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Abstract

Techniques to compute absolute free energies of classical many-body systems are dis-
cussed with special emphasis on those techniques that can be used to map the phase di-
agram of solids and liquids. Recent technical advances in the study of multi-component
systems and systems consisting of flexible molecules are emphasized.

1 Introduction

These lectures describe a number of techniques that have been developed to evaluate the
free energy of classical many-body systems. However, before I start discussing old and new
tricks to compute free energies, I should first explain why there is much interest in such
techniques. Asking this question is not as strange as it may seem, because one is only rarely
interested in free energy for its own sake. In this respect, free energy calculations are very
different from, say, a simulation study of the structure of a liquid-vapor interface. In the
latter case, all quantities of physical interest (e.g. the surface tension or the density profile)
can be directly measured during the simulation. In contrast, the information obtained
in a free-energy calculation is almost always used to compute something else that is of
physical interest, e.g. the location of a phase transition, the solubility of one compound in
another or the concentration of point defects in a crystalline solid. As we shall see later,
it is sometimes possible to compute phase equilibria directly, i.e. without first computing
the free energy. Under such circumstances only a masochist would still compute the free
energy. This example illustrates our curious love-hate relation with free energy calculations:
we often need them, but we wish that we could live without them.

There is another unusual feature that distinguishes a numerical calculation of the free
energy from, say, a measurement of the equation-of-state of a liquid. Namely that we can
measure the pressure (or density) of a fluid in a simulation, but we cannot measure the
free energy. The reason is simple: the Helmholtz free energy F is related to the canonical
partition function of a many-body system through

F= _kETan(N)VaT)» (1)
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where T is the absolute temperature, kp is Boltzmann’s constant and Q(N,V,T) is the
canonical partition function of a system of N particles in volume V at temperature T". For
a classical many-body system, Q(N,V,T) is of the form

N
e, v, 1) = =8 [ dq® exp(-pu(a"). (2)

In eq. 2, qV designate the coordinates (trasnlational or other) of all N particles, q(T)
denotes the ‘kinetic’ contribution to the partition function that results from integration
over the momenta conjugate to qV (e.q. for atomic systems, ¢(T) = (2rmkpT/h?)3/?)
and U(q") is the potential energy function of this N-particle system. Although Molecular
Dynamics or Monte Carlo simulations can be used to measure averages of the type

¢"(T) J dq¥ A(q") exp(~BU (a")

sd>= S QN,V,T

), (3)

neither technique can measure Q(N,V,T) (and hence F) directly. This implies that a
numerical ‘measurement’ of the free energy must be rather different from a measurement
of, say, the compressibility. The practical consequence of the special problems associated
with the numerical measurement of a ‘thermal’ quantity, such as the free energy (or the
entropy S or the Gibbs free energy G), is that special techniques are required to perform
such measurements. In fact, as we shall see below, almost all calculations that are referred
to as ‘free-energy calculations’ do not actually measure an absolute free energy at all, but
rather the difference between two free energies.

In summary: free energies are usually not computed for their own sake, but because
they allow us to determine phase or chemical equilibria. ‘Thermal’ quantities, such as the
Helmholtz free energy are related to the volume of the accessible configuration space, rather
than to an average over this space. Therefore, special techniques are required to compute
free energies.

Thus far this introduction may not have sounded as an advertisement for free-energy
calculations. Now, however, I will not restrain myself anymore and admit that many of
the techniques to compute free energies are both elegant and instructive. I, for one, have
learned more from computer ‘experiments’ about the meaning of, for example, the chemical
potential than from any textbook on statistical mechanics or thermodynamics.

The material presented in these lectures is organised as follows. I start with a brief
introduction to numerical techniques to locate phase equilibria. In particular, I shall explain
what role free energy calculations play in such computer studies. Next, I present a brief
description of the ‘Widom’ method to measure the chemical potential of atomic or simple
molecular fluids (section 3.1). I then show how this technique can be extended to deal with
flexible molecules. Subsequently, I discuss three general schemes to measure free-energy
differences, namely the overlapping distribution method, the acceptance ratio method and
the method of ‘umbrella sampling’. Finally I consider simulation schemes that allow us
to study phase coexistence without the need to compute the free energy of all coexisting
phases. In all cases, I try to include references to recent work although I should warn the
reader that this is not a review nor a bibliography: a comprehensive discussion of the vast
literature on this subject falls outside the scope of the present ‘tutorial’ paper.
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2 Phase transitions

The study of phase transitions by computer simulation has grown to become a subject in
its own right to which entire books are devoted (see e.g. [1]). The reason is not so much
that unconventional methods of computer simulation are involved in such studies, but
rather that a numerical study of the precise location and character of a phase transition
often requires a lot subtle analysis. In other words, it is not only a matter of how to
compute but what. Actually there is quite a difference between the tools used to study first-
order phase transitions and those applied to analyse critical phenomena near continuous
phase transitions. As these lectures are about free-energy calculations, I shall only discuss
first-order phase transitions. The reason is that, at a higher-order phase transition, the
free energy is continuous and hence free energy calculations are of no use in locating the
transition point. For a discussion of techniques to analyse continuous phase transitions, I
refer the reader to the relevant literature (e.g. refs. [2] and [1]).

2.1 First order phase transitions

In section 1 it was mentioned that knowledge of ‘thermal’ quantities, such as 1, is usually
necessary to locate the coexistence line for a first-order phase-transition. At first sight
knowledge of p may appear superfluous. After all, a computer simulation mimics the
behaviour of a real solid or liquid. If the simulation is ergodic it should spontaneously
transform to whatever phase is thermodynamically most stable, and then we would know
all there is to know. Unfortunately, this approach does not work. At least, not for phase
transitions involving three-dimensional solids. At a solid-solid or solid-liquid phase tran-
sition very strong hysteresis effects are usually observed in a simulation (see figure 1). In
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Figure 1: First-order phase transitions in small model systems with periodic boundary

conditions (right) tend to exhibit much stronger hysteresis effects than are usually observed
in the real world (left)

fact, it is very difficult to nucleate a crystal from a liquid during a simulation. Hence, to
locate the point where two phases coexist, we must compute the chemical potential of the
homogeneous phases at the same temperature and pressure and find the point where the
two p’s are equal. In the following sections, I discuss methods to compute p and related
thermal quantities by computer simulation (see also ref. [16]). In the present section I wish
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to describe a simple, and usually reliable, method to compute the free energy F (and hence
H)-

Let us first recall how free energies are measured in real experiments. In the real world
free energies cannot be obtained from a single measurement either. What can be measured,
however, is the derivative of the free energy with respect to volume V and temperature T"

() = ®
and
(&), - ® ®

Here P is the pressure and E the energy of the system under consideration. The trick is
now to find a reversible path that links the state under consideration to a state of known
free energy. The change in F' along that path can then simply be evaluated by integration
of eqs. 4 and 5. There are only very few thermodynamic states where the free energy of
a substance is known. One state is the ideal gas phase, the other is the perfectly ordered
ground state at 7' = 0K.

In computer simulations, the situation is quite similar. In order to compute the free
energy of a dense liquid, one may construct a reversible path to the very dilute gas phase.
It is not really necessary to go all the way to the ideal gas. But at least one should reach
a state that is sufficiently dilute that the free energy can be computed accurately, either
from knowledge of the first few terms in the virial expansion of the compressibility factor
PV/(NET), or that the chemical potential can be computed by other means (see section 3.1
and 3.3 below). For the solid, the ideal gas reference state is less useful (although techniques
have been developed to construct a reversible path from a dense solid to a dilute (lattice)
gas [3]). The obvious reference state for solids is the harmonic lattice. Computing the
absolute free energy of a harmonic solid is relatively straightforward, at least for atomic
and simple molecular solids. However, not all solid phases can be reached by a reversible
route from a harmonic reference state. For instance, in molecular systems it is quite common
to find a strongly anharmonic plastic phase just below the melting line. This plastic phase
is not (meta-) stable at low temperatures.

Fortunately, in computer simulations we do not have to rely on the presence of a ‘natural’
reversible path between the phase under study and a reference state of known free energy.
If such a path does not exist, we can construct an artificial path. This is in fact a standard
trick in statistical mechanics (see e.g. [4]). It works as follows: Consider a case where we
need to know the free energy F(V,T) of a system with a potential energy function U,
where U; is such that no ‘natural’ reversible path exists to a state of known free energy.
Suppose now that we can find another model system with a potential energy function U for
which the free energy can be computed exactly. Now let us define a generalized potential
energy function U(A), such that U(A = 0) = Up and U(A = 1) = U;. The free energy of a
system with this generalized potential is denoted by F(X). Although F()) itself cannot be
measured directly in a simulation, we can measure its derivative with respect to A:

(8_F> U
N/ nvra ' OA

)NVTA (6)
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If the path from A = 0to A = 1is reversible, we can use eq. 6 to compute the desired F(V,T).
We simply measure < 9U/0A > for a number of values of A between 0 and 1. Typically,
10 quadrature points will be sufficient to get the absolute free energy per particle accurate
to within 0.01kgT". It is however important to select a reasonable reference system. One
of the safest approaches appears to be to choose as a reference system an Einstein crystal
with the same structure as the phase under study [5]. This choice of reference system
makes it extremely improbable that the path connecting A = 0 and A = 1 will cross an
(irreversible) first order phase transition from the initial structure to another, only to go
back to its original structure for still larger values of A\. Nevertheless, it is important that
the parametrization of U(A) be chosen carefully. Usually, a linear parametrization (ie.
U(X) = AUy + (1 = A\)Up ) is quite satisfactory. But occasionally such a parametrization
may lead to weak (and relatively harmless) singularities in eq. 6 for A — 0. More details
about such free energy computations can be found in ref. [16].

