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Chapter 1.

Introduction

In the beginning of the 20th century, Geiger and Marsden carried out a
number of experiments that were proposed by Rutherford to elucidate the
structure of atoms. In these experiments, Geiger and Marsden bombarded a
piece of gold foil with a beam of energetic α-particles1, and measured the
angle of deflection [1]. To their surprise, they observed very large angles of
deflection, at a rate that could only be explained by a model of the atom
where the bulk of the atomic mass is concentrated in a very small positively
charged core, called the nucleus. In the years that followed, it was discovered
by Rutherford that α-particles could be used to knock off protons from
heavier atoms, making it plausible that the nucleus was composed of protons.
The mass of atoms, however, was not equal to the sum of the constituent
protons. This discrepancy would only be resolved about a decade later, when
Chadwick discovered the neutron [2, 3]. The neutron has approximately the
same mass as the proton, but carries no net electrical charge. Assuming that
the nucleus is composed of both protons and neutrons (collectively called
nucleons), the masses in the periodic table could be understood.

In the middle of the 20th century, numerous new particles were discovered
in collider experiments. Most of these new particles were unstable, quickly
decaying to more stable particles such as protons and neutrons. In an attempt
to create order in the growing particle population, as well as to understand
the observed decay processes, Gell-Mann [4] and Zweig [5, 6] independently
proposed a model where protons, neutrons, and all the newly discovered
particles are composite particles, made up of quarks. To describe the proton
and the neutron, two types of quarks are needed, the up quark (u) with

1Helium ions.
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2 Introduction

electric charge 2
3
e, and the down quark (d) with electric charge −1

3
e. Within

this scheme, the composition of the proton is uud, and the neutron is udd.
To fit all the other particles in same the ordering scheme, more quarks are
needed, as well as anti-quarks2. Currently six different types (or flavors)
of quarks are known. All of them are spin-1

2
fermions, and carry the same

electric charge as either the up or down quark. On the other hand, the
masses of these quarks are very different. An overview of the approximate
quark masses is shown in Table 1.1. Particles that are made up of quarks are
collectively referred to as hadrons. To date, only two types of hadrons have
been observed, ones consisting of a quark and an anti-quark, called mesons,
and ones with three (anti-)quarks, called baryons.

In its original form, there was a problem with the quark model, which was
related to baryons like ∆++(uuu), ∆−(ddd). As these baryons are composed
of three identical quarks and have a spin of 3

2
, the three quarks have to be in

the same spin state, seemingly violating the Pauli exclusion principle. The
issue was resolved by postulating a new quantum number called color to
restore the anti-symmetry of the baryon states under quark exchange. There
are six types of color, (anti-)red, (anti-)blue and (anti-)green, and baryons
are in the three particle singlet state of this quantum number3.

At the time, Quantum Electrodynamics (QED) had already been devel-
oped, and it was soon realized that the force binding quarks together could
be described by a very similar model, using the new color degree of freedom
as the charge. In QED, the electromagnetic force between charged particles
is mediated by a spin-1 boson, the photon. Analogously, it was proposed
that there exists a force between particles with a net color charge, mediated
by spin-1 bosons called gluons. This novel force is nowadays called the strong
force, and the theory of quarks and gluons is called Quantum Chromodynam-
ics (QCD). Color charge is similar to the electric charge in the sense that a
composite particle with an equal number of positive and negative charges is
color neutral. For example, all mesons are color neutral (r̄r, b̄b, ḡg)4. There
is, however, another way to form a color neutral composition, which is by
combining three particles, each carrying a different positive (negative) type
of charge5. Consequently, (anti-)baryons are color neutral (e.g. rgb, r̄ḡb̄).

2An anti-particle has the same mass as the corresponding particle, but has opposite
charge.

3This state is: rgb− rbg + brg − bgr + gbr − grb.
4The bar indicates an anti-particle
5The rule that a neutral object is created by combining three different charges was
inspiration for the name “color”, in analogy with the three base colors.
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Quark Flavor Mass (MeV/c2) El. Charge
Up ∼ 4 +2

3
e

Down ∼ 7 −1
3
e

Charm ∼ 1.5× 103 +2
3
e

Strange ∼ 135 −1
3
e

Top ∼ 175× 103 +2
3
e

Bottom ∼ 5× 103 −1
3
e

Table 1.1.: The six quark flavors. Quark masses taken from Ref. [7].

