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Abstract. This paper reviews recent (numerical) progress in the understanding of entropic phase 
transitions in complex fluids. In particular, I discuss (liquid-)clystal formation and demixing in 
binary mixtures. In some cases it appears that lessons leamt in the sNdy of complex fluids may 
have an unexpected relevance for simple fluids. 

1. Introduction 

The second law of thermodynamics tells us that, in a closed system at equilibrium, the 
entropy, S, is at a maximum. A spontaneous phase transformation in a closed system can 
therefore only occur if it results in an increase of the entropy. However, it is more common 
to consider the equilibrium behaviour of a system that is not isolated, but can exchange 
energy with its surroundings. In this case, the second law of thermodynamics implies that 
the system will tend to minimize its Helmholtz free energy F = E - T S ,  where E is 
the internal energy of the system and T the temperature. Clearly, a system at constant 
temperature can lower its free energy in two ways: either by increasing the entropy S ,  or 
by decreusing the internal energy E .  In order to gain a better understanding of the factors 
that influence phase transitions, we must look at the statistical mechanical expressions for 
entropy. The simplest starting point is to use Boltzmann’s expression for the entropy of an 
isolated system of N particles in volume V at an energy E ,  

S = k B I n S Z  (1) 

where kB, the Boltzmann constant, is simply a constant of proportionality. SZ is the total 
number of (quantum) states that is accessible to the system. In the remainder of this paper, 
I shall choose my units such that ks=l .  The usual interpretation of (1) is that Q, the number 
of accessible states of a system, is a measure for the ‘disorder’ in that system. The larger 
the disorder, the larger the entropy. This interpretation of entropy suggests that a phase 
transition from a disordered to a more ordered phase can only take place if the loss in 
entropy is compensated by the decrease in internal energy. This statement is completely 
correct, provided that we use (1) to define the amount of disorder in a system. However, 
we also have an intuitive idea of order and disorder: crystalline solids are ‘ordered’, while 
isotropic liquids are ‘disordered‘. This suggests that a spontaneous phase transition from the 
fluid to the crystalline state can only take place if the freezing lowers the internal energy of 
the system sufficiently to outweigh the loss in entropy: i.e. the ordering @ansition is ‘energy 
driven’. In many cases, this is precisely what happens. It is, however, dangerous and often 
simply wrong to assume that the intuitive definition of order is equivalent to that based on 
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(1). In fact, the aim of this’paper is precisely to show that many ‘ordering’ transitions that 
are usually considered to be energy driven may, in fact, be entropy driven. At the outset, I 
should stress that the idea of entropy-driven phase transitions is an old one, in particular in 
the theory of complex fluids. The realization that the same ideas may also apply to simple 
fluids is, however, of a more recent date. 

What classes of phase transitions can be driven by entropy alone? In order to answer this 
question, we must consider systems in which the internal energy is a function of temperature 
alone. If a first-order phase transformation takes place at constant temperature, the internal 
energy must remain the same. Hence the change in Helmholtz free energy is determined 
exclusively by the change in entropy of the system. In general, it is not obvious how to 
devise model systems for which the internal energy depends only on temperature. In order 
for this condition to hold, the partition function Z of the system should factorize into a part 
that depends only on the temperature, T, and a part that depends on the density, p .  For a 
classical N-body system, we can write Z as 

where p = (kBT)-’ ,  while H(pN, q N )  denotes the Hamiltonian of the system, expressed as 
a function of the momenta p N  and the coordinates qN.  For convenience, I have assumed 
that we are dealing with an atomic system. The Hamiltonian H is the sum of the kinetic 
energy K ( p N )  and the potential energy U(qN). For classical systems, we can perform the 
integration over momenta in (2) analytically. This yields a factor in the partition function 
that depends on T only. The remaining, configurational, part of the partition function is 

e=- / . .  1 
N !  (3) 

In general, Q will be a function of N ,  V and T. We are interested in the case where Q 
does not depend on T. It would seem that this is not possible, because Q depends on p. 
However, if we limit our attention to hard-core potentials, i.e. potential energy functions 
that are (depending on the value of qN)  either 0 or 03, then Q is indeed independent of p. 
It is easy to see that, in that case, the average potential energy of the system 

The average energy of a hard-core system is therefore simply equal to the average kinetic 
energy (K),  which is a function of the temperature only. As the internal energy of a hard- 
core system is constant at constant temperature, any phase transformation in such a system 
takes place only because this results in an increase in entropy. 

Now that we have defined a class of model systems for which entropy is the only driving 
force behind spontaneous phase transformations, we wish to find out what kinds of phase 
such a model system can exhibit. 

