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We report results of a numerical test of the generalized Flory and generalized Flory dimer theories. 
Using continuous space Rosenbluth sampling, we have tested the basic assumptions of these 
theories. We find that the discrepancy between the predictions of the generalized Flory theory and 
simulation data is caused by the use of the Camahan-Starling equation of state to estimate the 
incremental chemical potential of a chain molecule. Although the assumptions made in deriving the 
generalized Flory dimer theory are similarly flawed, the predictions of the latter theory are in 
excellent agreement with simulation results. This is explained by the occurrence of a cancellation of 
errors. Therefore, it is not to be expected a priori that increasingly higher order extensions of these 
theories will be improvements. In particular, the disappointing performance of the recently 
developed generalized Flory trimer theory may be due to the fact that this theory lacks the 
cancellation of errors that is present in the generalized Flory dimer theory. 

I. INTRODUCTION 

Fifty years after its introduction Flory’s theory’ is, no 
doubt, the most widely used theory to describe the statistical 
mechanics of polymeric systems. The theory is of mean-field 
character and was originally derived for lattice systems. It 
can account for many features of polymeric systems qualita- 
tively, and in some cases even quantitatively: however, at 
least one empirical parameter (contained in the so-called x 
parameter) has to be introduced to apply the theory to real 
continuous space systems and even to the lattice systems for 
which it was derived. 

For lattice systems, the Flory theory models chains as a 
number of monomers occupying connected lattice sites. The 
same theory can also be derived for continuous space mod- 
els. The predictions of the simple off-lattice version of Flo- 
ry’s theory are not in quantitative agreement with simulation 
results.’ Dickman and Hall’ showed that better results are 
obtained if the basic assumptions of Flory’s theory for off- 
lattice models are expressed in a more sophisticated manner. 
The approach of Dickman and Hall takes into account the 
essential differences between continuous space and lattice 
models and resulted in the so-called generalized Flory (GF) 
theory for chains of hard spheres. As shown in Ref. 2, the 
predictions of this, theory and especially the extended ver- 
sion, the generalized Flory dimer theory3 (GFD), are in al- 
most quantitative agreement with simulation results. As we 
will show below, this agreement is surprising in view of the 
rather severe approximations made in its derivation. The cen- 
tral quantity in the derivation of the GFD theory is the prob- 
ability of successful insertion of a chain molecule in a fluid 
of such molecules. For hard-core systems this is equal to the 
probability that a molecule has no overlap with any other 
particle when inserted at random in the system. In order to 
test the basic assumptions of the GFD theory, one would like 
to calculate this insertion probability directly in a simulation. 
With conventional simulation techniques it is essentially irn- 
possible to insert chains longer than three to four monomers 
in a liquid in continuous space. Recently, however, we have 

developed a simulation technique,s by means of which we 
can compute the insertion probability of longer chain mol- 
ecules in a liquid. This makes it possible to test the basic 
assumptions of the GF and GFD theories directly. Here we 
present the results of these tests. First, we briefly describe the 
assumptions for the insertion probability in the GF and GFD 
theories. In Sec. III we explain the details of the model and 
present the simulation technique used. Finally we present the 
results of the simulations that we performed and compare 
with the assumptions of the GF and GFD theories. 

II. ASSUMPTIONS IN THE GENERALIZED FLORY 
(DIMER) THEORY 

Flory’s theory1 for chain molecules was originally de- 
rived for a lattice model, in which the chains are modeled as 
a series of segments, occupying connected lattice sites. The 
derivation starts with an expression for the free energy of the 
system and from this expression all other thermodynamic 
functions are derived. An alternative route, presented by 
Dickman and Hall,’ starts from an expression for the inser- 
tion probability of a chain, and hence for the chemical po- 
tential. Thermodynamic consistency ensures that the thermo- 
dynamic functions derived from this expression are the same 
as the ones from Flory’s original derivation. In order to ob- 
tain a tractable expression forp( ?;I,Pz), the insertion probabil- 
ity of a chain of n monomers in a fluid of chains at a given 
volume fraction 7, several assumptions are made. Flory’s 
theory for lattice models can be obtained by ignoring all 
density correlations on the lattice and assuming 

p(4w)=(l-$Y, (1) 
where (b is the fraction of occupied sites on the lattice. A 
straightforward translation of this formula to a continuous 
space system with hard-core particles, is the replacement of 
4 by 7, the volume fraction of the particles in the liquid. In 
that case, however, the accessible free space for monomers is 
overestimated. The idea in deriving the generalized Flory 
theory is that the insertion probability for hard spheres in a 
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hard-sphere fluid can be derived from the Carnahan-Starling 
equation. The first assumption then is that the insertion prob- 
ability for a hard sphere in a hard-sphere fluid, pl( 7, l), is 
equal to that of a hard sphere in a fluid of hard-sphere chains 
of length 12 at the same volume fraction 7, p,( 7, 1): 