The force that binds protons and neutrons together in nuclei, is understood
as a direct consequence of the strong force. As nucleons are baryons, there is
no color monopole interaction between them. The spatial distribution of color
charge within the nucleons, however, causes multipole interactions, which,
similarly to the van der Waals force, causes a net residual force between
the nucleons. This residual force is identified with the nuclear force and its
strength rapidly decreases with distance, which explains why the nuclear
force does not seem to play an important role at large scales.

While the quark model was very successful in organizing all the hadron
states, many physicists were not convinced that quarks were “real” particles.
The main objection was that quarks had never been observed in the laboratory,
i.e., there was no direct experimental proof of their existence. In an effort
to probe the interior of nucleons, deep inelastic scattering experiments were
carried out at the Stanford Linear Accelerator (SLAC) at the end of the
1960s. The principle of these experiments is the same as that of those
carried out by Geiger and Marsden half a century earlier, except that now a
much higher beam energy was used, thereby greatly increasing the resolving
power. Also, instead of a beam of α-particles, the SLAC experiments used
electrons. As electrons only interact electromagnetically, the DIS experiments
are sensitive to the distribution of electric charge within the target proton.
These experiments led to the discovery that nucleons are indeed composite
particles, and the constituents were called partons, a term coined by Feynman.
Later, it was realized that these partons are in fact the same objects as quarks
and gluons. Nevertheless, the term partons is still commonly used in particle
physics.
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Significant progress towards understanding why quarks are never observed
as free particles, also referred to as confinement, was made in the early
1970s, when Gross, Wilczek [8] and Politzer [9], discovered that QCD was
asymptotically free6. Asymptotic freedom means that the strength of the
strong coupling decreases as the energy scale of a scattering experiment is
increased (the probed length scale is decreased). Conversely, when the energy
scale is decreased (length scale increased), the coupling becomes stronger.
While the latter is a necessary condition for confinement, it should be noted
that it is not sufficient. The equations of motion of QCD have so far not
been solved exactly, which means that to date no analytical proof of quark
confinement exists.

An alternative way to gain theoretical insight in the mechanism underlying
confinement is to study a discretized version of QCD using Monte Carlo
techniques. In this approach, called Lattice QCD, one generates an ensemble
of tiny volumes of QCD matter7 in thermal equilibrium, and measures various
properties of the system. One important example is that one can measure the
potential between a quark and an anti-quark Vqq̄(r), where r is the distance
between the two quarks, shown in Fig. 1.1. While at short distances Vqq̄(r)
behaves approximately like a Coulomb potential, i.e., V ∼ 1/r, the large r
behavior is very different. Instead of approaching a constant value at large r,
Vqq̄(r) is shown to grow linearly, which is a hint (but again not a proof) of
confinement.

Besides studying static quark configurations one can also use Lattice
QCD to study how a volume of QCD matter behaves under changing thermo-
dynamic circumstances, i.e., one can make a phase diagram. One interesting
observation that was made, was that the effective number of degrees of
freedom of QCD matter at extremely high temperatures and pressures far
exceeds the one at low temperatures. Since the number of degrees of freedom
seem to approach the number expected from a gas of free quarks and gluons,
this is interpreted as a phase transition from a confined to a deconfined state.
Intuitively, this phase transition can be compared to the phase transition
from water droplets to vapor. It should be noted that the thermodynamic
circumstances under which QCD matter is deconfined are so extreme that it
is believed that deconfinement only occurs within neutron stars, or in the
very early universe [10].

6’t Hooft discovered asymptotic freedom one year before Gross, Wilczek and Politzer,
but did not publish his results.

7This can also mean the QCD vacuum, which, due to the zero-point energy also contains
QCD matter.
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TABLE III. Fit results. The average is taken over all on- and off-axis fits to the data. The error of the average is the weighted
variance of the fit parameters. The error for the on-axis parameters is the statistical error.

Vol.
Axis
K
e
~o

X/&DF

On axis
0.0534( 18)
0.267(6)
0.625(8)
0.99

164

p=6.0

On axis
0.0511(17)
0.278(31)
0.635( 15 )
0.77

Average
0.0515(34)
0.254( 10)
0.632(23 )

324
Average
0.0515(28 )
0.240( 36)
0.626( 21 )

13=6.2
24-' X 32
On axis
0.0262(6)
0.303(8)
0.635(5 )
0.84

24 X32
On axis
0.0145(4)
0.303(6)
0.610(4)
0.94

p= 6.4

On axis
0.0147(3 )
0.297(4)
0.608(2)
0.92

324
Average
0.0151(5 )
0.277( 28 )
0.603(7}

In Fig. 3, we illustrate the quality of our data and of
the potential fits with the example of the 32 lattice at
P=6.4. The various off-axis entries are indicated by
different symbols. The error bars refer to statistical er-
rors only, while the dashed error band incorporates both
statistical and systematic errors (added linearly). For
convenience, we include tables of all potential values
V(R ) and overlaps C(R ) in Appendix B.
We find very good scaling of the potential data within

our P region. In Fig. 4, the data are scaled to a universal
curve by subtracting Vo and measuring energies and dis-
tances in appropriate units of &K. The dashed curve
corresponds to R —m/12R. If we inject for the string
tension the value v'o =420 MeV, we gain the physical
scales for R and V: note that we reach an horizon of 2
fm.