Similar techniques can be used to locate first-order phase transitions involving phases
with partial order (e.g. liquid crystals). For details, the reader is referred to refs [6, 7, 8]
The first numerical determination of the melting point of a molecular crystal was recently
published by Meijer et al. [9] Finally, thermodynamic integration techniques are particularly
useful to compute the Gibbs free energy of mixtures. A recent application is the work
of Kranendonk and Frenkel, who have computed the melting curve of a substitutionally
disordered solid mixture of hard spheres with different size [10]. In this case, thermodynamic
integration is used to slowly change the size-ratio of the particles at fixed volume fraction.
The reference point is size ratio a = 1 (‘isotopic mixture’). The reversible work needed
to change the size ratio from 1 to a given value of a is a direct measure for the excess
free energy of the solid solution at that composition. For details, the reader is referred to
ref. [11].

3 Techniques to measure the chemical potential

3.1 Particle insertion method

A particularly simple and elegant method to measure the chemical potential p of a species
in a pure fluid or in a mixture is the ‘particle-insertion’ method (often referred to as the
Widom-method [12]) . The statistical mechanics that is the basis for this method is quite
simple. Consider the definition of the chemical potential p, of a species a. From thermo-
dynamics we know that p is defined as:

_ <3_G)
k= \an)pr

_ (6F )
~ \8N/yr
as
- — : 7
r (51\7 ) VE (7)
Where G, F and S are the Gibbs free energy, the Helmholtz free energy and the entropy,

respectively. Here, and in the next few paragraphs we focus on a one-component system,
and hence we drop the subscript a. Let us first consider the situation at constant NVT.

Il
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If we express the Helmholtz free energy of an N-particle system in terms of the partition
function @ x (eq. 50), then it is obvious from eq. 7 that, for sufficiently large N the chemical
potential is given by: p = —kT In(Qn41/QnN). If we use the explicit form (eq. 50) for Qy,
we find:

—kTIn(Qn41/QN)

= (-2 ) J ds"* exp(~BU(s"*)))
= —kT1 ((N+1)) ’“Th’( J ds¥ exp(—BU(s")) )

pid(V) + fez - (8)

®
Il

In the first line of eq. 8, we have assumed that the system is contained in a cubic box with
diameter L = V'3 and have defined scaled coordinates sV , by:

q; = Ls;

for i = 1,2,---,N. In the last line of eq. 8, we have indicated the separation in the
ideal-gas contribution to the chemical potential, and the excess part. As p;q(V) can be
evaluated analytically, we focus on p.,. We now separate the potential energy of the N + 1-
particle system into the potential energy function of the N-particle system, U(s"), and the
interaction energy of the N + 1-th particle with the rest: AU = U(sV*!) — U(s"). Using
this separation, we can write p., as:

fez = —kTIn < /dsN+1 exp(—BAU) >n , (9)

where < --- >y denotes canonical ensemble averaging over the configuration space of the
N-particle system. The important point to note is that equation 9 expresses ., as an
ensemble average that can be sampled by the conventional Metropolis scheme. There is
only one aspect of this equation that makes it different form the averages that we consid-
ered before, namely the fact that we compute the average of an integral over the position
of particle N + 1. This last integral can be sampled by brute-force (unweighted) Monte
Carlo sampling. In practice the procedure is as follows: we carry out a perfectly normal
constant NVT Monte Carlo simulation on the system of N particles. At frequent intervals
during this simulation (for instance, after every MC trial move) we randomly generate a
coordinate sy, uniformly over the unit cube. With this value of sy, we then compute
exp(—BAU). By averaging the latter quantity over all generated trial positions, we obtain
the average that appears in eq. 9. So, in effect, we are computing the average of the Boltz-
mann factor associated with the random insertion of an additional particle in an N-particle
system, but we never accept any such trial insertions, because then we would no longer be
sampling the average needed in eq. 9. The Widom method is a very powerful method to
compute the chemical potential of (not too dense) atomic and simple molecular liquids. Its
main advantage is its great simplicity, and the fact that it can be added on to an existing
constant-NVT MC program, without any modifications to the original sampling scheme:
we are simply computing one more thermal average. There is something else about the
Widom method that makes it appealing, but that has nothing to do with computationally
efficiency: it really provides an insight into the meaning of the chemical potential. An
insight that is often hard to extract from most text-books on statistical thermodynamics.
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The extension of the Widom method to other ensembles, in particular NPT”and NV E
is relatively straightforward. However, it would be incorrect simply to apply equation 9
to these other ensembles. As this point is not always fully appreciated in the literature,
I shall briefly discuss the application of the Widom method to the N PT-ensemble (see
refs. (13, 15]) and to the NV E-ensemble (see ref. [16]). To derive the expression for the
chemical potential in the NPT-ensemble, we start from eq. 54:

G(N,P,T) = —kT]n/dV(qV)N e’;‘,’,(_ﬂpv) /dsN exp(—BU(sY; V)) .

We must evaluate p = (3G/ON)pr. Entirely analogously to the NVT case we find that
#=G(N+1,P,T)— G(N, P,T) equals:

Il

vV
p = —kTh< (Nq—Jrl)/ds,m exp(—BAU) >

Il

—kTIn(qgkT/P) — kT'In < (_Nf‘lf—)kT/dsNH exp(—BAU) >
Hid(P) + pez(P) (10)

Il

Two points should be noted: first of all we now define the ideal gas reference state at
the same pressure, rather than at the same average density as the system under study.
And secondly, the fluctuating quantity that we are averaging is no longer exp(—BAU), but
V exp(—BAU). In practice, one should only expect the fluctuating volume term in eq. 10 to
be important if large volume fluctuations are possible, for instance in the vicinity of phase
transitions. But chemical potentials are often calculated precisely to locate such phase
transitions.

In the constant- NV E ensemble, i.e. the one probed by conventional Molecular Dynam-
ics simulations, we start from the relation: p/T = —(8S/0N)yg. In the microcanonical
ensemble, the entropy S is related to (N, V, E), the total number of accessible states, by
the famous relation § = kInQ(N,V, E). The classical expression for Q(N, V, E) is:

1
AN, V,E) = g [ S(H ", a") - B)dpVda" (11)

Again the derivation proceeds much as before, but for the fact that we must now compute
QN +1,V,E)/Q(N,V,E). This is slightly more cumbersome (see [16]) and we only quote
the final result:

Btez = —In{< T >73/2< T3 exp(~AU/kT) >} , ~(12)

where T is the (fluctuating) temperature (as determined from the instantaneous kinetic
energy of the particles). Such fluctuations tend to be large where the heat capacity of the
system is large (see ref. [17]).

The particle insertion method can be modified to measure the difference in chemical
potential between two species a and 8 in a mixture. In this case a trial move consists of
an attempt to transform a particle of species a into species 3 (without, of course, ever
accepting such trial moves). This topic is briefly discussed in section 4.4. For more details,
the reader is referred to refs. [14, 15]. Let me finally mention that the particle insertion and
swapping techniques are not limited to the measurement of chemical potentials. In fact, a



92

wide class of partial molar quantities (such as, for example the partial molar enthalpy h,
or the partial molar volume v,) can be measured in this way. For details, see refs. [15, 18]

The particle insertion method fails when the probability of ‘accepting’ a trial insertion
becomes very small. One consequence is that the simple particle insertion method is less
suited for molecular than for atomic systems (see figure 2). However, quite recently, Siep-
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Figure 2: The particle insertion method is less efficient for ‘molecular’ systems (right), than
for ‘atomic’ systems (left)

mann [19] has developed a scheme to measure the chemical potential of flexible molecules
with a finite number of conformations. The next section discusses the basic idea behind
this scheme.

3.2 Chemical potential of flexible molecules

In order to understand the recent developments in the calculation of the chemical potential
of chain molecules, it is instructive to first consider how we would compute pe, of a chain
molecule with the Widom technique. To this end, I introduce the following notation: the
position of the first segment of the chain molecule is denoted by q and the conformation
of the molecule is described by I'. The configurational part of the partition function of a
system of chain molecules can be written as

Qenain(N,V,T) = 77 [ da_ ¥ exn(-pU(a", 1Y) (13)
= | ) i

The analogy with the previous sections suggests that the excess chemical potential of a
chain molecule is obtained by considering the ratio

Q(N + 1; Vy T)/[Q(N, V, T)Qnon—interacting(ly V7 T)])

where of the Q(N +1,V,T)is the (configurational part of) the partition function of a system
of N + 1 interacting chain molecules and Q(N,V,T)Qnon—interacting(1,V,T) the partition
function for a system consisting of N interacting chains and one chain that does not interact
with the others. The latter chain plays the role of the ideal gas molecule in the previous
sections. Note, however, that although this molecule does not interact with any of the
other molecules it does interact with itself, both through bonded and through non-bonded
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interactions. Unfortunately, this is not a particularly useful reference state, as we do not,
in general, know the partition function of an isolated self-avoiding chain.

