
Chapter 5

Numerical modeling of ebb-tidal
deltas

Abstract

Results are presented of experiments performed with a numerical morphodynamic model in order
to gain more fundamental knowledge about ebb-tidal deltas. The model simulates waves (SWAN
code), tides (Delft3D-flow code), sand transport and sand balance in a coastal sea bounded by
a straight coast that is interrupted by one inlet. The model has first been used to confirm
conclusions of an earlier study (Chapter 3 of this thesis), which was based on a much more
idealized model, that ebb-tidal deltas can be modeled as equilibrium solutions (steady bottom
pattern). These deltas resemble observed ebb-tidal deltas, but they do not fold around the deep
ebb-dominant channel and their sand volume is a factor 5 smaller than observed sand volumes.
Therefore, the dependence of characteristics of modeled ebb-tidal deltas has been investigated on
processes that were not accounted for in the idealized model, viz. tidal asymmetry, dissipation
of momentum due to a quadratic bottom stress and wave height variations due to shoaling and
refraction. It is found that internally generated nonlinear tides hardly affect the characteristics
of the deltas. In contrast, prescribing ebb(flood)-dominant tidal currents in the inlet leads to
more (less) pronounced delta. Including a quadratic (rather than a linear) bottom stress leads
to ebb-tidal deltas of which both the spatial pattern and the sand volume are in reasonable
agreement with observed ebb-tidal deltas. This resemblance becomes even more satisfactory if
shoaling and refraction of waves are accounted for.
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5.1 Introduction

Ebb-tidal deltas are morphologic structures situated at the seaward side of tidal inlets.
They are observed in many parts of the world (Ehlers , 1988; Davis , 1997; Hicks et al., 1999;
FitzGerald , 1996). The ebb-tidal delta is located at the end of the ebb-dominant channel
(i.e., stronger peak ebb currents than peak flood currents) and is relatively shallow. It is
flanked by two adjacent flood-dominant channels. Analysis of field observations (Walton
and Adams , 1976; Hayes , 1975; Sha, 1989a) indicate that the characteristics of ebb-tidal
deltas strongly depend on the magnitudes of tidal currents (both the cross-shore and
the alongshore component) and on the characteristics of the incoming waves. Because
of the large variation in strength of tides and waves, the deltas have been classified in
accordance with their external forcing (Gibeaut and Davis Jr., 1993). The aim of this
study is to improve our understanding of the physical mechanisms that maintain ebb-
tidal deltas. To limit the scope of this study the focus is on tide-dominated ebb-tidal
deltas which are characterized by small shore-parallel tidal currents with respect to the
cross-shore tidal currents. Such deltas are almost symmetrical with respect to the mid-
axis of the inlet and are the simplest features that can be studied. Prototypes of these
deltas can be found along the US east coast, see Chapter 1 and 3.

In Chapter 3 an idealized model was developed and used to show that TD and METD
ebb-tidal deltas can be modeled as morphodynamic equilibria (i.e., the bottom patterns
do not evolve). The model calculates the feedback between a sandy bottom, tidal cur-
rents and waves. Instead of performing time integrations to study the time evolution
of ebb-tidal deltas, a continuation technique was used to directly calculate morphody-
namic equilibria. The modeled channel-shoal patterns compared reasonably well with
those of observed symmetric, tide-dominated deltas. In the center of the tidal inlet an
ebb-dominant channel is found and at its seaward end the delta is located. This delta is
flanked by two flood-dominant channels. In addition, the observed (almost linear) rela-
tion between the tidal prism and ebb-tidal sand volume was recovered with the model.
However, differences were noticed as well. First, the modeled ebb-dominant channel was
less deep and did not protrude as far seaward as observed ones. Second, observations
show that the delta is folded around the ebb channel (see Figure 1.2). This was not
recovered with the idealized model. Third, the modeled ebb tidal sand volumes were
a factor ∼ 5 smaller than observed volumes. These differences might be caused by the
assumptions and limitations in the wave and current model and in the sediment transport
model. The currents were modeled by using a rigid lid approximation and a linearized
bottom shear-stress formulation. The enhanced bottom friction experienced by currents
due to the presence of waves was modeled in a heuristic manner. Furthermore, higher
harmonics of the tide were not accounted for. The wave model does not allow for spatial
variations in the wave height due to shoaling and refraction of the waves. Furthermore,
it was assumed that the waves are in shallow water.

To verify the conclusions obtained with the idealized model, numerical morphodynamic
process-based models are needed. They include processes that were not accounted for by
the idealized model. Previous studies show that the numerical morphodynamic models
have become accurate enough to simulate the evolution of ebb-tidal deltas (Cayocca, 2001;
van Leeuwen et al., 2003; Siegle et al., 2004). Although the study of van Leeuwen et al.



5.2 Model formulation 101

(2003) suggests the evolution of the ebb-tidal delta towards morphodynamic equilibrium,
the existence of such equilibria have never been convincingly demonstrated with such
numerical morphodynamic models. This might be caused by the fact that they perform
time integrations to study the temporal evolution of the bed under influence of waves
and currents. The results of the idealized models show that a continuation method is
a successful technique to calculate morphodynamic equilibria. The continuation method
has never been used within numerical process-based morphodynamic models.

The objectives of this study are therefore twofold. The first one is to verify the con-
clusions obtained with the idealized model. An equilibrium solution of an ebb-tidal delta
is calculated by using a numerical morphodynamic model. The characteristic of the ebb-
tidal delta are compared with those of the idealized model and with observations. The
second objective is to study the sensitivity of the characteristics of the equilibrium to pro-
cesses which were not accounted for in the idealized model: tidal asymmetry, dissipation
of momentum due to a quadratic bottom shear-stress and effects of waves obtained from
a wave model which accounts for refraction and shoaling of waves.

This chapter proceeds along the following lines. In Section 5.2 the mathematical
formulations of water motion, sediment transport, sediment mass balance and morpho-
dynamic equilibrium are discussed. In Section 5.3 a description of the solution procedure
and the numerical tools is given. The results of the experiments performed are presented
in Section 5.4. In Section 5.5 the results are compared with observations and with the
results of the idealized model. Section 5.7 contains a discussion and the conclusions.

5.2 Model formulation

The morphodynamic model consists of several modules, each accounting for different
processes (water motion, sediment transport and bottom changes). A sketch of the model
structure is given in Figure 5.1. Starting point is a domain with an erodible bottom. Next,
the waves and currents are calculated. The currents and waves transport the sediment.
Spatial differences in this sediment transport give rise to bottom changes. Since the
currents and waves are altered by this new bottom, the loop starts again. In this section
the various modules of the morphodynamic model are discussed.

waves  

sediment transport

bathymetry

currents

Figure 5.1: Schematic representation of the numerical morphodynamic model.
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5.2.1 Domain

The domain represents an idealized version of the geometry that is commonly observed
seaward of an inlet, see Figure 5.2. A Cartesian coordinate system is adopted where the
x-axis points seaward, the y-axis alongshore and the z-axis points upward. The position
of the coastline is at x = −xs. The coastline is interrupted by one inlet having a width B,
typically in the order of 2 kilometers. At x = 0 the transition line from the surf zone to
the inner shelf is located. It is assumed that there is hardly any interaction between the
inner shelf and the surf zone. To avoid calculations in the surf zone, where the dynamics
are very complicated and mainly driven by processes related to waves, the computational
domain is at x ∈ [0,∞) and y ∈ (−∞, +∞). In the regions far away from the inlet the
water depth is assumed to be alongshore uniform with a constant depth H0 at the coast
and increasing exponentially to Hs > H0 at the shelf break, i.e.

HR(x) = H0 + (Hs − H0)(1 − e−x/L) (5.1)

This depth profile was also used and motivated in Chapter 3 and in van der Vegt et al.
(2005). Typical values for the depth parameters are H0 ∼ 5 m near the coast, Hs ∼ 25
m far away from the inlet and an e-folding length scale of L ∼ 10 km.

Figure 5.2: Schematic representation of the domain.

5.2.2 Hydrodynamics

Waves

The evolution and propagation of waves through the domain is described by the spectral
action density balance (Holthuijsen et al., 1989; Booij et al., 1999, and references therein)

∂N

∂t
+

∂(Ncx)

∂x
+

∂(Ncy)

∂y
+

∂(Ncω)

∂ω
+

∂(Ncθ)

∂θ
=

S

ω∗
(5.2)
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where N is the spectral action density, defined as

N =
E

ω∗
ω∗ = ω − �u · �k (5.3)

Here, E (in m2/Hz) is the variance per wave frequency and depends on the absolute
frequency ω and wave direction θ, as slowly varying functions of x, y and time t. Further-
more, ω∗ is the relative frequency of the waves, �u = (u, v) is the depth-averaged current

vector with components u and v in the x- and y-direction, respectively, and �k = (kx, ky)
is the wave vector with components kx and ky in the x- and y-direction, respectively. The
relative frequency ω∗ is the frequency observed while moving with the currents and the
absolute frequency ω is the frequency of the wave observed by a stationary observer. The
last term on the r.h.s. of Expression (5.3) represents the Doppler frequency shift. Here,
weakly nonlinear waves are assumed. To a good approximation, they obey the dispersion
relation

ω2
∗ = gk tanh(kD); k = |�k| (5.4)

where g = 9.81 m2s−1 is the acceleration due to gravity and D = H+ < ζ > is the
total water depth. The water depth is composed of component H, which represents the
position of the bottom with respect to z = 0, and of component < ζ >, which represent
the wave-averaged position of the sea level (due to tides and wave-induced set-up).