IV. DISCUSSION AND OUTLOOK

Asymptotic scaling of the string tension is tested by the
dimensionless quantity c =&cr /AL, where we use the

standard two-loop expansion for a(P)AI. In Fig. 5 our
results for the on-axis string tension are shown together
with previous high-statistics results from the MTc Colla-
boration [10] and Ref. [11]. The error bars to our points
refer to statistical errors from the full correlation analysis
as elaborated in Appendix A. Since previous authors
have been less stringent about correlations, we refrain
from quoting their error estimates.
We find that asymptotic scaling is not reached up to

13=6.4, but there is a definite fiattening out of the P
dependence. Under the assumption that the string ten-
sion approaches the asymptotic scaling region from
above we might convert our last data point at P=6.4 into
a lower bound for AL, which turns out to be
AI ~5. 10(.05)(.28) MeV, where the systematic error
reflects both violation of rotational invariance and the
uncertainty of the experimental string tension. This can
be translated into other renormalization schemes such as
the modified minimal subtraction (MS) scheme in the
four-fiavor sector [12]:

0.9

0.8

0.7

0.6

0.5

0.4

0.3
10

R
15

FIG. 3. The potential V(R) for the 32 lattice at P=6.4. The various off axis entries are indicated by diff'erent symbols. The error
bars refer to statistical errors only, while the dashed error band incorporates both statistical and systematic errors.
Figure 1.1.: Static quark potential from Lattice QCD as a function of the distance

between the quarks R. The different symbols indicate the direction
of R in terms of points of the lattice. Figure taken from Ref. [11].

The goal of relativistic heavy-ion collisions is to create a system of QCD
matter in its deconfined phase in the laboratory, and to study its properties.
By colliding highly energetic heavy ions, one can create a system of QCD
matter with an energy density that is expected to be sufficiently high for the
matter to undergo a phase transition to the deconfined state (see Sect. 2.3 and
2.6). Immediately after the collision, the hot QCD matter expands rapidly
and cools down in the process. Long before reaching the detector, the QCD
matter turns into hadrons again, a process known as hadronization. Since
the system is only deconfined for a very short time, an important question
that one can ask is whether the system exists long enough in the deconfined
phase to be thermalized. As is discussed in Chapter 2, the currently available
evidence favors very short thermalization times.

Another important open question is to understand the mechanism of
hadronization. Hadronization of single quarks, generated for example in
e+e− → qq̄ → hadrons8, is reasonably well understood. In such a collision,
both quarks turn into a “spray” of hadrons called a jet, the properties of
which can be determined experimentally. The theoretical understanding of

8The dominant hadronization mechanism in hadronic collisions such as p̄p→ hadrons is
assumed to be similar to the one in leptonic collisions.
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this process in the perturbative regime is expressed in a system of integro-
differential equations9, that relate the properties of jets coming from quarks
with different virtualities10. On the other hand, experimental evidence
suggests that the hot QCD matter produced in heavy-ion collisions hadronizes
in a very different and much less understood way.

In a simplified picture, one can look at the hot QCD matter as being com-
posed of thermalized low-momentum or soft partons, and high-momentum
or hard partons. The soft partons are much more abundant than the hard
partons, and their collective behavior can be understood as that of a rela-
tivistic fluid. The hard partons on the other hand, traverse the fluid of low
momentum partons, thereby losing energy in the process. These hard partons
can be used to probe the properties of the thermalized QCD matter, in a
manner reminiscent of the way that leptonic probes were used to probe the
interior of a nucleus. For example, one can study the jet spectrum in head-on
heavy-ion collisions, and make a comparison with the jet spectrum measured
in pp collisions [12], or peripheral heavy-ion collisions [13]. These studies
show a significant suppression of the jet spectrum in head-on heavy-ion
collisions, a phenomenon known as jet quenching.

