
Chapter 5

COMPUTER SIMULATIONS OF PHASE TRANSITIONS
IN LIQUID CRYSTALS

D. FRENKEL

1. Introduction

The aim of these lectures is twofold. First, I wish to give a simple introduction to the
computer simulations of classical many-body systems, with special emphasis on those technical
aspects that are of particular relevance for simulation of liquid crystals.

To this end, I first give a brief elementary introduction to Molecular Dynamics and Monte
Carlo simulations of classical many-body systems. Thereupon (section 4) I discuss the choice
of technique and simulation ensemble. Section 5 deals with 'measurements' in a computer
simulation. In Section 6, techniques to locate first order phase transitions are discussed. In this
context, a brief discussion of free energy calculations is included. This 'technical' introduction
is quite sketchy. The material presented in this Chapter is based on articles that have been
published elsewhere. For a more detailed discussion, the reader is referred to one of the many
excellent textbooks on this topic, e.g. the book of Allen and Tildesley'.

Next, we apply the tools that we have thus introduced to computer simulation of simple
models that exhibit liquid-crystalline behavior. In particular, I shall discuss computer-simulation
studies of simple models that exhibit nematic, smectic and columnar phases. The
isotropic-nematic transition in two-dimensions is rather different from its 3D counterpart and is
therefore dicussed separately. I conclude with a discussion of recent developments and their
possible implications for the numerical study of liquid-crystalline phases and phase transitions.

2. Monte Carlo Simulation

The prime purpose of the kind of Monte Carlo or Molecular Dynamics simulations that
we shall be discussing, is to compute equilibrium properties of classical many-body systems.
Let us first look at Monte Carlo (MC) simulations. Such simulations are used to compute
ensemble averaged static properties of classical many-body systems. In the canonical (i.e.
constant-NVT) ensemble, the ensemble average of a function A(e) of the particle coordinates
{e} is defined as:
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fdq"A(q")exp(-13U(qN))
<A

dqN exp(-13U(q"))
(1)

In Eq. 1, 13 = l/lcBT (where T is the absolute temperature and 1c5 the Boltzmann constant),
and U(e) is the potential energy function. In the Metropolis Monte Carlo method, < A > is
estimated as the unweighted average of the values A(qN) sampled during a random walk through
configuration space. The trick of the Metropolis MC method is to construct this random walk
in such a way that the probability to visit a particular point qN is proportional to the Boltzmann
factor exp(43U(e)). There are many ways to construct such a random walk. In the approach
proposed by Metropolis et al.2 the construction of a step in the random walk consists of two
steps. First a random trial move is made from the current position in configuration-space qN to
a trial position q'N. Usually, such a trial move corresponds to the displacement of a single particle.
But other moves are acceptable, as long as the probability of attempting a move from qN to cr
is equal to the probability of a trial move from q'N to qN Whether or not a trial move is in fact
accepted depends on the change in potential energy, AU, associated with the trial move. If AU
< 0, the move is always accepted. If AU > 0, the move is accepted with a probability exp(-13AU),
and rejected otherwise. The quantity A is computed at the position that results after accepting
or rejecting the trial move. The ayerage of all these 'measurements' of A during the random
walk yields the desired ensemble average < A >v.

2.1. Periodic boundary conditions

For a system with short-range forces, the precise nature of the boundary conditions should
be unimportant in the thermodynamic limit. The problem is that the number of particles in a
normal simulation is of the order of 102 to 10s. If real boundaries are used in a simulation (e.g.
hard walls), then the particles at the boundaries experience interactionsvery different from those
in the bulk. This results in a correction to all equilibriumproperties. Sure enough, sucha correction
would vanish in the thermodynamic limit, but only as N'')), where D is the dimensionality of
the system. In contrast, periodic boundary conditions mimic the situation where the system is
embedded in an infinite, homogeneous sample of the same phase. There are still system-size
effects, but these are much weaker (e.g. of order or (In N)/N). In a 3D simulation, one should
also consider the shape of the simulation box. For simulations on liquids, a cubic shape is simplest,
and in most cases perfectly adequate. For the perfectionist, other shapes are sometimes preferable
(see Ref. 1).

In contrast, for crystalline solids and smectic or columnar liquid crystals, the choice of the
shape of the unit box is not simply a matter of taste. It is clearly essential that the simulation box
be commensurate with the periodicity of the ordered phase. For highly symmetric solid phases
this is easy to achieve. However, for phases with lower than cubic symmetry, the shape of the
unit-cell of the crystal depends on temperature and pressure, and this dependence is not known
a priori. The most extreme example of such a dependence is a phase transition from one solid
phase to another. At such a transition, the crystal unit cell may take on a completely different
shape. If the simulation box cannot adapt to the new structure, such a phase transition would be
artificially suppressed. A Molecular Dynamics technique that overcomes this problem was
introduced in 1980 by Parrinello and Rahman34. The Parrinello-Rahman technique can easily
be incorporated in a Monte Carlo program'.

So much for the good news. Now some of the problems. In small systems, periodic boundary
conditions may not be quite as harmless as they seem. They may induce artificial cubic order in
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a system that would otherwise be isotropic. Usually this induced order has only a minor effect
on 'scalar' properties of atomic fluids (such as the energy or the pressure). However, it may have
a pronounced effect on the tensor properties of atomic fluids, in particular those that depend on
correlations between three or more atoms6'7. In molecular fluids the periodic boundaries may
influence the orientational distribution function of the molecules, and thereby all properties that
depend on this quantity°. Obviously, this effect of periodic boundaries is of considerable
relevance for the numerical study of liquid crystals.

2.2. Intermolecular Interactions

Selecting the most convenient form for the intermolecular interactions to be used in a
simulation is an art in itself. On this topic, I will limit myself to a few general remarks. The first
may be superfluous, but I believe that it cannot be said too often. There is a fundamental distinction
between simulations that aim to model real substances, and those that focus on testing theoretical
concepts. For the latter kind of simulation it is essential to use the simplest possible interaction
potential that reproduces the essential physics of the problem. Any more complicated potential
just makes comparison with theory harder and the simulation slower. In contrast, if the aim is
to understand the behaviour of real systems, then it is advisable to use the best potential energy
function that you can get. Again, the reason is simple. If you are not using the best potential and
you find that simulation and experiment are at odds then you have learned nothing. But if you
use the best available potential, then a discrepancy between simulation and experiment is
meaningful. Often, the nature of the discrepancy suggests how to improve the potential function.

2.3. Monte Carlo Moves and Myths

Monte Carlo trial moves should be generated in such a way that, in the absence of the
Boltzmann factors, the probability to go from point a to point f3 in configuration space should
be equal to the probability to return from p to a. For translational moves (i.e. displacements of
the center-of-mass of a molecule) this condition is so easy to satisfy that it almost requires an
effort to get it wrong. However, for orientational moves, the choice of the random displacement
requires a little more care: it is only too easy to generate orientational moves that lead to a
distortion of the orientational distribution function of the molecules. This point is discussed in
detail in Ref. 1. It is clearly of crucial importance for the numerical study of liquid crystals that
the sampling scheme does not bias the orientational distribution function. In the case of large
flexible molecules with constraints on some bondlengths and bondangles it is still possible to
perform Monte Carlo sampling of the internal degrees-of-freedom9. However, for such model
systems the conventional Monte Carlo sampling becomes very cumbersome and other schemes
are needed to perform efficient numerical simulations. I will return to this point later.

How large should a Monte Carlo trial move be? If it is very large, it is likely that the
resulting configuration will have a high energy and the trial move will probably be rejected. If
it is very small, the change in potential energy is probably small and most moves will be accepted.
In the literature one often finds the mysterious state that an acceptance of approximately 50 %

should be optimal. This statement is not always true. For a rational discussion of the acceptance
criterion it is necessary to state what exactly is meant by 'optimal'.

