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Abstract

The algebraic long time tail of the stress correlation function is ob-
served in a simple lattice Boltzmann model. The amplitude of this tail
is compared with the mode coupling expression for the long time tail
in the stress correlation function. Agreement is found between mode
coupling theory and simulation in both two and three dimensions.

1 Introduction
In 1970 Alder and Wainwright [1] reported the results of a computer simula-
tion study of the decay of velocity fluctuations in a hard-sphere fluid. These
simulations revealed that velocity fluctuations do not decay exponentially,
as had been previously assumed, but algebraically. This observation was of
great importance because non-exponential decay of the velocity autocorrela-
tion function (velocity ACF) is not compatible with Boltzmann's 'molecular
chaos' hypothesis, i.e. the assumption that there is no correlation between
the velocity of a particle at time t and the velocity of its collision partners
at any later time.

Subsequently, mode coupling [2] and kinetic theories [3] were developed
to provide a theoretical framework for the description of long time tails in
correlation functions. Both classes of theory reproduce the algebraic decay of
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the velocity ACF rd12, where d is the dimensionality of the fluid, and
t the time. In addition, the same theories also predict an algebraic long time
tail in the stress correlation function. The mode-coupling theory prediction
for the asymptotic form of the stress autocorrelation function is [2]:

1 ( 2 1 do
(1)Orv(t)

pd(d + 2) (8irvt)d/2 (47iTt)d/2) td/2

In this equation, (4y (t) is the correlation function for the xy-component of
the stress-tensor, p is the number density, v is the "bare" kinematic viscosity,
and r is the sound wave damping coefficient. Unlike the long-time tail in the
velocity ACF, the algebraic tail in the stress correlation function has thus far
not been observed directly neither in simulations nor in experiment, except
in a very simple one dimensional model [4] that does not really correspond
to a fluid.

In the case of the velocity autocorrelation function, the most accurate
numerical results were obtained in simulations of a simplified model for an
atomic fluid, namely a lattice-gas cellular automaton of the type introduced
by Frisch, Hasslacher and Pomeau [5]. By exploiting some of the special
features of the lattice gas, Frenkel and Ernst [6] computed the velocity ACF
of a tagged particle with an accuracy that was at least four orders of mag-
nitude better than was hitherto possible. For the velocity ACF of a tagged
particle in a lattice gas, it proved possible to perform an average over all
possible labelings of the tagged particle. In contrast, no such averaging can
be performed in the case of the stress, which is a collective, rather than a
single-particle property. As a consequence, the stress correlation function is
very noisy. It would seem attractive to try to improve the statistics of the
stress ACF by performing some kind of pre-averaging that does reduce the
statistical fluctuations but not the way in which stress decays in the lattice-
gas fluid. A natural pre-averaged version of a lattice gas cellular automaton
fluid is the so-called lattice-Boltzmann model introduced by McNamara et
al. [7, 8]. The advantage of the lattice Boltzmann model is that one can
study the decay of an initial perturbation of the stress without any statisti-
cal noise. The disadvantage is that, due to the pre-averaging, it is no longer
a truly atomistic model. Moreover, the pre-averaging has killed all sponta-
neous fluctuations. Hence the way to study the stress ACF is not to watch
the decay of spontaneous fluctuations in the stress (there are none), but to
make use of Onsager's regression hypothesis and study the decay of an im-
posed perturbation of the stress. In this paper, we report calculations of the
stress ACF, using a lattice-Boltzmann model.

At first sight, it may seem strange to look for long-time tails in a Boltz-
mann model. After all, in the Boltzmann equation that determines the time
evolution of this lattice model, one ignores the correlations between succes-
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sive collisions that, in the kinetic theory description, give rise to long-time
tails. Yet, the lattice-Boltzmann model does reproduce the hydrodynamic
behavior of a fluid. In the mode-coupling theories of long-time tails in simple
fluids, it is precisely the slow decay of hydrodynamic modes that is respon-
sible for the appearance of long-time tails (that are, for this reason, often
referred to as hydrodynamic long-time tails).