There are two basic methods one can use to study jets. The first method is
to reconstruct the jet, i.e., apply a jet-finding algorithm on the particles that
are produced in a collision, that assigns every particle to a jet [14, 15]. This
method works especially well in an environment where few jets are created,
for example in pp collisions. It is in principle able to recover the kinematics on
the partonic level, regardless of the details of the hadronization. On the other
hand, in head-on heavy-ion collisions, where very many particles are created,
it is much less obvious to relate the measured jets to physics on the partonic
level. A second method to study jets is by specifically selecting those events
which contain a hadron with large momentum (the trigger hadron), and to
measure the angle of all other hadrons (the associated hadrons) in the event
with respect to this trigger hadron. This probe is mainly sensitive to jets
that have a large total momentum, distributed in relatively few hadrons11.

The second method has been studied extensively at the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven [17–23] and at LHC [16, 24],

9DGLAP equations.
10Virtuality is defined as the amount of energy by which a particle is off its mass-shell.

For a massless particle, the virtuality is therefore equal to E2−p2. As virtuality is the
relevant energy scale in the evolution of a jet, the (perturbative) DGLAP equations
can only be used for particles with a sufficiently high virtuality.

11In practice this does not induce a strong bias.
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Fig. 1. Examples of two-particle correlation functions C(!φ,!η) for central Pb–Pb collisions at low to intermediate transverse momentum (left) and at higher pT (right).
Note the large difference in vertical scale between panels.

Fig. 2. (Color online.) Left: C(!φ) for particle pairs at |!η| > 0.8. The Fourier harmonics for V 1! to V 5! are superimposed in color. Their sum is shown as the dashed curve.
The ratio of data to the n ! 5 sum is shown in the lower panel. Center: Amplitude of Vn! harmonics vs. n for the same pt

T , pa
T , and centrality class. Right: Vn! spectra for

a variety of centrality classes. Systematic uncertainties are represented with boxes (see Section 4), and statistical uncertainties are shown as error bars.

Fig. 3. (Color online.) Left: C(!φ) at |!η| > 0.8 for higher-pT particles than in Fig. 2. The Fourier harmonics Vn! for n ! 5 are superimposed in color. Their sum is shown
as the dashed curve. The ratio of data to the n ! 5 sum is shown in the lower panel. Right: Amplitude of Vn! harmonics vs. n at the same pt

T , pa
T for two centrality bins.

Systematic uncertainties are represented with boxes (see Section 4), and statistical uncertainties are shown as error bars.

structure is visible on the away side, which becomes a progres-
sively narrower single peak in less central collisions. We emphasize
that no subtraction was performed on C(!φ), unlike other jet cor-
relation analyses [7–14].

A comparison between the left panels of Fig. 2 and Fig. 3
demonstrates the change in shape as the transverse momentum

is increased. A single recoil jet peak at !φ ≃ π appears whose
amplitude is no longer a few percent, but now a factor of 2 above
unity. No significant near-side ridge is distinguishable at this scale.
The recoil jet peak persists even with the introduction of a gap in
|!η| due to the distribution of longitudinal parton momenta in the
colliding nuclei.

Figure 1.2.: Distribution of associated hadrons at 2.0 < pT < 2.5 GeV/c with
respect to trigger hadrons at 3.0 < pT < 4.0 GeV/c in head-on
Pb–Pb collisions. The correlation function C is normalized to one
for uncorrelated pairs. The variables ∆φ and ∆η are the relative
azimuthal angle and the relative pseudorapidity of the associated
hadron and the trigger hadron respectively. Pseudorapidity is related
to the polar angle θ, its precise definition is given in Sect. 2.1. Figure
taken from Ref. [16].

and an example is shown in Fig. 1.2, where trigger particles are in the
range 3.0 < pT,trig < 4.0 GeV/c, and associated particles are in the range
2.0 < pT,assoc < 2.5 GeV/c. The peak-shaped structure at (∆η, ∆φ) = (0,0)
is related to the jet, and is called the jet peak. The ridge-shaped structure
underneath the jet peak is thought to originate from the collective motion or
flow of the soft partons. On the other side (∆φ ∼ π

2
) another ridge-shaped

structure is observed. This structure is believed to be mainly caused by flow,
but also contains the jet coming from the parton that traversed the QCD
medium in opposite direction compared to the one causing the jet at the
origin12.

12While the opposite jet has to be produced at a relative azimuthal angle ∆φ = π, in the
polar direction there is no such restriction. This is because the center-of-mass frame
of the heavy ion collision is typically not the same as the center-of-mass frame of the
initial partons that underwent a hard scattering.
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calculations spanning the parameter space and cannot be
done with current calculations (e.g., [30]). Such a study is
beyond the scope of this Letter.