My preferred defmition of 'optimal' is as follows: That Monte Carlo sampling scheme is

optimal, which yields the lowest statistical error in the quantity to be computed for a given

expenditure of computing budget'. Usually, 'computing budget' is equivalent to CPU time.
From this definition it is clear that, in principle, a sampling scheme may be optimal for one
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quantity but not for another. Actually, the above definition is all but useless in practice (as are
most definitions). It is just not worth the effort to measure the error estimate in, for instance, the
pressure, as a function of the Monte Carlo step-size for a series of runs of fixed length. However,
it is reasonable to assume that the meansquare error in the 'observables' is inversely proportional
to the number of 'uncorrelated' configurations visited in a given amount of CPU time. And the
number of independent configurations visited is a measure of the distance covered in
configuration space. This suggests a more manageable criterion to estimate the efficiency of a
Monte Carlo sampling scheme, namely, the sum of the squares of all displacements in
configuration space divided by computing time. This quantity should be distinguished from the
meansquare displacement per unit of computing time, because the latter quantity goes to zero
in the absence of diffusion, whereas the former does not.

If we try to translate the present criterion into a rule for the optimal acceptance ratio, it is
easy to see that different Monte Carlo codes will have different optima. The reason is that it
makes a crucial difference if the amount of computing required to test whether a trial move is
accepted depends on the magnitude of the move. More generally, for continuous potentials where
all interactions have to be computed before a move can be accepted or rejected, the amount of
computation does not depend on the size of a trial move. However, the situation is very different
for simulations of molecules with a hard repulsive cores. Here a move can be rejected as soon
as overlap with any neighbor is detected. In this case, a rejected move is cheaper than an accepted
one, and hence the average computing time per trial move goes down as the step-size is increased.
As a result, the optimal acceptance ratio for hard-core systems is appreciably lower than for
systems with continuous interactions. Exactly how much depends on the nature of the program,
in particular on whether it is a scalar or a vector code (in the latter case hard-core systems are
treated much like continuous systems), how the information about neighbor-lists is stored, and
even on the computational 'cost' of random numbers and exponentiation. The consensus seems
to be that for hardcore systems the optimum acceptance ratio is closer to 20 % than to 50 %, but
this is just another rule-of-thumb. As computers and models change, old rules-of-thumb may
have to change too.

3. Molecular Dynamics

The structure of a Molecular Dynamics program differs only little from that of a Monte
Carlo program, yet the two approaches are very different. In a Monte Carlo simulation equilibrium
averages are estimated by sampling an integral over configuration space, such as in Eq. 1. The
result of such a simulation is an estimate of the ensemble-average of the quantity of interest. The
order in which points in configuration space are sampled has no physical meaning, and hence a
Monte Carlo simulation yields no dynamical information. In contrast, a Molecular Dynamics
simulation follows the natural time-evolution of a classical many-body system along its path in
phase space. Molecular Dynamics simulations yield time-averages rather than
ensemble-averages. An important consequence of this fact is that the method can be used to
measure time-dependent quantities (e.g. time-correlation functions). This last feature of
Molecular Dynamics, combined with the fact that an MD program is as simple as an MC program,
is responsible for the fact that the majority of all simulations on classical many-body systems
employ MD rather than MC. Nevertheless, there are situations where MC is more convenient.
The choice of technique will be discussed in Section 4. In the present section, I present a very
elementary description of the Molecular Dynamics method.
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3.1. Algorithm

In a Molecular Dynamics program, the time-evolution of a classical many-body system is

simulated by numerical integration of Newton's equations of motion. The central partof any

MD program is therefore the algorithm to cagy out this integration. However, it shouldbe stressed

that the actual time spent on integrating the equations of motion is negligiblecompared with the

time it takes to compute all intermolecular forces.
A large number of algorithms exist that can be used to integrate the equations of motion

of systems of particles with continuous intermolecular forces. These algorithms integrate the

equations of motion using a finite difference method. Clearly, it is important to choose the best

available algorithm. In order to do so, it is necessary to specify what we mean by a 'good'
algorithm. There are several criteria that a good algorithm should satisfy. For the sake of
comparison, we assume that all algorithms can be made to do an equally good job in reproducing

thc trajectory of the system through phase-space , and that they keep all 'conserved' quantities
(e.g. energy, total momentum) constant to the same degree of accuracy. The comparison which

then remains is simply: which algorithm is cheapest. As before, what is 'expensive' on one
computer (e.g. memory) may be 'cheap' on another.

The idea behind many of the more sophisticated algorithms is that it is possible to use a

larger integration step (and thereby to gain in speed), by utilizing stored information about the

higher derivatives of the particle-coordinates. Although this is certainly true in principle, it turns

out that, unless very high accuracy is needed, the very simplest MD algorithm, named after
Valet°, is as good as most higher-order schemes". The Verlet algorithm can be derived in the

following way. First, we express the positions of a particle at times t + At and t-At in terms of

its position, velocity and acceleration at time t:

x(t +&)=x(1)+.tad 42,6,124- ...
2

x(t At) =x(t)IAt +-
1

-fAt2+ ...
2

(2)

Adding these two equations, and subtracting x(t-At) from both sides, yields:

(3)

where we have dropped all terms of order At4 and higher. Note that Eq. 3 does not explicitly
contain the particle-velocities. For more details on the integration of the equations of motion of

a classical many-body system, the reader is referred to'. It should be noted that finite difference

schemes such as Eq. 3 cannot be used to solve the equations of motion of 'hard-core' systems.

For a review of the numerical techniques that can be used in the latter case, the reader is referred

to Ref. 12.

4. Choice of Technique

Having introduced both the Monte Carlo and theMolecular Dynamics methods, we must

now address the question which technique should be used when. Actually, this question is not

as clear-cut as it may seem, because there exist, in fact, a great number of modified MD and MC

techniques to compute averages in various ensembles. All these techniques aim to estimate the

x(t + At) = 2x (t) x(t At) + iAt2
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equilibrium-average of a particular observable in one ensemble or another. However, in an actual
simulation the observable is sampled over a finite time-interval along a trajectory in phase-space
(MD), or along a random walk in configuration-space (MC). If a simulation technique is to be
useful, the average accumulated in such a sampling procedure should approach the correct
ensemble-average, in the limit that the length of the run tends to infinity.

Usually, the equivalence of the MD and MC averages is simply assumed. In the case of
Molecular Dynamics, this assumption is equivalent to the 'ergodic hypothesis' of statistical
mechanics. For convenience, we shall use the same terminology in the case of Monte Carlo
simulations. Non-ergodic behaviour should be distinguished from differences between time and
ensemble-averages that may be observed when the computer simulations are too short to sample
the accessible phase-space adequately. True non-ergodic behaviour is observed when some parts
of the 'permissible' phase-space simply cannot be reached at all, even in an infinitely long
simulation. In practice, it is often difficult to distinguish between inadequate sampling due to
the limited duration of a simulation and true non-ergodicity, if only because simulations are not
infinitely long.

Both Monte Carlo and Molecular Dynamics simulations may suffer from incomplete
sampling of the accessible phase-space. The most common example is the simulation of a
meta-stable phase, such as for instance an undercooled liquid or a meta-stable crystalline phase.
We shall come back to this point in Section 6. There are, however, a number of cases where
phase-space is sampled much less efficiently by Molecular Dynamics simulation than by Monte
Carlo. This happens, for instance, if the system has certain modes of vibration that are weakly
coupled to the remaining degrees of freedom. This is quite a common phenomenon in a
low-temperature solid, where long-wavelength phonons may have very long life-times. Another
example is a high-frequency internal vibration of a molecule. Energy exchange between such a
mode and the other degrees of freedom may be extremely slow in a MD simulation. In contrast,
Monte Carlo does not suffer from this particular equilibration problem.

Another situation where the 'unphysical' nature of Monte Carlo moves can be exploited
is in (binary) mixtures, in particular when the interdiffusion of the two species is slow. An
example is a solid solution. In such solutions the local composition around an atom of species
1 will differ from the overall composition. It is almost impossible to study such changes in local
composition using Molecular Dynamics, because particle diffusion in a solid can be a very slow
process. In contrast, in a Monte Carlo simulation one may define a trial move which swaps a
randomly selected pair of particles of species 1 and 2. If the particles are not too dissimilar, such
moves will have a reasonable chance of acceptance, and local compositions can equilibrate
rapidly.