We therefore use another reference state, namely that of the isolated non-selfavoiding
chain. To be specific, let us consider the case of a molecule that consists of £ segments.
Starting from segment 1, we can add segment 2 in b, equivalent directions, and so on.
Clearly, the total number of non-selfavoiding conformations is Q;y = Hle b;. For conve-
nience, I have assumed that for a given 4, all b; directions are equally likely (i.e. I ignore
gauche-trans potential energy differences and I even allow the ideal chain to fold back on
itself). These limitations are not essential but they simplify the notation. Finally, I assume
that all b; are the same. Hence, for the simple model that we consider, Q;5 = b¢. If we use
such an ideal chain as our reference system, the expression for the excess chemical potential
becomes

- Qchain(N + I’V’ T)
ﬂﬂe: == _kBTln(Q(N,V,T)Qid:al(l)V’T)>

= —kpTln < exp[-BAU(q™,T¥;qn41,Tn11)] >, (14)

where AU denotes the interaction of the test chain with the N chains that are already
present in the system and with itself, while < --- > indicates averaging over all starting
positions and all ideal-chain conformations of a randomly inserted chain.

The problem with the Widom approach to eq. 14 is that almost all randomly inserted
ideal chain conformations will overlap either with particles already present in the system,
or internally. The most important contributions to pe, will come from the extremely rare
cases where the trial chain happens to be in just the right conformation to fit into the
available space in the fluid. Clearly, it would be desirable if we could restrict our sampling
to those conformations that satisfy this condition. If we do that, we introduce a bias in our
computation of the insertion probability and we must somehow correct for that bias. The
scheme developed by Siepmann shows how that can be done.

In order to explain this scheme, I will first describe how the method works, and then
show that it does indeed lead to the desired answer. The approach used in ref. [19] consists of
two steps: in the first step a chain conformation is generated in such a way that ‘acceptable’
conformations are created with a high probabibility. The next step corrects for this bias by
multiplying with a weight factor. A scheme that generates ‘acceptable’ chain conformations
with a high probability was developed by Rosenbluth and Rosenbluth in the early fifties [20].
In the Rosenbluth scheme, a conformation of a chain molecule is constructed segment-by-
segment. For every segment, we have a choice of b possible directions. In the Rosenbluth
scheme, this choice is not random but favors the direction with the largest Boltzmann
factor. To be specific, the probability (P) to generate a polymer with a conformation T
using the Rosenbluth algorithm is given by

R (15}
i1 Xi=1 exp[-Bur, ()]’

where ur; denotes the energy of segment 7 of the chain with conformation I’ (note that this
energy excludes the contributions of segments i + 1 to [, so the total energy of the chain
is given by: Up = Zle ur;), j enumerates all possible orientations from which the i-th
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segment of the chain can be chosen. Finally, ur,(j) denotes the potential energy of the i-th
segment in orientation j. An important property of the probability given by eq. 15 is that
it is normalized, i.e
Y. h=1.
r

The Rosenbluth weight factor that corrects for the bias in the selection of conformation I'
is given by
L
Wr = H

i=1 j=1

b
£ exp [—ﬂur.v(i)]] . (16)

Now let us assume that we use the Rosenbluth scheme to generate a large number of chain
conformations while keeping the coordinates of all other particles in the system fixed. For
this set of conformations, we compute the average of the Rosenbluth weight factor W, W.
If we also perform an ensemble average over all coordinates and conformations of the N
particles in the system, we obtain

(W) = <Z Pr(q", FN)Wr(qN,FN)> (17)
r

where the angular brackets denote the ensemble average over all configurations of the sys-
tem {q",T™} of the ‘solvent’. Note that the test polymer does not form part of the N-
particle system. Therefore the probability to find the remaining particles in a configuration
{q™, IV} does not depend on the conformation I of the polymer.

In order to simplify the expression for the average in eq. 17, we first consider the average
of the Rosenbluth factor for a given configuration {q"V,T'V} of the solvent.

W({a",T"}) = ) Pe(a™)Wr({a™,T"}), (18)
r

Substitution of equations (15) and (16) yields

w

¢ B
Z H exp [—Bur,] ] [H %Eexp [—Bur;(7)]
3=1

T Lzt Z3=1exp [-Bur, ()] [

Il

0
z H EEXP [—ﬂuf‘.‘]

r i=1

3. sexp AU (19)
r

where we have dropped all explicit reference to the solvent coordinates {q",I'V}. Note that
eq. 19 can be interpreted as an average over all ideal chain conformations of the Boltzmann
factor exp [~BUr]. If we now substitute eq. 19 in eq. 18 we obtain

(W) = >or < exp[-BAU(q",TV;qn41,Tny1)] >
xr

(20)
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If we compare eq. 20 with eq. 14, we see that the ensemble average of the Rosenbluth factor
is directly related to the excess chemical potential of the chain molecule.

Bles == —kpTn (W) , (21)

This completes our proof that the Siepmann’s scheme to measure the average Rosenbluth
factor of a trial chain can indeed be used to measure the excess chemical potential of a
polymer in a dense fluid.

Siepmann has compared this method with a brute force application of the Widom
method for a simple two-dimensional model of chain molecules on a lattice [19], and found
the ‘Rosenbluth’ scheme to be very much superior, in particular at high densities. I should
stress that the above method to measure the chemical potential is in no way limited to chain
molecules on a lattice. What is essential is that the number of possible directions for each
segment (b) relative to the previous one is finite. Recently, Kumar and Panagiotopoulos [21]
have developed an approximate scheme to compute the chemical potential of a fully flexible
chain molecule. Recent work by Frenkel and Smit [22] shows that it is even possible to
construct a rigorous scheme to compute the chemical potential of fully (or partially) flexible
molecules. The special case of chain molecules on a lattice was studied by Mooij and
Frenkel [23, 24] who found that, in that case, the calculation of the chemical potential can
be made 2-3 orders of magnitude more efficient than the original Siepmann scheme. Finally,
Siepmann and Frenkel have shown that the Rosenbluth trial insertion scheme can be used
as a starting point for a novel Monte Carlo scheme to sample equilibrium configurations
of systems consisting of chain molecules [25]. A description of the latter technique would,
however, fall outside the scope of the present lectures.

In view of the very rapid progress that has been made during the last 2 years in the
development of novel techniques to study the chemical potential of chain molecules, it seems
safe to predict that the study of phase equilibria involving long, flexible molecules will not
remain a remote possibility, but become a very real one.

3.3 Overlapping distribution method

The reader may wonder why, in the previous section, we have only been discussing trial
move that attempt to add a particle to the system, and not the reverse move. After all, the
excess chemical potential can also be written as:

kT In(Qn/QN-+1) -
= pid + kTIn < exp(+BAU) >nyq , (22)

Il

n

where AU denotes the interaction energy of particle N + 1 with the remaining N particles.
It would seem that eq. 22 can be sampled by straightforward Metropolis Monte Carlo. In
general, however, this is not true. The reason is that the function exp(BAU) is, in principle
not bounded. It can become arbitrarily large, as AU grows. (Incidentally, this is not true
for exp(—BAU), because one of the conditions that a system must satisfy in order to be
describable by classical statistical mechanics is that its the potential energy function has
a lower bound). The problem with equation 22 is that very large values of the integrand
coincide with very small values (O(exp(—8AU)) of the Boltzmann factor (that determines
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how often a configuration is sampled during a Monte Carlo run). As a consequence, an
appreciable contribution to the average in eq. 22 comes from a part of configuration space
that is hardly ever, or indeed never, sampled during a run. Hard spheres offer a good
illustration. As the potential energy function of non-overlapping hard spheres is always
zero, a simple Monte Carlo sampling of eq. 22 for a dense fluid of hard spheres would always
yield the nonsensical estimate p., = 0 (whereas, in fact, at freezing, pre,/kT ~ 15). The
correct way to obtain chemical potentials from simulations involving both particle insertions
and particle removals has been indicated by Shing and Gubbins [26, 27]. However, I find it
convenient to discuss this problem in the context of a more general technique to measure
free energy differences. This method was first introduced by Bennett [28] and is called the
overlapping distribution method.

Consider two N-particle systems, labeled 0 and 1 with partition functions Q¢ and Q.
For convenience we assume that both systems have the same volume V', but this is not
essential. From eqn 50 it follows that the free energy difference AF = F; — Fy can be
written as:

AF

Il

—kT1n(Q1/Qo)

B [ ds" exp(—BU,(s"))
ks (f dsN exp(—ﬂUg(sN))) ’

(23)

Suppose that we are carrying out a (Metropolis) sampling of the configuration space of sys-
tem 1. For every configuration visited during this sampling of system 1 we can compute the
potential energy of system-0 (Up(s™)) for the same configuration, and hence the potential
energy difference AU = U;(sV) — Up(s") (see figure 3). We use this information to con-

-~

ol .

e

Figure 3: Example of measurement of histogram of potential energy differences (here rep-
resented by height differences) between two systems 0 and 1. Note that the two histograms
will, in general, be different.

struct a histogram that measures the probability density for the potential energy difference

AU. Let us denote this probability density by pi(AU). In the canonical ensemble, pi(AU)

is given by:

[ ds" exp(—pU,;) §(U; — Uy — AU)
Q1

(24)
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where we have denoted the scaled, configurational part of the partition function by a lower-
case q (e.g. q1 = [dsV exp(—BU1(s"))). The é-function in eq. 24 makes that we can
substitute Uy + AU for U; in the Boltzmann factor, hence:

J ds¥ exp(—B(Us + AU)) (U, — Uy — AU)

Pl(AU) = .
= ‘I_Oexp(_ﬂAU)fdsN exp(—BUo) §(Uy — Uy — AU)
s %
= Z—?exp(—ﬁAU)Po(AU) , (25)

where po(AU) is the probability density to find a potential energy difference AU between
systems 1 and 0, while Boltzmann-sampling the available configurations of system 0. As
the free energy difference between systems 1 and 0 is simply AF = —kT In(g¢1/q0), we find
from equation 25:

Inpi(AU) = B(AF — AU) + Inpo(AU) . (26)

In order to obtain AF from eq. 26 in practical cases, it is convenient to define two functions
fo and f; by:

fo(AU) = lnpo(AU) — ﬂ_gq

and e
fi(AU) =Inpy(AU) + ——
such that
fi(AU) = fo(AU) + BAF .

