
Chapter 2

A potential mechanism for the initial
formation of sequences of barrier
islands

Abstract

An idealized model is developed and analyzed to demonstrate the potential relevance of tidal
motion for the emergence of undulations of a sandy coastline. These undulations might trigger
the formation of inlets and barrier islands. The model describes the feedback between depth-
averaged tidal and steady flow on the inner shelf, sediment transport in the nearshore zone
and an irregular coastline. It is demonstrated that an initially straight coastline can become
unstable with respect to perturbations with a rhythmic structure in the alongshore direction.
Using parameter values that are representative for the Dutch coast, it is found that perturbations
with a length scale smaller than 8 km will grow. The time scale of the evolution is in the order
of hundred years and perturbations typically migrate in the order of 10 meters per year. The
mechanism responsible for the growth of perturbations is explained in terms of vorticity concepts.
The alongshore gradient in the transfer of vorticity in the alongshore direction generates residual
circulation cells that cause a growth of the perturbation. The cross-shore gradient in the transfer
of vorticity in the cross-shore direction induces residual circulation cells that cause a decay of
the perturbations. If the influence of waves on the net sediment transport is ignored, there
is no fastest growing mode. When the wave-induced sediment transport is accounted for, the
model predicts a fastest growing mode with wavelengths that can be in the order of observed
length scales of barrier islands. The model predicts that the wavelength of the preferred mode
decreases with increasing amplitude of the tidal currents and increases with increasing wave
height. This is in gross correspondence with observed behavior of the lengths of barrier islands
that are located along the Dutch and German Wadden coast and of those located in the Georgia
Bight.
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2.1 Introduction

A large part of the world’s sandy coastlines show alongshore rhythmic variations on a
wide range of length and time scales (Ehlers , 1988; Komar , 1998; Ruessink and Jeuken,
2002). This chapter focuses on rhythmic mesoscale variations of sandy coasts, i.e., with
a characteristic length scale in the alongshore direction of a few kilometers to tens of
kilometers. Such mesoscale variations are e.g. observed along the Dutch, German and
Danish Wadden coast. This coast is characterized by a sequence of barrier islands and
inlets. The typical length of the barrier islands decreases from a maximum length of 30 km
for the island of Texel to an absence of barrier island in the German Bight (see Figure 1.6).
It has been noted that the typical length of the barrier islands is inversely related to the
tidal range (Oost and de Boer , 1994). The tidal range increases when moving from the
Dutch part of the Wadden Sea to the Danish part, as has been discussed in Chapter 1.
This behavior of the length of barrier islands along the Dutch and German Wadden Sea
is not unique. In the Georgia Bight a similar relation between tidal range and the length
of the barrier islands is observed (FitzGerald , 1996). In addition, the length of the barrier
islands in this region is also linearly related to the mean height of the waves (see Chapter
1 for more details).

The general objectives of the present study are twofold. The first is to gain funda-
mental knowledge about the origin of the observed rhythmic mesoscale variations of the
coastline using a model. The second is to derive a qualitative relationship between the
characteristic length of these undulations and physical control parameters (like tidal, wave
and shelf characteristics). In the past, several models were developed to study the dy-
namics of coastlines which are influenced by waves. They are all one-line models, i.e., the
complex three-dimensional dynamics is parameterized, resulting in an equation for the
coastline position only. A simple, widely used one-line model that simulates the initial
evolution of rhythmic alongshore perturbations of a straight coastline, is that described
by Komar (1998) (originally from Pelnard-Considère (1956)). In this model it is assumed
that the width of the surf zone (the area where the waves are breaking) is constant.
The conceptual idea is that obliquely incident waves refract and break in the surf zone
and drive a current which transports sediment. Alongshore variations in this sediment
transport result in changes of the position of the coastline. Under the aforementioned
assumptions, and by only considering the dynamics due to a small rhythmic perturbation
of the coastline, the Komar (1998) model boils down to a diffusion equation for the po-
sition of the coastline. The diffusion parameter is a function of the wave characteristics
at the breaker line and the angle between the direction of the wave rays at breaking and
the normal of the local (perturbed) coastline. A positive diffusion parameter implies that
a small initial perturbation of the coastline will decay and a negative diffusion parameter
results in growth. A negative diffusion parameter is obtained when the angle between
wave rays at breaking and the normal of the local coastline is more than 45 degrees.

The one-line model of Komar (1998) was extended by Ashton et al. (2001); Falqués
(2003). They assumed that a change in the position of the coastline also results in a change
of the bathymetry outside the surf zone. The bathymetric contour lines are kept parallel.
Hence, a change in the position of the coastline results in a shift of the entire bayhymetric
profile. Already far offshore the waves are influenced by the change in the coastline
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position because the bottom has changed. The diffusion parameter is now calculated as a
function of the wave characteristics far offshore. The model results of Falqués (2003) show
that the diffusion parameter in the model of Komar (1998) is always positive because the
waves refract such that the wave rays at breaking will always have an angle of less than 45
degrees with respect to the normal of the local coastline. This does not imply that in the
model of Falqués (2003) the perturbations of the coastline always decay. The model also
takes into account the influence of alongshore variations in the wave height at the breaker
line due to focusing of wave energy. Adding this effect leads to the so-called high-angle
wave instability. Wave rays at deep water which have an angle of more than 42◦ with
respect to the normal of the local coastline can lead to a growth of the perturbation of
the position of the coastline.

Although interesting results are obtained with the models of Ashton et al. (2001) and
Falqués (2003), there are problems with the physical interpretation. The main problem is
that in these models sediment mass is not conserved. In Falqués and Calvete (2005) this
problem was solved. They assumed that a perturbation in the position of the coastline
results in a perturbation of the bottom profile with finite cross-shore extent. Hence, the
bathymetric contours far offshore are not parallel anymore to the bathymetric contour
lines in the nearshore zone. The model results show that fastest growing modes emerge
which have typical time scales of years and wavelengths of the order of 10 km. The
model was applied to the Dutch coastline, where a sequence of barrier islands is observed.
Using their model, the Dutch coastline was found to be stable, i.e., no growing rhythmic
coastline undulations were found (Ashton et al., 2003; Falqués and Calvete, 2005; Falqués ,
2005).

Since the action of waves in itself is not sufficient to trigger the evolution of an un-
dulating coastline along the Dutch and German Wadden coast, tidal motions might be
important as well. The observation that the barrier length increases with decreasing tidal
range seems to support the importance of tidal motion for understanding the emergence
of coastline undulations. Therefore, in this study a process-based one-line model is devel-
oped and analyzed to study whether the feedback between the coastline and tidal currents
can cause the initial formation of an undulating coastline with length scales ranging be-
tween a few and tens of kilometers. In section 2.2 a model is formulated in which coastline
undulations develop as free instabilities of an alongshore uniform coastline. The new as-
pect of this model is that it explicitly accounts for the influence of tidal currents on the
stability of the coastline. In section 2.3 the basic state is described and the linear stability
analysis is discussed. The model calculates the growth rate and phase speed of the coast-
line perturbation for different alongshore wavelengths of the perturbation. The results of
this linear stability analysis are presented in section 2.4. In section 2.5 the results are
compared with observations. Section 2.6 gives the physical interpretation of the results,
and in section 2.7 the results are discussed and the main conclusions are given.

2.2 Model formulation

In this study a Cartesian coordinate system is adopted with the x-axis pointing in the
cross-shore direction, the y-axis coinciding with the alongshore mean position of the coast-
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line and the z-axis pointing in the upward vertical direction. The domain of the model
consists of three regions: the surf zone, the nearshore zone and the inner shelf (Fig-
ure 2.1(a)). The surf zone is the area where the waves break and is located between the
coastline x = xc and the breaker line x = xb. The nearshore zone is also called the active
zone and is the area where bottom changes occur due to changes in the position of the
coastline. The nearshore zone is located between the coastline x = xc and the transition
line x = xt, with xt > xb. Here, the transition from the nearshore zone to the inner shelf
occurs. The inner shelf is the region that is located between the nearshore region and
the outer shelf. Sediment transport is small and the time scale of bathymetric changes is
large compared to that of the nearshore zone.
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Figure 2.1: (a) Sideview of the geometry of the model. The nearshore zone is the area from the
coastline to the transition line. The width of the nearshore zone is approximately 500 m. The
surf zone is the area from the coastline to the breaker line. It has a width of typically 100 m.
The transition between nearshore zone and inner shelf takes place at a typical depth of 5 m.
The typical width of the inner shelf is 10 km. At the position where the inner shelf connects to
the outer shelf the typical depth is 25 m. For more information see the text.
(b) Top view of the model. The position of the coastline is perturbed rhythmically and is denoted
by the dashed variations. It is assumed that the width of the surf zone and the nearshore zone
is constant. Therefore, the position of the breaker line and the position of the transition line are
also perturbed when the coastline is perturbed. The typical length of the rhythmic variations
of the position of the coastline is 1 − 10 km. The volumetric sediment flux in the alongshore
direction is denoted by q and takes place in the whole nearshore zone.

