Carnahan-Starling
(CS) equation of state gives a very accurate description of a
hard-sphere fluid at volume fractions up to the freezing fraction
(φ ≈ 0.5). In fact, in that regime, the equation of state is almost
indistinguishable from the one obtained from computer simula-
tions. About 10 years later Lee21 showed that Parsons’ approach
gave an accurate description of the isotropic to nematic transition
in a system of hard ellipsoidal particles. The success of the
approach relies on the incorporation of many higher order
interactions, albeit approximately. As an example, for hard
spherocylinders with aspect ratioL/D ) 5, the third virial
coefficient calculated from Parsons’ theory14,22is B3 ) 0.2972B2

2

compared toB3 ) 0.4346B2
2 from Monte Carlo simulations.23

The Parsons approach involves an expression of the excess
free energy in terms of the semiempirical Carnahan-Starling
excess free energy for hard spheres24

where φ is the volume fraction of hard spheres. For a
one-component system of hard anisometrical particles, this free
energy is multiplied by the prefactor〈〈Vexcl〉〉/8V0, with V0 the
particle volume and〈〈Vexcl〉〉 the average excluded volume. Note
that 〈〈Vexcl〉〉/8V0 ) 1, in the case of hard spheres. For binary
mixtures of anisometrical particles, the prefactor could be
rewritten as〈〈Vjexcl〉〉/Vj0 in terms of the following mole fraction
averages:15

Fjk
nem∼ [8

π( 1
Rj

+ 1
Rk

)]1/2
+ 8

π
Lj + Lk

D
[1 + O(Rj

-1,Rk
-1)] (13)

Fjk
nem∼ 4

(πR)1/2
+ 8

π
Lj + Lk

D
(14)

R ∼ 4c2/π (15)

âFnem

N1 + N2
∼ cst+ 3 ln c + ln

4
π

+ x ln x +

(1 - x) ln(1 - x) + 16
π

c[(1 - x)
L1

D
+ x

L2

D] (16)

Π̃nem≡ - 1
2
âVexcl,iso

0 (∂Fnem

∂V )
N1,N2,T

∼ 3cn + 16
π

cn
2[(1 - xn)

L1

D
+ xn

L2

D] (17)

µ̃j,nem≡ â(∂Fnem

∂Nj
)

Nj,V,T
j ) 1, 2 (18)

cFjk
nem∼ 2 + 8

π
c
Lj + Lk

D
(19)

fCS(φ) ≡ âFCS
ex

N
)

φ(4 - 3φ)

(1 - φ)2
(20)
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whereφ is the total volume fraction of particles, related to the
dimensionless concentration and composition via

Having established this, we can write the excess free energy
within the Parsons approach as follows:

wheref̃CS(φ) ) fCS(φ)/4φ. Replacing the excess free energycB̃2

in (6) by (23) gives us the Onsager-Parsons free energy for a
binary mixture of hard platelets. Accordingly, for the isotropic
phase, we must replacec by cf̃CS in the last term of (8).
Recalculation of the osmotic pressure and chemical potentials
for the isotropic phase is now straightforward, using the
definitions (17) and (18). Recall that the volume fraction
depends onc andx via (22) so that the resulting expressions
involve additional derivatives off̃CS with respect toc and x.
For the nematic phase, matters are slightly more complicated
because of the minimization step. Hence, minimization with
respect toR now yields

The Onsager-Parsons free energy (denoted by superscript “P”)-
for the nematic phase thus reads

Note the additional lnf̃ contribution arising from the orienta-
tional entropy (12). Expressions for the osmotic pressure and
chemical potentials can be obtained similarly from the free
energy by straightforward derivations. To facilitate comparison
with (17), we will only give the osmotic pressure of the nematic
phase

Note that the linear contribution 3cn is retained. However, the
presence off̃ and its derivatives leads to a more complicatedc
dependence. Similar expressions can be obtained for the
chemical potentials and the pressure in the isotropic phase.