Suppose that we have measured f, and f; in two separate simulations (one sampling system
0, the other system 1). We can then obtain AF by fitting the functions fo and f; to two
polynomials in AU that are identical but for the constant term. The constant offset between
the two polynomials yields our estimate for AF. Note that, in order to perform such a fit,
it is not even necessary that there exists a range of AU where both fo and f; can be
measured. However, in the absence of such a range of overlap, the statistical accuracy of
the method is usually poor.

Now consider the particle insertion/removal problem. Let us assume that system 1 is a
system with N interacting particles, while system 0 contains N — 1 interacting particles and
1 ideal-gas particle. The difference in free energy between these two systems is obvigusly
equal to p.. Applying eq. 26 to this particular case, we find:

Apiez = Fi(AU) - fo(AU) . (27)

eq. 27 is equivalent to the result obtained by Shing and Gubbins. Using the overlapping
distribution method it is possible to combine the results of simulations with trial insertions
and trial removals to arrive at a more accurate estimate for the chemical potential.
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3.4 Umbrella sampling

In the previous section, we introduced the distibution functions po(AU) and p;(AU) that
measure the probability of finding system 0 (1) in an equilibrium configuration s” where
its potential energy difference with system 1 (0) equals AU. At first sight it would seem
that knowledge of either pg or p; is sufficient to estimate the free energy difference between
systems 0 and 1. After all, eq. 26 states that

p1(AU) = po(AU) exp(B(AF — AU) .

If we integrate over AU on both sides of this equation, we obtain:

/ pi(AU)dAT

i exp(BAF) [ipo(AU)exp(~ﬂAU) dAU
1

exp(BAF) < exp(—BAU) >¢, (28)

or
exp(—fAAF) =< exp(—BAU) >¢ .

Although eq. 28 is very useful to estimate free energy differences between two systems that
are not too dissimilar, its applicability is limited. The problem is that, in many cases of
practical interest, the largest contributions to the average < exp(—BAU) >¢ come from
region of configuration space where po(AU) is very small, while exp(—BAU) is very large.
As a result, the statistical error in AF is large.

One method to achieve a more accurate estimate of AF is the ‘umbrella sampling’
scheme suggested by Torrie and Valleau [29]. The basic idea behind umbrella sampling
is that, in order to obtain an accurate estimate of the free energy difference between two
system (0 and 1), one should sample both the part of configuration space that is accessible
to system 1 and the part that is accessible to 0. In order to achieve this in a single
simulation, one should modify the Markov chain that governs the sampling of configuration
space. This is achieved by multiplying the Boltzmann factor of system 0 by a (positive)
weighting function w. As a result, the probability of visiting a point qVV in configuration
space is now proportional to exp(—AUo(q"))w(q"). The expression for < exp(—BAU) >¢
now becomes:

< exp(_BAT) o= 1997 exp(—BUo(a)w(a™)lexp(-BAU(a")/w(@™)] (p,
J da" exp(—BUs(a™))w(a™)w"(a") ’
or, introducing the notation < --- >, to denote an average over a probability distribution
proportional to exp(—AUs(q™)w(q"):

< exp(—BAU)/w >,
<1/w >,
= <exp(—fAU)/w>u< w >q . (30)

< exp(—BAU) >¢

The second line of eq. 30 shows that, in order for both terms on the right-hand side of this
equation to be non-zero, po(AU)w should have an appreciable overlap with p;(AU), while
w itself should overlap with po(AU). This ‘bridging’ property of w is responsible for the
name ‘umbrella’ sampling.
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Although umbrella sampling is, in principle, a powerful technique, one drawback is that
the function w is not known a priori. Rather, it must be constructed using the available
information about the functions po and p;. This requires some skill. A second (though
related) problem is that an unfortunate choice of w may result in estimates for AF that
appear reasonable but are, in fact, wrong. Only by systematic testing is it possible to get
a feeling for the statistical errors in an umbrella sampling calculation.

The following simple example is meant to demonstrate the power of the umbrella sam-
pling technique. Consider a model for n-butane, where all bond-lengths and bond-angles
are fixed, except the torsional angle ¢. Let us assume that we know the intra-molecular
energy function Ujnira(@) associated with changes of the conformation of the molecule. In
the dilute gas, P(¢), the probability of finding a value of the torsion angle ¢ is propor-
tional to exp(—BUintra(9)). For the sake of convenience, I have ignored the fact that the
integration over momenta also contributes a factor to P(¢). For a discussion of this point,
the reader is referred to the paper by Rykaert in this volume. For n-butane, P(¢) has
a maximum at ¢ = 0 (the ‘trans’ conformation) and two lower maxima at ¢ =~ 120 de-
grees, corresponding to the ‘gauche’ conformation. Let us suppose that we wish to know
what happens to the probability to find a molecule at the ‘transition state’ between the
two gauche conformations, when the molecule is dissolved in an atomic liquid. The total
potential energy function for the molecule plus solvent is

Utot = Uinter(qu ¢1) + Uintra(¢l) .

The probability density P(¢) to find a particular value of the angle ¢ is now given by:

P(¢) _ f exp(~ﬂU,ot)6(¢ = ¢1) qud¢1
- Jexp(—PBU) dq¥ dé,

Let us now choose the weighting function w equal to exp(+BUintra). With this choice, we
can rewrite P(¢) as:

fexp(—ﬂUtot)w(6(¢ - ¢1)/w) qud¢1
Jexp(—BUsot)ww=1 dqN d¢,

f exp(—ﬂUin!er)(6(¢ - ¢1) exp(_ﬁUintra) qud¢1
J exp(~BUinter ) exp(—BUintra) dqN dpy

< 8(¢ — ¢1) exp(—BUintra) >inter

= : 1 §
< exP( _IBUintra) >inter .,( )

P(¢) =

But, as Ujnire depends only on ¢, we can rewrite eq. 31 as:

- exp(—BUintra(9))
P(¢) T < EXP(_ﬂUinlra(¢)) >inter

where Pinser(¢) is the probability to find a conformation with internal angle ¢ in the absence
of the intramolecular torsion barrier. Pinter (¢) can be computed accurately, even for values
of ¢ that are very unlikely in the real system, due to the presence of the internal potential
energy barrier Usntrq.

P, inter (¢) ]
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3.5 Acceptance ratio method

Finally, we consider a scheme, derived by Bennett [28], to estimate the free energy difference
between two systems (0 and 1) from two simulations: one of system 0 and one of system 1.
To derive this scheme, consider the following identity:

@ @Iw(qN) eXp(—ﬂ(Uo + Ul)) qu
Q1 Q1 [ w(qN)exp(—B(Uo + U1)) dq¥
< wexp(—BUp) >1

- < wexp(—AU1) >o (32)

eq. 32 is valid for arbitrary w. The question is: what choice of w yields the highest statistical
accuracy for SAF = In(Qo/Q1) ? Let us fist write AF in terms of w:

BAF =1n < wexp(—BUp) >1 —In < wexp(—BU1) >0 (33)

Next we compute the estimated statistical error in BAF from the variance in the two
terms on the right-hand side of eq. 33, divided by the number of (statistically independent)
samples (ng and n; respectively):

< (wexp(—BU1))? >0 — < (wexp(—-BU;)) >2
ng < (wexp(—pU;)) >2
4.5 (wexp(—BUo))* >1 — < (wexp(-BU)) >}
ny < (wexp(—pU)) >2
J(Qo/no) exp(—BU1) + (Q1/m1) exp(—BUo)|w? exp(-B(Us + U1)) dg™
(fwexp(—B(Uo + U1)) dg™)?
i § 1

LI 34
s (34)

Il

2
OBAF

Note that the right-hand side of eq. 34 does not change if we multiply w by a constant
factor. We can therefore, without loss of generality, choose the following normalization for
w:

/wexp(—ﬂ(Uo + Uy))dqY = constant. (35)

Next, we minimize the statistical error in SAF with respect to w, with the constraint 35.
This is done most conveniently using Lagrange multipliers:

0 = [(Qo/mo)exp(—pU1) + (Q1/n1) exp(—BUo)] exp(—B(Uo + Uy))wbw
— Xexp(—B(Uo + U1))éw . (36)
or,
w — constant (37)
(Qo/no) exp(—pU1) + (Q1/m1) exp(—BUo)
If we now insert this expression for w in eq. 32, we obtain:
Qo <[1+exp(B(Uo— U1 +C))? >exp(—ﬂC) (38)

Q1 <[1+exp(B(Ur—Us-C))! >
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where we have defined exp(8C) = (Qon1)/(Q1no). We can express eq. 38 in terms of the
Fermi-Dirac function f(z) = 1/(1 + exp(8z)):

Qo < flUo-U14+C)>
Q1 <f(Ui-Up-C)>¢

Note that eq. 39 is valid for any choice of C. However, the choice C' = In[(Qon1)/(Q1m0)]
is optimal.

At first sight this choice of C' seems problematic because it presupposes knowledge of
the very quantity we wish to compute, viz. (Qo/Q1). In practice, C is determined by a
self-consistency requirement, described below.