2.2.1 Hydrodynamics

The tidal hydrodynamics at the inner shelf are governed by the depth-averaged, shal-
low water equations. The water motion is forced by the semi-diurnal lunar (M2) tide,
which has frequency σ ∼ 1.4 × 10−4 s−1. The characteristic tidal wavelength is Lg ∼
2π

√
gH∗/σ ∼ 450 km, where g is the acceleration due to gravity and a H∗ = 10 m a

characteristic water depth. The spatial scales of the phenomena that are the focus of
this study (typically Lbarrier ∼ 10 km) are small compared to the wavelength of the tidal
wave. Hence, the Froude number (Fr ∼ Lbarrier/Lg) is very small. This allows for a rigid
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lid approximation: The sea level variations themselves can be neglected, but their spatial
gradients are important and result in pressure gradients in the momentum equations (see
e.g., Huthnance (1982); Calvete et al. (2001)). The hydrodynamic equations are

∂�u

∂t
+ (�u · �∇)�u + f�ez × �u = −g�∇ζ − �τb

ρH
(2.1a)

�∇ · (H�u
)

= 0 (2.1b)

Here �u is the horizontal velocity vector, t is time, �∇ the horizontal gradient operator, f
the Coriolis parameter, �ez the unity vector in vertical direction, ζ the elevation of the free
surface, H the water depth with respect to z = 0 and �τb the bed shear-stress. Usually,
the bed shear-stress is taken to depend quadratically on the local velocity. In this study
a linearized bed shear-stress formulation is used. Hence, instead of using

�τb = ρCd|�u|�u (2.2)

the bed shear-stress is approximated by

�τb = ρr�u (2.3)

The friction factor r is taken such that the tidally averaged dissipation due to the linearized
bottom stress equals that of the quadratic bottom stress. A discussion on the derivation
of the linearized bed shear-stress can be found in Zimmerman (1992). In this study we
choose the friction parameter to be

r =
8

3π
CdU (2.4)

with U the mean tidal velocity amplitude at the transition line. This implies that the
friction parameter r is constant in the domain.

In this model tidal motion is due to a prescribed alongshore pressure gradient. As
boundary conditions in the alongshore direction periodic conditions (with an as yet un-
specified length scale) are imposed, at the transitions line the shore-normal velocity com-
ponent must vanish and far offshore the velocity is required to have no cross-shore com-
ponent:

x = xt : u = v
∂xt

∂y
(2.5a)

x → ∞ : u → 0 (2.5b)

where u, v are the cross-shore and alongshore component of the velocity vector �u, respec-
tively.
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2.2.2 Volumetric sediment transport

The tidal hydrodynamics and sediment transport in the nearshore zone are not explicitly
calculated in the model. Instead, the tidal currents are calculated on the inner shelf and
the velocities at the transition line are taken as representative for the whole nearshore
zone. They are used to calculate the volumetric sediment flux q in the nearshore zone
(Figure 2.1(b)). In general, the sediment flux has a component due to waves and due to
tides,

q = q(wave) + q(curr) (2.6)

where q(wave) is the part due to waves only and q(curr) due to the joint action of tides and
waves. It is assumed that q(curr) involves the stirring of sediment form the bed by waves,
which is subsequently transported by a tide-driven residual current. This is parameterized
as

q(curr) = β < v‖ > (2.7)

Here β is a constant and < v‖ > is the tidally averaged shore-parallel component of the
velocity at the transition line,

< v‖ >=
1

T

T∫
0

v‖dt (2.8)

where T is the tidal period. The constant β in equation (2.7) accounts for the fact that
the sediment is transported in the complete nearshore zone and has the unit of m2. A
physical interpretation of β is the available volume of sediment in the nearshore zone per
unit length,

β =

∫ ∫
c

ρs

dzdx (2.9)

In this expression is c the tidally averaged sediment mass concentration and ρs the density
of the sediment. The mean wave height along the Dutch and German Wadden coast is in
the order of 1 m Sha (1989a). Using observations performed by Grasmeijer and Kleinhans
(2004) of sediment concentrations at different levels in the vertical in the nearshore zone
near Egmond aan Zee (the Netherlands) yields an estimate of

∫
c
ρ
dz = O(5·10−5−1·10−3)

m3/m2. Assuming that the width of the nearshore zone is in the order of 500 m, this yields
that β = O(2.5 · 10−2 − 5 · 10−1) m2.

Although the focus in this study is on the sediment transport due to tidal currents,
some experiments have been performed in which both sediment transport due to waves
only and tidal currents are accounted for (section 2.4.4). The expressions of Pelnard-
Considère (1956); Komar (1998) are used to parameterize wave-driven sediment trans-
port,

q(wave) = µH2.5
b sin 2(θb − φ) (2.10)
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where µ ∼ 0.1 − 0.2 m
1
2 s−1 is a constant of proportionality, Hb is the (rms) wave height

of the waves at the breaker line and θb − φ (see Figure 2.2) is the angle between the wave
fronts at breaking and the local coastline. In the present model both Hb and θb are input
parameters. The local angle between the coastline and the y-axis is defined as

φ = arctan
[ ∂xt/∂y

(1 +
∣∣∂xt/∂y

∣∣2)1/2

]
(2.11)
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Figure 2.2: Definition of angle between wave rays at breaking and the local coastline. Dashed
lines represent wave rays. Dotted line is coastline perturbation. The angle between y-axis
and local normal to the coastline is φ and θ is the angle between the wave rays and the local
unperturbed coastline.

2.2.3 Evolution of the coastline

When the position of the coastline changes, it can be expected that the bathymetry further
offshore also changes. Hence, a change in the position of the coastline results in change
of the position of breaker line and of the transition line. The most simple approach is to
assume that variations in the coastline results in variations of the position of transition
line of the same amplitude and vice versa, xt−xc = constant. In this section the sediment
mass balance is used to derive an evolution equation for the location of the transition line
(xt). Assume that the location of the coastline is shifted in time ∆t over a small distance
∆xt (Figure 2.3). In the present model it is assumed that entire bathymetric profile in
the nearshore zone shifts over a distance ∆xt. Therefore, the volume of sediment per unit
length necessary for the displacement equals ∆xtH(x = xt)+O(∆x2

t ). Here H(x = xt) is
the depth at the transition line x = xt. The change in the volume of sediment results from
the convergence of the sediment transport in the alongshore direction, ∆q/∆y. Taking
the limit ∆q, ∆xt, ∆y → 0, it follows that

∂xt

∂t
= − 1

H

∂q

∂y

∣∣∣
x=xt

(2.12)

The evolution of the transition line (and hence the coastline) takes place on a long mor-
phological time scale Tm. Applying a scaling analysis and calculating the influence of
alongshore variations in q(curr) (Equation (2.7)) on the evolution of the coastline (defined
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Figure 2.3: Sediment conservation in the present model. The coastline is at x = xc and the
transition line at x = xt. The coastline is shifted in seaward direction with ∆xt while xt − xc

is constant. The shaded area is the volume of sediment per unit length that is added to this
coastal section.

by Equation (2.12)) and using boundary condition (2.5a) to obtain an estimate of v‖ yields

Tm =
[H(x = xt)][λ]2

β[v]
(2.13)

where the typical value of the alongshore tidal currents is [v] = 1 ms−1, the typical value
of the alongshore wavelength of the perturbation is [λ] = 10 km, the typical depth at
the transition line is [H(x = xt)] = 5 m and typically β = 10−1 m2. Using these values,
the morphological time scale is approximately 150 years. Physically this means that the
coastline is not changing on the tidal time scale, but only on a very long time scale.
Therefore, the position of the coastline can be considered as constant during one tidal
cycle.