However, Monte Carlo is not always the most efficient technique to sample phase-space.
There are many cases where the route from one pocket in phase-space to another requires a
collective rearrangement of the coordinates of many particles: examples are conformational
changes in large molecules and structural phase-transitions in solids. In such cases, Molecular
Dynamics often finds a 'natural' reaction-path from one state to the other, where random and
uncorrelated Monte Carlo trial moves are much less successful.

4.1. Other Ensembles

In a conventional MD simulation, the total energy E and the total linear momentum P are
constants of motion. Hence, MD simulations measure (time-) averages in an ensemble that is
very similar to the microcanonical (see Ref. 13), namely the constant-NVE-p ensemble. In
contrast, a conventional Monte Carlo simulation probes the canonical (i.e. constant-NVT)
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ensemble. The fact that these ensembles are different leads to observable differences in the
statistical averages that are computed in MD and MC simulations. Most of these differences
disappear in the thermodynamic limit and are already relatively small for systems of a few
hundred particles. However, the choice of ensemble does make a difference when computing
the mean-square value offluctuations in thermodynamic quantities. Fortunately, techniques exist
to relate fluctuations in different ensembles'''. Moreover, it is nowadays common practice to
carry out Molecular Dynamics simulations in ensembles other than the microcanonical. In
particular, it is possible to do Molecular Dynamics at constant pressure°, at constant stress3 and
at constant temperature'6. The choice of ensembles for Monte Carlo simulations is even wider:
isobaric-isothermal", constant-stress-isotherma13, Grand-canonical (i.e. constant-gVT)'92°
and even micro-canonical21. A recent addition to this list is a Monte Carlo method which employs
the 'Gibbs'-ensemb1e22. The latter technique was developed to study phase-coexistence in
moderately dense (multi-component) fluids. The 'Gibbs'-method maintains the coexisting
phases at equal temperature, pressure and chemical potential.

Clearly, the sheer number of different MC and MD techniques makes it impossible to
discuss them in any detail in the present introductory Chapter. However, it is important that the
reader be aware that this wide choice of techniques exists. Technical details about most of these
simulation methods can be found in Ref.s 1 and 23. I wish to add one cautionary remark: in MD
simulations at constant pressure, stress or temperature, additional dynamical variables are
introduced that act as manostat/thermostat. The time-evolution of the particle-coordinates in
such simulations is governed by equations-of-motion that contain these artificial variables.
Although the effect of these extra variables on the particle-dynamics may be small, it is
nevertheless advisable to stick to conventional micro-canonical MD if one is primarily interested
in the study of dynamical properties. For static equilibrium properties, all of the above methods
(MC and MD) should be fine.

4.2. Molecular Dynamics or Monte Carlo ?

From the discussion in Section 4.1 it is probably clear that the distinction between
Molecular Dynamics and Monte Carlo simulations is not all that sharp. Most ensembles of
practical importance can be simulated using both techniques. Thus, the choice of one or the other
must be dictated by other considerations. All other things being equal, the Molecular Dynamics
method is certainly preferable, because it yields information about the dynamical properties of
the system under consideration. As was discussed above, MD simulations may sometimes run
into 'ergodicity' problems, where MC simulations do not. In such a case it may be preferable to
use the Monte Carlo technique, or a hybrid method.

Sometimes the reason to prefer Monte Carlo simulations is much more mundane. It may
simply be that, as the expressions for the potential energy function become more complex, the
explicit evaluation of the forces and torques for a Molecular Dynamics program becomes quite
cumbersome. This implies that there is a distinct risk of introducing errors in the MD code, unless
computer-algebra is used to derive the correct expressions. In such cases it is safest to start with
a Monte Carlo simulation.

5. "Measurements"

In the previous sections we have described the core of a program to simulate classical
many-body systems. In the present section we discuss 'measurements' during such a simulation.
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Deciding what quantity to measure during a simulation is a problem, not because such
measurements are difficult (in fact, most are quite trivial), but because there is such a wide choice
of quantities to measure. Any quantity that can be expressed as an average over phase-space of
some function of the particle coordinates and momenta can be measured during a simulation.
For instance, in a Monte Carlo simulation, we can measure, apart from the primary
thermodynamic variables (E,V,T,P,N), the heat-capacity C, the isothermal compressibility XT
and the radial distribution function g(r) (or, equivalently, the structure factor S(k)). Molecular
Dynamics simulations offer, in addition, the possibility of measuring transport-properties such
as the self-diffusion constant D, the shear-viscosity (and the bulk-viscosity 0, the thermal
conductivity and the dynamical structure-factor Ric,co). This list is far from exhaustive.
Moreover, we are not limited to the computation of quantities that can be measured in real
experiments. We can gain insight into the microscopic structure and dynamics of a system by
making 'snapshots' of the molecular configurations, or by computing any function of the
particle-coordinates and momenta that we consider illuminating. A discussion of
computer- 'measurements' is therefore open-ended, and an enumeration is not particularly useful.
Rather, I wish to make a few general remarks about the accuracy of measurements in a simulation.
The actual examples of computer 'measurements' will follow in the sections that deal with
computer simulations of liquid crystals.

5.1. Error Estimates

Before discussing error estimates in MC and MD simulations, it is useful to recall what
quantities cannot be measured at all in a standard MC or MD simulation. In a simulation one
measures averages over phase-space of functions of the particle coordinates and momenta.
However, it is not possible to measure directly the volume of the accessible phase-space. This
volume determines the entropy S of a system, and thereby the Helmholtz free-energy F and the
chemical potential tr. We refer to such quantities as 'thermal', to distinguish them from the
'mechanical' quantities that can be expressed as a function of the phase-space coordinates.
Methods to compute thermal quantities are discussed in Section 6. Another situation where MC
and MD simulations on a small system cannot be used is in the study of critical phenomena or,
for that matter, any situation where correlations over distances much larger than (or
incommensurate with) the periodic box play an important role. And finally, classical MC and
MD will clearly fail if quantum effects become important.

Let us now consider the measurement of a dynamical quantity A in a Molecular Dynamics
simulation (the present discussion applies, with minor modifications, to Monte Carlo
simulations). During a simulation of length (that is, duration) T, we obtain the following estimate
for the equilibrium-average of A

AT = (11T) A (t)dt (4)
0

where the subscript on Ar refers to averaging over a finite time T. If the ergodic hypothesis is
justified then AT < A >, as T 00, where < A > denotes the ensemble-average of A.

Let us now estimate the variance in AT < (AAT)2 >

< (AA7.)' > =

=
T

(1/T2) f 57 < (A (t) <A >)(A(1') < A >)> dtdt' (5)

n
4

Tf

--4

0 0

<A,!s- < A.>'
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Note that < (A(t) - <A> )(A(t ')-<A>) > in Eq. 5 is simply the time-correlation function of
fluctuations in the variable A. Let us denote this correlation function by CA(t '4). If the duration
of the sampling T is much larger than the characteristic decay time tA of CA then we may rewrite
Eq. 5 as:

< (AAT)2 > (2/T) fo- CA(r)dt" (2TA/T)CA (0) (6)

In the last equation we have used the definition of TA as the integral from 0 to ea of the
normalized correlation function CAW/CA(0). The relative variance in AT is therefore given by:

< (AAT)2 >
(2TAI7')<

A 2 > - < A >2
(7)

< A >2 < A >2

Eq. 7 clearly shows that the root-mean-square error in AT is inversely proportional to