Suppose that we have obtained numerical estimates for < f(Uy — U; 4+ C) >; and
< f(Uy = Ug — C) >¢ for a range of values of C:

exp(—-AC) (39)

<f(Uo-Ui+C)> = nl—l‘me(Uo—Ul-l-C)
<f(U1—Uo*'C)>0 = :_Ozfml(Ul—Uo—C) (40)

where 37, (32,./) stands for the sum over all configurations sampled in a Monte Carlo
simulation of system 1 (0). Inserting eqs. 40 and 39 in eq. 33, we obtain:

BAF = In g; ’;EZ;’ it g; ~ In(ny /no) + AC (41)
while the optimal choice for C' can be rewritten as:
BAF = —In(ny/no) + AC (42)
Clearly, eq. 41 and eq. 42 are consistent only if
Y £l - U+ C) = Y f(Us - Uo - C) (43)

In practical situations, C' will be treated as an adjustable parameter that is varied until
eq. 43 is satisfied. For that value of C, BAF then follows immediately from eq. 42.

3.6 Particle removal and vacancies

I'end this discussion of particle insertion techniques by considering the opposite, namely
the formation of a vacancy in a solid. In order to see what we must compute in order
to be able to estimate the equilibrium concentration of vacancies in a solid, consider the
Grand-Canonical (GC)ensemble. The GC partition function is

e o]

E:Zw_(m‘_”)/dq exp(-BU(q")), (44)
N

where U(q"V) denotes the potential energy function of a system of N particles and ¢(T') is
the ‘kinetic’ contribution to the partition function. Let us consider that the system under
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study is in a crystalline phase. For a given value of p, the equilibrium density of the crystal
is well defined. Let us assume that the number of Wigner-Seitz cells in a volume V is given
by Ng. Clearly, N, the actual number of atoms in the crystal may be either less than Ng
(vacancies) or larger (interstitials). Let us focus on the vacancies. In that case, we can write
N = Ng — n, where n is the number of vacancies. How many vacancies are there? To see
this we must find the largest term in eq. 44, i.e. the one that corresponds to the most likely
value of N. To find this term, we rewrite eq. 44 by factoring out the term corresponding
to a lattice free of vacancies:

Ny
E = Q(No,V,T)exp(Bulo) Y X (45)

n=0

dq™ " exp(-pU(q™ ™))

J da™ exp(-BU(qM))

We now assume that the number of vacancies, n, is much smaller than Ny. This is a

reasonable assumption, because if it were not true, we would not have a mechanically
stable crystal. As the concentration of vacancies is low, we can write:

Jda™ " exp(-BU(a™ ™)) (f dq”"“exp(—ﬁU(q""’“)))"

(uv—olvjlw) ¢~(T) exp(~Bun) L

[ da™ exp(—-BU(q™)) [ da™ exp(~pU(q™)) e

To find the maximum term, we equate the logarithmic derivative of the n-th term in
the sum to 0:

N dq™ " exp(~AU (g™
0=1n(52) - ne(r) - g+ n (f T e A7) ))>

or

n_ exp(—fu) (qu"v-lexm—ﬁv(q'“‘))) (47)

No  q(T) J da™o exp(—pU(q™))
This expression shows that the vacancy concentration depends on two factors: first of all
on the chemical potential of the particles in the crystal (or actually, on the fugacity) and
secondly on the ratio of the configurational integral of a system with 0 and 1 vacancy.
This latter ratio should be computed by particle ‘removal’, but we know from the previous

sections that there are better ways to compute it. For more details, the reader is referred
to refs. (30, 31, 32].

4 Other ensembles

Thus far I have focused on techniques to locate first order phase transitions by direct
calculation of the chemical potential in the two coexisting phases. However, under certain
conditions, it is possible to study phase coexistence much more directly by performing
simulations in another ensemble than the canonical (N,V,T fixed). In order to explain
Monte Carlo simulations in these other ensembles, I first discuss the simplest example, i.e.
the isothermal-isobaric (N, P,T fixed) ensemble. The introduction of this ensemble will
help me to define the terminology that I will use later on to discuss the more sophisticated
ensembles that are used to study first-order phase transitions.
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4.1 Isobaric-isothermal ensemble

Constant-pressure Monte Carlo simulations were first described by Wood [33] in the context
of a simulation-study of two-dimensional hard disks. Although the method introduced
by Wood is very elegant, it is not readily applied to systems with arbitrary continuous
potentials. McDonald [34] was the first to apply constant- NPT simulations to a system with
continuous intermolecular forces (a Lennard-Jones mixture), and it is the constant-pressure
method of McDonald that is now being used almost universally, and that is discussed below.
I will derive the basic equations of constant-pressure Monte Carlo in a way that may
appear unnecessarily complicated. However, this derivation has the advantage that the same
framework can be used to introduce some of the other non-N VT Monte Carlo methods to
be discussed below. For the sake of convenience I shall initially assume that we are dealing
with a system of N identical atoms. The partition function for this system is given by:

N (T) N
o, v,1) = T 1% (" aq exp(-pu(a™) (48)
It is convenient to rewrite eq. 48 in terms of the scaled coordinates s:
Qv 1y = LI [ 1Y exp( s, 1) (49)

In equation 49, we have written U(sN; L) to indicate that U depends on the real rather than
the scaled distances between the particles. The expression for the Helmholtz free energy of
the system is:

F(N,V,T) = —kTlhQ
N
—kTIn ((“%L) — kT'In (/ ds" exp[-BU(s"; L)J)
= F4(N,V,T)+ Fee(N,V,T). (50)

In the last line of the above equation we have identified the two contributions to the
Helmholtz free energy on the previous line as the ideal-gas expression plus an excess part.
Let us now assume that the system is separated by a ‘piston’ [35] from an ideal gas reser-
voir(see figure 4). The total volume of the system plus reservoir is fixed at a value V. The
total number of particles is M. Hence the volume accessible to the m = M — N ideal gas
molecules is Vo — V. The partition function of the total system is simply the product of the
partition functions of the constituent sub-systems:

Q(N,m,V,Vo,T) = M/ds /ds exp(~AU(sM;L)).  (51)

Note that the integral over the s™ scaled coordinates of the ideal gas yields simply 1. For
the sake of compactness we have assumed that the thermal wavelength of the ideal gas
molecules is also equal to A. The total free energy of this combined system is Fyo; =
~kTInQ(N,m,V,V,,T). Now let us assume that the ‘piston’ between the two subsystems
is free to move, so that the volume V of the N-particle subsystem can fluctuate. Of course,
the most probable value of V' will be the one that minimizes the free energy of the combined



Figure 4: Ideal gas (m particles, volume Vo — V') can exchange volume with an N-particle
system (volume V')

system. The probability density P(V') that the N-particle subsystem has a volume V is
given by:

VN(Vo — V)™ [ dsV exp(—B8U(sV; L))
e dvIVIN(Vo — V') [ dsN exp(—BU(sV; L))

We now consider the limit that the size of the reservoir tends to infinity (Vo — oo, M —
o0, (m/Vo — p). In that limit, a small volume change of the small system does not change
the pressure P of the large system. In other words, the large system works as a manostat
for the small system. In that case we can simplify eqs. 51 and 52. Note that in the limit
V/Vo — 0 we can write:

P(V) = (52)

(Vo—=V)™ =Vg™"(1 — (V/Vo))™ — Vg™ exp(—mV/Vj).

Note that for m — oo, exp(—mV/V) — exp(—pV'). But, as the reservoir contains an ideal
gas, p can be written as #P. With these substitutions, eq. 52 becomes:

V¥ exp(—BPV) [ ds" exp(-BU(sY; L))
JJ dV! VN exp(~BPV) [ dsN exp(—BU(sV; L))

P(V) = (53)

In the same limit, the difference in free energy between the combined system and the ideal-
gas system in the absence of the N-particle subsystem is the well-known Gibbs free energy

G:

G(N,P,T) = —kTm/dv%/ds" exp(~AU(s™; L) (54)

Equation 53 is the starting point for constant- N PT Monte Carlo simulations. The idea is
that the probability-density to find the small system in a particular configuration of the N
atoms (as specified by sV) at a given volume V is given by:

VN exp(-BPV)exp(-BU(sV; L))

gV) = '
A Jy* V' V'N exp(~BPV") [ dsN exp(~BU(sV; L))

We can now carry out Metropolis sampling on the reduced coordinates s and the volume
V, with a weight-function p(s¥, V) proportional to exp(-B{U(s",V)+ PV -~ N3 'In V}).
In the constant-N, P,7 MC method, V is simply treated as an additional coordinate, and
trial moves in V' must satisfy the same rules as trial moves in q (in particular, we should
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maintain the symmetry of the underlying Markov chain). Let us assume that our trial
moves consist of an attempted change of the volume from V to V! = V + AV, where AV is
a random number uniformly distributed between over the interval [ AVinaz; +AVpnaz]. In
the Metropolis scheme such a random, volume changing move will be accepted if:

exp(—BU(s", V')~ U(sY, V) + P(V' - V) = N 'In(V'/V)]) > R, (55)

where R is a random number, uniformly distributed over the interval [0,1]. Instead of
attempting random changes in the volume itself, one might construct trial moves in the
box-length L [34], or in the logarithm of the volume [36]. Such trial moves are equally
legitimate, as long as the symmetry of the underlying Markov chain is maintained. However,
such alternative schemes result in a slightly different form for eq. 55.