Comparison to RHIC.—Similar measurements have
been performed at RHIC. Although the same range in
pt;trig does not necessarily probe the same parton pt region

at different
ffiffiffi
s

p
, we assess changes from RHIC to LHC in

the following. The STARmeasurement [8] (which includes
only statistical uncertainties) of the near-side IAA is con-
sistent with unity, albeit with a large uncertainty (18%–
40%). On the away side the result from STAR is about 50%
lower than the results shown in Fig. 2. We also calculated
IAA for the 20% most central events to compare to
PHENIX [7] (only v2-subtracted data on the away side
available). For pt;assoc < 4 GeV=c, the flow influence in
this centrality interval is about 75%, too large to provide
a reliable measurement. For 4<pt;assoc < 10 GeV=c, the
v2-subtracted IAA is 0:5! 0:6" 0:08. This result is
slightly larger than results from PHENIX in a similar
pt;trig region of 7< pt;trig < 9 GeV=c: 0:31" 0:07 and

0:38" 0:11 for pt;assoc # 3:5 GeV=c and 5:8 GeV=c, re-
spectively. Based on an analysis in a lower pt region, where
collective effects are significantly larger than in the

measurement presented here, the STAR collaboration men-
tions a slightly enhanced jetlike yield in Au-Au compared
to d-Au collisions, but does not assess the effect quantita-
tively [31]. In conclusion, the observed away-side suppres-
sion at the LHC is less than at RHIC (IAA is larger), while
the single-hadron suppression RAA is found to be slightly
larger (RAA is smaller) than at RHIC [9].
Near-side enhancement.—These measurements repre-

sent the first observation of a significant near-side enhance-
ment of IAA and ICP in the pt region studied. This
enhancement suggests that the near-side parton is also
subject to medium effects.
IAA is sensitive to (i) a change of the fragmentation

function, (ii) a possible change of the quark/gluon jet ratio
in the final state due to the different coupling to the
medium, and (iii) a bias on the parton pt spectrum after
energy loss due to the trigger particle selection. If the
fragmentation function (FF) is softened in the medium,
hadrons carry a smaller fraction of the initial parton mo-
mentum in Pb-Pb collisions as compared to pp collisions.
Therefore, hadrons with a given pt originate from a larger
average parton momentum which may lead to more
associated particles and IAA > 1. An increased fraction of
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FIG. 2 (color online). (a) IAA for central (0%–5% Pb-Pb/pp, open black symbols) and peripheral (60%–90% Pb–Pb/pp, filled red
symbols) collisions and (b) ICP. Results using different background subtraction schemes are presented: using a flat pedestal (squares),
using v2 subtraction (diamonds) and subtracting the large j!!j region (circles, only on the near side). For details see text. For clarity,
the data points are slightly displaced on the pt;assoc axis. The shaded bands denote systematic uncertainties.
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Figure 1.3.: Left panel: IAA of the near-side peak i.e., |∆φ| < π
2 , for two centrali-

ties. Right panel: IAA of the away-side peak, i.e., |∆φ| > π
2 , for two

centralities. Figure taken from Ref. [25].

One signature of jet quenching using a triggered correlation measurement
such as in Fig. 1.2 is IAA, which is defined as the per-trigger yield in the
peak structure of an ion-ion collision, scaled by the same quantity in a pp
collision. In Fig. 1.3 we show an example of an IAA measurement performed
by the ALICE collaboration, where trigger particles were selected in the
range 8 < pT,trig < 15 GeV/c, and pT,assoc < pT,trig. The results for the near
(|∆φ| < π

2
) and away-side (|∆φ| > π

2
) peaks are shown, and a comparison

is made between central and non-central Pb–Pb collisions13. While IAA in
the non-central collisions is close to unity, the IAA in central collisions is
significantly different. This means that the triggered correlation measurement
can be used as a probe for jet quenching, and complement the observables
based on fully reconstructed jets.

In this work we describe a measurement that is similar to the one shown
in Fig. 1.2, but with the aim to measure the hadronic composition of the peak
structure associated with a high-pT trigger particle. Using two of the main
particle identification (PID) detectors in ALICE, we select the associated
particles to be one of the three most abundantly produced hadrons, i.e., pions,
kaons, and protons. We then subtract the background yield, and measure
the hadron composition of the jet peak. The measurement is performed in
head-on Pb–Pb and p-Pb collisions and is compared to a pp baseline.