(tA1T)v2. This result is hardly surprising. It simply states the wellknown fact the variance in a

measured quantity is inversely proportional to the number of uncorrelated measurements. In the
present case, this number is clearly proportional to PTA. This result may be trivial, but it is
nevertheless very important, because it shows directly how the lifetime and amplitude of
fluctuations in an observable A affect the statistical accuracy. This is of particular importance
in the study of fluctuations associated with hydrodynamical modes or pretransitional fluctuations
near a symmetry-breaking phase transition. Such modes usually have a characteristic life-time
that is proportional to the square of their wavelength. This is another reason why it is so difficult
to study continuous phase transitions by MD. In order to minimize the effects of the finite
system-size on such phase transitions, it is preferable to study systems with a box-size L that is
large compared with all relevant correlation-lengths in the system. However, due to the slow
decay of long-wavelength fluctuations, the length of the simulation needed to keep the relative
error fixed should be proportional to L2. As the CPU time for a run of fixed length is proportional
to the number of particles (at best), the CPU-time needed to maintain constant accuracy increases

quite rapidly with the linear dimensions of the system (e.g. as 1,5 in three dimensions).
There is another aspect of Eq. 7 that is not immediately obvious, namely that it makes a

difference whether or not the observableA can be written as a sum of uncorrelated single-particle
properties. If this is the case, then it is easy to see that (A 2 > < A >2)1 < A >2 is inversely

proportional to the number of particles, N. To see this, consider the expressions for < A > and

< A2 >-< A >2 in this case:

and

(8)
=

N N
<A2> -<A>2= I I <sai-<a>> < < a »

j

If the fluctuations in ai and ai are uncorrelated, then we find:

2

- (1/N)<
< A >2 < a >2

(9)

(10)

=
0

<A> = <a,> =N <a>

<A2 > - < A >2 a > - < a >2
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From Eq, 10 it is clear that the statistical error in a single-particle property is inversely
proportional to 41T Hence, for single-particle properties the accuracy improves as one goes to
larger systems (for fixed length of the simulation). In contrast, no such advantage is to be gained
when computing truly collective properties. This is one more reason why bigger is not always
better. A more detailed discussion of statistical errors in collective and single-particle
time-correlation functions can be found in Ref.s 24 and 25. Systematic techniques to measure
statistical errors in a simulation are discussed in Ref.s 1 and 26.

6, Phase Transitions

As was mentioned in Section 5.1, 'thermal' quantities such as the free energy F, the entropy
S and the chemical potential tt cannot be measured directly in a computer simulation because
they depend explicitly on the accessible volume in phase-space. However, knowledge of such
thermal quantities (in particular tt) is usually necessary to locate the coexistence line for a
first-order phase-transition. At first sight this knowledge may appear superfluous. After all, a
computer simulation mimics the behaviour of a real solid or liquid. If the simulation is ergodic
it should spontaneously transform to whatever phase is thermodynamically most stable, and then
we would know all there is to know. Unfortunately, this approach does not work, at least not for
strong first-order phase transitions such as freezing. At a solid-solid or solid-liquid phase
transition very strong hysteresis effects are usually observed in a simulation. In fact, it is very
difficult to nucleate a crystal from a liquid during a simulation. Hence, to locate the point where
two phases coexist, we must compute the chemical potential of the homogeneous phases at the
same temperature and pressure and find the point where the two tes are equal. General methods
to compute Ii and related thermal quantities by computer simulation are discussed in Ref. 27.
Here I wish to focus exclusively on those techniques that should work for dense systems. In
these techniques it is usually the free energy F rather than the chemical potential tt that is
computed.

When discussing techniques to measure free energies, it is useful to recall how such
quantities are measured in real experiments. In the real world free energies cannot be obtained
from a single measurement either. What can be measured, however, is the derivative of the free
energy with respect to volume V and temperature T:

and

Pav

(12)

Here P is the pressure and E the energy of the system under consideration. The trick is know to
find a reversible path that links the state under consideration to a state of known free energy.
The change in F along that path can then simply be evaluated by integration of Eq.s 11 and 12.

In the real world the free energy of a substance can only evaluated directly for a very
limited number of thermodynamic states. One such state is the ideal gas phase, and another is
the perfectly ordered ground state at T = 0 K. In computer simulations, the situation is quite
similar. In order to compute the free energy of a dense liquid, one may construct a reversible
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path to the very dilute gas phase. It is not really necessary to go all the way to the ideal gas.
However, at least one should reach a state that is sufficiently dilute that the free energy can be
computed accurately, from knowledge of the first few terms in the virial expansion of the
compressibility factor PVINk8T, or that the chemical potential can be computed by other means
(see Ref. 27).

For solids, the ideal gas reference state is less useful (although techniques have been
developed to construct a reversible path from a dense solid to a dilute (lattice-) gas"). The obvious
reference state for solids is the harmonic lattice. Computing the absolute free energy of a harmonic
solid is relatively straightforward, at least for atomic and simple molecular solids. However, not
all solid phases can be reached by a reversible route from a harmonic reference state. For instance,
in molecular systems it is quite common to find a strongly anharmonic plastic phase just below
the melting line. This plastic phase is not (meta-) stable at low temperatures.

Fortunately, in computer simulations we do not have to rely on the presence of a 'natural'
reversible path between the phase under study and a reference state of known free energy. If
such a path does not exist, we can construct an artificial path. This is in fact a standard trick in
statistical mechanics (see e.g. Ref. 29). It works as follows: Consider a case where we need to
know the free energy F(V,T) of a system with a potential energy function U,, where U, is such
that no 'natural' reversible path exists to a state of known free energy. Suppose now that we can
find another model system with a potential energy function U0 for which the free energy can be
computed exactly. Now let us define a generalized potential energy function U(X), such that
U(X=0) = U0 and U(X = 1) = U,. The free energy of a system with this generalized potential is
denoted by F(X). Although F(X) itself cannot be measured directly in a simulation, we can
measure its derivative with respect to X:

(aF) au(x) (13)
<-5r)NV11.

If the path from X = 0 to X = 1 is reversible, we can use Eq. 13 to compute the desired
F(V,T). We simply measure < &pax> for a number of values of X between 0 and 1. Typically,
10 quadrature points will be sufficient to get the absolute free energy per particle accurate to
within 0.01 kT. It is, however, important to select a reasonable reference system. One of the
safest approaches is to choose as a reference system an Einstein crystal with the same structure
as the phase under study. This choice of reference system makes it extremely improbable that
the path connecting X = 0 and X = 1 will cross an (irreversible) first order phase transition from

the initial structure to another, only to go back to its original structure for still larger valuesof

X. Nevertheless, it is important that the parametrization of U(X) be chosen carefully. Usually, a
linear parametrization (i.e. U(X) = XU, + (1-X)U0 ) is quite satisfactory. But occasionally such

a parametrization may lead to weak (and relatively harmless) singularities in Eq. 13 for X 0.

More details about such free energy computations can be found in Ref.s 27, 30.
Before proceeding to the actual simulations of liquid crystals, I wish to point outthat it is

often not trivial to construct a reversible path that will link a liquid crystalline phase to a state
of known free energy. Usually, the liquid-crystalline phase of interest will be separated by first
order phase transitions from both the dilute gas and the low temperature (harmonic) solid. In the

case of the nematic phase this problem has been resolved by switching on a strong ordering field.

In the presence of such a field, the first-order isotropic-nematic transition is suppressed and a

reversible expansion to the dilute gas becomes possible'. For the calculation of free energies
of smectic and columnar phases, other techniques have to be used.Although I do not wish to go

ax NVTA
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into any detail here, I wish to point out two fairly general approaches: the first is based on the
fact that a smectic phase can be consider as a 1 dimensional solid stacking of 2D fluid layers,
while a columnar phase resembles a 2D crystal of 1D fluid columns. In Ref. 30, a technique is
described that makes it possible to reversibly decompose such smectic (columnar) phases into
isolated fluid layers (columns). However, this approach has, to my knowledge, not yet been
applied to such liquid crystals.

It should be stressed that such absolute free energy calculations need not be repeated for
every model that we may care to study. For instance, if we have computed the absolute free
energy of one state point in the smectic phase of rod-like molecules with an aspect ratio of 5
(say), then we can compute the free energy of the smectic phase of similar molecules with another
aspect ratio simply by computing the reversible work needed to change the shape of our model
particles from the initial aspect ratio to the desired value. An example of such a technique, in a
slightly different context, can be found in Ref. 32.