4.2 Grand canonical ensemble

The Metropolis sampling scheme is a method to compute thermal averages of functions
A(q"), that depend explicitly on the coordinates of the molecules in the N -body system
under study. Examples of such ‘mechanical’ properties are the potential energy or the virial
contribution to the pressure. However, the Metropolis method cannot be used to deter-
mine the integral [ dq" exp(—AU(q")) itself. The latter quantity measures the effective
volume in configuration space that is accessible to the system. Hence the original Metropo-
lis scheme could not be used to determine those thermodynamic properties of a system
that depend explicitly on the configurational integral. However, although the Metropolis
method cannot be used to measure, for instance, free energies directly, it can be used to
measure the difference in free energy between two possible states of an N-body system.
This fact is exploited in the Grand-Canonical Monte Carlo method (GCMC) developed
first implemented for classical fluids by Norman and Filinov [37], and later extended and
improved by a number of other groups [38, 39, 40, 41, 42, 43, 44, 45, 46]. The basic idea
of the GCMC method is explained below.

In order to understand the statistical mechanical basis for the GCMC technique, let us
return to eq. 51 of section 4.1. This equation gives the partition function of a combined
system of N interacting particles in volume V and m = M — N ideal gas molecules in
volume Vy — V:

N m
Q(N,m,V,Vo, T) = V—A%T‘/!)/dsm/dsNexp(—ﬂU(sN)) . (51)
Now, instead of allowing the two systems two exchange volume, let us see what happens
if the systems can exchange particles (see figure 5). To be more precise, we assume fhat
the molecules in the two sub-volumes are actually identical particles. The only difference
is that when they find themselves in volume V they interact and when they are in volume
Vo =V, they do not. If we transfer a molecule ¢ from a reduced coordinate s; in the volume
Vo — V to the same reduced coordinate in volume V, then the potential energy function
U changes from U(s") to U(sM+!). The expression for the total partition function of the
system, including all possible distributions of the M particles over the two sub-volumes is:

M Ny 1 \M-N
QUM,V, Vo, T) = NZX—A%.(J)_—W [N [as® exp(-pu(s)).  (56)
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Figure 5: Ideal gas (m particles, volume Vp — V') can exxchange particles with an N-particle
system (volume V')

Following the approach of section 4.1, we now write the: probability density to find a system
with M — N particles at reduced coordinates s~ in volume V' = Vo —V and N particles

at reduced coordinates s® in volume V:
VNVIM—N
M N
Y N o _ , 7
P N) = G, v, v, myasmwiar vy P (ZAU () (57)

Let us now consider a trial move in which a particle is transferred from V' to the same
scaled coordinate in V. First we should make sure that we construct an underlying Markov
chain that is symmetric. Syimmetry, in this case, implies that the a priori probability to
move a particle from V'’ to V should be equal to the a priori probability of the reverse
move. The probability of accieptance of a trial move in which we move a particle to or from
volume V is determined by the ratio of the correspondling probability densities (eq. 57):

Py_.n41 == }‘/;(T?]zv;—i]))exp(—ﬁ(U‘(:gNH) — U(SN))) (58)
PN+1—-N == %—}%exP(—ﬂ(U’(sN) == U(SN+1))) . (59)

Now let us consider the limit that the ideal gas system is very much larger than the inter-
acting system: M — oo,V’' — oo,(M/V’) — p. Note that for an ideal gas the chemical
potential u is related to the particle-density p by: pu := kT 1In A3p. Therefore, in the limit
(M/N) — oo, egs. 58- 59 bec ome:

PN.N41 = X:%A—SEXP(ﬁ#)eXP(—ﬁ'(U(SNH)—U(SN))) (60)
Praan = UM ep(prexp(- UGN - UV (61)

In the Metropolis scheme, an attempted particle addition to (removal from) vollume V/
is accepted if Py _.ny1 > R (Pvi1--~n > R), where R is a random number uniformly
distributed in the interval [0, 1].

Equations 60- 61 are the bbasic equations for Grand Canonical Monte Carlo simulations.
Acceptable trial moves are: 1)) the random insertion of :xn additional particle at any jpoint in
volume V, i1) the random rernoval of any of the N particles in volume V. In addition, the
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particles in volume V' can sample the accessible configuration-space by conventional Monte
Carlo sampling. Note that in equations 60- 61 all explicit reference to the ideal-gas system
has disappeared. The rules only refer to the system of volume V.

The most salient feature of the GCMC technique is that in such simulations the chemical
potential p is smposed, while the number of particles N is a fluctuating quantity. During
the simulation we may measure other thermodynamic quantities, such as the pressure P,
the average density < p > or the internal energy < U >. As we know pu, we can derive
all other ‘thermal’ properties, such as the Helmholtz free energy or the entropy. This may
seem surprising. After all, in section 1 we stated that Monte Carlo sampling cannot be
used to sample absolute free energies and related quantities. Yet, with Grand Canonical
MC we appear to be doing precisely that. The answer is that, in fact, we do not. What
we measure is not an absolute but a relative free energy. In GCMC, we are equating the
chemical potential of a molecule in an ideal gas at density p (for the ideal-gas case we know
how to compute p) and the chemical potential of the same species in an interacting system
at density p'.

Grand canonical MC works best if the acceptance of trial moves by which particles are
added or removed is not too low. For atomic fluids this condition effectively limits the
maximum density at which the method can be used to about twice the critical density.
Special tricks are needed to extend GCMC to somewhat higher densities [44]. GCMC is
easily implemented for mixtures and inhomogeneous systems, such as fluids near interfaces.
In fact, some of the most useful applications of the GCMC method are precisely in these
areas of research. Although GCMC can be applied to simple models of non-spherical
molecules, the conventional approach converges poorly for all but the smallest polyatomic
molecules (see however, section 3.2). For more details on the Grand Canonical Monte Carlo
method, the reader is referred to the book by Allen and Tildesley [47] and a review paper by
Frenkel [16]. Quite recently, a scheme has been proposed to perform Molecular Dynamics
calculations in the grand-canonical ensemble [48]. The advantage of this approach is that
particles can be added or removed continuously.

4.3 Gibbs ensemble

As was already mentioned in the introduction, the condition for coexistence of two or more
phases I,I1I,--- is that the pressure of all coexisting phases must be equal (P; = Pr; =
--- = P), as must be the temperature (77 = 7j; = --- = T) and the chemical potentials
of all species (uf = pj; = -+ = p*). Hence one might be inclined to think that the best
ensemble to study would be the ‘constant-uPT ensemble’. The quotation marks around
the name of this ‘ensemble’ are intentional, because, strictly speaking, no such ensemble
exists. The reason is simple: if we specify only intensive parameters, such as P,T and g,
the extensive variables (such as V') are unbounded. Another way to say the same thing
is that the set P,T, u is linearly dependent. In order to get a decent ensemble, we must
fix at least one extensive variable. In the case of constant-pressure MC this variable is the
number of particles N, while in Grand Canonical Monte Carlo the volume V of the system
is fixed.

Recently, however, Panagiotopoulos [49] has developed a new Monte Carlo scheme,
called the ‘Gibbs method’, that comes very close to achieving the impossible: namely
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simulating phase equilibria under conditions where the pressure, temperature and chemical
potential(s) of the coexisting phases are equal. The reason that this method can work
is that, although the difference between chemical potentials in different phases is fixed
(namely, at Ap = 0), the absolute values are still free to change. Below we shall show how
the Gibbs method can be derived using the description developed in the previous sections.

We start our discussion by recalling the expression for the partition function for a system
of M particles distributed over two volumes V and V' = V, — V,i.e. eq. 56 in section 4.2:

) o VNyM-N M-N [, N N
Q(M,V,V,T):Ivz:om/ds /dS exp(—ﬂU(s ))
In the previous section we assumed that the particles in volume V' behaved as ideal-gas
molecules. Now we consider the case that the particles in both volumes are subject to the
same intermolecular interactions. In that case, the partition function becomes:

VNv/M-N

M
QMVVLT) = 3, Soiar —wy
[ dsM N exp(-pU () [ as™ exp(-BU(s™)) (62)

We now allow trial moves to transport particles from one sub-system to the other (see
figure 6). Using the results of the previous section, it is easy to see that the probability

N e[ v

Figure 6: Gibbs ensemble. Two systems can exchange both volume and particles. But the
total volume and the total number of particles is fixed.

ratio associated with a trial move that transfers one particle from volume V' to volume V
is given by:

V(M - N)

V(N +1)

exp(—BU(sY V) - U(sV; V) + U(sM- V-1, V)Y -U(sM-¥,vY)).

Py Ny = (63)

The corresponding expression for the reverse trial move follows by making the appropriate
substitutions in eq. 64. As before, the acceptance or rejection of this trial move can be
decided by comparing Py_, 1 with a random number in the interval [0,1]. At this stage,
we could set up a Monte Carlo simulation in which we allow trial moves that transfer
particles from V' to V' and vice versa. In the course of such a simulation, the distribution
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of particles over V and V'’ would become such that both subsystems are at the same
chemical potential. This may correspond to a situation where both subsystems have the
same density and pressure, but this need not be the case. For example, if the overall
density of the total system (M/V;), corresponds to a point in the two-phase region of a
first-order phase transition, the two sub-systems may end up in different phases (which
is desirable), at different pressures (which is undesirable). In order to ensure that the
two subsystems are always at the same pressure, the Gibbs method also allows for volume
changing moves. These may either keep the total volume Vj fixed (this was the formulation
of the original paper of Panagiotopoulos [49]), or the two systems may both be in contact
with a constant-pressure bath at pressure P (this generalization is described in a subsequent
paper by Panagiotopoulos et al. [50]). Both methods follow directly from the discussion in
section 4.1. For the sake of completeness we write down the expressions for the probability
ratios associated with a volume-changing move in the constant-Vy ensemble:

PV V+AV,V V' - AV) =
exp(—B[Un(V + AV) — Un(V) + UMWN(V’ - AV) - UM_N(V/)]).
exp[N In((V + AV)/V) + (M — N)In((V' — AV)/V")]. (64)

In the constant- P ensemble volume changing moves on the two subsystems can be carried
out independently. The probability of acceptance of such trial moves is given directly by
eq. 55 of section 4.1. Of course, this constant- P method can only be applied to systems
containing two or more components because in a one-component system, the two-phase
region is a line in the P — T-plane. Hence, the probabibility that any specific choice of P
and T will actually be at the phase transition, is vanishingly small. In contrast, for two-
component systems, the two-phase region corresponds to a finite area in the P — T-plane.