2. (Liquid) crystals 

In this section, I briefly review what we now know about the effect of entropy on 
the formation of partially ordered liquids (‘liquid crystals’) and crystalline solids. The 
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earliest example of an entropy-driven ordering transition is described in a classic paper 
by Onsager [I], on the isotropic-nematic transition in a (three-dimensional) system of thin 
hard rods. Onsager showed that, on compression, a fluid of thin hard rods of length L and 
diameter D must undergo a transition from the isotropic fluid phase, where the molecules 
are translationally and orientationally disordered, to the nematic phase. In the latter phase, 
the molecules are translationally disordered, but their orientations are, on average, aligned. 
This transition takes place at a density such that ( N / V ) L * D  = U(1). Onsager considered 
the limit L I D  + W. In this case, the phase transition of the hard-rod model can be 
found exactly (see e.g. [Z]). At first sight it may seem strange that the hard-rod system can 
increase its entropy by going from a disordered fluid phase to an orientationally ordered 
phase. Indeed, due to the orientational ordering of the system, the orientational entropy of 
the system decreases. However, this loss in entropy is more than offset by the increase in 
translational entropy of the system: the available space for any one rod increases as the 
rods become more aligned. In fact, we shall see this mechanism returning time and again in 
ordering transitions of hard-core systems: the entropy decreases because the density is no 
longer uniform in orientation or position, but the entropy increases because the free volume 
per particle is larger in the ordered than in the disordered phase. 

The most famous, and for a long time controversial, example of an entropy-driven 
ordering transition is the freezing transition in a system of hard spheres. This transition had 
been predicted by Kirkwood in the early fifties 131 on the basis of an approximate theoretical 
description of the hard-sphere model. As this prediction was quite counter-intuitive and not 
based on any rigorous theoretical results, it met with wide spread scepticism until Alder 
and Wainwright [4] and Wood and Jacobson [5] performed numerical simulations of the 
hard-sphere system that showed direct evidence for this freezing transition. Even then, 
the acceptance of the idea that freezing could be an entropy driven transition came only 
slowly [6]. However, by now, the idea that hard spheres undergo a first-order freezing 
transition is generally accepted, and, although the hard-sphere model was originally devised 
as an idealized and highly unrealistic model of an atomic fluid, it is now realized that 
this model provides a good description of certain classes of colloidal systems (see the 
conhibution by Pusey in this issue [7]). In fact, we now know that even more complex 
crystalline order may occur in hard-sphere alloys [7,8]. In particular, a binary mixture 
of hard spheres with a diameter ratio in the vicinity of 0.58 may spontaneously form a 
substitutionally ordered alloy with the so-called ABL3 structure. Such crystals have a very 
large unit cell containing 112 particles. 

The next step in this sequence came in the mid-eighties when computer simulations [9] 
showed that hard-core interactions alone could also explain the formation of more complex 
liquid crystals. In particular, it was found that a system of hard sphero-cylinders (i.e. 
cylinders with hemi-spherical caps) can form a smectic liquid crystal, in addition to the 
isotropic liquid, the nematic phase and the crystalline solid. In the smectic (A) phase, the 
molecules are orientationally ordered but, in addition, the translational symmetry is broken: 
the system exhibits a one-dimensional density modulation. Subsequently, it was found that 
some hard-core models could also exhibit columnar ordering [IO]. In the latter case, the 
molecules assemble in liquid-like stacks, but these stacks order to form a two-dimensional 
crystal. In summary, hard-core interaction can induce orientational ordering and one-, two- 
and three-dimensional positional ordering. This is rather surprising because, in particular 
for the smectic and the columnar phase, it was generally believed that their formation 
required specific energetic interactions. For more details, the reader is referred to a recent 
review [ I l l .  
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3. Binary mixhrres 

Phase separation in binary mixtures is the example that is used in many textbooks to 
illustrate the competition between energy and entropy in a phase transformation. For a 
mixture at constant total volume V, the Helmholtz free energy F should be minimal. As a 
first approximation, the entropy of mixing of a mixture of two species A and B, is replaced 
by the entropy of mixing of an ideal mixture 