6.1, Isotropic-nematic Transition

With computer simulation it is, in principle, possible to compute the properties of any
model for a classical many-body system. The choice of the model is determined by the nature
of the question that we wish to answer. In the present case we are interested in crystalline and
liquid-crystalline ordering in simple models for molecular liquids.

What is the most appropriate model? There is no unique answer to this question. Several
mechanisms have been invoked to explain the onset of liquid crystalline ordering (see e.g. Ref.
33). Onsager34 showed that nons-pherical excluded-volume effects are all that is needed to induce
an isotropic to nematic transition in a system of thin, rigid rods. However, the Maier-Saupe
mean-field theory shows that the same transition may also be caused by anisotropic attraction
forces". In addition, there are other more factors that can play a role. For instance, for
thermotropics, the tendency of molecules to form liquid crystals depends strongly on the nature
of the flexible side-chains attached to the rigid core of the molecule, while the angle-dependence
of the effective attractive forces depends on the shape of the non-spherical hard core of the
molecule'. For lyotropics, molecular flexibility and polydispersity both have a pronounced effect
on the tendency to form a liquid crystal. All these factors are real. However, it would be very
unwise to try to take everything into account at once. It is inevitable that a choice must be made
between primary and secondary factors.

In the case of freezing of molecular liquids the situation is similar: attraction, repulsion
and flexibility all play a role. For instance, we know that the presence of flexible side-chains in
a molecule makes the formation of a molecular crystal entropically less favourable. Only for
atomic liquids is the picture clear. Since the work of Alder and Wainwright" it has been known
that the freezing of atomic liquids is primarily an excluded volume effect. That does not imply
that attractive forces do not affect the location of the freezing point (they do). But the structure
of the coexisting phases is largely determined by the harsh repulsive interactions between the
atoms. The effect of attraction can be considered a perturbation".

If freezing can be understood in terms of excluded volume effects alone, it is natural to
ask how far we can push this idea in the case of liquid crystalline ordering. Our aim then is to
study the simplest possible hard-c ore models that may form both cry stalline and liquid-crystalline
phases.

It should be noted that an alternative approach has been followed by Luckhurst and
collaborators°. Following the pioneering work of Lebwohl and Lasher", these authors focused
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on the effect of anisotropic intermolecular interactions of the form v, = 4P2(cos 0u). The choice

of the Lebwohl-Lasher model was inspired by the original justification of the Maier-Saupe theory
in terms of anisotropic dispersion forces. It should be noted that in simulations of models such
as the one introduced by Lebowhl and Lasher it is assumed that the molecules reside on a periodic

lattice. In that case the 'I-N' transition may also be interpreted as a rotational order-disorder
transition in a crystalline solid.

Computer simulations of hard-core models for two-dimensional liquid crystals were
pioneered by Vieillard-Baron in the early seventies'''. Vieillard-Baron also made much progress
towards the study of three-dimensional model systems'', but did not observe spontaneous nematic
ordering in 3D. The first systematic simulation study of a three-dimensional hardcore nematogen
was performed by Frenkel and Mulder' who studied a system of hard ellipsoids-of-revolution

for a range of length-to-width ratios.
The shape of hard ellipsoids of revolution is characterized by a single parameter, x, the

ratio of the length of the major axis (2a) to that of the minor axis (2b): x = alb. Prior to the

simulations reported in Ref. 31, the phase behaviour of hard spheroids" was only known for a

few special values of x, viz:

(1) x = 1 : hard spheres,which freeze at 2/3 of close packing";
(2) x : thin hard needles, because this limit is equivalent to the Onsager model; this latter

system has a transition to the nematic phase at vanishing volume fraction;

(3) x 0 : thin hard platelets, which also form a low-density nematic".

The simulations of Ref. 31 were performed for values of x between 3 and 1/3. In order to

locate all phase transitions, the absolute free energy of every phase was computed. Fig. 1 shows

how the stability of the different phases of hard ellipsoids depends on their length-to-width ratio.
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Four distinct phases can be identified, namely the low-density isotropic fluid, an
intermediate-density nematic liquid crystalline phase, which is only stable if the length-to-width
ratio of the ellipsoids is larger than 2.5 or less than 0.4, and a high-density orientational] y ordered
solid phase. In the case of weakly anisometric ellipsoids, an orientationally disordered solid
phase was also observed. One thing to note about the phase transitions in the hard-ellipsoid
system is that for particles with 3 x (1/3) the relative density-jump at the I-N transition is
much smaller than for the Onsager model. Typically, the density changes only by some 2% at
the I-N transition, hence the very large density discontinuity at the I-N transition in the Onsager
model (more than 20%) is peculiar to long rods and not to hard-core models in general.

Perhaps the most striking feature of the phase diagram in Fig. 1 is the near symmetry
between the behavior of oblate and prolate ellipsoids with inverse length-to-width ratios.
Prolate-oblate (x 1/x) symmetry of ellipsoids is to be expected at low) densities because the
second virial coefficient B2(x)equals B2( 11x). However, no such relation holds between the third
and higher virial coefficients. To give a specific example: in the limitx (the Onsager limit),
Big whereas forx 0 (hard platelets.) -4 0.4447(3). Hence there is no reason to expect

any exact symmetry in the phase diagram of hard ellipsoids of revolution. For larger anisometries
than studied in the simulations of Ref. 31 one should expectto see asymmetric behaviour in the
location of the isotropic-nematic transition. In fact, Allen has performed" simulations of
ellipsoids with aspect ratios 5,10,0.2 and 0.1. These simulations show that, as the molecular
anisometry increases, the Isotropic-Nematic transition continues to shift to lower densities. This
is to be expected in view of the known limiting behavior of infinitely thin hard platelets and
infinitely thin hard rods (see above). However, in Ref. 46 the exact location of the
isotropic-nematic transition is not computed.

Even though we expect to see appreciable prolateoblate asymmetry in the location of the
isotropic-nematic transition for highly anisometric spheroids, it is doubtful if the near symmetry

1,4

Fig.2. Z = PV/Nk8T -1 of a system of biaxial ellipsoids with axial ratio cla 10 while bla varies between 1 (prolate
limit) and 10 (oblate limit)°. In this figure bla is represented on a logarithmic scale. The dashed curves separate
state points helonging to the different phases: / denotes the isotropic phase, N + the 'rod-like' nematic phase, N -
the 'plate-like' nematic phase and B the biaxial phase. The drawn curves connect the measured state-point data
within one phase atAgiven reduced density p/p. Note that the biaxial phase ends in a tri-critical point at an
aspect ratio alb ,I10. This behavior is in agreement with the theoretical predictions of Mulder°. This figure was
reproduced with permission of Dr. Allen.
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of the melting line will be much affected. Strongly aligned rods and platelets follow the same
equation of state (P = 3p) and a simple estimate of the melting point of very anisometric
ellipsoids° suggests that in the limit x .0 the symmetry between oblate and prolate ellipsoids

is still present.
More recently, Allen has studied the effect of molecular biaxiality on the mesogenic

properties of hard ellipsoids". In particular, Allen studied the nature of the liquid-crystalline
phase as a prolate spheroid was made increasingly biaxial and was finally transformed into an
oblate spheroid. In this case it was found that the rod-like and plate-like nematic phases are
separated by a biaxial phase. Fig. 2 shows how the stability of the different liquid-crystalline
phases depends on the molecular biaxiality.

6.2. Theoretical Description

The numerical simulation of the phase diagram of hard ellipsoids of revolution provided
theoreticians with an opportunity to compare analytical theories for the isotropic-nematic
transition with 'exact' numerical data. Several rather different theoretical approaches have been
tested in this way. Actually, this work was predated by the scaled-particle for the
isotropic-nematic transition constructed by Cotter and Martin.. However, this scaled-particle
theory was worked out for hard sphero-cylinders and could only be compared with simulation
data for the isotropic phase.