2.3 Basic state and linear stability analysis

2.3.1 Basic state

The model solutions are denoted by a state vector Ψ = (�u, �∇ζ, q, q(curr), q(wave), xt)
T . This

state vector can be split into a part which describes a basic state with alongshore uniform
conditions and a part which describes deviations from this basic state, Ψ = Ψeq + Ψ′.
Here, Ψeq = (�U, �∇Z,Q,Q(curr), Q(wave), Xt)

T with �U = (U, V ) the basic state velocity

vector with components U and V in the x- and y-direction, respectively, and �∇Z the
basic state gradient of the sea surface. Furthermore, Q is the basic state volumetric
sediment flux in the nearshore zone, Q(curr) and Q(wave) are the basic state volumetric
sediment flux in the nearshore zone due to joint action of waves and tides and due to
waves only, respectively, and Xt = constant is the position of the transition line in the
basic state (straight coast).

In the basic state a spatially uniform alongshore pressure gradient is prescribed that
consists of a residual component (S0) and the main tidal (M2) component with amplitude
S2 and frequency σ,
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∂Z

∂y
= −S2 cos σt + S0 (2.14a)

∂Z

∂x
=

f

g
V (x, t) (2.14b)

No higher harmonics of the tide are taken into account. The free surface elevation Z is
linear in the alongshore direction. In the cross-shore direction the gradient in the free
surface elevation follows from geostrophic balance. The basic state velocity has an along-
shore component that varies only in the cross-shore direction, i.e., �U = (0, V (x, t)). This
velocity component is determined by a balance between inertia, alongshore sea surface
gradient and depth-dependent friction,

∂V

∂t
= −g

∂Z

∂y
− r

V

H
(2.15)

The solution for the basic state velocity is

V (x, t) = V2(x) cos (σt + Φ(x)) + V0(x) (2.16)

with

V2(x) =
HS2g√

σ2H2 + r2
(2.17a)

V0(x) =
−gS0

r
H (2.17b)

Φ(x) = arctan
( r

σH

)
(2.17c)

The depth-dependent friction term in the alongshore momentum balance causes a phase
lag between currents and sea surface gradient (in case of time dependent pressure gradi-
ent). It also results in an increasing magnitude of the alongshore velocity with increasing
depth, i.e., cross-shore distance. Hence, the basic state velocity contains vorticity, defined
by Ω(x, t) = ∂V (x, t)/∂x. Furthermore, the magnitude of U can be defined

U = V2(x = Xt) (2.18)

The basic state sediment transport due to tides is

Q(curr) = βV0 (2.19)

Following Komar (1998), the basic state sediment transport that is solely due to waves
reads

Q(wave) = µH2.5
b sin (2θb) (2.20)
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2.3.2 Stability analysis

The stability of the alongshore uniform coastline is studied by considering the dynamics
of alongshore rhythmic perturbations. Hence, in Equations (2.1) and (2.4)-(2.12) Ψ =
Ψeq +Ψ′ is substituted, with Ψeq as defined in Equations (2.14), (2.16), (2.19), (2.20), and

Ψ′ = (�u′, �∇ζ ′, q′, q′(curr), q
′
(wave), x

′
t)

T denotes the state vector with the perturbed variables,
which are assumed to be small compared to their values in the equilibrium state.

Linearizing the equations with respect to the small variables results in the following
equations that describe the perturbed hydrodynamics,

∂u′

∂t
+ V

∂u′

∂y
− fv′ = −g

∂ζ ′

∂x
− ru′

H
(2.21a)

∂v′

∂t
+

(
u′∂V

∂x
+ V

∂v′

∂y

)
+ fu′ = −g

∂ζ ′

∂y
− rv′

H
(2.21b)

u′dH

dx
+ H

∂u′

∂x
+ H

∂v′

∂y
= 0 (2.21c)

The linearized boundary conditions (2.5) read

u′∣∣
x=Xt+x′

t
= V

∂x′
t

∂y

∣∣
x=Xt

(2.22a)

u′ = 0|x→∞ (2.22b)

The next step is to find q′(curr) and q′(wave). Using (2.7) and the definition v‖ = �u · �s,
with �s the tangent of the transition line, the tidally induced sediment transport at the
undulating transition line becomes

Q(curr) + q′(curr) =
β < V + v′ >[
1 +

(
∂x′

t

∂y

)2]1/2

∣∣∣
x=Xt+x′

t

(2.23)

To evaluate this expression at location x = Xt+x′
t (which is unknown), a Taylor expansion

of the various variables is made, resulting in

Q(curr) + q′(curr) =
β < V + v′ > |x=Xt + βx′

t
∂<V +v′>

∂x

∣∣
x=Xt

+ · · ·
1 + 1

2

(
∂x′

t

∂y

)2

+ · · ·
(2.24)

Keeping only contributions that are linear in the perturbed quantities results in

q′(curr) = β
[
< v′ > +x′

t

d < V0 >

dx

]
x=Xt

(2.25)

For the perturbed wave-induced volumetric sediment flux q′(wave)the expression of Komar

(1998) is used,

q′(wave) = µH2.5
b cos (2θb)

∂x′
t

∂y
(2.26)
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The last step is to obtain the evolution equation for the perturbed position of the transition
line. The spatial variations in the sediment transport result in changes in the position of
the coastline and the transition line. The linearized evolution equation for the position of
the transition line becomes

∂x′
t

∂t
= − β

H

∂

∂y

[
< v′ > +x′

t

d

dx
< V0 >

]∣∣∣
x=Xt

+ γ
∂2x′

t

∂y2
(2.27)

Equation (2.27) clearly shows that the waves cause diffusion of the coastline perturbation
with the diffusion parameter γ defined by

γ =
2µH2.5

b

H(x = Xt)
cos (2θb) (2.28)

2.3.3 Solution procedure

The model equations have solutions of the form

Ψ′ = �
[(

û(x, t), v̂(x, t), �∇ζ̂(x, t), q̂, q̂(curr), q̂(wave), x̂t

)
eikyeΓt

]T

(2.29)

Note that all variables behave exponentially in time. Besides, the hydrodynamic variables
also show oscillatory behaviour on the tidal time scale which is much smaller than the time
scale on which the transition line is evolving. The alongshore wave number is denoted by
k and can be chosen arbitrarily. Furthermore, Γ = Γre + iΓim is the complex growth rate,
with a real part (Γre) that describes the growth of the perturbations, and an imaginary
part (Γim) that determines the phase speed, c = −Γim/k.

The aim is to determine û(x, t), v̂(x, t), �∇ζ̂(x, t), q̂, q̂(curr), q̂(wave), x̂t and Γ as a function
of wave number k and model parameters. The interest is in perturbations that have pos-
itive growth rates (Γre > 0). The mode with wave number k = kp that has the largest
growth rate will dominate the dynamics after some time. Therefore, it is called the most
preferred mode. The growth rate is calculated as follows. First, the perturbation x′

t

with given wave number k is chosen. The hydrodynamic problem, described by Equa-
tions (2.21a), (2.21b), (2.21c) and boundary conditions (2.22), has to be solved. Because
the alongshore dependence of the variables is known a priori, v̂ is known as a function of
û (Equation (2.21c)), and reads

v̂ = − ûdH
dx

+ H ∂û
∂x

ikH
(2.30)

The two momentum equations (2.21a) and (2.21b) are combined into a vorticity equa-
tion. This is done by taking the x-derivative of Equation (2.21b) and subtracting the
y-derivative of Equation (2.21a). When substituting for v̂, one equation for the complex
cross-shore velocity û is found,

U12
∂3û

∂t∂x2
+ U11

∂2û

∂t∂x
+ U10

∂û

∂t
+ U02

∂2û

∂x2
+ U01

∂û

∂x
+ U00û = 0 (2.31)

The coefficient Uij are given in the appendix. As boundary conditions at x = Xt û is
prescribed and for x → ∞ it is required that û → 0. Solving Equation (2.31) together
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with the boundary conditions yields û, and using Equation (2.30) yields v̂. Now, the
perturbed sediment transport q̂(curr) is known. For given wave conditions also q̂(wave) can
be calculated. Substituting Equation (2.29) into Equation (2.27) yields an expression for
Γ,

Γx̂t = − β

H

(
ik < v̂ > +x̂t

dV0

dx

)∣∣∣
x=Xt

−γk2x̂t (2.32)

2.3.4 Numerical implementation

Equation (2.31) is solved using a pseudospectral method. The spatial variables are ex-
panded in Chebyshev polynomials (see Boyd (2001) for details). In previous morpho-
dynamic modeling studies these Chebyshev polynomials have been successfully used in
resolving spatial patterns (Falqués et al., 1996). Employing the method discussed Calvete
et al. (2001), for the time-dependent part a Galerkin approach is adopted. The velocity
component û and v̂ are expanded in their harmonic agents M0, M2, M4 and so on. In
this study the series is truncated after the M2 components, so nonlinear tides are not
accounted for. Hence, the variables are expanded as