where X denotes the mole fraction of one component (say A): X = N A / ( N A  t N B ) .  The 
entropy of mixing given by (5) is a convex function of X. As a consequence, Sid(X) will 
always decrease if phase separation takes place. This implies that phase separation can 
only take place if the resulting decrease in energy E outweighs the increase in --TSid. In 
a hard-core mixture, there is no energy change upon mixing. Hence, if (5) were exact, 
we should never observe phase separation in a hard-core mixture, and, even though (5) 
is known to be only an approximation, it was commonly thought that a fluid mixture of 
dissimilar hard spheres would not phase separate. This belief was, at least partly, based on 
the work of Lebowitz and Rowlinson [ 121, who studied the phase behaviour of such binary 
mixtures of dissimilar hard spheres, using a more accurate approximation for the entropy of 
mixing, based on the Percus-Yevick (PY) integral equation. Lebowitz and Rowlinson found 
that, at least within that approximation, hard spheres of arbitrary size ratio will mix in all 
proportions in the fluid phase. The implication of this result was that entropic effects are 
not enough to cause a miscibility gap in a simple fluid mixture. More recently. however, 
Biben and Hansen [ 131 have applied a more sophisticated analytical theory for dense fluid 
mixtures to the same problem. Unlike the PY approximation, this theory is found to predict 
that an asymmetric binary hard-sphere mixture should phase separate if the sizes of the two 
spheres are suficiently dissimilar (typically, if the size ratio is less than 0.2). However, as in 
the case of [ 121. this is based on an approximate theory for the hard-sphere mixture. Hence, 
one may wonder to what extent the result found in [13] depends on the approximations 
that are used to compute the equation of state of the mixture. Clearly, it would be highly 
desirable to have a model system of a binary mixture for which the existence of a purely 
entropic demixing transition can be demonstrated unambiguously. In fact, for the case of a 
hard-sphere mixture, this question has not yet been resolved. However, recent simulations 
by Dijkstra and Frenkel [ E ]  show unambiguously that entropic demixing does occur in a 
somewhat simpler binary hard-core mixture, namely a system of dissimilar hard parallel 
cubes. For an even simpler decorated lattice model 1141, the entropic de-mixing transition 
can be mapped on the magnetic-ordering transition of the king model. 

Entropic de-mixing is of particular importance in mixtures of particles with differing 
shapes, for instance spheres and rods or spheres and platelets. One may even argue that the 
isotropic-nematic transition in a system of infinitely thin hard rods (the Onsager model [l]) is 
simply a manifestation of the de-mixing transition in a multi-component mixture of parallel 
hard rods, where every component corresponds to a different orientation. More interesting 
is the case of a mixture of thin hard rods and spheres. In the limit of very long rods, the 
solubility of rods in the hard-sphere fluid and spheres in the hard-needle fluid vanishes. The 
condition for phase coexistence is then only determined by the equality of the pressures of 
the sphere fluid and the needle fluid. If we assume that the needles are really infinitely thin, 
then the pressure of the needle fluid is simply the equation of state of an ideal gas, i.e. 

poccdles = Pnee.ileskBT. 
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The pressure of the hard-sphere fluid is, of course, not known analytically. However, the 
Camahan-Starling equation of state is known to reproduce the available simulation data 
quite well [ 161 

where denotes the volume fraction of the spheres. The shape of the binodal (envelope of 
the two-phase region) in a P,pheres-p@,cns diagram is given directly by two branches that 
meet in the origin. One branch, corresponding to the needle fluid, is simply a vertical line at 
p=O. The other branch, corresponding to the hard-sphere fluid, is given by the hard-sphere 
equation of state. This suggests that it should be possible to determine the equation of state 
of spherical colloids without ever measuring a pressure, simply by bringing the solution 
of spherical particles in contact with a solution of thin, fairly rigid polymers. Plotting the 
density of the needle fluid as a function of the density of the sphere fluid should reproduce 
the hard-sphere equation of state. For more details, see [17]. 

4. Depletion flocculation 

Let us next consider a slightly more complex example of an entropy-driven phase separation 
in a binary mixture, namely polymer-induced flocculation of colloids. Experimentally, it is 
well known that the addition of a small amount of free, non-adsorbing polymer to a colloidal 
suspension induces an effective attraction between the colloidal particles and may even lead 
to coagulation. This effect has been studied extensively [19] and is well understood, at 
least qualitatively. As in the example discussed above, the polymer-induced attraction 
between colloids is an entropic effect: when the colloidal particles are close together, the 
total number of accessible polymer conformations is larger than when the colloidal particles 
are far apart. However, although the physical mechanism responsible for polymer-induced 
coagulation is understood qualitatively, a quantitative description of this phenomenon is 
difficult. This is so because the polymer-induced attraction between the colloidal particles 
is non-pairwise additive. Moreover, it depends both on the osmotic pressure of the polymer 
and on the concentration of the colloid. Yet, in the theoretical description of polymer- 
induced clustering [ZO], the effect of the polymer is usually replaced by an effective, 
density-independent, painvise additive attraction between the colloidal particles. However, 
in this case, no analytical evaluation of the (grand-canonical) partition function is possible, 
even when one considers only the very simplest model, viz. that of a mixture of hard-core 
colloidal particles with ideal chain molecules with conformations that are restricted to a 
lattice. In this case, it would clearly be desirable to carry out 'exact' numerical simulations 
to investigate the phase behaviour. Yet, the computational problems are still formidable. 
What is required is a numerical scheme that samples the positions of the colloidal particles 
while averaging over all possible conformations of a large (and fluctuating) number of chain 
molecules. The 'conventional' Monte Carlo schemes to simulate lattice models of polymer 
systems 1181 would be inefficient for such a calculation. 