The first statistical mechanical theory for the I-N transition in a fluid of hard ellipsoids
was developed by Mulder", who followed the so-called 'y-expansion' approach of Barboy and
Gelbart". Mulder found that the y-expansion led to a slight over-estimate of the pressure in the
isotropic phase and that the isotropic-nematic transition was predicted to occur at too low a
density. Moreover, the density-jump at this transition was predicted to be larger than observed
in the simulations. However, the very symmetric appearance of the phase-diagram was well

reproduced by the theory of Ref. 53.
Subsequently, several authors have applied density-functional theory to the study of the

isotropic-nematic transition of hard ellipsoids. The first such theory was formulated by Singh

and Singe. These authors also discussed the freezing transition of hard ellipsoids and used

density-functional theory to estimate the stability of the plastic crystalline state. Subsequently,

alternative density-functional theories for hard ellipsoids of revolution were presented by Baus

et al." and by Marko. A good discussion of the relative merits of these theories can be found

in the article by Co lot, Wu, Xu and Baus".
A rather different approach was followed by Perera et al.". These authors studied the

generalization to convex hardbody fluids of the Percus-Yevick (PY) and Hypernetted Chain

(HNC) integral equations that are known to be quite successful for simple fluids29. Perera et al.

found that for hard ellipsoids of revolution the PY approach failed to predict the existence of a

stable nematic phase. In contrast, the HNC theory yielded a fair estimate of the location of the
isotropic-nematic transition (or, to be more precise, of the density where the isotropic phase

becomes mechanically unstable).

6.3. Two-dimensional Nematics

Two-dimensional liquid crystals are very different from their 3D counterparts. This can

be clearly demonstrated by considering the isotropic-nematic transition in two dimensions. On

basis of the Landau theory of phase transitions, we expect that the isotropic nematic transition

in two dimensions should be of second order. Density-functional theory" predicts the same.

9.
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However, the actual situation is much more subtle than that. The point is that two-dimensional
nematics are very similar to the two-dimensional Heisenberg system ('2D-xy model') and hence
there is a possibility that topological defects have a pronounced effect on the nature of the phase
transitions".

In order to see this, let us consider the expression of the Frank free-energy density of a
2D-nematic. We choose the average director along the y-axis. We denote the angle between the
average director and the instantaneous local director by 0. By analogy to the three-dimensional
case", the expression for the deformation free energy is of the form:

F =-1 K )2 + K3(a n )2 = 1K (a 0), +- K3(D 0)2
2 2

(14)

where we have assumed that 0 is small. We shall simply postulate that the deformation free
energy of a 2D nematic is given by Eq. 14. Moreover, we shall assume for the sake of convenience
that K1 = K3. In that case we obtain a very simple expression for the deformation free-energy
density:

F =-1 K(90)2
2

(15)

Using this expression, it is easy to compute the elastic contribution to the free energy of
a single it-disclination in a 2D-nematic. Consider a circular path (circumference 27cr) around the
dislocation core. Along this path, the director rotates over an angle 7r. Hence (V0)2= (1/2r )2. If
we insert this expression in Eq. 15 and integrate from the dislocation core (radius co, say) to L
(the linear dimension of the system) then we find that the elastic energy of an isolated disclination
is:

0,2irr 711C
log(L/a0)

J2,
dr4r2 (16)

Clearly, F,, 00 if L 00.

This would seem to suggest that no free disclinations are possible in a 2D nematic. However,
we should also consider the 'configurational entropy' of a single disclination, i.e. the entropy
klogfl associated with the number of distinct ways in which we can place a dislocation in a
two-dimensional area L2. If we use 120 as our unit of length, then the configurational entropy is
given by klog(L1a0)2 (where we have neglected an additional constant, independent of system
size). Combining this expression for the configurational entropy with our expression for the
elastic free energy (Eq. 16) we obtain the following expression for the total free energy of a
single disclination in a 2D nematic:

=(IrK-4 -2kT)log(L/a0) (17)

Eq. 17 suggests that if kT < (icK/8) no free disclinations are possible, whereas for kT >
(icK/8) spontaneous generation of free disclinations may take place. However, if a nematic
contains a finite concentration of free disclinations, orientational correlations are destroyed over
distances longer than the characteristic separation of the free defects and the resulting phase is

2 1x

r 1 K =. 4 = i--
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an isotropic fluid. This simple version of the Kosterlitz-Thouless scenario for defect mediated
phase transitions predicts that the nematic phase cannot be stable above a critical temperature

= (itK18). At that temperature there is a continuous phase transition (of 'infinite' order) from
the nematic to the isotropic phase. However, there is an alternative possibility: namely that the
I-N transition is simply first order. But if the I-N transition is of first order then this transition
must occur before the nematic phase has reached the point where it becomes unstable with respect
to the formation of free disclinations: i.e. at a first-order I-N transition the following inequality
must hold:

K >8kT
It

This condition also follows from the more rigorous version of the KT-theory.
Note that our discussion of the disclination-mediated I-N transition was based on the

assumed from of the Frank free energy (Eq. 14). It should be stressed that this form of the
deformation free energy has quite drastic consequences for the nature of orientational order in
2D nematics. In particular, it implies that there exist no true long-ranged orientational order in
such systems. We define the 1-th orientational correlation function as:

g,(r) a < cos 2/ (0(0) 0(r)) > = Re < expF2i1(0(0) 0(r ))) > (18)

Using the fact that the free energy (Eq. 15) is quadratic in 0(k), it is easy to show that g,(r)
has the following form:

_IPkT

"
g,(r) =L.) (19)

ao ao

where the last term on the right-hand side of Eq. 19 defines the exponent ri,. Note that this
equation implies that, provided that Eq. 14 is valid, there is no true long-range orientational order
in a 2D nematic, but algebraic or 'quasi long-range' order. Similarly, it can be shown that the
order parameter < cos 26 > also vanishes algebraically with increasing system size:

k7

Li<cos 20 > c.{ao (20)

Now recall that a 2D nematic is only expected to be stable against the spontaneous
generation of free disclinations, when K is larger than .711(8kT). Hence, at the K-T transition the
orientational correlation functions and the nematic order parameter must satisfy the following
relations:

(21)

(22)

r lli
=(

gxr).(14
o

L
< cos 20 >

aoi

kT
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Fig.3. Equation of state of two-dimensional fluid of infinitely thin hard needles of length 1, as obtained by Monte
Carlo simulatioe. Note that in this figure the reduced pressure is the independent variable. The reduced density
pL2 is indicated by crosses, the chemical potential p. by triangles. The curves at low pressure were computed using
a 5-term virial series. For more details, see Ref. 61.
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Two points should be stressed:
[1] If the I-N transition is first order then, at the transition the exponents of g1 and < cos20 >
must be less than the critical values given by Eq. 21; and,
[2] The above arguments rest on the assumption that the deformation free energy is of the form
given by Eq. 15.
If this expression is valid, 2D nematics can only have algebraic orientational order. However, it
has thus far only been possible to prove the absence of true long-range orientational order for a
certain class of short ranged potentials called separable°. A pair-potential is called separable if
the interaction energy of two molecules at fixed center-of-mass separation ru depends only on
the relative orientation of the two molecular axes uruj, but not on ru.u, or ru.uj. Realistic
pair-potentials are hardly ever separable.

There are therefore two obvious questions that one could ask about 2D nematics:
[1] If the pair potential is non-separable, do we find algebraic or true long-range order? and,
[2] If we find algebraic order, do we observe a first order I-N transition or a continuous one of
the Kosterlitz-Thouless type?

To start with the first question: a good starting point would be to choose a pair-potential
that is as non-separable as possible. An obvious candidate is a two-dimensional model of infmitely
thin hard needles6'. This pair potential is very non-separable in the sense that, at fixed I j and

fixed uruj the pair potential is not constant, but may vary between 0 and 00. The equation of state
of this system is shown in Fig. 3. According to the bifurcation analysis of the corresponding
Onsager lime a second-order isotropic-nematic transition is expected at a density pL2 = (37t/2)
4.712... and a pressure PL2 = 11.78... At first sight this seems to be quite a reasonable estimate
of the I-N transition, because very close to this point the equation of state appears to exhibit a
change of slope. However, analysis of the long-range behaviour of the orientational correlation
functions and of the system-size dependence of the order-parameter < cos 20 > indicate that the
higher density phase is not a stable nematic. The orientational correlation functions decay either
exponentially (see Fig. 4) or with an apparent algebraic exponent that is larger than the critical
value given in Eq. 21. Only at a density that is almost twice the Onsager transition point does
the observed behaviour conform to what is expected for a stable nematic with algebraic order
(see Fig. 5). However, at this density the equation of state is completely featureless. Such
behaviour is to be expected if the I-N transition is in fact of the K-T type.