û(x, t) =
N∑

p=1

[
u0

p + u−1
p e−iσt + u1

pe
iσt

]
Ti(x̃) (2.33a)

v̂(x, t) =
N∑

p=1

[
v0

p + v−1
p e−iσt + v1

pe
iσt

]
Ti(x̃) (2.33b)

(2.33c)

where x = Lx
1+x̃
1−x̃

with Lx is a stretching parameter and Ti are Chebyshev polynomials.
Furthermore, N is the number of collocation points in the x-direction and u0

p, u−1
p , u1

p are
the Chebyshev coefficients of the residual component, the e−iσt Fourier component and
the eiσt Fourier component of the cross-shore velocity, respectively. The expansions of
Equation (2.33) are substituted into Equation (2.31) and are evaluated at N collocation
points in the x-direction. This results in a system of 3N by 3N linear algebraic equations
with 3N variables of the form Ax = B, which is solved by standard numerical techniques.
Here, A is a complex 3N by 3N matrix describing the model equations. The vector x
describes the coefficients of the expansions of Equation (2.33). The complex vector B is
zero for all 3N components, except for the collocation points at the transition line. In
those points the magnitude of û is prescribed (boundary condition (2.22)).

2.4 Results

2.4.1 Reference case

In the first experiments the focus is on the influence of tidal currents on the stability
of the equilibrium state with respect to perturbations in the position of the coastline.
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Figure 2.4: Four cross-shore profiles along the Frisian Islands. The profile of ’North Holland’
is taken 20 km south of Den Helder. For other positions of cross-shore transects, see Figure 1.6.

Thus, γ = 0 is assumed in Equations (2.27) and (2.32). Within the present model this
situation occurs when the angle of wave incidence θb = 45◦. The meaning of this choice
will be discussed later on. Experiments are performed for parameter values which are
representative for the Dutch coastal area. The following profile has been used to represent
the depth profile of the inner shelf,

H(x) = H0 + (Hs − H0)(1 − e−(x−Xt)/L) (2.34)

Here, H0 = H(x = xt) and far offshore, where the inner shelf connects to the outer shelf,
the depth is Hs. Parameter L is an e-folding length scale which is a measure of the
width of the inner shelf. Typical values have been determined by fitting this expression
to observed profiles along the Dutch coast. This yields estimates of H0 ∼ O(1 − 10) m,
Hs ∼ O(15 − 25) m and L ∼ O(8 − 15) km. In the reference experiment H0 = 5 m,
Hs = 20 m and L = 10 km. The alongshore sea surface gradient is chosen such that the
maximum velocity amplitude at the transition line is V2(x = Xt) = U = 0.5 ms−1. No net
flow is considered in the basic state (S0 = 0). The Coriolis parameter f = 1.14· 10−4 s−1

and the drag coefficient Cd = 2.5 · 10−3. Furthermore, it has been used that β = 10−1 m2.
The number of collocation points is N = 100 and the stretching parameter Lx = 10 km.

The dependence of the growth rate on the alongshore wave number is shown in Fig-
ure 2.5(a). The growth rate is scaled with Tm, so a growth rate of 1 corresponds to an
e-folding time scale of 150 years. The variable along the horizontal axis of Figure 2.5(a)
is the non-dimensional alongshore wave number kL = 2πL/λ, where λ is the wavelength
and L = 10 km is the width of the inner shelf. The basic state is stable with respect
to perturbations having small values of the dimensionless wave number, corresponding to
wavelengths which are long compared to the width of the inner shelf. Perturbations with
these wavelengths have negative growth rates and hence decay exponentially. For kL > 3
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the growth rate increases with increasing kL and for kL ∼ 8 the growth rate is zero. The
wavelength of the perturbation with zero growth rate is called λ0. In this case λ0 = 7.9
km. For kL > 8 the growth rate is positive. Hence, there is a positive feedback between
the coastline perturbation and the tidal flow. The growth rate curve does not show a
maximum, so there is no fastest growing mode. For large wave numbers the growth rate
tends to a constant.

The model also yields the phase speed of the perturbations. This phase speed is
shown as a function of the dimensionless alongshore wave number in Figure 2.5(b). It
has a minimum for kL ∼ 5 and decreases for larger kL. A nondimensional phase speed
of −0.3 is in dimensional values −20 m/yr. A negative sign means that the perturbation
is migrating in the negative y-direction, that is to the right when viewing in the seaward
direction.
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Figure 2.5: (a) Growth rate as a function of wave number for the reference case. A growth rate
of 1 corresponds to an e-folding time scale of 150 years. Wave numbers are scaled with the width
of the inner shelf, 10 km. (b) Phase speed as a function of wave number for the reference case.
A phase speed of -0.3 corresponds to a dimensional phase speed of -20 m/yr.

The sediment transport q′(curr) is linear in the residual currents (Equation (2.25)). Fig-

ure 2.6(a) shows a vector plot of the residual currents on the inner shelf. Because the
model does not yield a fastest growing mode, a wavelength is chosen that has a positive
growth rate, λ = 3 km (kL = 20.9). Furthermore, because the the model is linear in x′

t an
amplitude is chosen of [x′

t] = 500 m. Two residual circulation cells per alongshore wave-
length appear. The structure of the residual circulation cells is such that the maximum
convergence of the velocity at the transition line (and hence the convergence of the net
sediment flux) is slightly out of phase (to the right when viewing in the seaward direction)
with the coastline perturbation. The perturbation will therefore grow and migrate. The
migration is forced by the Coriolis force. When f = 0, there is no phase difference between
the residual velocities at the transition line and the coastline perturbation (Figure 2.6(b)).
Hence, the perturbation does not migrate. The magnitude of the velocities is determined
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Figure 2.6: (a) Vector plot of residual currents for a perturbation of the coastline with alongshore
wavelength λ = 3 km ;reference case. The coastline perturbation is shown at the left-hand side.
An amplitude of the coastline perturbation of [x′

t] = 500 m has been chosen. This yields that
[< u′ >] ∼ [< v′ >] = 10−2 ms−1. The residual flow is such that the perturbation is amplified.
In addition, the Coriolis force induces a migration of the perturbation.(b) Same as (a), but now
the residual currents in the case of no Coriolis. In this case the coastline perturbation only grows
and is not migrating.

by the amplitude of the coastline perturbation. This amplitude can be chosen arbitrarily.

2.4.2 Sensitivity of results to tidal current amplitude

Observations show that the shore-parallel tidal current amplitudes on the transition line
vary between approximately 0.1 ms−1 and ∼ 1 ms−1 in regions where barrier islands are
observed. In the reference case the maximum tidal velocity at the transition line was
0.5 ms−1. In the next experiment the magnitude of the basic state tidal velocity at the
transition line is varied between 0.1 and 1.0 ms−1. A change in the magnitude of the
basic state velocity causes a change of the magnitude of the friction parameter r, defined
in Equation (2.4). The friction parameter scales linearly in the magnitude of the tidal
velocity. All other parameters have the same values as in the reference experiment.

The influence of the magnitude of the tidal currents at the transition line (U) on the
growth rate is shown in Figure 2.7(a). Larger values of U result in larger growth rates for
large kL. Furthermore, a larger velocity magnitude results in a larger λ0. Hence, coastline
perturbations with larger length scales grow exponentially in time. For U = 0.1 ms−1

λ0 = 4.6 km, while for U = 1 ms−1 λ0 = 10.3 km.
A change the magnitude of the tidal currents at the transition line (U) leads to only
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a moderate change of the phase speed (Figure 2.7(b)). The plot reveals that a change in
U will not influence the phase speed of the coastline perturbation for small wavelengths.
For larger wavelengths the tidal current amplitude does influence the phase speed. A
smaller tidal current results in a smaller phase speed. However, a doubling of the tidal
current amplitude with respect to the reference experiment hardly affects the phase speed
for small kL.
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Figure 2.7: (a) Growth rate curves for different values of the magnitude of the basic state tidal
M2 flow at the transition line. The magnitude of U is 0.1, 0.2, 0.5 and 1.0 ms−1, respectively.
A dimensionless growth rate of 1 corresponds to time scale of 150 years and alongshore wave
number is scaled with 10 km. (b) Same as (a), but now the phase speed as a function of the
wave number. A non-dimensional phase speed of −0.3 is in dimensional values −20 m/yr.