13Central AA collisions are head-on, as opposed to non-central collisions. A lower
percentage corresponds to a more central collision. The notion of centrality is made
more precise in Sect. 2.2.
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There are two main motivations for this measurement. First of all, it
complements the current set of observables of jet quenching. Second, there
are a number of theoretical reasons to believe that the QCD medium has a
significant effect on the hadronic composition or hadrochemistry of jets [26].

In the next chapter we provide an overview of heavy-ion phenomenology,
as well as an overview of several theoretical concepts relevant for the inter-
pretation of this measurement. In Chapter 3, we give a description of the
ALICE experiment at CERN, which was used to obtain the data for this
work. The focus is on the sub-detectors of ALICE that were most important
for this measurement. After that, in Chapters 4 and 5 we give a detailed
description of the analysis that was carried out, followed by a discussion of
the results of the measurement in Chapter 6. Some concluding remarks are
given in Chapter 7.
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Chapter 2.

Background Information

In this chapter, we provide a brief introduction to the field of heavy-ion
physics. The field of heavy-ion physics is extensive, therefore we restrict
ourselves to discussing concepts that are either important for a general
understanding of the field, or that are relevant for the interpretation of the
measurement that we performed. For a more in-depth overview on the topic,
see for example Refs. [27, 28].

As mentioned in the previous chapter, the goal of heavy-ion collisions
is to create and study a system of hot and deconfined QCD matter in the
laboratory. The only things that we can measure experimentally, however,
are the kinematics of the particles produced at these collisions and the
correlations between them. Any interpretation of the data therefore requires
an understanding of the time evolution of the QCD matter from its deconfined
state back to hadrons. In principle the time evolution can be understood
from the equations of motion of the Standard Model of elementary particles,
and most importantly QCD. Unfortunately these equations cannot be solved
exactly, and currently our best understanding of the time evolution is based
on a patchwork of effective theories, valid only in a limited part of the time
evolution, complemented with perturbative and numerical results from QCD.

Our first goal of this chapter is to give an overview of the most important
effective models and approximations of QCD currently being used, in order to
give a relatively complete picture of the time evolution of a heavy-ion collision.
A secondary goal is to highlight some of the most important evidence that we
have for the existence of a deconfined state in heavy-ion collisions. While all
the evidence is exclusively circumstantial, it is sufficient for most physicists
to believe that a deconfined state has in fact been created. Finally, the last
goal of this chapter is to present some theoretical ideas that are related to

11
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the measurement of identified hadrons correlated to a trigger particle at
high momentum. While there has not yet been a quantitative prediction
specifically for this measurement in heavy-ion collisions, there are several
ideas that (with some modification) could lead to such a prediction.

This chapter is organized as follows. We start by discussing the coordinates
and the commonly used variables in Sect. 2.1. In Sect. 2.2, we give a simple
overview of a heavy-ion collision and we discuss the space-time evolution
of the produced QCD matter, identifying several distinct stages that the
matter is generally thought to pass through. We then continue by discussing
two approaches for effective theories: relativistic hydrodynamics (Sect. 2.3),
which has been shown to be a good description of the early stages, and
statistical models (Sect. 2.4), which have been found to very accurately
predict the ratios of identified particles produced in a heavy-ion collision.
After this, we say a few words about the Standard Model (Sect. 2.5), with
an emphasis on QCD (Sect. 2.6). We show how a perturbative treatment of
QCD is applicable at high energies, and how this can be used to model certain
aspects of particle production. Furthermore, we discuss some of the results
from discretized QCD (Lattice QCD), which is currently the most important
tool used in the theoretical study of the QCD phase diagram, and provides
the strongest evidence for the existence of a deconfined phase. We then go on
to show experimental evidence indicating a significantly altered mechanism
of hadron production in heavy-ion collisions compared to elementary particle
collisions, and discuss models for hadron production in heavy-ion collisions
(Sects. 2.7, 2.8). We end the chapter with a discussion of the term Quark
Gluon Plasma (QGP), and whether it has been discovered at RHIC and LHC
(Sect. 2.9).

2.1. Coordinates and Conventions

In particle collision experiments, it is convenient to adopt a cylindrical coor-
dinate system (z, r, φ), with the origin at the center of the detector, r being
the radial direction, φ the azimuthal angle, and the z-axis coinciding with
the beam axis. Kinematics are typically described in terms of the momentum
projected onto the plane transverse to the beam pipe, pT =

√
p2
r + p2

φ, and
the rapidity y with respect to the beam axis, i.e.:

y =
1

2
ln
E + pzc

E − pzc
= arctanh(vz/c), (2.1)
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where E stands for energy, p for momentum, v for velocity and c for the
speed of light. Using rapidity instead of velocity is especially useful as it is
additive under Lorentz boosts along the z-axis.