3. Isotropic-Nematic Phase Coexistence: Density
Inversion

We can construct the phase diagram by imposing the standard
conditions of equal pressure and chemical potentials in the two

coexisting phases, where the pressure and chemical potential
follow from the Onsager-Parsons equilibrium free energy.
However, we are still left with two important, yet unspecified,
parameters: the typical aspect ratios of the thin and thick
platelets,L1/D andL2/D, respectively. Since it is our primary
aim to account for the experimentally observed features, we
restrict ourselves to a single combination of aspect ratios, rather
than scanning the entire parameter space. We have chosen a
particular combination of dimensions for the platelets under
consideration, shown in Table 1. These values should resemble
the experimental system, studied by Van der Kooij et al.,8 in a
reasonable way. The corresponding phase diagram is depicted
in Figure 2. The diagram clearly displays a considerable degree
of fractionation between the coexisting phases. The thick
platelets are largely expelled from the nematic phase and prefer
to inhabit the isotropic phase instead. Another notable feature
of Figure 2 is the strong increase of the equilibrium osmotic
pressure at increasing mole fractions, indicating that the isotropic
to nematic transition in a pure system of platelets shifts to higher
number densities as the thickness is increased.

When we want to study the possibility of an I-N density
inversion, we have to calculate the total mass density of the
isotropic and the nematic phases. The mass density of the phases
is linearly proportional to the effective core volume fraction of
the platelets

which stems from the fact that, experimentally, the colloidal
platelets consist of a (dense) gibbsite (Al(OH)3) core surrounded
by a grafted polymer layer. The polymer layer approximately
has the same density as the solvent in which the platelets are
immersed and hence does not contribute to the total density of
the platelets. However, the grafted polymer layer does participate
in the mutual excluded volume between two platelets. The
dimensions given in Table 1 thus apply to thegraftedgibbsite
platelets. The thickness of the polymer layer has been estimated
at 4 nm,8 and the ratio of the core volumeVcore to the total
volumeV of the platelet can thus be calculated using the values
from Table 1, givingV1

core/Vl ≈ 0.55 andV2
core/V2 ≈ 0.75.

TABLE 1: Typical Dimensions and Aspect Ratios of the
Thick and Thin Platelets Used in the Present Calculations31

D (nm) L1 (nm) L2 (nm) D/L1 D/L2

180 20 45 9 4

Figure 2. Phase diagram in theΠ̃-x plane of a binary mixture of
thin platelets (D/ L1 ) 9) and thick platelets (D/L2 ) 4), calculated
from the Onsager-Parsons free energy. Note the significant degree of
fractionation between the phases.

〈〈Vjexcl〉〉 ) Vexcl,iso
0 [(1 - x)2F11 + 2x(1 - x)F12 + x2F22]

) Vexcl,iso
0 B̃2

Vj0 ) (1 - x)V0,1 + xV0,2 (21)

φ ) (1 - x)φ1 + xφ2

φ(c,x) ) 4
π

c[(1 - x)
L1

D
+ x

L2

D] (22)

âFex

N
) c[(1 - x)2F11 + 2x(1 - x)F12 + x2F22] f̃CS(φ)

) cf̃CS(φ)B̃2 (23)

R ∼ 4
π

c2f̃ CS
2 (φ) (24)

âFnem
P

N1 + N2
∼ cst+ 3 ln c + ln

4
π

+ x ln x + (1 - x) ln(1 -

x) + 2 ln f̃CS(φ) + 16
π

cf̃CS(φ)[(1 - x)
L1

D
+ x

L2

D] (25)

Π̃nem
P ∼ cn + [2cn + 16

π
cn

2f̃CS{(1 - xn)
L1

D
+ xn

L2

D}] ×

[1 + cn

∂ ln f̃CS

∂c ] (26)

φcore) 4
π

c[(1 - x)
L1

D

V1
core

V1
+ x

L2

D

V2
core

V2
] (27)
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Figure 3 clearly reveals that a density inversion will indeed
take place during the I-N phase separation. A marked feature
is that the area in which the isotropic and nematic phase densities
are inverted covers a major part of the phase diagram. Only
when the overall mole fraction is close to zero or one, i.e., in
the case of an almost pure system of either thin or thick platelets,
is fractionation apparently not strong enough to accomplish a
density inversion. In these situations, an isotropic upper phase
will be found as in the regular cases. Equal phase densities are
found at coexisting mole fractions (xi, xn) ) (0.181, 0.041) and
(0.954, 0.747), corresponding toΠ̃ ) 37.7 and 81.2, respec-
tively.