In a second series of experiment, a time-invariant pressure gradient S0 was prescribed.
Hence, the basic state velocity has a residual component on top of the tidal component.
The profile is described by Equation (2.17b). The residual pressure gradient is chosen such
that V0(x = Xt) is varied between 0.02 and -0.02 ms−1. This implies that the residual
currents far offshore are varied between -0.1 and 0.1 ms−1 for the reference bathymetry.
All other parameters have their reference values. Results are shown in Figure 2.8. Growth
rates of perturbations of the coastline are hardly affected by this small basic state residual
current. The phase speed, however, is strongly influenced by the basic state residual
current. For V0(x = Xt) = −0.02 ms−1 all perturbations are migrating to the right (when
viewing in seaward direction). For smaller wavelengths (larger kL) the phase speed is
larger. For V0(x = Xt) = 0.02 ms−1 the perturbations are migrating to the right for
λ > 9.5 km (kL < 6.6) and for λ < 9.5 km (kL > 6.6) the perturbations are migrating to
the left.
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Figure 2.8: Phase speed as a function of the wave number for different values of the residual
current amplitude at the transition line (V0(x = Xt)). Non-dimensional phase speed of −0.3 is
−20 m/yr in dimensional values. Alongshore wave number is scaled with a length of 10 km.

2.4.3 Sensitivity of results to bathymetric parameters

The bathymetry of the inner shelf influences the basic state velocity profile. Therefore, in
this section the sensitivity of the results to the bathymetric parameters (in particular L
and H0) is studied. In the first experiment the length of the inner shelf is varied with all
other parameters having their reference values. Experiments show that a steeper profile
results in smaller values of λ0 (Figure 2.9(a)). The dependence of λ0 on L is almost linear.
Not only λ0 changes, but also the growth rate. For small values of L, growth rates are
larger for small wavelengths compared to the reference case. For relatively large values
of L, growth rates are smaller for small wavelengths compared to the reference case. The
sensitivity of the phase speed to L is shown in Figure 2.9(b). The magnitude of the phase
speed is larger when L is smaller. For L = 5 km the phase speed has a maximum of 16
m/yr for λ = 12.6 km (kL = 5).

In another series of experiments the value of H0 was changed. When H0 is changed the
value of β has to be changed as well. Parameter β can be interpreted as the volume per
unit length in the alongshore direction of sediment that is in suspension in the nearshore
zone (see Equation (2.9)). It is assumed that the steepness of the nearshore zone is
constant and that the average concentration in the nearshore zone does not change with
changing H0. From this it follows that β ∼ H2

0 . Furthermore, when H0 is changed
and the alongshore sea surface gradient S2 is kept fixed, the magnitude of the friction
parameter r should be changed as well. However, it is assumed that the profile of the
basic state velocity is not changed, which implies that the velocity profile is such that the
tidal current amplitude is 0.5 ms−1 at 5 meters depth. The friction parameter r and the
amplitude of the M2 pressure gradient S2 keep their reference values.

The results of Figure 2.10(a) show that a smaller H0 results in a shift of λ0 to smaller
wavelengths. For small wavelengths a smaller H0 results in larger growth rates, compared
to the reference case (Figure 2.10(a)). The influence of H0 on the phase speed is shown
in Figure 2.10(b). An increase of H0 with respect to the reference experiment results in
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Figure 2.9: (a) Growth rate curves for L = 5 km (dashed line), L = 10 km (solid line) and
L = 20 km (dotted line). A dimensionless growth rate of 1 corresponds to time scale of 150
years and alongshore wave number is scaled with 10 km. (b) Same as (a), but now the phase
speed as a function of the wave number. A dimensionless phase speed of −0.3 corresponds to a
dimensional phase speed of −20 m/yr.

an increase of the phase speed. A decrease of H0 results in a decrease of the phase speed.
The phase speed is in the order of 10 m/yr.
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Figure 2.10: (a) Growth rate curves for different values of H0. A dimensionless growth rate of
1 corresponds to time scale of 150 years and alongshore wave number is scaled with 10 km. (b)
Same as (a), but now the phase speed as a function of the wave number. A dimensionless phase
speed of −0.3 is in dimensional values −20 m/yr.
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2.4.4 Influence of waves on the instability mechanism

In all the previous experiments, i.e. with significant tidal currents and γ = 0, no fastest
growing mode was obtained. Hence, the model can not explain why undulations of the
coastline have preferred length scales, as field data indicate. Furthermore, the growth
rates are largest for the smallest wavelengths, which implies that perturbations with an
infinitesimal small length scale will grow fastest. Hence, the model is missing a mechanism
that results in decay of the perturbations with the smallest length scale. By accounting for
a net volumetric sand flux due to obliquely incident waves (q′(wave)), a selection mechanism

for the growing perturbations is introduced. In the model of Komar (1998) the divergence
the sediment transport due to waves is modeled as a diffusive term and it causes a decay
of the perturbations. This decay is fastest for the smallest length scales. In the next ex-
periment the diffusivity of coastline perturbations due to waves is included. Two types of
experiments are presented. In the first experiment the diffusion coefficient γ due to waves
is constant while the magnitude of the alongshore tidal currents is varied. In the second
experiment the magnitude of the alongshore tidal currents is constant and the value of θb

is varied, thereby causing a change of diffusion coefficient γ (Equations (2.12) and (2.28)).
In all the previous experiments θb was 45◦. This yielded that q′(wave) = 0. In the

following experiments Hb = 1 m is taken and a different value for θb is assumed. In the
first experiment the diffusion parameter is γ = 2 · 10−5 m2s−1, while other parameters
settings are as in the reference experiment. This diffusion parameter is obtained for Hb = 1
m and θb = 44.94◦. Results show that a fastest growing mode occurs (Figure 2.11). For
U = 0.5 ms−1 this occurs for λ = 2.6 km. The time scale on which these perturbation
grow is 130 years. The perturbation migrates 5 meters per year. For U = 0.8 ms−1 a
fastest growing mode is obtained at λ = 2.26 km, with a typical e-folding growth rate of
60 years. The phase speed is again 5 meters per year. For U = 0.3 ms−1 a fastest growing
mode is obtained at λ = 2.94 km, with a typical e-folding growth rate of 470 years.

In the second experiment the shore-parallel tidal currents at the transition line are
U = 0.5 ms−1. All other parameters have their reference magnitude. The wave influence
is varied by changing the magnitude of the diffusion parameter. The results show that for
increasing wave influence and constant magnitude of the alongshore tidal currents, the
preferred length scale of the undulations increases (Figure 2.12). The preferred length
scale for γ = 2 · 10−5 m2s−1 (θb = 44.94◦) is λ = 2.6 km and the corresponding time scale
is 130 years. For γ = 6 · 10−5 m2s−1 (θb = 44.83◦) a fastest growing mode is obtained for
λ = 3.6 km, with a typical growth rate of 380 years. For γ = 1 · 10−4 m2s−1 (θb = 44.71◦)
the preferred wavelength is λ = 4.8 km (however, the growth rate is negative).

The fastest growing mode with the largest length scale is obtained for H0 = 10 m,
Hs= 20 m, L = 20 km, U = 1 ms−1 and γ = 8 · 10−4 m2s−1 (θb = 40.42◦). In that case a
fastest growing mode is obtained for λ ∼ 14 km.

2.5 Comparison model results with observations

In this section the model results are compared with observations. The predicted depen-
dence of the length scale of the fastest growing mode (FGM) on the magnitude of the
tidal currents is compared with the observed trend along the Dutch and German Wadden
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Figure 2.11: Growth rate curves for constant values of the diffusion coefficient related to waves
(γ = 2 · 10−5 m2s−1) and varying the magnitude of U .
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Figure 2.12: Growth rate curves for different values of diffusion coefficient γ caused by waves
and constant strength of tidal currents (U = 0.5 ms−1.

coast and in the Georgia Bight.

The length of the barrier islands along the Dutch and German Wadden Sea varies
between a few kilometers (Simonszand and Rottumeroog) up to 30 kilometer (Texel)
(Ehlers , 1988; Oost and de Boer , 1994). The typical migration speed of the islands is in
the order of tens of meters per year and migration is from west to east Luck (1975). The
length scales of the FGM obtained with the model have the correct order of magnitude.
The typical length scale ranges from zero up to 15 kilometer. The predicted migration
rates are also in accordance with the observed ones and vary between 5 and 24 meters
per year, depending on the specific parameter values. The model also predicts that the
perturbations are migrating to the east.