P,t(T%l)=Pl(%l) (2) 

Another difference between lattice models and off-lattice 
models is that, in continuous space, the insertion probability 
for a hard-sphere chain of length n will not be that for one 
hard sphere to the nth power. For a lattice model, this ap- 
proximation [i.e., Eq. (l)] is correct if density correlations in 
the liquid are neglected. But for an off-lattice model, the 
equivalent of Eq. (1) will fail, even in the absence of density 
correlations. The reason is that for an n-mer in continuous 
space the excluded volume v,(n), i.e., the volume around 
the chain where no other hard sphere can be without having 
an overlap, is not II times the excluded volume of a monomer 
u,(l), as it is on a lattice, but much less. From geometric 
arguments u,,(2) can be calculated analytically and u,(3) 
can be calculated numerically. Extrapolation yields the fol- 
lowing estimate for u,(n) for na3: 

u,(n)=~,(3)+(n-3)[~,(3)-~,(2)1. (3) 
With this assumption, we arrive at the GF prediction for 
P,,(w): 

Pn(‘)7,n)=P,t(17,1)Ue(“)‘“e(1), (4) 

where p,,( v,l) is estimated using Eq. (2). 
It is possible to improve on the GF theory by exploiting 

the fact that, in addition to the Camahan-Starling equation 
of state of hard spheres, we also have a good analytical ap- 
proximation to the equation of state of hard dimers, the so- 
called Tildesley-Streett equation.5 As with the GF theory, we 
assume that the insertion probability for a hard dimer in a 
fluid of hard dimers, p2( 77,2), is equal to the insertion prob- 
ability for a dimer in a fluid of n-mers, p,( q2) : 

P,*(7?,2)=P2(777,2). (5) 

From p,,( v,l) and p,,( ~,2) an extrapolation to pn( v,n) can 
be made with the same excluded volume terms as before: 

This equation, together with Eqs. (2) and (5), form the GFD 
theory. The validity of the assumptions represented by Eqs. 
(2), (3), and (5), as well as the accuracy of the predictions 
found with Eqs. (4) and (6), can be tested by computer simu- 
lations. In Sec. III we describe the simulation technique 
which allows us to compute P,~( v,n) at liquid densities. 

Ill. SIMULATION TECHNIQUE AND MODEL 

It is common in computer simulations to compute the 
insertion probability p because it is directly related to the 
chemical potential &u through Widom’s expression? 

ppex= -In(p), (7) 

where the brackets denote ensemble averaging. Using con- 
ventional sampling schemes, it is virtually impossible to 
compute the chemical potential for chains longer than three 
to four monomers in a liquid. The reason for this is that the 
insertion probability for these longer chains is so small, that 
it is impossible to successfully insert even a single chain 
during a simulation. In lattice systems, longer chains can be 
inserted by Rosenbluth sampling.7 Every new segment along 
a chain is not inserted at random on one of the sites adjacent 
to the position of the previous segment. Instead, it is deter- 
mined by looking ahead, which of the sites are free and 
which are already occupied. If available, only free sites are 
sampled and thus occupied sites are avoided and holes in the 
system can be found. The bias introduced in this sampling 
procedure has to be corrected for by assigning a Rosenbluth 
weight, IV, to the configuration. In a lattice system with only 
excluded volume interactions this Rosenbluth weight is just 
the ratio of the number of available directions to the total 
number of trial directions. The simulation technique that we 
developed* extends this idea to continuous space. Because 
there is not a finite number of directions to choose from as 
on a lattice, we first choose a finite number of trial directions 
at random and then choose one of these according to the 
Rosenbluth procedure. In Ref. 8 it is shown that this is al- 
lowed for any number of trial directions. With this technique 
we can calculate the chemical potential by* 

p/P= -hi(W), (8) 

where (IV) is the ensemble average of the Rosenbluth 
weights, which is also equal to the average insertion prob- 
ability (p). In this way, we can calculate insertion probabili- 
ties for longer chains to test the assumptions in the GF and 
GFD theories. 