We can also represent the phase diagram by plotting the core
volume fraction versus the concentration, as shown in Figure
4. Recall that the core volume fraction is directly proportional
to the mass density of the phases. In this representation, we
can draw dilution lines, i.e., straight lines radiating from the
origin, along which the overall compositionx of the parent
system remains constant. From this representation we im-
mediately see that the total number density of platelets in the
nematic phase is always higher than the number density in the
isotropic phase, irrespective of the slope of the dilution line.
This clearly indicates that the density inversion is not stimulated
by the difference between the thermodynamic number densities
of the coexisting phases and hence must be driven by fraction-
ation. Furthermore, the slopes of the tie lines now indicate the
relative densities of the coexisting isotropic and nematic phases,
such that, in the case of a negative slope, the inverted state will
be found. Note that the evolution of the slopes of the tie lines
gives the impression of a “spiral staircase” in which the slopes
gradually change from positive to negative back to positive, as
one goes from a pure system of thin platelets to a pure system
of thick platelets. Another marked feature in Figure 4 is the
widening of the biphasic gap, although less pronounced here
than in the case of rods with different lengths.6,17The widening
of the I-N biphasic gap appears to be a typical property of
bidisperse (and polydisperse) systems of anisometrical particles25

as well as mixtures of different (polydisperse) species, such as
rod-plate mixtures26,27 and plate-polymer mixtures.28

4. Nematic-Nematic Phase Coexistence

As mentioned earlier in this paper, the thickness of the
platelets has a considerable influence on the osmotic pressure
of a concentrated nematic phase, as we can see from (17).
Naturally, one may ask whether this can cause the nematic phase

of a binary mixture of thin and thick platelets to demix into
two nematic phases at sufficiently high concentrations.

In this section we intend to study the relation between the
thickness bidispersity, quantified by the thickness ratioL2/L1,
and the topology of the phase diagram, in particular the existence
of a nematic-nematic coexistence region. The occurrence of a
demixing transition at a particular osmotic pressure can easily
be identified by the presence of an instability region (or van
der Waals loop) in the chemical potential curve (plotted versus
the mole fraction) in which∂µj/∂xj < 0. When we study the
possible coexistence between two nematic phases, we have to
realize that the osmotic pressure and chemical potentials are
given by the same expressions (17, 18) in both phases. To obtain
two different nematic phases, there must be two states, denoted
by I and II, with differentcn and/orxn values, having the same
osmotic pressure and chemical potential.

We will proceed in the following way: The aspect-ratio of
the thick platelets will be fixed at 4 while the aspect ratio of
the thin platelets is subject to variation. This implies that we
increase the degree of bidispersity by making the thin platelets
thinner while keeping the thickness of the thick platelets fixed.
In Figure 5, the resulting phase diagrams are depicted for
different values ofD/L1.

A remarkable feature is that the nematic-nematic transition
is always present, irrespective of the thickness ratioL2/L1 (>1).
Thus, even systems with a low degree of bidispersity (i.e.,L2/
L1 close to 1) exhibit a nematic-nematic demixing transition,
albeit at very high osmotic pressures. For instance, in our
experimentally considered system (D/L1 ) 9, D/L2 ) 4), a

Figure 3. Core volume fractionφcore of the coexisting phases versus
xi. In the area between the vertical lines the phase densities are inverted;
i.e., the isotropic phase is more dense than the nematic phase. On the
right axis, the extent of fractionation (xi - xn) is plotted versusxi.

Figure 4. (a, top) Phase diagram in the phase density-concentration
(φcore-c) plane. The outer dilution lines correspond to the pure
components. Thick lines indicate phase boundaries; thin lines represent
tie lines connecting coexisting phases. The horizontal tie lines (dotted
lines) denote equal phase densities. In the area between the dotted lines
the tie lines have negative slopes, which correspond to the inverted
state. (b, bottom) Magnification of the biphasic area.
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nematic-nematic critical point is located at a coexistence
pressureΠ̃ ) 208. Note that several other (liquid) crystalline
phases may come into play at these high pressures. When the
thickness ratio is increased, the critical point shifts to lower
values of the osmotic pressure, until atL2/L1 ≈ 3.3 the N-N
and I-N coexistence regions start to overlap, giving rise to a
triple point at which two nematic phases (NI and NII) coexist
with an isotropic phase (I) (Figure 5b).