An important finding of the model is that the preferred length scale decreases with
increasing magnitude of the tidal currents U . To test this result, observed wave and
tidal characteristics along the Dutch and German Wadden coast were analyzed. It has
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been argued by Sha (1989a) that the wave influence is constant along the Frisian Islands.
Unfortunately, there are not many observations of the magnitude of the alongshore tidal
currents at sea. Instead, the results of a numerical model were used. This is the ZUNO
model from WL—Delft Hydraulics (Roelvink et al., 2001), a model that has been developed
to predict tidal heights and depth-averaged tidal currents in the southern North Sea.
Figure 2.13(a) shows the major axis of the M2 tidal current ellipse in the region of the
Frisian Islands. The magnitude of the major axis in the regions close to the tidal inlets are
strongly influenced by the dynamical interaction between the backbarrier basin and the
ebb-tidal delta. Therefore, the magnitudes of the major axis far offshore are considered.
It is assumed that these are representative for the situation that the coastline is straight
and no tidal inlets are present. Two transects (see the two lines in Figure 2.13(a)) of the
major axis of the M2 tidal current ellipse are shown in Figure 2.13(b). These transects
show that the long axis is increasing from Texel to Schiermonnikoog. Here the long axis
has a maximum. From thereon it decreases when going to the island of Spiekeroog. The
length of the barrier islands in this region is slightly larger than it is in the region just after
Schiermonnikoog. The length scale of the barrier islands seems to be inversely related
to the magnitude of the shore-parallel tidal currents. This is in agreement with model
predictions.
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Figure 2.13: (a) Major axis of the M2 tidal current ellipse in the region of the Frisian Islands.
Model results are obtained with numerical model (ZUNO). White diamonds show seaward tran-
sect while black diamond show landward transect. (b) Two transects of the major axis of the
M2 tidal current ellipse in the region of the Frisian Islands. The two transects are shown in
panel (a).

Finally, the model results are compared with observations in the Georgia Bight. In this
area the magnitude of the tidal height and the tidal currents increases and wave influence
decreases from the shelf of North Carolina towards the shelf of Georgia (FitzGerald , 1996;
Blanton et al., 2004). The model results predict that both the decreasing wave influence
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and the increasing tidal current amplitude will result in smaller length scales of the barrier
islands. This is in gross agreement with the observed trend in the length of the barrier
islands in the Georgia Bight.

2.6 Physical interpretation

It was shown that for the default settings of the model parameters, perturbations with
wavelengths λ > 8 km have negative growth rates, while for λ < 8 km the growth
rate is positive. The perturbations not only grow but also migrate to the right when
viewing in the seaward direction. When wave effects are included in the calculation of the
alongshore sediment flux, a fastest growing mode is obtained. In this section these results
are explained in terms of basic physical mechanisms. The following aspects are discussed:

• Why do perturbations decay for long wavelengths and grow for small ones?

• Why do perturbations migrate?

• Why are the growth rates small?

• What is the physical explanation behind sensitivity of the results to basic state
bathymetry and velocity?

2.6.1 Growth and migration of perturbations

In this section the physical mechanism behind the growth and decay of the coastline
perturbations is studied, with the focus on the role of tides in this process. The influence of
wave-induced alongshore sediment fluxes on the evolution of perturbations of the coastline
has already been discussed in Komar (1998).

The growth and migration of the perturbations are due to the divergence of the volu-
metric sediment flux q′(curr) as defined in Equation (2.25). This flux is linearly related to
the tidally averaged velocity at the transition line, which is related to circulation patterns
(see Figure 2.6(a) and 2.6(b)) on the inner shelf. The physics causing the generation
of residual circulation cells will be analyzed using vorticity concepts in a similar way as
described in Zimmerman (1981). The vorticity balance for the perturbed variables, re-
taining only linear terms, is obtained by taking the x-derivative of Equation (2.21b) and
subtracting the y-derivative of Equation (2.21a):

(a)︷︸︸︷
∂ω′

∂t
+

(b)︷ ︸︸ ︷
∂(u′Ω)

∂x
+

(c)︷ ︸︸ ︷
∂(V ω′)

∂y
+

∂(v′Ω)

∂y
−

(d)︷ ︸︸ ︷
r

H2

dH

dx
v′ +

(e)︷ ︸︸ ︷
f
(∂u′

∂x
+

∂v′

∂y

)
=

(f)︷ ︸︸ ︷
−rω′

H
(2.35)

Here, Ω = ∂V/∂x is the vorticity of the basic state flow and ω′ = ∂v′/∂x − ∂u′/∂y is
the vorticity of the perturbed flow. In Equation (2.35), term (a) models the local time
evolution of the perturbed vorticity, term (b) the cross-shore gradient of the perturbed
vorticity flux in the cross-shore direction, term (c) the alongshore gradient of the perturbed
vorticity flux in the alongshore direction, term (d) the generation of perturbed vorticity
by the frictional torque, term (e) the generation of perturbed vorticity due to vortex
stretching of the planetary vorticity and term (f) the dissipation of perturbed vorticity
due to friction.
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Generation of tidally averaged vorticity

Residual currents are organized in cells with cyclonic (anticyclonic) circulation. These
cells are areas where the tidally averaged perturbed vorticity is positive (negative). To
obtain the relation between the perturbation of the coastline and residual current at the
transition line, it is thus important to study the tidally averaged vorticity balance. The
latter follows from averaging Equation (2.35) over the tidal period and reads

1︷ ︸︸ ︷
−[ ∂

∂x

〈
u′Ω

〉
+

∂

∂y

〈
V ω′〉 +

∂

∂y

〈
v′Ω
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+

2︷ ︸︸ ︷
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dH
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〈
v′〉 +

3︷ ︸︸ ︷
f

H

dH

dx

〈
u′〉 =

4︷ ︸︸ ︷
r

H

〈
ω′〉 (2.36)

Here, <> denotes an average over the tidal cycle, see Equation (2.8) for its definition.
Also, the continuity equation (2.21c) has been applied here. The three source terms of
tidally averaged vorticity are on the left-hand side of Equation (2.36). Term (1) describes
the convergence of the tidally averaged perturbed vorticity flux, (2) the frictional torque
due to alongshore currents over cross-shore sloping bathymetry and (3) the Coriolis torque
due to vortex stretching. The right-hand side of Equation (2.36), term (4), describes the
dissipation of residual perturbed vorticity due to friction.

Now, the different terms are estimated for a typical coastline perturbation of λ = 3
km, tidal currents at the transition line with a magnitude of U = 0.5 ms−1, absence of
residual currents at sea (V0(x = Xt) = 0 ms−1) and f = 0. The perturbation was already
shown in Figure 2.6(b) . For this perturbation it turns out that the magnitude of term (2)
is much smaller than that of term (1) because the generated residual currents are much
smaller than the M2 component of u′ and v′. The main balance in Equation (2.36) is
between the production of tidally averaged perturbed vorticity described by term (1) and
the dissipation of it described by term (4).

So, to understand the generation of residual circulation cells the focus should be on
term (1), which describes the gradient of three fluxes of vorticity. The first one is < u′Ω >
and describes the mean flux of basic state vorticity by the perturbed cross-shore currents.
The second one is < ω′V > and represents the mean flux of perturbed vorticity by the
basic state alongshore currents. The third one is < v′Ω > and describes the mean flux of
basic state vorticity by the perturbed alongshore currents.

Let us first consider the cross-shore gradient of < u′Ω >. During flood the basic state
tidal currents are in the negative y-direction: V2 is negative, see Figure 2.14(a). Further-
more, ∂V2/∂x < 0 and therefore Ω < 0. The perturbed cross-shore velocity u′ during ebb
is 180◦ out of phase phase with the alongshore gradient of the coastline perturbation (see
Figure 2.14(a), which shows the perturbed velocity vector �u′). The vorticity flux u′Ω is
therefore in phase with the alongshore gradient of the coastline perturbation. Because
the magnitude of u′Ω is decreasing in the cross-shore direction, the cross-shore gradient
of u′Ω during flood results in areas on the inner shelf where vorticity is accumulating with
a same sign as that of the alongshore gradient of the coastline perturbation. During ebb
the value of V2, Ω and u′ change sign. This results in the same sign of u′Ω and in the
same cross-shore gradient of u′Ω. Hence, the cross-shore gradient of the mean cross-shore
vorticity flux results in areas on the inner shelf characterized by mean perturbed vorticity
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which has the same sign as that of the alongshore gradient in the coastline perturbation.
In other words, residual circulation cell as sketched in Figure 2.14(b) are generated. The
mean currents transport the sediment from areas where the coastline has accreted to ar-
eas where the coastline has eroded. This results in a decay of the perturbation of the
coastline.