Furthermore, in Equation (5.2) the variables cx and cy are components of the vector �c =
�cg + �u, which is the propagation velocity of action density, with �cg = (∂ω∗/∂kx, ∂ω∗/∂ky)
is the intrinsic group velocity vector. The other variables in Equation (5.2) are defined
as

cω =
∂ω∗
∂D

∂D

∂t
+ �k · ∂�u

∂t
cθ = −1

k

∂ω∗
∂D

∂D

∂n
+ �k · ∂�u

∂n
(5.5)

with n a coordinate in the direction normal to the wave propagation.
The first term at the left-hand side of Equation (5.2) describes the time variation

of the spectral energy density, the second and third term describe the divergence in the
transport of action density by the group velocity and the currents. The fourth term
describes the change in action density while moving in ω-space and models the shift of
the relative frequency due to variations in depth and currents. The fifth term describes
a shift in action density while moving in θ-space and models the effect of wave refraction
by the bottom and the currents. The term on the right-hand side of Equation (5.2)
includes the effects of generation of waves by wind, dissipation by white-capping, depth-
induced breaking and bottom friction, and triad and quadruplet wave-wave interactions
(Holthuijsen et al., 1989; Booij et al., 1999).

At the boundaries the spectral action is prescribed. A JONSWAP spectrum (Hassel-
mann et al., 1973) is used and the characteristics of the incoming waves are characterized
by four parameters: The significant wave height hsig, the peak period Tp, the peak direc-
tion and the directional spreading. At the two other open boundaries the spectral action
density is zero. At x = 0 it is required that wave energy leaves the domain (no reflection).

Interesting variables that come out of the model and are needed for the calculations of
the currents and the sediment transport, are the amplitude of the near-bed wave orbital
velocity uorb, the wave-induced radiation stress tensor S and the mean peak value of the
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bed-shear stress τw induced by the waves. Using results from linear wave theory it is
found that

uorb =

√∫ ∫
2ω2

sinh2(kD)
E(ω, θ)dωdθ (5.6)

The time dependent near-bed wave-orbital vector is

�uwave = �uw sin(ω̄t) (5.7)

where ω̄ is the mean wave frequency and �uw is the magnitude and direction of the near-bed
wave orbital motion:

�uw = uorb

( − cos θ̄
sin θ̄

)
(5.8)

with θ̄ the mean direction of the waves with respect to the y-axis. The radiation stresses
for random waves are defined as

S =

(
Sxx Sxy

Syx Syy

)
with components

Sxx = ρg

∫ ∫
[m cos2 θ + m − 1

2
]E(ω, θ)dωdθ (5.9a)

Sxy = Syx = ρg

∫ ∫
m sin θ cos θE(ω, θ)dωdθ (5.9b)

Syy = ρg

∫ ∫
[m sin2 θ + m − 1

2
]E(ω, θ)dωdθ (5.9c)

where m is the ratio of the group velocity and the phase velocity and ρ the density of
water. The peak value of the bed shear-stress due to waves (τw) is defined as

τw =
1

2
ρfwu2

orb (5.10)

where

0.00251e5.21(
uorb
ksω̄

)−0.19

;
uorb

ksω̄
>

π

2
(5.11)

fw =

0.3 ;
uorb

ksω̄
<

π

2

is the wave-induced friction stress factor that depends on the Nikuradse roughness length
ks (typical value 1 mm) (see e.g. Soulsby (1997)).
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Currents

It is assumed that the currents have horizontal scales that are much larger than the
vertical scale (typically kilometers versus meters) and that the vertical structure of the
currents is not essential for the modeling of ebb-tidal deltas. The currents can therefore
be described by the depth-averaged shallow water equations,

∂�u

∂t
+ (�u · �∇)�u = −g�∇ζ − �τb

ρD
−

�∇ · S
ρD

+ Ah∇2�u (5.12)

∂ζ

∂t
+ �∇ · [D�u

]
= 0 (5.13)

which express the momentum and mass balance, respectively. In Equations (5.12) and (5.13)

is �∇ = (∂/∂x, ∂/∂y) the horizontal gradient vector, ∇2 the horizontal Laplace operator,
ζ the sea surface elevation relative to the undisturbed water level z = 0, �τb the wave-
averaged bed shear-stress vector and Ah is the horizontal eddy viscosity coefficient.

The eddy viscosity coefficient is modeled as Ah = lUt, with l ∼ 10 m a mixing
length scale and Ut(∼ 1 ms−1) a characteristic velocity scale related to the magnitude of
the tidal currents. This formulation takes both small-scale turbulent eddies and vertical
shear dispersion into account (Zimmerman, 1986). Following the model formulation of the
idealized model described in Chapter 3, Ut is defined as the maximum current amplitude
in the tidal inlet,

Ut = MAX|�u(0, 0, t)| (5.14)

The radiation stresses S are output of the wave model (see Equation (5.2.2)) and may
induce changes in mean sea level and wave-driven currents. The formulation of �τb is
discussed in the next subsection.

To solve equations (5.12) and (5.13) boundary conditions are needed. At x = 0 outside
the tidal inlet the shore-normal velocity is zero and a free slip condition is applied to have
no exchange of momentum across the transition line. In the tidal inlet also a free slip
condition is applied and the cross-shore velocity is prescribed as u = Û(y, t), where Û(y, t)
is the given tidal velocity field in the inlet. The oscillating tidal flow in the inlet generates
water motion in the entire domain. Far from the inlet the currents vanish.

Bottom shear-stress formulations

In this study several formulations of the bottom shear-stress experienced by the currents
are used. In experiments where waves are absent, two different formulations for �τb are
considered. The first is

�τb = ρ
g

C2
z

|�u|�u (5.15)

where Cz is the Chézy coefficient and is set to its commonly used value Cz = 65 m1/2s−1.
This is the quadratic friction law. The second formulation reads

�τb = ρ
g

C2
z

8

3π
Ut�u (5.16)
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Note that the stress in (5.16) is linear in the current. For this reason it will be referred
to as the linearized bottom stress formulation. Using Equation (5.14) implies that in
the center of the inlet the tidally averaged energy dissipation induced by the linearized
bottom shear-stress (5.16) equals that of the full nonlinear stress (5.15) (Lorentz , 1922).

The third formulation for the bed shear-stress considers the case that both currents
and waves are important constituents of the water motion. As is reviewed in Soulsby
et al. (1993), all studies that deal with the wave-averaged bed shear-stress show that its
magnitude increases when waves become stronger. This stress has a magnitude τb and is
a function of two variables, τc and τw. Here, τc is the magnitude of the current-induced
bed shear-stress, of which the components are given in (5.15), and τw is the magnitude of
the bed shear-stress induced by waves, as given by Equation (5.10). Both are quadratic
in the velocity. The direction of the stress, β, is in general different from that of the
waves and the currents. In the present model the formulations for τb and direction β as
proposed by Fredsøe (1984) are used.

5.2.3 Sediment transport

For the sediment transport the formulation of van der Vegt et al. (2005), as described in
Section 3.2.3, is used. This is a generalized Bagnold-Bailard formulation (Bagnold , 1966;
Bailard , 1981). The sediment is transported as bedload. A correction for the direction
of the sediment transport is introduced that accounts for the influence of the bed slope.
Furthermore, the bedload transport is averaged over the wave and tidal period. This
yields

�q = �qf + �qbot + �qasym (5.17)

where < · > denotes an averaging over the tidal period of the variable within the brackets.
In Equation (5.17) is �qf the tidally averaged sediment transport induced by the waves and
currents, �qbot induced by bed slope effects and �qasym induced by nonlinear effects of waves.
The sediment transport relation is defined at the top of the wave boundary layer. Because
the tidal currents are depth-averaged, the depth-averaged currents are transformed to their
magnitudes at the top of the wave boundary layer by assuming a logarithmic velocity
profile. The sediment transport due to waves and currents is expressed as

�qf = αβ3 < |�u|2�u +
1

2

|�uw|2
β2

�u + (�u · �uw

β
)
�uw

β
> (5.18)

with α a grain size dependent constant (typical value of 10−5 s2m−1) and β ∼ 0.35 a factor
that relates the tidal currents at the top of the wave boundary layer to the depth-averaged
tidal currents. Here, β is assumed to be constant in the domain while in reality it will be
a weakly varying function of the local water depth. Note that �qf = 0 in the absence of
tidal currents. The mean sediment transport due to the presence of bed slopes reads

�qbot = αβpγUp�∇H (5.19)

In this expression U is the magnitude of the flow due to waves and currents and is defined
as
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U =
√

U2
t + (uorb/β)2 (5.20)

Furthermore, in Equation (5.19) is γ the bed-slope coefficient (with a typical value of
1(m

s
)3−p). The constant p is determined from observations and is found to be p = 2

(Struiksma et al., 1985) or p = 3 (Bailard , 1981; Sekine and Parker , 1992). In this study
p = 2. The last term of Equation (5.17) is the sediment transport due to nonlinear effects
of waves (wave asymmetry). It reads

�qasym = −αγβ2U2�∇HR (5.21)

where HR is defined in Equation (5.1). The sediment transport �qasym is chosen such that
it balances the off-shore sediment transport induced by the bed slopes when tidal currents
through the inlet are zero. For further details, see Chapter 3.