Subsequently, Cuesta and Frenkel" have studied the isotropic to nematic transition in a
system of 2D ellipses with aspect ratios 2, 4 and 6. It is found that in all cases where a stable
nernatic phase is found (aspect ratios 4 and 6), this phase exhibits algebraic orientational order.
However, whereas the I-N transition appears to be of the K-T type for aspect ratio 6 (and larger),
the transition is found to be first order for aspect ratio 4. This implies that in the latter case the
2D nematic undergoes a first-order transition before it has reached the point where it becomes
absolutely unstable with respect to diclination unbinding.

A very puzzling feature is the nature of the high-density phase of 2D ellipses. A snapshot
of such a phase is shown in Fig, 6. This phase does not appear to have true crystalline order, nor
for that matter, smectic order, yet it does clearly have a large amount of local order. The precise
nature of this high density phase is currently under investigation.

I am not aware of any 2D hard-core systems that show anything but quasi-long range
nematic order, and I would be very surprised to see true long range orientational order in a 2D
liquid crystal in the absence of some kind of positional order, For a discussion of nematic ordering
in systems with continuous intermolecular interactions, see Ref. 65.

ru
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7. Beyond Nematics

D. Frenkel

The existence of a nematic phase in a system of hard-core molecules is not surprising. In
fact, the earliest analysis of any statistical-mechanical model for a liquid-crystalline phase, i.e.
Onsager's study of a system of of thin hard rods, shows that this simple hard-core system must
form a nematic phase at sufficiently high density. It would of course be nice if there existed
something like the Onsager model for smectics: an exactly solvable model system that exhibits
a transition to the smectic A phase. Unfortunately, no such model is known.

Hence, the only way to test approximate 'molecular' theories of the smectic phase is to
compare with computer simulations. In the spirit of the Section 6.1 we look for the simplest
possible model that will form a smectic phase. In the case of nematics, convex hard-core models
are the natural candidates because these constitute the natural generalization of the Onsager
model. However, for smectics it is not obvious that hardcore models will work. In fact, in existing
textbooks on liquid-crystal physics the possibility of a hard-core smectic is not even discussed.
To my knowledge the only pre-simulation article discussing the possibility of hard-core smectics
is a paper by Hosino et 466 The 'traditional' approach was to ascribe the smectic ordering to
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Fig.5. Orientational correlation functions 52 < cos 2(0(0) e(r)) > and g4 a < cos 44(0) 0(r)) > for a
two-dimensional system of hard needles of length L I. This figure shows that at a reduced density pL 2 = 8.75 the
orientational order decays algebraically. From the values of the algebraic exponents.% and Ti4 the effective Frank
elastic constant can be computed. At p = 8.75 this Frank constant is large enough to make the 2D nematic stable
with respect to disclination unbinding. The isotropic-nematic transition is estimated to occur somewhere around p
= 7.5 . Note that if we had only used Fig. 3 to locate the isotropic-nematic transitionl we might have concluded that
this transition occurs at a density of approximately 5.0 in reduced units.
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attractive interactions between the molecular cores or, alternatively, to the change in packing
entropy of the flexible tails of the mesogenic unite.

7.1. Parallel Molecules

Whereas essentially any fluid of sufficiently non-spherical convex hard bodies will form
a nematic phase, non-sphericity alone is not enough to from a smectic phase. This is best
demonstrated by the following simple example. We know from experiment that in many smectic
phases the orientational order parameter S 1. Let us therefore first consider the possibility of
forming a smectic phase in a fluid ofperfectly aligned molecules (S=1). We know that sufficiently
nonspherical hard ellipsoids can form a nematic phase (see Section 6.1). It is natural to ask
whether a perfectly aligned nematic of hard ellipsoids can transform into a smectic phase. The
answer to this question is: no. The reason is quite simple. Consider a fluid of ellipsoids with
lengthtowidth ratio alb all aligned along the z-axis (say). Now we perform an affine
transformation that transforms all z coordinates into coordinates z', such that z' = (b/a)z. At the
same time we transform to new momenta in the z-direction: p', = (alb)p,. Clearly, this
transformation does not change the partition function of the system, and hence all thermodynamic
properties of the system are unchanged. However, the effect of this affine transformation is to
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Snaphots of typical configurations of a system of hard ellipses In the isotropic phase (i 1 = 0.329), near the
estimated isotropic-nematic transition (II = 0.599) and in the high-density phase (II 0.809). Although the latter
phase exhibits local solid-like ordering, it is not a true (two-dimensional) solid.
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Fig.7. Schematic 'phase diagram' of a system of parallel hard spherocylindersas obtained by computer simulation'''.
The abcissa indicates the length-to-width ratio LID. The ordinate measures the density referred to the density at
regular close packing.The dashed area indicates the two-phase region at the first-order freezing transition. For LID
< 5,the solid consists of 'ABC'-stacked triangular planes. For larger values of LID, we find evidence for a hexagonal
('AAA') stacking of the molecules (i.e. triangular lattices stacked on top of one another). At very high densities
and large LID values we find a pocket where the system appears to forma colulnnar phase. However, the range of
stability of this phase is strongly dependent on the size of the system studied. Although we still observed this
columnar phase for a system of 1080 particles, it is conceivable that this phase will disappear altogether in the
thermodynamic limit. The dashed curve indicates the nematic-smectic transition.
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change a fluid of parallel ellipsoids into a system of hard spheres. But, as far as we know, hard
spheres can only exist in two phases: fluid and crystal. Hence parallel ellipsoids can only occur
in the (nematic) fluid phase and in the crystalline solid phase. In particular: no smectic phase is
possible. This makes it extremely improbable that a fluid of non-parallel ellipsoids will form a
stable smectic. Such a phase is only expected in the unlikely case that the orientational fluctuations
would stabilize smectic order°.

This example demonstrates that we should be careful in selecting possible models for a
hard-core smectics. Surprisingly (and luckily) it has turned out that another very simple hard-core
model system, namely a system of parallel hard sphero-cylinders, does form a smectic phase6970 .

A stable smectic phase is possible for length-to-width ratios LID z0.5. In addition, we find that
another phase appears at high densities and larger LID values. In small systems, the phase appears
to be columnar", but in larger systems the range of stability of the columnar phase shrinks (see
Fig. 7) and is largely replaced by a hexagonal solid phase. In order to tell whether the latter phase
is indeed truly solid or, for example, smectic-B, would require simulations on systems that contain
many more particles than the 1000-2000 that we have thus far been able to study systematically.

At first sight it seems surprising that pure excluded volume effects can give rise to smectic
ordering. However, stimulated by the computer-simulation results a number of authors have
reexamined""""""""" the theoretical description of hard-core liquid crystals and have
come up with quite simple models that do in fact predict smectic and, in some cases, colummnar
phases.

7.2. The Effect of Rotation

Of course, a model system consisting of parallel spherocylinders is rather unphysical. It
is therefore of considerable interest to know whether if a system of freely rotating hard-core
molecules can form a smectic phase. This question is of some practical interest, in view of the
recent experimental evidence that smectic" and columnar" ordering may take place in
concentrated solutions of rod-like DNA molecules.

Simulations"' of a system of freely rotating spherocylinders with length-to-width ratio
LID = 5 revealed the presence of a stable smectic phase, in addition to the expected isotropic,
nematic and solid phases. This work was recently extended to other aspect ratios by Veerman
and Frenkel". These authors show that the smectic phase disappears at LID = 3. At this aspect
ratio, the nematic phase is no longer (meta-)stable. Fig. 8 shows a tentative phase diagram of
freely rotating hard spherocylinders.