Next, let us consider the alongshore gradient of < v′Ω > and < V ω′ >. During
flood V2 < 0 and Ω < 0 (see above) and the perturbed alongshore velocity v′ is 180◦

out of phase with the coastline perturbation (Figure 2.14(a)). The perturbed vorticity
flux is v′Ω is therefore in phase with the coastline perturbation. The alongshore gradient
of v′Ω is 180◦ out of phase with the alongshore gradient in the coastline perturbation
and therefore leads to accumulation of vorticity with a sign that is opposite to that of the
gradient of the coastline perturbation. This results in residual circulation cells as sketched
in Figure 2.14(c). During ebb V2, Ω and v′ change sign. This results in the same sign of
v′Ω and in the same alongshore gradient of v′Ω. Hence, averaged over one tidal cycle the
alongshore gradient of v′Ω results in mean perturbed vorticity with a sign opposite to that
of the alongshore gradient in the coastline perturbation. The mean currents transport
the sediment from areas where the coastline has eroded to areas where the coastline has
accreted. This results in a growth of the perturbation of the coastline.

The last contribution to the convergence of the mean vorticity flux is the alongshore
gradient of < V ω′ >. During flood, the perturbed vorticity ω′ is in phase with the coastline
perturbation of the coastline and the perturbed vorticity flux is 180◦ out of phase with
the coastline perturbation because V2 < 0. Hence, following a similar argumentation as
for the alongshore gradient of < v′Ω >, the alongshore gradient of < V ω′ > results in
residual circulation cells that cause a growth of the perturbation of the coastline.

Whether the residual circulation cells are located along the coast in such a way that
the coastline perturbation is growing or decaying depends on the magnitudes of the cross-
shore gradient of < u′Ω > and of the alongshore gradient of < v′Ω > and < V ω′ >. For
small wave numbers the magnitude of the cross-shore gradient of < u′Ω > is larger than
the alongshore gradient of < v′Ω > + < V ω′ > and therefore the locations of the residual
circulation cells are such that the perturbations of the coastline decay. For increasing wave
numbers the magnitude of the alongshore gradient of < v′Ω > and < V ω′ > increases
stronger than that the cross-shore gradient of < u′Ω >. When the magnitude of the
alongshore gradient of < v′Ω > + < V ω′ > is larger than the cross-shore gradient of
< u′Ω >, the locations of the generated residual circulation cells along the coast are such
that the perturbations of the coastline grow.

When the Coriolis force is nonzero (f �= 0) the perturbations also migrate. The Coriolis
torque (term (e) in Equation (2.35)) is a source of tidal vorticity and causes a phase shift
of the tidal vorticity with respect to the coastline perturbation. While in the case that
f = 0 the perturbed vorticity ω′ is in phase with the coastline perturbation during flood,
in the case that f �= 0 the maximum of the perturbed vorticity ω′ is shifted in the negative
y-direction with respect to the coastline perturbation due to planetary vortex stretching.
The perturbed vorticity is transferred by the basic state velocity and the alongshore
gradient of V ω′ results in the accumulation of perturbed vorticity which is slightly shifted
in the negative y-direction compared to the case that f = 0. During ebb a similar
argumentation holds and residual circulation cells occur of which the centers are shifted
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Figure 2.14: (a) Perturbed velocity induced by coastline at maximum flood. The basic tidal
flow is from north to south (big arrows). The coastline perturbation has a cosine structure.
(b) Small arrows represent perturbed cross-shore vorticity flux u′Ω. The cross-shore gradient
of the vorticity in the cross-shore direction generates two residual circulation cells (denoted by
the two counter rotating cells) that cause a decay of the coastline perturbation. (c) Same as
(b), but now the alongshore gradient of the alongshore vorticity flux is visualized. Small arrows
represent perturbed alongshore vorticity flux v′Ω and V ω′. The alongshore gradient of the
alongshore vorticity flux generates residual circulation cells that cause a growth of the coastline
perturbation.

in the negative y-direction compared to those obtained in the case that f = 0. Hence,
the residual circulation cells in the case that f �= 0 cause both growth and migration of
the coastline perturbation.

2.6.2 Magnitude of growth rate for large wave numbers

An interesting result mentioned in the previous section is that for γ = 0 the growth rate of
perturbations with large wave numbers (kL � 1) tends to a constant. In this section the
physics underlying this behavior will be investigated. Starting point is Equation (2.27),
which shows that for γ = 0 the growth rate is proportional to ∂ < v′ > /∂y| at the
transition line. The latter term scales as k[V ′

res], where [V ′
res] is the magnitude of < v′ >

at the transition line. From the observed behavior of the growth rate for kL � 1 it thus
follows that

[V ′
res] ∼ (kL)−1 for kL � 1

To understand this result, we next estimate for the large wave number case the scale of
the residual velocity component < u′ > and from there the scale of the residual vorticity.
The latter will allow a quantification of the main terms in the residaul vorticity balance
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(2.36).
The scale [u′

res] of < u′ > follows from continuity equation (2.21c). Using the observed
fact that the cross-shore and longshore length scale of the perturbations are of the same
order the result is

[U ′
res] ∼ (kL)−1 for kL � 1

Since ω′ = ∂v′/∂x − ∂u′/∂y the magnitude [ω′
res] of the residual vorticity obeys

[ω′
res] ∼ constant for kL � 1

These results are used to analyze the residual vorticity balance (2.36). It was already
argued that terms (1) and (4) are the dominant terms in this equation. Using this fact
and applying the continuity equation yields the order estimate

< ω′ >∼< u′ ∂Ω

∂x
> − 1

H

dH

dx
< Ωu′ > +

∂

∂y
< ω′V >

When kL � 1 the magnitude of the first two terms on the right-hand side scale as kL
because

[u′
M2] ∼ kL for kL � 1

due to boundary condition (2.22) and because the cross-shore length scale of the variables
H and Ω is the shelf width L rather than k−1. Since < ω′ > becomes constant in this
parameter regime the last term on the right-hand side has to balance the first two terms.
Consequently, the scale [ω′

M2] of the perturbed vorticity ω′
M2 behaves as

[ω′
M2] ∼ constant for kL � 1

The final point is to understand the behavior of [ω′
M2] by considering the tidal vorticity

balance. The latter is obtained by projecting the vorticity equation (2.35) onto the M2

tidal components. This yields

∂ω′
M2

∂t
+ < u′ >

∂Ω

∂x
− Ω

H

dH

dx
< u′ > + V

< ω′ >

∂y
− r

H2

dH

dx
v′

M2 +
r

H
ω′

M2 = 0

Here, f = 0 has been assumed and the continuity equation has been applied.
The magnitude [v′

M2] of v′
M2 can be estimated from the continuity equation and using

that boundary condition (2.22) implies that u′
M2 ∼ ∂x′

t/∂y. The result is

[v′
M2] ∼ (kL) for kL � 1

Using all previous estimates of the magnitudes of the various variables in the case kL � 1
shows that the main balance in the tidal vorticity equation is between the fourth and fifth
term. This conclusion is also found if Coriolis parameter f is nonzero. The final picture is
thus that the tidal frictional torque (the fifth term) generates tidal vorticity by balancing
with the fourth term, which represents the alongshore gradient in the transfer of perturbed
residual vorticity by the undisturbed tidal current. This residual vorticity is associated
with a residual current pattern with magnitude of the velocity components that were
given above and which result in the saturation of the growth rate curve (i.e., Γ ∼constant
for kL � 1).
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2.6.3 Sensitivity of model results to bathymetry

In Section 2.4.3 the sensitivity to the parameters L and H0 was shown. A larger L resulted
in a shift of λ0 to larger values (Figure 2.9(a)). In addition, the growth rate and phase
speed were smaller.

In the previous section it was shown that the value of λ0 is determined by the wave
number for which the magnitude of the alongshore gradient in the mean alongshore per-
turbed vorticity flux equals the magnitude of the cross-shore gradient in the mean cross-
shore perturbed vorticity flux. Increasing the width of the inner shelf (L) results in a
decrease of the magnitude of the cross-shore gradient of the mean cross-shore vorticity
flux (both Ω and ∂/Ω/∂x decrease). Therefore, already for smaller values of the wave
number the growth rate becomes positive. Furthermore, a larger L results in smaller
growth rates because the basic state vorticity and perturbed vorticity are smaller. This
results in a smaller mean perturbed vorticity flux and its convergence is also smaller.
Hence, the magnitude of the residual currents, the magnitude of q′(curr) and the growth
rate are smaller for a fixed value of the wavelength. In addition, a larger L implies that
planetary vortex stretching is smaller and therefore the phase speed of the perturbations
of the coastline decrease for increasing values of L.