For further use, �qf is considered in more detail. Assume that �u =< �u > +�u′, i.e., the
currents are composed of a residual and a time-varying (tidal) component. In that case
�qf can be split into

�qf = �qres + �qa + �qwave (5.22)

where �qres is that part of the flow-induced sediment transport that involves residual and
tidal currents, �qa only depends on �u′ and is related to tidal asymmetry (van de Kreeke
and Robaczewska, 1993) and �qwave involves sediment transport due to waves and residual
currents. The components read

�qres =αβ3[(| < �u > |2+ < |�u′|2 >) < �u > + < (�u′· < �u >)�u′ >] (5.23a)

�qa =αβ3 < |�u′|2�u′ > (5.23b)

�qwave =αβ3[
|�uw|2
2β2

< �u > +
�uw· < �u >

β2
�uw] (5.23c)

5.2.4 Sediment mass balance

At locations where the sediment transport is divergent (convergent) the water depth will
increase (decrease). The behavior of the water depth in time is governed by the bed
evolution equation

∂H

∂t
− �∇ · �q = 0 (5.24)

The bottom only changes due to divergences and convergences in the tidally averaged
sediment transport. This can be used because the time scale on which bottom patterns
evolve (typically in the order of years) is much larger than the time scale of the currents
(M2 period). This implies that the bottom hardly changes during the calculation of the
currents and waves and can be taken as a constant (Sanders and Verhulst , 1985). The
boundary conditions for the sediment mass balance are that far from the inlet the mean
sediment transport vanishes. At x = 0 outside the inlet the mean cross-shore sediment
flux is zero. In the tidal inlet a regularity condition for the depth is imposed (H=finite).
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5.2.5 Morphodynamic equilibrium

In this study the focus is on morphodynamic equilibria. These are defined as states which
involve a bottom that does not change in time,

∂H

∂t
= 0 (5.25)

Henceforth H will represent an equilibrium bathymetry. In morphodynamic equilibrium
currents and waves are still present and transport sediment. Note that Equations (5.25)
and (5.24) imply that in equilibrium the net sand transport is non-divergent

�∇ · �q = 0 (5.26)

5.3 Methods

5.3.1 Domain

The model equations have to be solved on a finite domain. This domain is designed such
that it represents the infinite domain as described in Section 5.2.1. A finite rectangular
domain is chosen which is centered around the tidal inlet and has a length 2Ly in the
alongshore direction and Lx in the cross-shore direction. The domain is chosen large
enough to have vanishing velocities at the seaward boundaries.

5.3.2 Hydrodynamics

Waves

To solve the wave model as described in Section 5.2.2 a state-of-the-art numerical model is
used, called SWAN. The model variables are calculated on a numerical grid. The domain
is divided into Nw

y and Nw
x grid points in the y- and x-direction, respectively. At one

seaward boundary (at x = Lx) the wave characteristics are prescribed. At the other
boundaries full absorbtion of wave energy is assumed. A detailed description of SWAN
and the numerical details can be found in Booij et al. (1999).

Currents

To solve the shallow water equations the hydrodynamic module of Delft3D is used.
Delft3D is a process-oriented numerical model developed by WL-Delft Hydraulics. In
this study the 2D (depth-averaged) version is used. The domain that is used in the cal-
culations is the same as the domain that is used for the calculations of the waves. The
number of grid points (N c

x, N
c
y), however, is larger than in the wave model. At x = 0 a

closed wall is used, except for one region with width B that models the tidal inlet. At the
closed boundary the cross-shore velocity is zero and a free slip condition is applied. In
the inlet a discharge boundary is used in which the cross-shore velocity is prescribed. By
using this discharge boundary no free-slip condition in the inlet can be applied. Instead,
during ebb (outflow) the tangential advection is neglected (v∂u/∂y = 0, v∂v/∂y = 0).
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During flood no extra boundary condition is required. For numerical details on Delft3D,
see Stelling and Leendertse (1992); Roelvink and van Banning (1994).

5.3.3 Sediment transport

In the idealized model higher harmonics of the tide were not accounted for. Since the first
goal is to validate and compare the results of the idealized model with the results that are
obtained with the numerical model, two cases are considered in this study. In the first
case the time series of �u is decomposed into a Fourier series. This series is truncated after
the M2 component. With this truncated series of the velocity the sediment transport due
to tides (�qf ) is calculated. This equals the formulation of �qf as is used in the idealized
model (Equation (3.15) of Chapter 3). It will be referred to as �qfM0M2 . Note that �qa = 0
in this case. In the second case the complete time series of �u is used to calculate �qf .

5.3.4 Morphodynamic equilibria

Mathematical description

A continuation method is used to obtain morphodynamic equilibria. This method requires
a known equilibrium solution to start from. In the present model the latter corresponds to
the situation that there are no tidal currents and H = HR(x). In that case the divergence
of the sediment transport due to bed slopes balances the divergence of the sediment
transport due to wave asymmetry. When currents through the tidal inlet are nonzero the
following balance holds:

αβ2γU2∇2H ′ = −�∇ · �qf (5.27)

where H ′ = H − HR. This balance is obtained by substituting Equation (5.17) and
Equation (5.19) into Equation (5.26) and using the sediment mass balance in case that
tidal currents through the inlet are zero. Because �qf is an implicit function of H ′, Equa-
tion (5.27) describes a nonlinear differential equation for H ′. The boundary conditions
are that at the seaward boundaries the mean sediment transport vanishes. At x = 0
outside the inlet the cross-shore component of the sediment transport is zero. Using the
definition of �qasym (Equation (5.21)) and that the cross-shore component of �qf is zero, this
yields that ∂H ′/∂x = 0. Inside the inlet a regularity condition for H ′ is applied.

Continuation method and iteration procedure

A schematic representation of the method to calculate morphodynamic equilibria is shown
in Figure 5.3. Starting point is a known equilibrium solution of the model. The corre-
sponding bottom pattern is denoted by H = H(x, y; µ), where µ represents a parameter
(e.g., the typical velocity scale in the center of the inlet U). Next, the parameter µ is
changed by a small increment ∆µ. As long as the increment is small enough, it can be
assumed that H = H(x, y; µ + ∆µ) does not differ much from H = H(x, y; µ). To solve
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Equation (5.27) an iterative procedure is used. The previous estimate of the morphody-

namic equilibrium is used to calculate the waves and currents. From this, ~qf and ~∇·~qf are
calculated and the right-hand side of Equation (5.27) is known. This equation has now
become a Poisson equation which is subsequently solved by using a multipole expansion
in the elliptic-cylindrical coordinates. A detailed description of this coordinate system
and how the Poisson problem is solved can be found in Chapter 3. If the new bathymetry
differs much from the previous estimate, a new iteration is performed. This procedure
is repeated until convergence is established and the morphodynamic equilibrium for the
parameter setting is obtained. From this, the parameter µ can be changed again.
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Figure 5.3: Schematic representation of the iteration procedure and continuation method.
Further details are given in the text.

5.4 Results

5.4.1 Set-up of the experiments

The default model set-up is chosen such that it is as close as possible to that of the
idealized model. This means that a linearized bed shear-stress formulation is used, no
waves are considered and ~qf = ~qfM0M2 . Next, the sensitivity of the results to extensions
of the model formulation are studied. An overview of all the experiments and in which
section the results are presented is given in Table 5.1.

The numerical parameters that are used for the experiments are shown in Table 5.2.
The domain covers the area from x ∈ [0, 15] km and y ∈ [−15, 15] km. Test experiments
showed that this choice of the domain obeys the condition of vanishing velocity far away
from the inlet. The total area spanned is 15 x 30 km and is divided into N c

x = 150 and
N c

y = 300 grid points in x- and y-direction, respectively. The grid distance ∆x = 100
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Section Bed shear-stress Higher harmonics Sediment transport Waves
4.2 + 4.3 Linear No �qf = �qfM0M2 No

4.4.1 Linear Internal �qf = �qres + �qa No
4.4.2 Linear Internal + External �qf = �qres + �qa No
4.5 Quadratic Internal �qf = �qres + �qa No
4.6 Fredsøe (1984) Internal �qf = �qres + �qa + �qwave Yes

Table 5.1: Overview of the experiments performed in this study.

m and ∆y = 100 m is found from convergence tests as the optimum choice when both
considering accuracy and calculation time. The numerical time-step used is ∆t = 2
minutes and the total simulation time is four tidal periods. Only the fourth tidal period is
used for the sediment transport calculations. Test experiments showed that the transients
were damped after three periods. To solve the wave model a coarser grid is used. The grid
distance is 300 m and Nw

x = 50 and Nw
y = 100. The wave parameters that are calculated

on the grid for the waves are linearly interpolated to the grid of the currents. The number
of poles that are used to solve the Poisson problem is 150.