Let us now elaborate on the nematic-nematic demixing
transition for a while and try to gain more insight into the
underlying mechanism. A convenient way to study the mech-
anism behind a demixing transition is to construct the Gibbs
free energy of the nematic phase and investigate the behavior
of the individual entropic contributions. For the sake of
simplicity, we will use the expressions from the Onsager free
energy (16) here, rather than the elaborate formulas obtained
from the Parsons rescaling step. The Gibbs free energy (in units
of kBT per particle) is given by

where the concentrationc is now a function of the osmotic
pressureΠ̃ and the mole fractionx. This function can readily
be obtained by inverting the expression for the osmotic pressure
in the nematic phase (17), which is simply quadratic inc. The
individual entropic contributions are given by

wheregmix, gor, andgex refer to mixing entropy, orientational
entropy, and excluded volume entropy, respectively. The
subscripts for the nematic phase are left out for notational
convenience. Note that the translational entropy contribution
(∼ln c) is omitted here, since it has essentially the same
dependence as the orientational part.

It is advantageous to rescale the Gibbs free energy by
subtracting the chemical potentials of the pure components,
weighed by their mole fractions

Obviously, the same rescaling procedure can be applied to the
individual entropic contributions. The motivation behind the
rescaling ofg is to uncover the exact curvature of the free energy
by subtracting the dominant linear trend. Note that the rescaling
is fully justified since only a linear contribution is subtracted
from the Gibbs free energy. Hence, the usual double tangent
construction for the determination of the coexistence composi-
tions can still be applied here. We can now plot the rescaled
Gibbs free energy versus the mole fraction for any particular
osmotic pressure and combination of aspect ratios. Recall that
the osmotic pressure should remain fixed upon variation ofx.
Figure 6 clearly reveals that the demixing transition originates
from a competition among translational entropy, mixing entropy,
and orientational entropy on one hand (all favoring the mixed
state) and excluded volume entropy on the other hand (favoring
demixing). At sufficiently high osmotic pressures, the latter
contribution will become dominant and demixing occurs.

5. Discussion

Our calculations based on the Gaussian approximation provide
us with a fairly simple interpretation of the isotropic-nematic
density inversion, as observed in experimental systems of
polydisperse gibbsite platelets.8 It appears that this phenomenon
indeed originates from a pronounced fractionation with respect
to thickness between the isotropic and the nematic phases, as
already suggested by van der Kooij et al.8 Hence, an isotropic-
nematic density inversion can only be accomplished when the
fractionation is strong enough to overrule the difference between
the coexistence number densities of the isotropic and the nematic
phases, for which we have shown thatci < cn, irrespective of
the overall composition. In this respect, we stress the importance
of the Parsons rescaling procedure. It is obvious that the
possibility of a density inversion strongly depends on the
difference between the coexistence densities (miscibility gap)
as found from the solutions of the coexistence equations. It turns
out that including higher virial terms by means of Parsons’
approach leads to a significant narrowing of the miscibility gap
and therefore strongly promotes fractionation to dominate, giving
rise to an inversion of densities.

It is a known feature that the Onsager theory overestimates
the miscibility gap, predicting a strong first-order phase transi-
tion (∆(ND3/V) > 1), whereas Monte Carlo simulations only
show a weak first-order transition.13 In fact, the Onsager theory
also overvalues the coexisting number densities as compared
to the simulations. It turns out that Parsons’ approach both
narrows the miscibility gap and shifts the coexisting densities

Figure 5. (a, top) Phase diagram in theΠ̃-x plane of a binary mixture
of thin platelets,D/L1 ) 13, and thick platelets,D/L2 ) 4 (L2/L1 )
3.25). The nematic-nematic coexistence region is bounded by a lower
critical point (cp). (b, bottom) Same as (a), forD/L1 ) 15 andD/L2 )
4 (L2/L1 ) 3.75). Full curves denote stable phase boundaries, while
the dotted curve represents a metastable phase boundary. The I-NI-
NII triple point is indicated by0.

g(Π̃,x) ≡ âF
N

+ Π̃c-1(Π̃,x) (28)

gmix ∼ (1 - x) ln(1 - x) + x ln x (29)

gor ∼ 2 ln c(Π̃,x) + ln
4
π

+ 1 (30)

gex ∼ 2 + 32
π

c(Π̃,x)[(1 - x)
L1

D
+ x

L2

D] (31)

g′(Π̃,x) ≡ g(Π̃,x) - [(1 - x)µ1
0(Π̃) + xµ2

0(Π̃)] (32)
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to lower values, thus being a significant quantitative improve-
ment over the Onsager theory. It is therefore not surprising that
our preliminary calculations solely based on the Onsager theory
could not establish a density inversion at any point in the phase
diagram; the difference between the coexisting densities was
simply too large to be overruled by fractionation, and hence an
I-N density inversion was not possible.