While the theoretical advantage of using rapidity is clear, it is not the most
straightforward quantity to measure experimentally. A related quantity that
is easier to measure and therefore often used instead, is the pseudorapidity η,
which is defined as:

η = − ln tan θ/2, (2.2)

where θ is the angle with respect to the beam axis. After the identity of the
particle has been determined with one or more particle identification (PID)
detectors, the rapidity can be obtained as follows:

y = ln

(√
m2 + p2

T cosh2 η + pT sinh η√
m2 + p2

T

)
, (2.3)

where m is the mass of the particle.
The unit for energy that is used throughout this work is the electron volt,

1 eV ≈ 1.6× 10−19J. Similarly, we express momenta in terms of eV/c, and
masses in terms of eV/c2.

The initial system of two colliding particles is characterized by the collision
energy in the center-of-mass frame:

√
s =

√
(p1 + p2)µ(p1 + p2)µ, (2.4)

where s is one of the Mandelstam variables, and we have used the Einstein
summation convention. When one or two of the particles in the collision
system is an ion, the center-of-mass energy is given per nucleon pair, and is
denoted by

√
sNN.

In this work we analyze data from proton-proton (pp), proton-lead (p-Pb)
and lead-lead (Pb–Pb) collisions. In the following, we use the generic nota-
tion pA for proton-nucleus collisions, and AA for nucleus-nucleus collisions,
whenever the mass number of the nucleus is not important for the discussion.

2.2. Receding Pancakes

The dimension of a highly relativistic object (γ � 1) along the axis of
propagation appears as contracted to the stationary observer. For this reason,
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a highly relativistic ion looks like an almost flat disc, and is colloquially
referred to as a “pancake” [29].

In Fig. 2.1 we present a simplified picture of a heavy-ion collision. In the
top panel, the two Lorentz contracted ions approach each other at nearly
the speed of light. Both ions are assumed to be lead ions, containing 208
nucleons which are represented by white spheres. The ions in the picture do
not approach each other exactly head-on, and the perpendicular distance
between their trajectories defines the impact parameter b. The middle
panel describes the situation at the time of the collision. Since the impact
parameter is nonzero, but smaller than the nuclear diameter, some nucleons
collide directly with other nucleons (the participants), while some continue
relatively unharmed (the spectators). In the bottom panel the ions have
passed through each other (“receding pancakes”), leaving a trail of hot QCD
matter at large energy densities in their wake. Due to a large pressure in the
QCD matter, it expands and cools down rapidly, and all QCD matter turns
into hadrons again.

In collision experiments, the impact parameter cannot be controlled, how-
ever, since in pA and AA collisions a smaller impact parameter is correlated
to a larger particle production, it can be estimated. Using the Glauber model
[30], one can find the approximate mapping from the number of particles
produced to the impact parameter. In the ALICE experiment, the particle
multiplicity for this estimate is measured at large rapidity, using the V0 detec-
tors, or at mid-rapidity, using the TPC (see Sect. 3.4.1) [31]. By comparing
the particle multiplicity of a given event to the multiplicity distribution of
all events, we can calculate its centrality percentage. An event is said to have
a centrality of n% when n% of the events have a larger particle multiplicity,
i.e., are more central.

The evolution of the hot QCD matter to hadrons can be divided into
several stages. It is estimated that directly after the collision (t ∼ 0), the
system has a sufficiently high energy density that it is in a deconfined state,
see Sect. 2.3.1. After a short amount of time (t ∼ τth), the system thermalizes.
While the thermalization time τth cannot be measured directly, it is believed
to be very short τth ∼ 1 fm/c. The evidence for this mainly comes from
comparisons between experimental data1 and fluid models that assume a
short thermalization time (Sect. 2.3). The next step in the evolution is
hadronization, where the QGP turns into a strongly interacting system of
hadrons.

1Specifically: the observed final state anisotropies.
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Figure 2.1.: Simple picture of a heavy-ion (Pb–Pb) collision, view facing the
beam axis.
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As we discuss in Sect. 2.6.2, the exact nature of this phase transition is still
debated. The interacting hadrons can collide elastically, only exchanging
momentum and energy, or they can collide inelastically, producing new
particles. The rate of inelastic collisions is predicted to decrease much
faster than the elastic ones [27], which means that at a certain time the
hadrochemical composition is fixed. The time at which the hadrochemical
composition is fixed, is called the chemical freeze-out, and it denoted by τch.
After the chemical freeze-out the hadrons still undergo elastic collisions, and
the momentum distributions of the individual hadron species can still change.
Eventually the hadron gas becomes so dilute that also the elastic collisions
cease. This is called the kinetic freeze-out.