Parameter Delft3D SWAN
Lx 15 km 15 km
Ly 15 km 15 km
∆x 100 m 300 m
Nx 150 50
∆y 100 m 300 m
Ny 300 100
∆t 120 s

Table 5.2: Numerical parameters of SWAN and Delft3D as used in the calculations.

5.4.2 Results for default case

In the default case B = 2 km. The cross-shore bottom profile is described by Equation
(5.1), with H0 = 5 m at the coast, Hs = 25 m and an e-folding length scale of L = 10 km.
These values are characteristic for the reference bathymetry observed along the barrier
coast of the US (see Chapter 3). The forcing of the water motion is due to the tidal
current in the inlet (no waves). The current profile over the inlet is equal to the one used
in Chapter 3 and only an M2 tidal component is prescribed:

Û(y, t) = UM2 [(2
y

B
− 1)3(2

y

B
+ 1)3] cos (σt) (5.28)

Here, σ = 1.4 · 10−4 s−1 denotes the frequency of the M2 tide. The profile is symmetric
with respect to the mid-axis of the inlet and the velocity amplitude increases from zero on
both sides (y = ±B/2) to a maximum value in the middle (y = 0). The typical velocity
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scale U , needed to calculate the linearized bottom stress and the sediment transport, and
the velocity scale Ut to calculate the eddy viscosity coefficient Ah, become U = Ut = UM2 .
In this experiment UM2 = 0.2 ms−1. In Table 5.3 the values of the model parameters for
this default experiment are given.

Parameter Choice
B 2 km
H0 5 m
Hs 25 m
L 10 km

Û Eq. (5.28)
U UM2

Ut UM2

UM2 0.2 ms−1

Cz 65 m1/2s−1

Ah 2.8 m2s−1

α 10−5 s2m−1

γ/β 1(m
s
)

p 2

Table 5.3: Parameter values for the default experiment.

Within the iteration procedure the first estimate of the equilibrium bathymetry for UM2 =
0.2 ms−1 is H = HR(x). The velocity pattern at two phases of the tide and the residual
current pattern are shown in Figure 5.4; Figure 5.4(a) shows the currents at maximum
ebb and Figure 5.4(b) at maximum flood. During ebb the water mainly flows in the cross-
shore direction. The alongshore velocity components are small. This resembles an ebb-jet.
During the flood phase the water flows from all sides towards the inlet. The alongshore
component of the velocity almost has the same magnitude as its cross-shore component.
The residual velocity pattern is shown in Figure 5.4(c). It reveals the presence of two
counter-rotating residual circulation cells at some distance from the inlet. The maximum
of the residual currents is 0.03 ms−1.
The net sediment transport �qfM0M2 is shown in Figure 5.5(a). The sediment is transported
from the sides towards the inlet. From the inlet the sediment is transported seaward. The
convergence of the net sediment transport is shown in Figure 5.5(b). It yields negative
values near the inlet and positive values further seaward.
From this convergence the new estimate for H is calculated and is shown in Figure 5.6(a).
It reveals a channel-shoal pattern. In the center of the inlet a channel is found and at its
end a shoal is located, the ebb-tidal delta. This shoal is flanked by two smaller channels.
Because this bathymetry differs much (∼ 1.5 m) from the old bathymetry, a next iteration
is needed. The new bathymetry gives rise to changes in the currents and net sediment
transport and repetition of the procedure results in a new guess for the bathymetry,
etc. The bottom changes appear to be gradual with decreasing differences between the
successive estimates of H. After 7 iterations the maximum difference with the previous
estimate is less than 4 cm and equilibrium is reached. This bathymetry is shown in Figure
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Figure 5.4: (a) The velocity field during ebb in the default experiment, first iteration step. For
model setting and parameter values, see Tables 5.1-5.3. The inlet is located at (x, y) = (0, 0)
and has a width B = 2 km. (b) Same as (a), but now during flood. (c) Vector plot of the
residual currents

5.6(b). Clearly, a shoal is found seaward of the inlet with its center around x = 1000 m.
This shoal resembles an ebb-tidal delta. The depth above the shoal is 1 m smaller than the
depth of the reference bathymetry at that position. Furthermore, a channel in the inlet is
modeled which is about 1.5 m deeper than the reference bathymetry at this position. It
is an ebb-dominated channel. The two channels that flank the delta are flood-dominated
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Figure 5.5: Variables at the first iteration step in the default experiment when H = HR(x).
(a) Mean sediment transport �qfM0M2 . (b) Convergence of mean sediment transport, −�∇·�qfM0M2 .
Contour intervals are 1 · 10−12 ms−1.

channels. The presence of the inlet is still noticeable at 3 km away from the inlet by the
curving of the isobaths.
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Figure 5.6: (a) Estimate of equilibrium bathymetry after first iteration step. Contour intervals
are 0.5 meter. (b) Equilibrium bathymetry for the default experiment. For model setting and
parameter values, see Tables 5.1-5.3. Contour lines are drawn every 0.5 m.
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5.4.3 Sensitivity of model results to tidal velocity amplitude in
the inlet

A series of experiments has been performed for different values of UM2 . Other parameter
values were identical to those used in the default experiment. Because the procedure to
obtain morphodynamic equilibrium and the resulting patterns for currents and sediment
transport are similar to those of the default experiment, only the equilibrium bathymetries
are presented. They are shown in Figure 5.7.

With increasing amplitude of the tidal current the channel-shoal pattern becomes more
pronounced. An increase of UM2 results in an increase of the depth of the channels and
a shift of the delta in the seaward direction. For UM2 = 0.10 ms−1 the shoal is 0.4 m
above the reference bathymetry HR, for UM2 = 0.30 ms−1 this is ∼2 m. For UM2 = 0.10
ms−1 the depth in the channel is 0.5 m beneath the reference bathymetry, for UM2 = 0.30
ms−1 this is ∼3 m. For UM2 > 0.30 ms−1 no equilibrium solutions are found. This will be
discussed in Section 5.7.

5.4.4 Sensitivity of results to tidal asymmetry

In the previous experiments the sediment transport is calculated with only the M0 and M2

components of the tide. Although being the dominant constituents, higher harmonics of
the tide are present as well. The effect of these higher harmonics on the results is studied
by a series of experiments in which �qf = �qres +�qa instead of �qf = �qfM0M2 . So, �qa is nonzero
and �qres also includes effects of the higher harmonics of the tide, see Equations (5.23a)
and (5.23b). Two cases are considered. In the first case, only the internally generated
higher harmonics of the tide are considered, i.e., higher harmonics that are generated by
nonlinear processes. In the second case, also externally generated higher harmonics are
considered by imposing an M4 component on the prescribed cross-shore tidal currents in
the inlet.

Internally generated higher harmonics

The same parameter setting as in the default experiment is used. At the first iteration
the current patterns during maximum ebb and flood and the residual current pattern are
identical to the default experiment. After decomposing the velocity components into its
Fourier components it is found that the maximum magnitude of long axis of the M4 tidal
current ellipse is 0.013 ms−1, or about 6 % of the M2 tidal current amplitude. The tidal
current ellipses of the M4 tide are shown in Figure 5.8(a). The pattern consists of two
cells. In the center of the inlet the M4 current ellipses are bidirectional, while at the sides
there is stronger ellipticity. The magnitude of the M6 tidal currents is much smaller than
the M4 tidal currents, with a maximum magnitude of the long axis of the M6 tide of 0.002
ms−1. The residual sediment transport �qres is almost equal to �qfM0M2 in the default case
and is therefore not shown. In Figure 5.8(b) �qa is shown and its convergence is shown
in Figure 5.9(a). The sediment transport due to the higher harmonics of the tide has a
similar pattern as �qres. However, the magnitudes of �qa are 10 times smaller than those of
�qres. The convergence of �qa has a similar pattern as the convergence of �qres, but they are a
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Figure 5.7: Equilibrium bathymetries for different values of UM2 . Contour lines every 0.5 meter.
For model setting and parameter values, see Tables 5.1-5.3. Note that Ah and U increase if UM2

increases. (a) UM2= 0.1 ms−1 ; (b) UM2= 0.15 ms−1; (c) UM2= 0.25 ms−1; (d) UM2= 0.30 ms−1.

factor 10 smaller. The initial erosion-deposition rate is increased by about 10 % compared
to the default experiment. From the convergence in the sediment transport a new estimate
of the equilibrium bathymetry is calculated. After a few iterations equilibrium is reached.
The modeled equilibrium bathymetry is shown in Figure 5.9(b). It only differs slightly
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from that of the default experiment (Figure 5.6(b)). It is characterized by a slightly deeper
channel near the inlet and a shoal that extends a bit further in the alongshore direction.
These results indicate that internally generated nonlinear overtides hardly affect the main
characteristics of the ebb-tidal delta.
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Figure 5.8: (a) Current ellipses of M4 tide at the first iteration step in the experiment with
internally generated higher harmonics. For model setting and parameter values, see Tables 5.1-
5.3. (b) �qa at the first iteration step.