Density-functional theories for hard spherocylinder systems have been proposed by Holyst
and Poniewierski76'77 and by Somoza and Tarazona". Both theories predict the presence of a
stable smectic phase if the length-to-width ratio LID exceeds a minimum value of 3. However,
the two theories differ in the their estimate of the point where the nematic-smectic transition has
its tricritical point.

7.3. Columnar Phases

If hard-core models exhibit smectic phases, one may wonder if excluded volume effects
can also induce the formation of the even more ordered columnar phase. In this case, it is natural
to look for a convex, plate-like molecule. Oblate ellipsoids are not expected to form columnar
phases. The argument why this should be so is essentially the same as the one that 'explains'
why prolate ellipsoids should not form smectic phases. Rather, we should look for the oblate
equivalent of the spherocylinder.
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For ellipsoids the transition from prolate to oblate shapes is controlled by a single parameter
(the axial ratio alb). In contrast, spherocylinders cannot be changed into oblate particles simply
by changing LID (unless we allow for the possibility of negative LID). It turns out that a
particularly convenient 'oblate spherocylinder' model is the so-called cut sphere" (see Fig. 9).

The cut sphere is a hard convex body. Using the standard techniques applicable to such
objects (see e.g. Ref. 90), the second virial coefficient of cut spheres can be evaluated for arbitrary
LID ratios:

0 sin 0u)
+

Sin2 emlrcD3
= -{COS Om

3(cos Oxf +6
2 2 Al 2

(23)

where 01,,, arcos (LID).

At high densities, cut spheres can be stacked in a regular close-packed lattice. The volume

fraction at regular close-packing is: Ili, = (7r16)1/3 (LID)2. Note that for LID = 1 (hard spheres),

this reduces to the well-known hard-sphere result ricp = Itha. For LID > 0 (flat, cylindrical

platelets), we obtain the 2D hard-disk value t = rc/412-. Monte Carlo simulations were carried

out on a system of cut spheres with LID = 0.1 and LID = 0.2, over a range of densities between
dilute gas and crystalline solid891. Surprisingly, it turned out that the systems with LID = 0.1
and LID = 0.2 behaved completely differently.

For the system with LID = 0.1 it was observed that the system spontaneously ordered to
form a nematic phase at a reduced density of 0.335 (i.e. at 33.5% of regular close packing). At
a density corresponding to 49% of regular close packing, this nematic phase undergoes a strong
first-order transition to a columnar phase (at a reduced density p* = 0.534). The
columnar-crystalline transition occurs at much higher density (p. > 0.80).

Next, we turn to the system of platelets with LID = 0.2. At first sight, the behavior of this
system looks quite similar to that observed for the thinner platelets. In particular, the
equation-of-state for cut spheres with LID = 0.2 looks similar to the one corresponding to LID
= 0.1. At low densities the compressibility factor is well described by a 5-term virial series and
at higher densities the actual pressure is lower. In other hard-core systems this is usually an
indication of a precursor to some kind of ordering transition (e.g. the I-N transition in the LID
= 0.1 case). And, indeed, at p 0.475 a change of slope in the equation of state, as is to be
expected in a simulation near a weakly first-order (or, possibly, second-order) phase transition.
The most natural assumption is that an isotropic-nematic transition takes place. After all, this is
what happens in the LID = 0.1 case, and we also know that oblate hard ellipsoids with a axial

......
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Fig.9. Schematic drawing of the cut-sphere model. This model is used as an oblate counterpart of the hard
spherocylinder model.
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ratio less than 0.4 have a stable nematic phase. However, if we measure the orientational
correlation function g2(r) n< P2(u(0).u(r))> we find that it decays to zero within one molecular
diameter, even at the highest densities of the 'fluid' branch (see Fig. 10). In a nematic phase,
g2(r) should tend to a finite limit: g2(r) * S2 as r Do, where S is the nematic order parameter.

It should be stressed that the absence of nematic order in the LID = 0.2 system is not a
consequence of the way in which the system was prepared. Even if we started with a configuration

at a reduced density p/p, = 0.50 with all the molecules initially aligned, the nematic order would

rapidly dissapear. In other words, at that density the nematic phase is mechanically unstable.
The great surprise comes when we consider the higher-order orientational correlation

function gir).=- < P4(u(0).u(r)) >. Usually, when g2(r) is short ranged, the same holds a fortiori
for g4(r). However, Fig. 11 shows that for densities p/p > 0.55, g2(r) is much longer ranged

than g2(r). This suggests that the system has a strong tendency towards orientational order with
cubic symmetry (we reserve the term 'cubatic' for a phase with cubic orientational order but no
translational order. In contrast, 'cubic' is used to denote a phase with cubic translational order).
In computer simulations one should always be very suspicious of any spontaneous ordering with
cubic symmetry, because such ordering could be induced by the (cubic) periodic boundary
conditions.

In order to test whether the boundary conditions were responsible for the cubatic order we
did a number of long simulations with systems of up to 2048 particles. These simulations strongly
suggest that the onset of cubatic orientational order is not an artifact of the boundary conditions.
Another indication that the boundary conditions are not the cause of the observed ordering is
that still higher order correlations (g6 g8) that could also be induced by the periodic boundaries,
are in fact rapidly decaying functions of r. If we make a log-log plot of g4(r) in the large system
for several densities between p = 0.51 and p = 0.63 (see Fig. 12), it appears that the cubatic order

is not truly long-ranged but quasi-long-ranged, i.e. g4(r)--r-11, where ri depends on the density p.

This observation should, however, be taken with a large grain of salt, as the range over which
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Fig.12. Log-log plot of the orientational correlation function g4.1 <P2(u(0)- u(r)) > in a system of hard cut spheres
with a length-to-width ratio L1D=0.2 as a function of density. With increasing density, the amplitude of this
correlation function increases. The lowest curve corresponds to p' = 0.51, followed by curves for p = 0.54 and p
= 0.56. The long-dashed curve corresponds to p. = 0.57. At higher densities p' = 0.58, 0.60 and 0.63 (long-dashed
curves), g4(r) appears to decay algebraically over the narrow range of distances (1 < r/D < 3.2) where we could
observe monotonic decay of g,(r).
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linear behavior in the loglog plot is observed corresponds to less than 1 decade in r.
Simulations by Veerman" indicate that, at least for the model with LID = 0.2, the cubatic

phase may be largely meta-stable. This observation does not diminish the interest of this phase.
After all, many liquid-crystalline phases that occur in nature are only metastable, but still very
real. I am, however, not aware of any experimental observations of cubatic liquid crystals,
although cubic liquid-crystalline phase of disklike molecules have been observed

experimentally'''.

8. Conclusion

In this review, I have almost exlusively discussed phase transitions in hard-core models.
However, I do not wish to suggest that excluded volume effects are the whole story. On the
contrary, such models provide only a moderately realistic description of some lyotropic liquid
crystals, and they are totally unrealistic for thermotropic liquid crystals. It is therefore of crucial
importance to investigate the effect of longer-ranged attractive forces and of molecular flexibility
on the stability of liquid crystalline phases. The recent work of Rull et.a1.68 shows clearly that

attraction can have a drastic effect on the stability of liquid-crystalline phases in simple model
systems. Most importantly, the results of Ref. 68 suggest that thermodynamic perturbation theory
may be much less successful for liquid-crystalline phases than for simple liquids. If so, this would
imply that we may have to revise the concept of a hard-core reference system for a liquid crystal.

Thus far, there have been no direct numerical studies of the location of phase-transitions
involving meso-phases of flexible molecules. As was explained in the beginning of this paper,
the reason is simply that simulations of flexible molecules are quite time-consuming. However,
this situation is likely to change due to recent advances in the simulation of flexible
molecules"... Once we can perform efficient simulations flexible mesogens, it becomes
possible to connect the numerical study of simple mesogens with that of liquid-crystalline
polymers and of ordering in self-assembling structures.
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