The model we use is the same as the one used in deriv- 
ing the GF and GFD theories: “pearl necklace”3 hard-sphere 
chains of length n, connected by freely rotating bonds which 
are of the same length as the diameter of the spheres a: All 
simulations are done at a volume fraction 7=0.27, typical 
for liquids. We calculated p,( 7,~) for chains of lengths 
ranging from it = 1 to 12 = 12. The excluded volume of an 
n-mer, u,(n), for a hard sphere, is computed from the inser- 
tion probability p for a hard sphere in a system with one 
isolated chain of in monomers. This insertion probability is 
equal to the ratio of the free volume ufree and the total vol- 
ume u tot. The excluded volume of the n-mer is given by 

u,(n)=u,,,--~ee=(l-P)Ut,t. 

IV. TEST RESULTS 

(9) 

With the technique explained in Sec. III we have tested 
the assumptions that were described in Sec. II. We discuss 
the results in terms of the excess chemical potential, which is 
related to the insertion probability through Eq. (7) and which 
is calculated using formula (8). In Fig. 1 we have plotted the 
excess chemical potential for a hard sphere in a fluid of 
chains of length iz, /3,!.~:( g,l) = - lnp,(v,l), and in Fig. 
1 the same for a hard dimer, /3p,F( 77,2) = - In p,(77,2). 
The chemical potentials decrease appreciably with increasing 
n. This means that assumptions (2) and (5) are not valid, and 
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FIG. 1. The excess chemical potentials P,LL~( q,l) and P,u:( 77,2), respec- 
tively, for a hard sphere and a hard dimer in a fluid of chains of n hard 
spheres at volume fraction ~=0.27. 

that the Carnahan-Starling and the Tildesley-Streett equa- 
tions strongly overestimate the chemical potentials of a hard 
sphere and a hard dimer in a fluid of n-mers, respectively. In 
deriving the GFD theory, Honnell and Hall3 already pointed 
out that this could have been -expected. With increasing n, 
more monomers cluster into n-mers, which causes an in- 
crease of the available space to insert a particle and as such a 
decrease of the excess chemical potential. We find that this is 
a significant effect. The second assumption is tested in Fig. 2, 
where the excluded volume for a hard-sphere chain of length 
n, v,(n), is shown. The fact that u,(n) depends linearly on n 
shows that it can be estimated well by the extrapolation of 
the excluded volumes according to Eq. (3). This is in agree- 
ment with findings of Denlinger and Hall.’ They determined 
u,(n) by a numerical procedure similar to the one we use, 
and also drew the conclusion that Eq. (3) is a good estimate 
for the chain lengths considered in this paper. For longer 
chains they found a small deviation. 

The final predictions of the GF and GFD theories are 
plotted in Fig. 3 and compared with our simulation results. In 
the same figure wee show the prediction of the naive off- 

FIG. 2. The excluded volume of a chain of n hard spheres, u,(n), for a hard 
sphere. * ’ 
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FIG. 3.~ The excess chemical potential PpT(v,n) fer a chain of n hard 
spheres in a fluid of n-mers at volume fraction q=O.27. 0: simulation 
results; ---: Flory’s theory; .*-: GF theory; -: GFD theory; X: GF theory 
with the true p/.cr( v,l); and 0: GFD theory with the true ppF( 7.1) and 
PK(aJ). 