2 Lattice-Boltzmann model
The lattice-Boltzmann model is a pre-averaged version of a lattice-gas cellu-
lar automaton (LCCA) model of a fluid. In lattice-gas cellular automaton
the state of the fluid at any (discrete) time is specified by the number of
particles at every lattice site and their velocity. Particles can only move in a
limited number of directions (towards neighboring lattice points) and there
can be at most one particle moving on a given 'link'. The time evolution of
the LCCA consists of two steps - 1. Propagation: every particle moves in one
time step, along its link to the next lattice site. 2. Collision: at every lattice
site particles can change their velocities by collision, subject to the condi-
tion that these collisions conserve number of particles and momentum (and
retain the full symmetry of the lattice). In the lattice-Boltzmann method
(see e.g. [9]) the state of the fluid system is no longer characterized by the
number of particles that move in direction ci on lattice site r, but by the
probability to find such a particle. The single-particle distribution function
ni(r, t), describes the average number of particles at a particular node of the
lattice r, at a time t, with the discrete velocity c. The hydrodynamic fields,
mass density p, momentum density j, and the momentum flux density H are
simply moments of this velocity distribution:

p = E 74, j = E = E (2)

The lattice model used in this work is the four dimensional Face-Centered
Hyper Cubic (FCHC) lattice. A two or three dimensional model can then be
obtained by projection in the required number of dimensions. This FCHC
model is used because three-dimensional cubic lattices do not have a high
enough symmetry to ensure that the hydrodynamic transport coefficients are
isotropic.

The time evolution of the distribution functions ni is described by the
discretized analogue of the Boltzmann equation [14

ni(r ci, t + 1) = ni(r, t) Ai(r, I), (3)
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where Ai is the change in ni due to instantaneous molecular collisions at the
lattice nodes. The post-collision distribution ni + Ai is propagated in the
direction of the velocity vector c. A complete description of the collision
process is given in [11]. The main effect of the collision operator Ai(r,t) is to
relax the non-equilibrium part of the momentum flux. The full, non-linear
expression for equilibrium part of the local momentum flux density 11" is
given by:

Er' = Id + puu, (4)

with p the local pressure, I the unit tensor, and u the local fluid velocity. In
the linearized version the equilibrium part of the momentum flux density is
given by:

He(' = (5)
The rate of stress relaxation, or equivalently, the kinematic viscosity v, can
be chosen freely. In the linear lattice-Boltzmann model (eq. 5) Hxy can only
decay exponentially. To observe the long time behavior of the stress ACF,
a coupling to the momentum is essential. The second term in eq. (4) which
is usually only taken into account to study high Reynolds number flow, does
exactly this. In order to observe the long time tail in the stress ACF, the full
non-linear stress tensor had to be used in the simulation.

As the lattice-Boltzmann model is purely dissipative, microscopic fluctu-
ations in the fluid are not included. Such fluctuations can be incorporated
in the lattice-Boltzmann model by adding a suitable random noise term to
the stress [12]. However, for the present work, such fluctuations are not es-
sential for the phenomenon under study yet would seriously deteriorate the
statistical accuracy of our calculations.

The stress in the system, which is a collective property is given by:

E (6)

For the sake of convenience, we consider only one component of the traceless
symmetric part of the stress tensor viz, the xy component. Other compo-
nents give rise to the same correlation functions. We compute the stress ACF
by correlating the initial perturbation of the stress with the stress at some
later time t:

(AEsy(0)AExy(t))
Ory(t) (7)((AExy(0))2)

where AEry = Ery(t) Exy(oo). It is important to subtract the steady state
(t = oo) value of the stress tensor because, in a finite system, the initial
stress perturbation will relax to a uniform velocity field with an associated
stress given by eq. (4):

E(0)
Exy(00) = pV

(8)
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where V is the volume of the fluid. In a LGCA, where the stress is purely
kinetic in origin, the stress at site r at time t is uncorrelated to the stress
at that same time at any other lattice point. In our calculations we have
therefore chosen to consider the simplest possible initial condition viz, a
small perturbation of the stress at one lattice site only.

3 Results
Having set up the system with an initial local stress perturbation, we followed
the time-evolution of the total stress of the system using the dynamics of
the lattice-Boltzmann model. In fact, we did the simulations both for the
linearized and the, non-linear expression for the stress tensor.