An increase of H0 resulted in an increase of λ0 (Figure 2.10(a)). When varying H0,
the friction parameter r and the pressure gradient due to the gradient in the sea surface
elevation S2 were not changed. When increasing H0, U at the transition line increases as
well, while the magnitudes of Ω and ∂Ω/∂x decrease. Consequently, for a fixed wavelength
the magnitude of the alongshore gradient in the mean alongshore vorticity flux increases
with respect to the cross-shore gradient of the mean cross-shore vorticity flux when H0

becomes larger. Therefore, already for smaller values of the wave number the growth rate
becomes positive.

2.6.4 Sensitivity of model results to forcing conditions

The results of Section 2.4.2 show that an increase of the shore-parallel tidal currents
results in an increase of λ0 and an increase of the growth rates (Figure 2.7(a)). This
is because an increase of the basic state tidal velocity results in a linear increase of the
friction parameter r. Furthermore, an increase of r results in an increase of the basic
state vorticity and its gradient. Consequently, considering a perturbation with a fixed
wavelength, both the cross-shore gradient of the mean perturbed vorticity flux in the
cross-shore direction and the alongshore gradient of the mean perturbed vorticity flux in
the alongshore direction increase when U becomes larger. This results in the generation
of residual circulation cells with large magnitude of the residual currents and therefore to
an increase of q′(curr) and the growth rate. Furthermore, because the alongshore gradient
of the mean alongshore vorticity flux increases stronger than the cross-shore gradient of
the mean cross-shore vorticity flux with increasing magnitude of U , also the wavelength
with zero growth rate λ0 increases with increasing magnitude of U .
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2.6.5 Fastest growing mode when wave flux is included

Including the influence of the volumetric sediment flux that is solely due to waves on
the growth rate of the perturbations of the coastline has a considerable influence on the
results. For certain parameter combinations a fastest growing mode is obtained (Fig-
ures 2.11 and 2.12). The reason why a fastest growing is obtained is straightforward. The
alongshore gradient of the perturbed volumetric sediment flux q′(wave) cause a decay of
the perturbations of the position of the coastline and this decay is quadratic in the wave
number (Equation (2.27)). The tidal currents cause growth of the perturbations with
wavelengths smaller than λ0. The growth rate tends to a constant for decreasing wave-
lengths (increasing values of kL). If the diffusion parameter due to the influence of waves
(defined in Equation (2.28)) is too large, the perturbations decay for all wavelengths.
When the diffusion parameter is zero no fastest growing mode is obtained. The influence
of a very small diffusion parameter becomes noticeable for large wave numbers. For small
wave numbers the growth rate of the perturbations is not affected by the waves and the
growth rate increases for increasing wave numbers. For large wave numbers a positive
value of the diffusion parameter causes the perturbations to decay and the growth rate
decreases for increasing wave numbers. For moderate values of the wave number there
exists a wave number for which the growth rate neither increase or decreases when the
wave number is changed. This is the fastest growing mode. Increasing the wave influence
causes an increase of the wavelength of the preferred mode. In a similar way it can be
explained why for constant wave influence and increasing magnitude of the tidal currents
the wavelength of the preferred mode decreases.

2.7 Discussion and conclusions

In this chapter a simplified model was developed to study and analyze the initial evolution
of alongshore periodic perturbations on an otherwise alongshore uniform coastline. The
aim was to study the dynamics behind the rhythmic occurrence of barrier islands and
whether the dependence of the length scale could be understood in term of basic physical
mechanisms. The new aspect of this study was the role of tides in the possible generation
of these rhythmic coastline undulations. The model described in this study is meant
as a natural extension of the one-line models of Komar (1998); Falqués (2003); Falqués
and Calvete (2005), who only considered the influence of waves on the initial coastline
development. The influence of waves on the growth rate of the alongshore rhythmic
perturbation of the coastline was modeled as a diffusive process and the formulations of
Komar (1998) are used. Since no nonlinear analysis has been carried out, no results are
obtained that describe the finite-amplitude behavior of the coastline perturbations.

In the experiments described in Section 2.4.1-2.4.3 the evolution of the perturbations
of the coastline under influence of tides only was studied. The results described in Sec-
tion 2.4.1 show that for typical Dutch shelf conditions the growth rates are negative for
long wavelengths, λ > 8 km. For smaller wavelengths the growth rate is positive, i.e.,
the perturbation of the position of the coastline is amplified. Typical time scales of the
growth rate are in the order of 100 years. The Coriolis force induces a migration of the
perturbations in the order of 10 meter per year. The perturbations are migrating to the
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right, when viewing in the seaward direction. Although the model results change qualita-
tively when parameters describing the bathymetry of the inner shelf and the magnitude
of the basic state tidal currents are changed, the result that the growth rate is negative
for large wavelengths and positive for small wavelengths is robust when varying these
parameters.

The physical mechanism resulting in growth or decay of coastline perturbations and
their migration rates can be understood with vorticity dynamics. There is a competi-
tion between the cross-shore gradient of the mean cross-shore vorticity flux, which acts
stabilizing, and alongshore gradient of the mean alongshore vorticity flux, which acts
destabilizing. The width of the inner shelf determines the cross-shore length scale over
which the cross-shore vorticity fluxes vary, while the wavelength of the perturbation de-
termines the length scale over which the alongshore vorticity fluxes vary. If the length
scale in the alongshore direction is smaller than the length scale in the cross-shore di-
rection, the growth rate is positive. When the alongshore length scale is larger than the
cross-shore length scale, a negative growth rate is obtained.

When the diffusion parameter due to the influence of sediment transported by waves is
zero, the model does not predict a fastest growing mode because no damping mechanism
is present for the small-scale perturbations. Including the influence of waves on the
stability of the coastline results in the emergence of a fastest growing mode. The model
results predict that under constant wave conditions the preferred length scale is smaller
in regions where the alongshore tidal currents are stronger. This is observed along the
Frisian Islands (Figure 2.13(b)). Furthermore, the model predicts that an increase of the
diffusion parameter due to waves, while keeping the tidal current amplitude constant,
results in a fastest growing mode with a larger wavelength. Along the Georgia Bight,
when moving from the shelf of North Carolina to the shelf of Georgia, wave influence
decreases and the tidal current amplitude increases (Figure 1.4). The model predicts that
both effects result in a decrease of the preferred length scale. This is also observed.

For a realistic range of parameter values, a wavelength of the fastest growing mode in
the range of 0 to 15 kilometer is obtained. This is in the range of observed length scales
of barrier islands. However, the growth rates are small, in the order of hundred years.
The predicted migration rates are up to ten meters per year. When wave influence is too
strong, no growing perturbations are found. When the expression of Komar (1998) for
the diffusion parameter due to waves is used (Equation (2.28)), the results show that for
waves with Hb of 1 m the maximum angle of incidence of the waves is 40.42◦. For smaller
values the diffusion parameter is too large to have coastline perturbations that grow.
However, Falqués (2003); Falqués and Calvete (2005) argue that the diffusion parameter
in the model of Komar (1998) is a strong overestimation. Furthermore, the growth rate
due to tides only (γ = 0) is also very small. As has been explained in Section 2.6.2, the
alongshore gradient in the alongshore tidal vorticity flux counteracts the generation of
tidal vorticity due to frictional torques. Therefore, for small wavelengths the generation
of perturbed mean vorticity due to the perturbation of the position of the coastline is
small and this results in the generation of only small residual currents. The predicted
residual currents for a coastline perturbation of 500 meter and a wavelength of 3 km, are
in the order of 10−3 ms−1. The residual currents obtained with the present model seem
to underestimate the magnitude of observed residual currents. Because the sediment flux
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due to the influence of tides is linear in the mean alongshore velocity also the sediment
flux due to tides is small and the evolution of the position of the coastline is small.
Initial results suggest that adding horizontal turbulent mixing terms in the momentum
equations increases the growth rate of coastline perturbations with at least a factor 10. In
that case, the perturbations also grow when the diffusion parameter due to waves is much
larger. Hence, a much smaller angle of incidence of the waves is possible. Still it is found
that perturbations with small wavelengths grow and perturbations with long wavelengths
decay.

Appendix

2.A Parameters in the flow over topography problem

The parameters Uij in Equation (2.31) read

U12 = 1 (2.A-1a)
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