Note that in either formulation of the Gibbs method, the total number of particles is
fixed. The method can be extended to study inhomogeneous systems [51] and is particularly
suited to study phase equilibria in multicomponent mixtures and equilibria across semi-
permeable membranes [50]. The great advantage of the Gibbs method over the conventional
techniques to study phase-coexistence is that in the Gibbs method the system spontaneously
‘finds’ the densities and compositions of the coexisting phases. In contrast, the conventional
approach was, for instance, to compute the relevant chemical potentials as a function of
pressure at a number of different compositions (this might require an appreciable number
of simulations), and then construct the coexistence line.

At the beginning of this section I stated that the Gibbs ensemble is not a ‘constant-
p, P, T ensemble, but I did not say what ensemble it actually corresponds to. This point
has been considered by Smit et al. [52] who concluded that, in the thermodynamic limit,
the (constant-V) ‘Gibbs’ ensemble is rigorously equivalent to the canonical ensemble. At
present, the Gibbs ensemble method has become the technique par ezcellence to study fluid-
fluid phase equilibria. However, like the Grand-canonical ensemble scheme, the method
does rely on a reasonable number of successful particle insertions to achieve compositional
equilibrium. As a consequence, the Gibbs ensemble method cannot be used to study phase
equilibria involving very dense phase or crystalline solids. Although there exist, to my
knowledge, no numerical schemes that allow direct simulation of, say, solid-liquid phase
coexistence in a multicomponent system, there exists a technique that greatly facilitates
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the numerical study of such phase equilibria. This is the so-called ‘Semi-Grand ensemble
method’ of Kofke and Glandt [53]. In this next section, I shall present a simple description
of this method.

4.4 Semi-grand ensemble

In order to understand why the semi-grand ensemble can be successful where other schemes
fail, it is instructive to return to the particle insertion method described in section 3.1. In
that section, we saw that the excess chemical potential of a molecule in a fluid is related to
the average Boltzmann factor associated with the random addition of such a molecule to a
fluid with N particles present (eq. 9):

fies = —kT'In < /dsN+1 exp(—BAU) >y .

Let us assume that we wish to study phase equilibria in a binary mixture. In that case,
we must compute the Gibbs free energy per mole of the mixture, as a function of the
composition:

G(Xa) = Xapa + Xpup , (65)

where X 4 (=1-Xpg) denotes the mole-fraction of species A, and p14 (pp) denote the chemical
potentials of the two components in the mixture. Let us assume that we have somehow
succeeded in computing the Gibbs free energy of one of the pure phases (for instance, by
one of the thermodynamic integration methods described in section 2). At first sight it
might seem that, in order to compute G as a function of X,, we have to repeat such a
thermodynamic integration for a large number of X4 values. Fortunately, this is usually
not the case. Rather than recomputing G(X) for a number of compositions, we can study
the change in G(X') with X. In other words, we need to have a ‘microscopic’ expression for

(55 )

In the first line of eq. 66, we have used the Gibbs-Duhem relation. I assume that the ideal-
gas contributions to the chemical potential of both A and B are known. The quantity that
we must compute is Aoz = (4 — pB)ez. Naively, one might try to measure this quantity
by using the particle insertion method to obtain g, of species 4 and B separately and then
subtracting the result. Although such an approach would be correct in principle, it is time
consuming and not very accurate. Fortunately, A, can be obtained much more directly
by measuring the Boltzmann factor associated with a virtual trial move where a randomly
selected particle of type B is transformed into a particle of type A [13, 15]. I leave it as an
exercise to the reader to derive that the resulting expression for Alpe, at constant pressure
is:

Il

K4 — BB (66)

= (ma—pB)id+ (Ba — 1B)er -

Np
Ng+1
where AU~ denotes the change in potential energy of the system if one particle of type
B is changed into type A. —kpT In(Np/[N4 + 1]) is simply the ideal mixing contribution

Aﬂez = "kBTln <

exp(—-fAUYT) > (67)
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to the chemical potential. The point to note about eq. 67 is that for a perfect mixture (i.e.
A and B have the same intermolecular interactions), In < exp —BAU*~ > is identically
equal to zero. In other words, we may obtain very good statistics on Ap., even when the
direct measurement of the excess chemical potential of the individual species would yield
poor statistics.

The aim of this introduction to the semi-grand ensemble is twofold: first of all, eq. 67
shows that the Boltzmann factor associated with the change of identity of a particle in
a mixture is related to the difference in excess chemical potential of the two species that
take part in the interchange. And secondly, I have made it plausible that we can get good
statistics on Ape, even when the particle insertion method to measure the excess chemi-
cal potential of the individual species fails, for instance in a crystalline solid [11]. I recall
that the grand-canonical Monte Carlo method has about the same range of applicability as
the particle insertion method. It is therefore logical to infer that it should be possible to
construct a simulation scheme based on particle interchanges that should work under con-
ditions where the GCMC scheme fails. The semi-grand canonical Monte Carlo (SGCMC)
method is such a scheme.

How does the SGCMC method work? Let us first consider the expression for =, the
grand-canonical partition function for an n-component mixture:

[1]

_ i ﬁ exp(ﬁ”'tN)VN/dsNexp(_ﬂU(sN)) , (68)

N1,N3,+\Np i

where N = 37, Ny, U(s") denotes the potential energy function of the n-component mixture
and g; is the ‘kinetic’ contribution to the partition function due to species i. Next, we
consider a related partition function Z’, identical to =, but for the fact that we have imposed
the constraint that N = Y7; N; is fixed. If N is fixed, we can eliminate one of the N;, for
instance Ny, from the sum in equation 68 and we obtain:

== 3 esplom) [ (2) " SRy [ ey g,

-1
N3, ,Nn Nl.

(69)
We now multiply this equation on both sides by exp(—pBu; N) an we define a new partition
function Y = E'exp(—Bp1 N):

y= 3 q{VH("‘) 'e"p(ﬂ(";v,’“)’v v [ ds" exp(-pu(s).  (70)

N3,--- Ny =1

The next step is subtle. We shall reinterpret the sum over all N; in egs. 68-70. In these
equations, we had assumed that to every composition Ny, Ny,---, N,,, there corresponds
one term in the sum. Let us now take a somewhat different point of view: we assume that
all these different species are all manifestations of one and the same ‘particle’. This sounds
strange, so I shall use an analogy to explain what I mean. Let us consider that we have
group of 100 people, made up a 3 groups: eaters, drinkers and sleepers. In fact, we want
to consider all possible combinations of these groups, with the constraint that the total
number is fixed. One such combination would be: 30 eaters, 30 drinkers and 40 sleepers.
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Now we make a discovery: one and the same person can be an eater, a drinker or a sleeper,
but not simultaneously. Now our sum over all combinations becomes different: we have
100 ‘persons’ who can all take on any one out of the three possible identities. In that case,
we have many more ways in which we can make a group of 30 eaters, 30 drinkers an 40
sleepers, namely 100!/(30!30!40!). If we wish to have the same total number of terms in our
sum as before, we have to divide by this factor.

Let us now translate this example back to the sum over particles in eq. 70. We replace
the sum over numbers of particles of species i, by a sum over all possible identities of all
particles. But then we must correct for double counting by dividing by N!/(Ny!x - --x Ny,!).
If we do that, eq. 70 becomes:

y= ¥ q‘,]‘[(q’> exp(B(ui — ul)N)VN/ds exp(—BU(sM)) . (71)

identities ti=1
Finally, it turns out that it is more convenient to consider the corresponding ensemble at

constant pressure. In that case, the partition function changes to

(V<11)

y = ﬂP/dVezp (-BPV)—+— (72)

( > TT(%)" expliu - ) [ as” exo-prta )))

identities i=1

For cosmetic reasons, we rewite eq. 72 in terms of the fugacities f;, rather than the chemical
potentials ;. Recall that the fugacity of a species i is defined by the expression:

pi(P,T,{X:}) = p{(T) + kpTIn(f;) , (73)

where p?(T) is the chemical potential of the ideal gas reference state (P = 1) of species 1.
Using the expression for the chemical potential of an ideal gas at pressure P, and recalling
that for an ideal gas f = P, it is easy to show that:

pd(T) = —kpT In(kpTq;) . (74)

Inserting eq. 74 in eq. 72, we obtain:

ﬂP/dV exp(—ppPv) 0L V‘“ 3 ]‘[( ) /ds exp(—BU(N)) . (75)

identities i=1

By now the reader is probably thoroughly confused by all the algebra. In order to see
what we have done, it is instructive to look at the characteristic thermodynamic function
associated with the successive partition functions. We started with a Grand-Canonical
ensemble. The link with thermodynamics is given by:

BPV =E(V,T,{u}) . (76)

The transformation to Y (equation 70), corresponds to a change to the thermodynamic
variable

B(PV — i N) = Y(V,T, N, {pli # 1}). (77)
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Finally, we change to constant pressure, which means that the characteristic thermodynamic
function becomes:

BN = —InY'(P,T,{In(f;/ f1)li # 1}) . (78)