In order to be able to compare the tail amplitude as obtained from the
simulations with the theoretical expression (Eq. (1)) we need to know the
sound damping coefficient F. At the Boltzmann level, this quantity is given
by: r = 2(d 1)v/d ( with the kinematic bulk viscosity. v and ( were
'measured' by setting up a sound wave in the system and measuring the decay
of that wave in the long wavelength limit [14].r, c and v were computed for
a range of imposed kinematic viscosities between 0.01 and 0.50.
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Figure 1: The stress autocorrelation function of a two
dimensional lattice-gas fluid.
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The simulations in two dimensions were performed on a system of 250 x
250 lattice sites. For this size of simulation box we followed the stress ACF
for 140 time steps. This upper limit was chosen because, after this time,
interference occurred due to sound waves that cross the periodic system. In
figure 1, we show the stress ACF of the lattice Boltzmann model for several
different values of the kinematic viscosity and the non-linear expression for
the stress. For this model, we do indeed observe a clear algebraic decay of
the stress ACF. As expected for a two-dimensional fluid, the exponent of the
algebraic long-time tail was 1. In contrast, no algebraic tail is observed if
the non-linear terms in the stress are ignored. This is understandable because
in the linearized model there is no mechanism by which the different modes
can couple.

The limiting value do was determined by plotting tOry(t) as a function of
1/t. The intercept for 1/1=0 yields the desired amplitude. The results of this
analysis are shown in figure 2. In this figure, we also show the theoretical
tail coefficient given by Eqn. (1). Figure 2 shows that the mode-coupling
predictions of the tail coefficient are in almost quantitative agreement with
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Figure 2: The tail coefficient for a two dimensional lat-
tice gas fluid, as a function of the kinematic viscosity v.
The points are the results of simulations of the lattice-
Boltzmann model, while the drawn curve corresponds
to the prediction of mode coupling theory.
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the simulation results. In fact, there is a very small discrepancy between the
mode-coupling theory predictions and the simulation results. However, this
discrepancy is consistent with inaccuracy in the determination of do.

The simulations in three dimensions were done for a system 90x90x90

lattice sites. For this size simulation box we followed the stress ACF for

times up to t = 50. After this time interference due to the round-trip of
sound waves occurred. In the three-dimensional fluid, we also find algebraic
decay of the stress ACF in the non-linear lattice-Boltzmann model only. The
algebraic tail is characterized by an exponent 1.5, as expected. Figure 3
shows the stress ACF of the 3D lattice Boltzmann fluid for several values of

the kinematic viscosity.
We performed almost the same extrapolation procedure as described

above to determine the amplitude of the long-time tail. Specifically, we
plotted t3/2cksv(t) as a function of 1/t. As before, the amplitude of the alge-
braic tail do is obtained from the intercept of t3/20y(t) in the limit 1/t 0.
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Figure 3: The stress autocorrelation function of a three-
dimensional lattice-gas fluid.
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Figure 4 shows a comparison of the tail coefficient obtained from the simula-
tions, with the corresponding mode-coupling prediction (Eqn. (1)). As can be
seen from this figure, there is again almost quantitative agreement between
mode-coupling theory and the simulation results. The small discrepancy is
caused by the short simulation time and is expected to disappear if longer
simulations in a larger system could be performed.

In the three dimensional system we have also computed to what extent
the long-time tail in the stress ACF changes the "bare" kinematic viscosity
v which was computed at the Boltzmann level. This is done by using the
Green-Kubo formula for the viscosity [15]:

ioxy(o) +
e.i

(9)

Asymptotically, "hydro(t) 1-1/2 (from Eq. (1)), and in this way extrap-
olation was performed to find //hydro = liiii 1/hydro(t
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Figure 4: The tail coefficient for a three dimensional
lattice-gas fluid, as a function of the kinematic viscos-
ity v. The points are the results of simulations of the
lattice-Boltzmann model, while the drawn curve line
corresponds to the prediction of mode coupling theory.
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The result of this calculation is shown in table 1. Note that the algebraic

V (Vhydro

0.1 0.171

0.2 0.079
0.3 0.053

0.4 0.041

0.5 0.033

Table 1: The relative effect of the hydrodynamic long
time tail on the viscosity in three dimensions.

long-time tail results in a small re-normalization of the viscosity. The same
calculation was not performed in two dimensions, because the re-normalized
kinematic viscosity diverges in that case.

4 Conclusions
We have computed the stress ACF of a lattice Boltzmann fluid and compared
the results with mode coupling theory. We find that both the exponent of the
algebraic long time tail (d/2) and the its amplitude (d0) are in essentially
quantitative agreement with mode coupling theory. The computation of
the time dependent viscosity in three dimensionsshows that, at least for
the simple lattice-gas model studied in this work, the hydrodynamic long-
time tail of the stress ACF results in a small correction to the Boltzmann
prediction of the kinematic viscosity.
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