Externally prescribed higher harmonics

In the experiments described in this section an external higher harmonic constituent is
prescribed in the inlet. The cross-shore velocity component in the tidal inlet is specified
as

Û(y, t) = UM2 [(2
y

B
− 1)3(2

y

B
+ 1)3][cos(σt) +

UM4

UM2

cos(2σt − φ)] (5.29)

with UM4 the magnitude of the M4 tidal currents and φ the relative phase between the
M2 and M4 tidal currents. For φ = 0◦ the current in the inlet is ebb-dominated, for
φ = 90◦ there is no dominance (peak flood currents equals peak ebb currents) and for
φ = 180◦ the current in the inlet is flood-dominated. Observations show that the velocity
in the inlet can have a large M4 component. For instance, Price Inlet in South Carolina
is ebb-dominated and UM4/UM2 = 0.16 (FitzGerald and Nummedal , 1983). Here, results
are presented of experiment in which a relatively strong external M4 is prescribed with
UM4 = 0.0375 ms−1, UM2 = 0.15 ms−1 and φ = 0◦, 90◦ or 180◦. Note that the value of
U , which is defined in Equation (5.14), now depends on φ. For φ = 0◦ and φ = 180◦

U = 0.1875 ms−1, while for φ = 90◦ U = 0.165 ms−1. All other parameters have their
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Figure 5.9: (a) Convergence of �qa at the first iteration step. Contour lines are drawn every
10−13 ms−1. (b) The equilibrium bathymetry in the experiment with internally generated higher
harmonics. Contour lines every 0.5 meter.

default values. Furthermore, �qf = �qres + �qa and is calculated with Equations (5.23a)
and (5.23b).

For these three cases morphodynamic equilibrium has been calculated. The tidal
current pattern during maximum ebb in morphodynamic equilibrium are almost similar
for the three cases. For φ = 0◦, φ = 90◦ and φ = 180◦ the flow pattern during maximum
ebb resembles an ebb-jet. However, the maximum magnitudes of the currents are relatively
large for φ = 0◦ (0.19 ms−1), moderate for φ = 90◦ (0.165 ms−1) and relatively weak
for φ = 180◦ (0.11 ms−1). The magnitudes of the residual currents in equilibrium are
different for the various phases. In case of ebb-dominated currents, the residual currents
are largest. When the inlet is flood-dominated the residual currents are weakest. The
tidal current ellipses of the M4 tide are similar for various phases φ. The ellipses are
mainly bidirectional.

In the case that φ = 0◦ the presence of higher harmonics of the tide results in a nonzero
�qa. The sediment is removed from the center of the inlet and transported in the seaward
direction. The convergence of �qa results in positive values (deposition) in the whole
domain and the magnitudes are much larger than those obtained in the experiment with
internally generated higher harmonics. In morphodynamic equilibrium the divergence of
the flow-induced sediment transport is balanced by �∇ · �qbot. The equilibrium bathymetry
is shown in Figure 5.10(a). The channel-shoal pattern is more pronounced than in the
default experiment (compare with Figure 5.6(b)). The channel is more extended in the
alongshore direction.

In the case that φ = 90◦ the sediment transport �qs has an almost similar pattern as in
the experiment with internally generated higher harmonics (Figure 5.8(b)). However, the
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magnitudes are larger. The convergence of the sediment transport has a similar pattern
as the pattern of −�∇ · �qres. The channel-shoal pattern of the equilibrium bathymetry
is similar to the situation that no external M4 is prescribed in the inlet as is shown in
Figure 5.10(b).

In the case that φ = 180◦ the currents in the inlet are flood-dominated. The sediment
transport due to the higher harmonics of the tide (�qa) results in a transport of sediment
from all sides towards the inlet. The convergence of �qa causes a strong erosion in the
entire domain and dominates the erosion and deposition pattern induced by �∇ · �qres. The
equilibrium bathymetry is shown in Figure 5.10(c). It has a completely different channel-
shoal pattern compared to the previous experiments. The equilibrium bathymetry for
φ = 180◦ is characterized by a channel near the center of the inlet and on both sides a
delta.

5.4.5 Sensitivity of results to quadratic bottom stress

In the experiments described in this section a quadratic bottom stress formulation is
used instead of the linearized one. No waves are considered. The sediment transport
calculations include the effect of the higher harmonics of the tide and is calculated with
Equations (5.23a) and (5.23b), where �u contains all tidal harmonics. All other parameters
have their default values (Table 5.3).

Figure 5.11(a) shows the residual currents and sediment transport at the first iteration
step. The residual currents are stronger than those obtained in the default experiment
(compare with Figure 5.5), typically 0.05 ms−1 versus 0.03 ms−1. In addition, the spatial
extensions of the residual circulation cells in Figure 5.11(a) are larger than those of the
default experiment. The center of the cells is at (x, y) = (1000,±800), where in the default
experiment they are at (x, y) = (600,±600). A vector plot of the sediment transport �qf is
shown in Figure 5.11(b). The sediment is transported from the sides of the inlet towards
the center. From the center of the inlet the sediment is transported in the seaward
direction. The convergence of �qf in equilibrium is shown in Figure 5.12(a). Interestingly,
the convergence of the sediment transport shows a first indication that the delta tends
to fold around the channel. The area with positive values folds around the area with
negative values. The equilibrium bathymetry is shown in Figure 5.12(b). The modeled
channel-shoal pattern is more pronounced compared to that of the default experiment (
Figure 5.6(b)). The delta protrudes about 2 km into the sea and extends further in the
alongshore direction. The height of the delta is almost the same as the delta in the default
experiment. The channel in the center of the tidal inlet is deeper than in the default case.

Additional experiments were performed in which UM2 is varied. For each experiment
the position of the shoal has been determined. Increasing the tidal current amplitude
results in a seaward shift of the position of the shoal (Figure 5.13). The maximum depth
of the channel increases with increasing UM2 .

5.4.6 Sensitivity of results to waves

In the experiment described in this section the water motion is forced by both cross-shore
tidal currents in the inlet and by waves of which the characteristics are imposed at the
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Figure 5.10: (a) Equilibrium bathymetry for experiment with zero phase difference between
M2 and M4 tidal currents, φ = 0◦ (ebb-dominated case). Furthermore, in this experiment
UM2 = 0.15 ms−1 and UM4 = 0.0375 ms−1 and velocity at the tidal inlet is prescribed according
to Equation (5.29). For model setting and parameter values, see Tables 5.1-5.3. Contour lines
are drawn every 0.5 m. (b) Same as (a), but now φ = 90◦ (no dominance). (c) Same as (a), but
now φ = 180◦ (flood-dominated case).

offshore boundary. The values of the wave parameters are specified in Table 5.4. Other
parameters are similar to the default parameter setting (Table 5.3), except for the value
of UM2 , Ut and U . The typical velocity scales are: Ut = UM2 , U =

√
U2

t + (uorb/β)2 and
UM2 = 0.1 ms−1. The offshore wave parameters have been chosen such that uorb is near
the inlet comparable to UM2 . At the seaside boundary the waves have a significant wave
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Figure 5.11: Residual currents (a) and mean sediment transport �qf (b) for quadratic bottom
stress at the first iteration step. UM2 = 0.2 ms−1. For model setting and parameter values, see
Tables 5.1-5.3.
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Figure 5.12: Experiment with quadratic bottom stress formulation, UM2 = 0.2 ms−1. For model
setting and parameter values, see Tables 5.1-5.3.(a) Convergence of the sediment transport in
equilibrium, −�∇ · �qf . Contour lines are drawn every 10−12 ms−1. (b) Equilibrium bathymetry.
Contour lines are drawn every 0.5 meter.

height of 0.21 m and a period of 7 s. The waves have shore-normal incidence and the
directional spreading is 2 ◦. The influence of the currents on the waves is not included
in the calculations. The wave parameters are used to calculate the bottom shear-stress



122 Numerical modeling of ebb-tidal deltas

0.05 0.1 0.15 0.2 0.25
1000

1100

1200

1300

1400

1500

1600

Amplitude of U
M

2

 (ms-1 )

po
si

tio
n 

sh
oa

l i
n  

x- 
di

re
ct

io
n 

(m
)

Figure 5.13: The cross-shore position of the shoal against the amplitude of the prescribed
cross-shore current in the experiment with quadratic bottom shear-stress.

experienced by the currents as described in Section 5.2.2. The sediment transport includes
the effect of waves and is calculated using Equations (5.23a)-(5.23c).

Variable Choice
Hsig 0.21 m
Tp 7 s
dir 90◦

directional spreading 2◦

U
√

U2
M2

+ |uorb/β|2
UM2 0.1 ms−1

Table 5.4: Parameters for experiment with waves.