As pointed out earlier in this paper, we intend to compare
our results with the experimental observations obtained by van
der Kooij.8 For this purpose, we have drawn a particular dilution
line in Figure 4 which should resemble the experimental
observations in a reasonable way. This “experimental” dilution
line corresponds to a mole fractionx of 0.07. When a dilute
system is concentrated along this dilution line, phase separation
starts to occur at an overall volume fractionφ of 0.305. The
slope of the inital tie line is positive, indicating that an isotropic
upper phase is formed initially. Atφ ) 0.32 the dilution line
and the equal density tie line intersect, indicating that both
phases are equally dense at that point. At higher volume
fractions, the slopes of the tie lines become negative, indicating
that the densities of the phases are inverted and a nematic upper
phase will be formed. Atφ ) 0.351 the system is fully nematic.
The experimental phase boundaries are found to be somewhat
lower (φ ) 0.18 andφ ) 0.30).8 Equal phase densities are found
at a volume fraction of approximately 0.24.

We finally discuss a peculiar observation in relation with the
aforementioned dilution experiments. Van der Kooij performed
an additional fractionation experiment in which a suspension
was brought to a volume fraction (φ ) 0.29) close to the nematic
phase boundary (φ ) 0.30) and left to phase separate. The
nematic upper phase was separated from the isotropic bottom
phase and subsequently diluted. A remarkable observation was
that this system did not exhibit a density inversion at any point
in the isotropic-nematic coexistence region. This striking
observation however cannot be explained on the basis of our
model for a binary mixture of thin and thick platelets. Figure 4
clearly shows that any dilution line close to the experimental
dilution line will inevitably intersect the horizontal tie line
denoting equal phase densities. This means that, according to
our phase diagram, splitting off the nematic phase from a system
close to the nematic phase boundary will always give rise to
density inversion after dilution. In fact, an infinitesimally small
dilution of an isolated upper nematic phase infinitesimally close
to the phase boundary shouldalwaysresult in an isotropic phase

with the same composition as before, even in the case of a
polydisperse system. Therefore, if the fractionation experiment
would be performed with infinitesimally small dilutions (which
is obviously not feasible), the inverted state would inevitably
be recovered after dilution of the isolated nematic phase. We
therefore believe that the experimental observation can be
accounted for by considering the following: First, the gap
between the sample volume fraction and the phase boundary is
not infinitesimally small (∆φ ≈ 0.01), and consequently, the
discarded isotropic phase has a finite volume. Second, the
fractionation is believed to be particularly strong, such that
practically all thick species will accumulate in the isotropic
phase (with a finite volume), leaving a nematic phase with
reduced polydispersity in which no density inversion can be
accomplished after dilution.

We believe that the particularly strong tendency to fractionate
is a manifestation of the polydisperse nature of a colloidal
system of gibbsite platelets, meaning that the system essentially
comprises infinitely many platelike species with continuous
variations in thickness (and diameter), rather than a number of
distinct species. Obviously, mapping a truly polydisperse system
like this onto a simple binary model system implies a serious
simplification. However, we believe that our model, despite its
simplicity, is capable of capturing the essential features of the
phase behavior of colloidal platelets with polydispersity in
thickness.

In addition to the inversion of phase densities at the I-N
transition, our calculations show that the nematic phase of a
binary mixture of thin and thick platelets can split into two
nematic phases at sufficiently high concentrations. The N-N
demixing is essentially driven by the relatively smallO(L/D)
contribution to the excluded volume part of the free energy. At
sufficiently high osmotic pressures, the gain in excluded volume
entropy will outweigh the loss of mixing and orientational
entropy due to demixing and demixing occurs. At high thickness
ratios(L2/L1 J 3.3), an additional triphasic equilibrium is found
at which two nematic phases coexist with an isotropic phase.
In theoretical and simulation studies, demixing of the nematic
phase into two separate nematic phases of differing densities
and compositions has been found for binary mixtures of short
and long rods,18,19 for thick and thin rods,9-11,29 and for rods
differing in both length and diameter.30 However, no experi-
mental efforts have been made so far to study the phase behavior
of a binary mixture of thin and thick hard platelets. Considering
the results of our present calculations, we believe it is a future
challenge for experimentalists to verify the possibility of a
nematic-nematic demixing transition in real (colloidal) binary
systems.
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