lattice version of Flory’s theory, which underestimates the 
excess chemical potential strongly, This is explained by the 
fact that the straightforward translation of Flory’s theory [Eq. 
(l)] to continuous space overestimates the available space to 
insert a particle. The GF theory does a much better job, but it 
results in an overestimate of the excess chemical potential. 
This becomes progressively worse with increasing chain 
Iength. It is a direct consequence of the fact that the theory 
does not account for the decrease of the chemical potential of 
a monomer in a fluid of n-mers (Fig. 1). Now one would 
expect that the GFD theory would not do any better, because 
an extra assumption [Eq. (2)] is made, which is no more 
valid than the one already made in the GF theory, as was 
shown in Fig. 1. We find, on the contrary, that the GFD 
theory agrees with our simulation data to within the statisti- 
cal error of our calculations. That could happen only because 
of a cancellation of errors. The GFD theory contains the 
conditional probability p,( 9,211) =p,( 17,2)/p,( v,l) [Eq. 
(6)], of inserting a second sphere after one sphere has been 
inserted without an overlap. For all n larger than 2, both the 
numerator and the denominator in the conditional insertion 
probability for a second sphere are overestimated. Figure 4 
shows ,that the net effect is a decrease of the residual excess 
chemical potential’ of the second segment, /3~7( 7,211) 
= - ln pn($2]1), with increasing n, as can be expected 
again from the clustering of monomers into chains. But, by 
coincidence, the value for &~~“(77,2/1) that is used in the 
GFD theory is the same as the true one at n = 12 (see Fig. 4). 
So, at-the high n in our range, the contributions of the re- 
sidual excess chemical potentials of all segments except the 
first one, are estimated well. At n =2 the error in 
p,uz( 7,211) must be canceled exactly by the error in 
p,zF( 7, 1). At intermediate n a combination of these effects 
occurs. Due to these effects the GFD theory predicts 
P,x,( qn) well over the range of values of n that we have 
studied. 

Until now, we have not considered the neglect of density 
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performance of the GFD theory is superior to that of the GFT 
theory. Considering our test results for the GFD theory, this 
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2.2 I V. CONCLUSIONS 
0 5 10 1’5 ..*- * We ha~‘performed simulations to-check the validity of n assumptions made in deriving the generalized Flory and the 

generalized Flory dimer theory. We find that the Carnahan- 
Starling equation does not yield an accurate estimate of.the 
insertion probability of hard spheres in a fluid of chains of n 
monomers, and leads to an overestimate of the chemical po- 
tential by the GF theory. The assumption in the GFD theory, 
that the Tildesley-Streett equation for hard dimers can be 
used -for dimers in a fluid of chains of n monomers, is not 
valid either, but the errors introduced by using both the 
Carnahan-Starling and Tildesley-Streett equations very 
nearly cancel. 

FIG. 4. The residual excess chemical potential ppF( 77,2\ 1) 
= -In p,( 7,211), where p,( 77,211) is the conditional probability for insert- 
ing a second hard sphere next to an already successfully inserted hard 
sphere. -: assumption for &L:( 7,211) in the GFD theory, using assump- 
tions (2) and (5). 

correlations in the fluid, which is intrinsic in Flory’s deriva- 
tion. If the actual value of p,J 7;1,1) would be known, the 
only approximation left in the GF theory is the neglect of all 
the density correlations. In Fig. 3 we show the values that we 
get for p,u,,( v,n) when we use the true pn( a,l) from our 
simulation data (Fig. 1) in the GF equation (4). Those values 
are close to, but a little below, the results of our simulations. 
This means that the remaining approximation, the neglect of 
density correlations, causes a small underestimate of 
P,u,~( qn), which partly compensates for the overestimation, 
caused by assumption (2). If p,,( 7,2) would be known too, 
the GFD theory would include density correlations on the 
dimer level, i.e., for the insertion probability of a monomer, 
p,J 7, l), and for the conditional probability of inserting a 
second sphere, p,,( 77,211). Then the only approximation left 
is the assumption that the contribution of the correlations can 
be extrapolated to the remaining conditional probabilities 
p,,( v,Z\i- 1) for 1>2. In Fig. 3 we show the result of using 
the true p,,( v,l) and p,,( 7,2) from our simulations in the 
GFD equation (6). It does not change the results, and the 
agreement with the simulation data remains excellent. Appar- 
ently, the contribution of density correlations to the condi- 
tional probability p,,( 7,211) is the same as to the conditional 
probabilities P,~( T,Z] I- 1) for I> 2. It should be noted that 
the simulations were performed at liquid densities and that 
for lower densities the situation might be different. 

Recently, attempts have been made to improve the GFD 
theory. The GFD theory predicts the equation of state of 
n-mers by extrapolation from the monomer and dimer equa- 
tions of state. Similarly, an extrapolation from the dimer and 
trimer equations of state can be used. This was done by 

The neglect of density correlations beyond the monomer 
level causes a small underestimate of the chemical potential 
by the GF theory, which partly compensates the overestima- 
tion caused by the use of the Carnahan-Starling equation. In 
the GFD theory density correlations are included up to the 
dimer level and further neglected, but this neglect has no 
effect on the results. In summary, the GF theory overesti- 
mates the chemical potential of an n-mer fluid and the GFD 
gives a good prediction of the chemical potential due to a 
cancellation of errors. 
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