The wave parameters at the first iteration step are plotted in Figure 5.14. In this stage
the bathymetry is H = HR(x). The top panel shows the bathymetry along the line y = 0.
In the middle panels the significant wave height and the wave number k are plotted. The
wave height increases and the wave length decreases (so k increases) when the water depth
decreases. The lowest figure shows uorb. It increases in shallower water. The radiation
stresses, the dissipation of energy due to breaking and due to whitecapping is found to
be very small.

The sediment transport pattern of �qres and �qa and the corresponding sediment erosion-
deposition pattern are similar to those found in the previous experiments where waves
were absent. There are differences, but these are small. A vector plot of the sediment
transport �qwave is shown in Figure 5.15(a). The transport is clearly organized in two cells.
Also far from the inlet (∼ 1500 m) the sediment transport rate is large. The convergence
of �qwave is shown in Figure 5.15(b). In the center of the inlet sand is eroded. This area
of erosion stretches diagonally out to the sides of the inlet. There are three distinct areas
where sediment is deposited. One of them is located at 500-1500 m seaward of the tidal
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Figure 5.14: Wave parameters for the initial iteration step (H = HR). The top panel shows
the bathymetry along the line y = 0. The second panel shows the significant wave height. The
third shows the magnitude of the mean wave number |�k| and in the lowest panel uorb is plotted.

inlet, as was always found in the previous experiment. In addition, there are two areas
with wave-induced sediment deposition at both sides of the inlet.

0 500 1000 1500 2000 2500 3000
−1500

−1000

−500

0

500

1000

1500

x−direction (m)

y−
di

re
ct

io
n 

(m
)

→
max

=1.3e−009 m2s−1

(a)

0 500 1000 1500 2000 2500

−1000

−500

0

500

1000

1500

0

0

0

x−direction (m)

y−
di

re
ct

io
n 

(m
)

2e−0132e−013

2e−013

2e−013

(b)

Figure 5.15: (a) Sediment transport due to waves (�qwave) in first iteration step. (b) Convergence
�qwave. Contour lines are drawn every 2 · 10−13 ms−1.
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Figure 5.16: (a) Equilibrium bathymetry for quadratic bottom stress and UM2 = 0.1 ms−1; no
waves. (b) same as (a), but now with waves and parameters as defined in Table 5.4.

After 11 iterations morphodynamic equilibrium is reached. The equilibrium bathymetry
is compared with that which is closest in parameter setting: UM2= 0.1 ms−1, quadratic
shear-stress and �qf calculated without the contribution of �qwave. The two equilibrium
bathymetries are shown in Figure 5.16. The modeled shoal of the experiment with waves
protrudes further into the sea (Figure 5.16(b)) compared to the experiment without waves
(Figure 5.16(a)). Furthermore, the two flood-dominated channels are more pronounced.

At the first iteration step the wave parameters did not have alongshore variations and
only were a function of the cross-shore coordinate. In equilibrium the wave parameters are
influenced by the presence of the channels and the shoals. In Figure 5.17(a) a contour plot
of the significant wave height Hsig is shown. Above the shoal its value has increased more
than 10 percent compared to its value at the first iteration. Note that Hsig has decreased
on the sides of the inlet compared to its values at the first iteration. In Figure 5.17(b)
a contour plot of the magnitude of the wave orbital motion is shown. It has increased
above the shoal and decreased again in the ebb-channel. A vector plot of �uw (defined in
Equation (5.8)) is shown in Figure 5.17(c). The contour lines represent the equilibrium
bathymetry. The alongshore components of �uw have been magnified by a factor 16. This
is done to show that the waves refract towards the shallower delta. At the first iteration
step the waves had a shore-normal direction. In equilibrium the waves can have an angle
of 5◦ with respect to the normal of the coast.

Because the refraction of the waves is quite small and waves do not break (the ratio of
wave height and water depth is very small), it is found that the divergence in the radiation
stress tensor is small and no wave-driven currents are generated in this experiment.
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Figure 5.17: Wave parameters in equilibrium. (a) Hsig (m). Light parts (dark parts) indicate
large (small) significant wave height. Contour lines are drawn every 0.01 m. (b) Magnitude of the
near-bed wave-orbital motion uorb (ms−1). Light parts (dark parts) indicate large vales (small
values) of uorb. Contour interval is 0.01 ms−1. (c) Vector plot of �uw (defined in Equation (5.8)).
Its alongshore component is amplified by a factor 16. Furthermore, grey values indicate the
depth. Dark is deep, light is shallow. Contour lines of depth are drawn every 0.5 meter.

5.5 Comparison of model results with observations

and idealized model

5.5.1 Comparison with field data

In this section the characteristics of the modeled equilibrium bathymetries and water
motion are compared with field data. In all the experiments the tidal flow during ebb
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and flood has the same pattern, i.e. a jet-like flow during ebb and radial inflow during
flood. This is consistent with the picture presented by Stommel and Farmer (1952) and
Oertel (1975). Wells and Van Heyst (2003) observed similar behavior of water motion
in a laboratory set-up. Quantitative comparison of the results with field data is difficult,
since observed amplitudes of the tidal currents are much higher ( 1 ms−1) than those used
in the model. No reliable model solutions could be obtained for amplitudes of the tidal
current larger than 0.3 ms−1. This will be discussed in Section 5.6.

Except for the experiment with externally prescribed flood-dominated currents in the
inlet, all modeled equilibrium bathymetries have a delta that is flanked by two flood-
dominated channels. In the center of the tidal inlet a ebb-dominated channel is present.
These findings are consistent with field observations (Hayes , 1975). There are, however,
differences between the model results and the observations. In particular, the ebb-channel
does not protrude as far seaward as observed in nature and the shoal does not bend
around it. Adding higher harmonics of the tide to the sediment transport calculations
and extending the model with a realistic description of the waves does not change the
general picture of the equilibrium bathymetry. However, adding the quadratic bottom
stress formulation results in a more seaward extension of the ebb-dominated channel and
a first indication of the folding of the delta around it (Figure 5.12). For larger magnitudes
of UM2 no morphodynamic equilibria are found and it can not be studied whether this
effect becomes more pronounced.

The most quantitative comparison with observations possible is the comparison be-
tween the observed and modeled relation between the amount of sand stored in the ebb-
tidal delta and the tidal prism. The tidal prism (TP) is defined as the total amount of
water that flows through the inlet during one tidal cycle,

TP =

∫ T

0

∫ B/2

−B/2

|Û(y, t)|H(0, y)dydt. (5.30)

The ebb-tidal sand volume (ESV) is defined as the total volume of sand above the reference
bathymetry HR

ESV = −
∫ ∫

A

[H(x, y) − HR(x)]Θ(HR(x) − H(x, y))dxdy, (5.31)

where Θ is the Heaviside function and A the model area. This means that only those
areas with depths smaller than HR will contribute to ESV. The values of ESV and TP
are made dimensionless by dividing the volumes by a control volume of 1 m3. In Figure
5.18 some of the inlets presented by Walton and Adams (1976) are plotted (stars). They
found a relation between ESV and TP using the data of more than 40 inlets at the US
coast. This relation is

ESV = c1TPc2 (5.32)

with c1 in the order of 10−2 and c2 = 1.23. This empirical fit is shown in Figure 5.18
by the solid line. The power-like behavior is best seen when the logarithm is plotted
of both TP and ESV. The modeled ESV as function of the modeled TP for the default
parameter setting is shown by the black dotted line. The relation between ESV and TP
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has the same slope as the observed slope, which implies that the power is close to that
as found by Walton and Adams (1976). However, the modeled magnitudes of ESV are
about a factor 3.5 smaller than observed. The fit of the model results yields c1 = 3 · 10−3

and c2 = 1.23. The modeled relation between ESV and TP for the experiment with
quadratic bottom stress (dashed line in Figure 5.18) is even closer to the observations and
the magnitude of the modeled sand volume is only a factor 2 smaller than observed. In
this case the fit of the model results yields c1 = 1.1 · 10−3 and c2 = 1.32. The modeled
sand volume with waves is larger than in the experiment without waves. It is denoted by
an asterisk in Figure 5.18. The ebb-tidal sand volume in the experiment with waves is
7.5 · 106 m3 and the tidal prism is 1.7 · 107 m3. That result appears to agree quite well
with the field data.
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Figure 5.18: Ebb-tidal sand volume as a function of the tidal prism. Diamonds denote a part
of the field data from Walton and Adams (1976). The solid line is the best fit of field data. The
results of the quadratic stress experiments are denoted by the dashed line and those with the
linear stress by the dotted line. The result of the experiment with waves is included as well.