Rather than use In(f;/fi) as the independent variable, it is more convenient to follow
ref. [63] and use the fugacity fraction ¢;, defined as

fi
E?:l fJ ‘

The advantage is that, while In(f;/ f;) varies between —co and +oco as we go from pure 1
to pure i, {; varies between 0 and 1. Clearly,

fi = (79)

)(Vql)

BN = —In (ﬁP / dV exp(~BPV (80)

> I )™ [ s exp(-pu(a )))

identities i=1

How does pq, the chemical potential of the reference species, change with the fugacity
fractions of the other species? To see this we consider the derivative of eq. 80 with respect

to &;:
Bu N N, N-N
(ﬁ—> =-< G+ =5 (81)
0k /NPT {=i;|izi} & &
where we have used the fact that d¢; = — 2j#i 4€j. Eq. 81 tells us how we can measure

1 changes as we change the chemical potential difference between species 1 and the other
species. Let us consider the application to phase coexistence in a binary mixture. In that
case we only vary {,. First we measure the excess chemical potential in phase I consisting
of pure 1 and in phase II consisting of pure species 2 (for instance by thermodynamic
integration). Next we compute the change in g, in phase I as we increase £, from 0 and the
correspondmg change in g, in phase II as we lower £, from 1. The point where p( )(fz)

)(62) is the coexistence point, because at that point f(I) fl(”) and f(l) f(”) Note
that we have not specified the nature of phase I and II. They could be liquid, solid or liquid
crystalline.

The only practical problem that remains is the Monte Carlo sampling of — < N;/&; +
(N — Ny)/€1 > (eq. 81). Note that the N; are the dependent variables. The ¢; are imposed
during a given simulation. In addition to the usual particle moves and volume changes we
must now also consider a move where a particle changes identity. To this end, we seleet
one of the N particles at random and with equal probability assign it one of the n possible
identities. The probability of accepting such a trial move is

Pice = Min(l,%exp(—ﬂAU(sN)) , (82)

where AU(s") denotes the change in potential energy of the system if we change the identity
of a randomly selected partile from i into 7’.

I conclude this discussion of the semi-grand ensemble with three comments. First of all,
SGCMC is very well suited to study phase equilibria in multicomponent systems that are
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also in chemical equilibrium. The reason is that every chemical equilibrium simply imposes
a relation between the fugacities of the reacting species. Hence, the only effect of a chemical
equilibrium is that the number of independent fugacities is reduced by one. In practice, the
method cannot be used to study any chemical equilibrium: the total number of molecules
should be conserved in the reaction.

Secondly, the SGCMC scheme can be used to simulate phase equilibria in truly polydis-
perse systems, including polydisperse solids. And finally, it can be quite advantageous to
combine the SGCMC method with the Gibbs ensemble method for mixtures. In that case
the fugacity ratios in both simulation boxes are kept the same. In other words, we allow
particles in either box to change identity while remaining in the same box. But in addition
we allow trial moves where we attempt to move a particle of the reference species 1 from
one box to the other. Now the selection of the particle to be swapped goes as follows: first
select box T or box IT with equal probability. Next, select any molecule of type 1 in the
selected box and try to insert it in the other box. The acceptance probability of such a
move is given by eq. 64 (I should point out that the implementation that I suggest here is
slightly different from the one advocated in ref. [53] and closer to the approach of Stapleton
et al. [564]). The natural choice for the reference species 1 is clearly that species that can
be swapped most efficiently, e.g. the smallest molecule in the system.

5 Conclusions

In this paper I have explained why free energy simulations are necessary and why such cal-
culations require special techniques. Free energy calculations are of particular importance
in material science because of the great practical importance of phase equilibria (possibly
in conjunction with chemical equilibria). But I hope that I have also conveyed to the reader
an appreciation of the second reason why free energy calculations are interesting: namely
the physical insight that they provide in the nature of quantities that are usually consid-
ered to be quite abstract such as the chemical potential. Understanding the ‘microscopic’
meaning of a statistical mechanical quantity is always the first step in the construction of
any theoretical approximation to estimate this quantity. In this context, I hope that free
energy calculations may not only give us more data about complex materials, but also help
us to construct better theoretical descriptions.

ACKNOWLEDGMENT

The work of the FOM Institute is part of the research program of FOM and is supported
by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek’(NWO).



115

References

[1] O. G. Mouritsen, Computer Studies of Phase Transitions and Critical Phe-
nomena, Springer, Berlin, 1984.

(2] K. Binder, Applications of the Monte Carlo Method in Statistical Physics,
Springer, Berlin, 1984.

(3] W. G. Hoover and F. H. Ree, J. Chem. Phys. 47:4873 (1967).

(4] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids , 2nd edition, Aca-
demic Press, London, 1986.

[5] D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81:3188 (1984).
[6] D. Frenkel and B. M. Mulder, Mol. Phys. 55:1171 (1985).
[7] A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel, Phys. Rev. A36:2929 (1987).
(8] D. Frenkel, H. N. W. Lekkerkerker and A. Stroobants, Nature 332:822 (1988).
(9] E.J.Meijer, D.Frenkel, R.A.LeSar and A.J.C.Ladd, J. Chem. Phys. 92:7570(1990).
(10] W.G.T.Kranendonk and D.Frenkel, Mol. Phys. 72:679(1991)
(11] W.G.T Kranendonk and D.Frenkel, Mol. Phys. 72:699(1991)
[12] B. Widom, J. Chem. Phys. 39:2808 (1963).
[13] K .S. Shing, Chem. Phys. Lett. 119:149(1985) J. Chem. Phys. 85:4633 (1986).
(14] K .S. Shing and S. T. Chung, J. Phys. Chem. 91:1674 (1987).

[15] P. Sindzingre, G. Ciccotti, C. Massobrio and D. Frenkel, Chem. Phys. Lett. 136:35
(1987).

[16] D. Frenkel in: Molecular Dynamics Simulations of Statistical Mechanical
Systems, Proceedings of the 97th International School of Physics ‘Enrico Fermi’,
G. Ciccotti and W. G. Hoover, editors. North-Holland, Amsterdam, 1986, p.151.

[17] J. L. Lebowitz, J. K. Percus and L. Verlet, Phys. Rev. 153:250 (1967).

(18] P. Sindzingre, C. Massobrio, G. Ciccotti and D. Frenkel, Chemical Physics
129:213(1989)

(19] J.I.Siepmann, Mol.Phys.70:1145(1990)

(20] M.N.Rosenbluth and A.W.Rosenbluth, J.Chem. Phys. 23:356(1955)
(21] S.K.Kumar and A.Z.Panagiotopoulos, preprint (1991).

[22] D.Frenkel and B.Smit, to be published.



116

(23] D.Frenkel, J.Phys. Condensed Matter 2(SA):265(1990)

[24] G.A.C.M.Mooij and D .Frenkel, Mol. Phys. (in press).

[25] J.1.Siepmann and D.Frenkel, submitted for publication

[26] K. S. Shing and K. E. Gubbins, Mol. Phys. 46, 1109 (1982).
[27] K. S. Shing and K. E. Gubbins, Mol. Phys. 49, 1121 (1983).
[28] C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

[29] G. M. Torrie and J. P. Valleau, J. Comp. Phys. 23:187 (1977)
[30] D.R.Squire and W.G.Hoover, J.Chem.Phys. 50:701(1969)

[31] S.W.de Leeuw and M.J.Gillan, J. Phys. C15:5161(1982)

[32] . G.Jacucci and M.Ronchetti, Solid State Commun. 33:35(1980)
(33] W. W. Wood, J. Chem. Phys. 48:415 (1968).

(34] I. R. McDonald, Mol. Phys. 23:41 (1972).

[35] Actually, there is no need to assume a real piston. The systems with volume V and
Vo — V may both be isolated systems subject to their individual (periodic) boundary
conditions. The only constraint that we impose is that the sum of the volumes of the
two systems equals Vj.

(36] R. Eppenga and D. Frenkel, Mol. Phys. 52:1303 (1984).

(37] G. E. Norman and V. S. Filinov, High Temp. Res. USSR 7:216 (1969).
(38] D. J. Adams, Mol. Phys. 28:1241 (1974).

(39] D. J. Adams, Mol. Phys. 29:307 (1975).

[40] D. J. Adams, Mol. Phys. 32:647 (1976).

[41] D. J. Adams, Mol. Phys. 37:211 (1979).

[42] L. A. Rowley, D. Nicholson and N. G. Parsonage, J. Comp. Phys. 17:401 (1975).
[43] J. Yao, R. A. Greenkorn and K. C. Chao, Mol. Phys. 46:587 (1982).

[44] M. Mezei, Mol. Phys. 40:901 (1980).

[45] J. P. Valleau and K. L. Cohen, J. Chem. Phys. 72:3935 (1980).

[46] W. van Meegen and I. Snook, J. Chem. Phys. 73:4656 (1980).
[

47] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon,
Oxford, 1987.



117
[48] T.Cagin and B.M. Pettitt, Mol. Phys. 72:169(1991).
[49] A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987).

[50] A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. J. Tildesley, Mol. Phys. 63:527
(1988).

[51] A. Z. Panagiotopoulos, Mol. Phys. 62:701 (1987).

[62] B.Smit, Ph. de Smedt and D.Frenkel, Mol. Phys. 68:931(1989).

[63] D.A.Kofke and E.D.Glandt, Mol. Phys. 64:1105(1988).

[54] M.R.Stapleton, D.J.Tildesley and N.Quirke, J.Chem. Phys. 92:4456(1990).