Fortunately, it is possible to ConstIZlct a rigorous and efficient Monte Carlo scheme to 
study this model. Our approach relies on the fact that we can recursively compute the 
partition function of an ideal (non-self avoiding) chain on a lattice in an arbitrary external 
potential [21-231. This is most easily seen by considering a chain of length - 1 on a 
lattice. For convenience, we assume that the extemal potential is either zero or infinite. 
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The total number of accessible ideal chain conformations that terminate on lattice site i is 
denoted by wt-,(i). The total partition function Qt-1 is equal to Ciwt-l(i), where the 
sum runs over all lattice sites. The total number of chains of length L? that terminate on site 
i is clearly equal to the sum of the total number of chains of length e -  1 that terminate on 
any of the neighbours of i ,  multiplied by the Boltzmann factor associated with site i .  Using 
such a recursive scheme, we can compute exactly ne, the partition function of a single ideal 
polymer of arbitrary length E on a lattice, in an arbitrary external potential. This scheme 
can be used as a starting point to study self-avoiding polymers 124,251, but for the present 
purpose we limit ourselves to ideal polymers. Up to this point we have not specified the 
nature of the ‘external’ potential. We now assume that this potential is due to the presence 
of N hard, spherical colloidal particles each of which occupies many lattice sites. The 
polymer partition function clearly depends on the coordinates T~ of the colloidal particles: 
C & ( T ~ ) .  The configurational part of the partition function of the system of N colloids plus 
one polymer of length L? in volume V is then given by 

Z(V.  N ,  1) = k d r N  e-ub~(‘”)(C2t(fl)) (6) 

where L‘bs(rN) denotes the hard-sphere interaction. Next, we make use of the fact that we are 
considering ideal polymers. In that case we can immediately write down the corresponding 
partition function for N colloids and M ideal polymers: 

Z(V ,  N .  M) = dTN e - U b ( r N ) ( Q e ( r N ) ) M / M !  (7) 

where the factor 1 / M !  accounts for the fact that the polymers are indistinguishable. Using 
(7) it is straightforward to transform to an ensemble where the polymer chemical potential 
(i.e. the osmotic pressure) is kept fixed. The corresponding grand-canonical partition 
function is given by 

In the last line of (8), we have introduced the polymer fugacity z = e h ,  where pCh denotes 
the chemical potential of the chain molecules. 

The important point to note is that (8) allows us to evaluate the properties of the colloidal 
particles in osmotic equilibrium with a polymer reservoir. In particular, it shows that we 
can perform Monte Carlo sampling of the colloidal particles. The polymers only affect 
( I e ~ ( r N ) ,  the effective interaction between the colloidal particles: 

(Icff(TN) &,(TN) - Z nt(TN). (9) 

zQc( rN)  measures the entropic interaction between the colloids due to all possible polymer 
conformations. This entropic interaction is, in principle, not pairwise additive. In fact, it 
is shown in [22] that, for all but the shortest chain molecules, this non-additivity of the 
polymer-induced interaction between the colloids has a pronounced effect on the structure 
and stability of the mixture. In particular, if the non-additivity of the polymer-induced 
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interaction is ignored, the range of the colloidal 'liquid' is seriously underestimated [Z]. 
Both the simulations and the experiments on real colloid-polymer mixtures [7] show that 
the size of the polymers relative to the colloids is crucial for the nature of the phase 
diagram. If this size ratio is larger than about 1:4, the colloid phase diagram contains a 
crystal, a liquid and a vapour regime. For smaller polymers, however, the liquid-vapour 
transition disappears (i.e. becomes metastable) and only the solid-'fluid' transition remains. 
In fact, the disappearance of a stable liquid phase appears to be a general phenomenon in 
cases where the range of the (effective) attraction between the particles becomes sufficiently 
short. The attractive feature of polymer-colloid mixtures is that one can vary the range of 
the effective colloid~olloid ateaction simply by changing the size of the added polymer. 
In simple atomic or molecular fluids one does not have the same freedom in 'tuning' the 
intermolecular potential. In fact, for most simple liquids (Ar, Kr, Xe, CHq etc) the shape 
of the intermolecular potential is to a good approximation described by the Lennard-Jones 
(12-6) potential. Therefore, all these materials obey the same law of corresponding states. 
In particular, they all have a liquid phase. There is, however, at least one simple molecular 
species that has a pair potential that is much shorter ranged than the Lennard-Jones 12-6 
potential. viz. CSO. In fact, recent simulations by Hagen et a1 [26] suggest that Cao may 
not have a stable liquid phase at all. 
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