5.5.2 Comparison with idealized model

The default experiment has been designed such that it is as close as possible to the
idealized model as described in Chapter 3. In this section the results of the default case
are compared with the results of the idealized model. In Figure 5.19(a) the flow patterns
during ebb are shown. The black vectors show the currents calculated with the idealized
model and the grey vectors denote the currents calculated with the numerical model.
Both the numerical and idealized model generate an ebb-jet. The differences between
the currents calculated with the numerical and with the idealized model are small. The
largest differences are found in the region of the tidal inlet. The alongshore velocity
components are smaller in the numerical model than in the idealized model. The ebb-jet
is more pronounced in the numerical model than it is in the idealized model. During flood
(Figure 5.19(b)) the modeled current patterns of the two models are almost similar. The
differences are very small. The calculated residual currents are shown in Figure 5.19(c).
Both models calculate two residual circulation cells of which the centers are located at
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(x, y) = (600,±600). However, there are differences as well. The differences are largest
in the region of the tidal inlet. The magnitudes of the residual currents are larger in the
numerical model than in the idealized model. Close to the inlet the residual currents also
have different direction.
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Figure 5.19: Comparison of flow patterns in morphodynamic equilibrium obtained with ideal-
ized (black vectors) and with numerical model (grey vectors). (a) Maximum ebb. (b) Maximum
flood. (c) Residual currents. (d) Equilibrium bathymetry for maximum tidal currents through
the inlet of 0.2 ms−1 and B=2km obtained with the idealized model.

Qualitatively, the differences between the modeled currents of the numerical and the
idealized model are small. There are quantitative differences, however. Therefore, it can
be expected that the modeled equilibrium bathymetries will differ quantitatively. The
equilibrium bathymetry obtained with the idealized model is shown in Figure 5.19(d) and
the one obtained with the numerical model in Figure 5.6(b). The results are very similar.
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Both models reproduce the ebb-tidal delta at the end of the ebb-dominated channel. This
delta is flanked by two flood-dominated channels. Quantitatively, there are differences.
The minimum depth above the shoal in the idealized model is ∼ 6m at a cross-shore
distance of 500 m. In the numerical model it is also ∼ 6 m, but the shoal is located
1000 m from the center of the tidal inlets. The bottom patterns are more pronounced,
compared to the results of the idealized model.

Model formulation

Idealized model Numerical model
Rigid lid approximation ζ can be dynamically important
BC: In inlet ∂v/∂x = 0 Inflow: no tangential advection of momentum

outflow: no extra BC
Infinite domain Finite domain

Numerical method

Idealized model Numerical model
Space: Pseudospectral method Finite differences

Time: Expansion in Fourier components Standard time integrations
Truncation after M2 harmonic component ”All” harmonic components included

Table 5.5: Main differences between ”idealized” model and ”realistic” model

To understand why these differences in model results occur it should be realized that,
although both models were as close as possible in model formulation and parameter set-
ting, there are still differences. These are summarized in Table 5.5. They concern the
model formulation and the numerical methods to solve the equations. The first difference
between both models is the use of a rigid lid approximation in the idealized model. This
implies that in the idealized model only the pressure gradients due to the sea surface
elevation are dynamically important. This is justified as long as the square of the Froude
number (Fr2 = U2/gH = ζ/H) is small. In Delft3D-FLOW this rigid lid approximation
is not made. The results show that in the experiments the maximum sea surface elevation
never exceeds 10 cm. Since the water depth is always more than 5 meter, this implies
that Fr2 ∼ 10−2. Therefore, the use of a rigid lid approximation in the idealized model
is justified and it does not explain the differences between both models.

The second difference concerns the boundary conditions in the tidal inlet. In both
models the cross-shore currents are prescribed, but the second condition is different: In
the idealized model a free-slip condition is applied while in the numerical model during
ebb the advection in the tangential direction is neglected and during flood no additional
boundary condition is required. Neglecting the tangential advection is equivalent to as-
suming that the alongshore velocity is zero. This boundary condition forces a jet-like
outflow during ebb. This is clearly visible in Figure 5.19(a). The numerical model has no
alongshore component in the tidal inlet during ebb. During flood the numerical model
computes a strong alongshore velocity component near the inlet. The residual currents
calculated with the numerical model are larger than those obtained with the idealized
model. Furthermore, the residual sediment transport and its convergence calculated with
the numerical model are larger than those obtained with the idealized model. The con-
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sequence is that the equilibrium bathymetry obtained with the numerical model is more
pronounced than the one obtained with the idealized model.

The third difference is that the idealized model uses an infinite domain, while the
numerical model uses a finite domain. This hardly influences the results, because the
domain that is used in the numerical model is large enough to have vanishing currents
and sediment transport at the seaward boundaries.

The fourth to sixth item listed in Table 5.5 concern the numerical method used to
solve the models. In the idealized model a pseudospectral method is used, see Chapter
3. In the numerical model finite differences have been used. In the numerical model the
free-slip condition at x = 0 is not well resolved. In the default experiment Ah = 2.8
m2s−1, resulting in a typical thickness of the boundary layer of

√
Ah/σ ≈ 140 m. The

grid size is 100 m. This might be too coarse to resolve the boundary layer. The idealized
model does not suffer from this problem, because with the pseudospectral method the
grid can be refined near x = 0. However, because the differences between flow pattern
during flood calculated with the idealized model and calculated with the numerical model
hardly differ, it is believed that this difference is not important.

The last difference between both models is introduced by the numerical method to
solve the time-dependent part of the variables (fifth and sixth difference). In the idealized
model a Galerkin method is used. The variables are expanded into a Fourier series. This
series is truncated after the M2 component. In the numerical model standard techniques
are used and all components of the tide are calculated. The results obtained with the
numerical mode show that there is only a very small generation of higher harmonics of
the tide. Its relative magnitude is about 5% of the magnitude of the M2 components.
Therefore, the harmonic truncation is not likely to be responsible for large differences
between the results obtained with both models.

The most important difference between the models seems to be the formulation of the
boundary conditions in the inlet. This has been tested by performing an experiment in
which the idealized model was forced by new boundary conditions at x = 0. The velocity
field at x = 0 was prescribed with velocity components as calculated with the numerical
model, retaining only the residual and M2 components.

The current pattern during maximum ebb, maximum flood and the residual currents
calculated with the adapted idealized model and the numerical model are shown in Fig-
ure 5.20. Black vectors are calculated with the adapted idealized model and grey vectors
with the numerical model. The differences between the results obtained with the two
model are much smaller than in the previous experiment. Especially during ebb the
results have come much closer, while during flood the changed boundary conditions in
the adapted idealized model hardly influences the calculated flow pattern. Furthermore,
the residual currents calculated with the adapted idealized model and with the numerical
model are in good agreement (Figure 5.20(c)). However, especially near the tidal inlet the
vectors still do not have the same magnitude and direction. The equilibrium bathymetry
calculated with the adapted idealized model is shown in Figure 5.20(d). The channels
calculated with the numerical model are still a little deeper and the position of the shoal
is further seaward, but the differences between the idealized and the numerical are much
smaller than in the previous experiment (see Figure 5.19(d)).
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Figure 5.20: Comparison of model results in morphodynamic equilibrium obtained with the
adapted idealized model and with numerical model. The velocity field obtained with the nu-
merical model in the default case has been used as a boundary condition at the coastline for
the adapted idealized model. (a) Currents during maximum ebb (black vectors represent ideal-
ized model, grey vector numerical model). (b) As (a), but now during maximum flood. (c) As
(a). but now the residual currents. (d) Equilibrium bathymetry calculated with the adapted
idealized model. Contour lines every 0.5 m.

5.6 Discussion

The objectives for the study described in this chapter were twofold. The first was to
develop a numerical morphodynamic model which allows for equilibrium solutions. The
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results of this model were compared with observations and with the results obtained with
the idealized model described by van der Vegt et al. (2005). The second was to study
the sensitivity to processes that could not be accounted for in the idealized model. A
detailed comparison of model results with observations and with the idealized model was
presented in the previous section. Here, the sensitivity of the results to extensions in the
model formulation are discussed. After this, it is discussed why for UM2 > 0.3 ms−1 no
morphodynamic equilibria were found.

Sensitivity to tidal asymmetry

The influence of internally generated higher harmonics on the morphodynamic equilibrium
turns out to be small. The additional sediment transport due to higher harmonics of
the tide, �qa, is in the order of 10 %. In van de Kreeke and Robaczewska (1993) it was
shown that in the one-dimensional case the magnitude and direction of �qa depends on
the magnitude of the M4 and M2 tidal currents and on their relative phase difference. In
the two-dimensional case the expressions for �qa become more elaborate (van der Molen,
2000). But also in that analysis �qa is a function of the magnitude of the M4 and M2

tidal currents. The magnitude of the M4 currents is measured by the long axis of the
M4 tidal current ellipse. Its maximum in the domain is 0.013 ms−1, which is about a
factor 3 smaller than the maximum residual currents (0.035 ms−1). Moreover, there is an
approximate phase difference of 90◦ between the M2 and M4 tidal currents. This results
in only a small contribution of �qa to �qf .

The influence of an externally prescribed M4-component on the calculated morphody-
namic equilibria is much stronger. Depending on the phase difference φ between the M2

and M4 tidal current, the equilibrium bathymetry has no shoal or a larger shoal compared
to the situation without externally forced M4 current. When φ = 0◦ the ebb-dominated
channel is deeper and the shoal is larger and is located further seaward. This is caused
by the additional sediment transport due to the higher harmonics of the tide. In the case
that φ = 90◦, the tidal currents during ebb have the same magnitude as during flood and
the net sediment transport �qa is very small. For φ = 180◦ the currents in the inlet are
flood-dominated. The convergence of �qa causes erosion in the whole domain. This erosion
is larger than the deposition of sediment induced by the convergence of �qres. This results
in the absence of an ebb-tidal delta. This prediction seems to be in correspondence with
observations. It is found that that inlets with strong flood-dominated currents only have
poorly developed ebb-tidal deltas, whereas deltas with ebb-dominated currents have large
ebb-tidal deltas (Walton, 2002).

Sensitivity to quadratic bottom shear-stress

The results obtained with the numerical model are sensitive to the use of the quadratic
bed shear-stress formulation instead of the linearized one. The magnitude of the residual
currents obtained with the quadratic bottom stress formulation are larger than in the
default case. Furthermore, the spatial extensions of the two residual circulation cells are
increased compared to the default experiment. The linearized bottom stress formulation
is normally motivated by an energy consideration: The dissipation of kinetic energy per
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tidal period obtained with the linearized bottom stress formulations should equal the
dissipation as obtained with a quadratic formulation. Therefore, the tidally averaged
dissipation of kinetic energy is calculated for both the linearized and the quadratic bottom
shear-stress formulation. This is done for the first iteration step in the case that UM2 = 0.2
ms−1. The tidally averaged energy dissipation Dlin obtained with the linearized stress is

Dlin(x, y) =
8

3π

gU

C2
zT

∫ t=T

t=0

|�u(x, y, t)|2dt (5.33)

The energy dissipation Dqua obtained with the quadratic bottom shear-stress is

Dqua(x, y) =
g

C2
zT

∫ t=T

t=0

|�u(x, y, t)|3dt (5.34)
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Figure 5.21: Comparison between the tidally averaged dissipation of energy obtained with
linear and with quadratic bottom shear-stress, Dlin/Dqua. Contour lines indicate the factor of
overestimation in the linear bottom stress. Contour lines every 0.5.

In Figure 5.6 a contour plot of the ratio of Dlin and Dqua is shown. Only in the middle
of the inlet the energy dissipation due to the linearized bottom shear-stress equals that
of the quadratic stress. In the rest of the domain the dissipation due to the linearized
stress is substantially larger. This has importance consequences for the residual velocity.
In Zimmerman (1981) it is shown that residual circulation cells are strongly related to
tidally averaged vorticity. In van der Vegt et al. (2005) it was shown that the main balance
in the tidally avaraged vorticity balance is between the convergence in the vorticity flux
(which generates residual vorticity) and the dissipation of residual vorticity by friction.
When the energy dissipation by friction is overestimated, the residual vorticity will be
underestimated. This results in smaller residual currents, smaller sediment transport and
a smaller convergence of it. As a consequence, the modeled equilibrium bathymetry is
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smaller. In conclusion, the estimate of U in Equation (5.14) leads to a strong overestima-
tion of the energy dissipation due to linearized bottom friction and an underestimation of
the magnitude of the residual currents. A better estimate is needed. Since the magnitudes
of the tidal currents strongly vary in the region of the tidal inlet, it is recommended to
apply the Lorentz linearization procedure at each position in the domain. This will result
in a spatially dependent U . This is in principle possible with the idealized model.

Sensitivity to waves

The last extension of the model is the incorporation of a realistic description of the waves.
This leads to flood channels which are more pronounced (deeper) and to a shoal which
lies further seaward compared to the experiment without waves. The depth above the
shoal is still relatively deep and the waves are small. Therefore the waves do not break
and no wave-driven currents are generated. However, the refracting of the waves towards
the shoal is visible (Figure 5.17(c)). In the case that the depth above the shoal decreases
or the wave height increases it is expected that these kind of effects will become more
important. The waves will refract to and ultimately break above the shoal. This will
result in wave-driven currents that will affect the modeled equilibrium bathymetry. For
realistic scenarios the numerical model yields more accurate results than the idealized
model.

Why no convergent solutions for UM2 > 0.3 ms−1?

In this study convergent solutions are found for UM2 up to a maximum of 0.30 ms−1.
Interestingly, with the idealized model morphodynamic equilibria were found for much
higher velocity amplitudes. This raises the question why the numerical model does not
allow for equilibrium solutions for UM2 > 0.3 ms−1.

There are two possible explanations. The first is related to the numerical methods
to solve the model. As was already discussed in Section 5.5.2, the grid size of 100 meter
might be too coarse to calculate the patterns in the convergence of the sediment transport
in the region of the tidal inlet. Furthermore, the free-slip condition at x = 0 is not well
resolved. The input of tidal vorticity is a very important parameter for the generation
of residual circulation cells (van der Vegt et al., 2005). In turn, the residual currents
are important for the residual sediment transport and its convergence. In the idealized
model the boundary conditions in the inlet are such that the input of vorticity into the
domain is determined by the shear in the velocity profile prescribed in the inlet. In the
numerical model this is not the case because ∂v/∂x is to be determined by the model.
If the coupling between the bottom and vorticity input is very nonlinear, a small change
in the magnitude of the bottom patterns can result in a large change of the vorticity
input and a large change of the current patterns. The iterative solution procedure fails to
calculate the morphodynamic equilibria. However, with the idealized model also above a
certain magnitude of the cross-shore tidal currents no equilibria were found. Therefore,
another explanation should be considered as well.

The second explanation concerns the possible existence of bifurcations in parameter
space. These bifurcations have been found in previous studies for tidal basins (Schuttelaars
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and de Swart , 2000; Schramkowski et al., 2004). Although in these studies other problems
have been studied, the system studied in this chapter has strong similarities in model
formulation. When bifurcations exist, it might be that equilibria exist for UM2 > 0.3 ms−1,
but the differences with the equilibrium of a slightly smaller parameter are so large, that
the continuation method fails to find the equilibrium for this parameter setting. A stability
analysis has to be performed to obtain insight in the existence of these bifurcations or
more sophisticated continuation techniques should be used.

5.7 Conclusions

In the previous section the main results already have been discussed. In this section a
short summary of the main findings is given. The section ends with suggestions for further
research.

The first objective of this study was to validate the results of the idealized model
by calculating morphodynamic equilibria with a numerical model. The results presented
in Section 5.4.2 and the discussion of Section 5.5.2 show that both models yield similar
results. The main (quantitative) differences are caused by the boundary conditions at
the tidal inlet which could not be made equivalent. It is concluded that the the rigid-lid
approximation, as used in the idealized model, is valid.

The second objective of this study was to investigate the sensitivity of the results to
higher harmonics of the tide, quadratic bottom shear-stress and to waves of which the
properties are obtained with a realistic wave model. The results presented in Section 5.4.4
showed that the influence of internally generated higher harmonics is small. However,
externally prescribed higher harmonics can have a large influence on the calculated mor-
phodynamic equilibria. In the case that the currents in the inlet were ebb-dominated
the bottom patterns were more pronounced. In the case of flood-dominated currents the
ebb-tidal delta can be absent. In Section 5.4.5 it was shown that using a quadratic bot-
tom shear-stress formulation instead of a linearized one results in a larger ebb-tidal delta.
Furthermore, the cross-shore length of the ebb-dominated channel was larger and a first
indication was seen that the ebb-tidal delta folds around the ebb-dominated channel. In
addition, the modeled ESV was closer to observed values than when a linearized bottom
shear-stress formulation is used. The analysis presented in Section 5.6 showed that the
linearized bottom shear stress formulation as used in the idealized model overestimates
the dissipation of momentum due to friction. It was concluded that the linearized stress
formulation can only be used if at each position in the domain a linearization procedure is
applied, which will result a spatially dependent magnitude of Ut. The results presented in
Section 5.2.2 showed that already for small waves processes like refraction become notice-
able. From these results it is expected that for realistic scenarios a state-of-the-art wave
model should be used, instead of the highly idealized version that is used in the idealized
model.

Although the numerical model uses a realistic description for the waves and currents,
other aspects of the model are still idealized. In the inlet the velocity was prescribed. This
velocity did not change when the bathymetry changed. Hence, the interaction between
the inner basin and the ebb-tidal delta is not modeled. A more realistic set-up can be
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achieved when a strait connects the sea with a tidal basin. In that case the sea and basin
can dynamically interact and the velocity in the strait would follow from physical laws.

Another important simplification of the model is the use of a spatially independent
U and Ut. Therefore, �qbot only has spatial variations due to spatial variations in H ′.
The analysis of the results obtained with the quadratic bottom shear-stress formulation
show that a constant Ut is not a very good approximation. It would be better to use a
spatially dependent Ut. If also a spatially dependent U is used, this will strongly affect the
calculation of �qbot and the calculation of the equilibria, as was already shown in Chapter
3. Moreover, in this study only one (bedload) sediment transport formulation has been
studied. There are many other formulations for the sediment transport, which also include
suspended-load sediment transport formulations. These need to be considered as well.

The last aspect that has to be mentioned here is that the processes that lead to asym-
metry have been excluded. A thorough study of these processes is needed because many
observed deltas are asymmetric. The morphodynamic model discussed in this chapter
leaves many possibilities to systematically study the mechanisms that lead to asymme-
try of ebb-tidal deltas. Moreover, the numerical model can in principle also be used to
calculate morphodynamic equilibria for other areas such as tidal basins.