All the interactions between the hadrons produced in a heavy-ion collision
are referred to as final state interactions (FSI). In order to extract information
about the deconfined phase, it is important to consider the impact that FSI
have on the produced hadrons and on the correlations between them.

2.3. Hydrodynamics and Collectivity

As mentioned previously, it is believed that the hot QCD matter created
in a heavy-ion collision thermalizes very quickly. If this is the case, then it
makes sense to describe the system in terms of thermodynamic quantities,
and its evolution in terms of (relativistic) hydrodynamics. One particularly
simple implementation of this idea is the Bjorken model [29]. This model
makes several approximations to the equation of state and the equations of
motion (perfect fluid, one dimensional expansion only, boost invariance, etc.),
which makes it possible to find analytic solutions. Modern hydrodynamic
calculations are done numerically. They allow for a finite viscosity, use an
equation of state taken from Lattice QCD (see Sect. 2.6) and do not assume
boost-invariance [27, 32]. These models are very successful in predicting
identified particle spectra up to pT ∼ 2.0 GeV/c. In this section we first
highlight the Bjorken model, as it is a simple model that provides an estimate
of the energy density reached in heavy-ion collisions. After that we discuss
the concept of anisotropic flow, which is the study of anisotropies in the
particle production, caused by anisotropies in the density of the hot QCD
matter.
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2.3.1. Bjorken Model

The Bjorken model [29] aims to describe the particle production at mid-
rapidity (y ∼ 0). It starts from the assumption that directly after the
collision, when the distance between the receding pancakes does not exceed
the nuclear size, the longitudinal velocity of the produced matter between
the pancakes can be approximated by vz = z/t. Using this, the initial energy
density can be estimated as:

ε =
1

cτthA

dET
dy

, (2.5)

where y denotes rapidity and τth ∼ 1 fm/c is the thermalization time. For
the most central Pb–Pb collisions at

√
sNN = 2.76 TeV, it was measured by

the CMS collaboration that dET/dη ≈ 2 TeV [33]. To transform the pseudo-
rapidity to rapidity, knowledge about the identity of the particles is required.
Using HYDJET 1.8 it was estimated that the Jacobian is dη/dy ≈ 1.09 at
mid-rapidity. Together with the assumption of an thermalization time of
τth ∼ 1 fm, and an overlap area of A = π × (7 fm)2, the initial energy
density is approximately εi ≈ 14 GeV/fm3. This exceeds the energy density
at which the deconfining phase transition is expected to happen by an order
of magnitude [34].

2.3.2. Anisotropic Flow

In the first panel of Fig. 2.2, we show the participants and the spectators
as seen from along the beam pipe. In non-central collisions geometry of
the system of participants is not circular, but instead has an almond shape.
Due to the resulting anisotropic pressure gradient, particles produced in the
direction of the impact parameter b on average carries more momentum
than the particles produced in perpendicular direction. This means that at
similar momentum, the relative particle yield in the direction of the impact
parameter is enhanced, as is illustrated in the second panel of Fig. 2.2. This
effect is called elliptic flow. An observable sensitive to elliptic flow is the
second order Fourier coefficient of the particle yield as a function of the angle
with respect to the impact parameter b.

If the matter distribution had a smooth almond shape, then the higher
order Fourier coefficients of the particle yield would be very small. In reality
however, the initial matter density distribution fluctuates significantly from
event to event, causing also higher order harmonics to be non-zero.
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Figure 2.2.: Simple picture of a heavy-ion (Pb–Pb) Collision, view along the
beam axis.

The simplest model that can be used to study these initial density fluc-
tuations is known as the Glauber Model [35, 36]. Within this model, the
colliding nuclei are characterized by a distribution function for the nucleons.

For large nuclei a parameterization that is found to agree well with
experiments is the Woods-Saxon function [37], which is given by:

ρA(r) =
ρ0

A(1 + exp [(r − r0)/a])
, (2.6)

where A, a, ρ0 and r0 are parameters taken from experiment. Given the
nucleon-nucleon inelastic cross section and an impact parameter, one can use
Monte Carlo methods to calculate the probability that a nucleon interacts at
least one time inelastically. These are the same nucleons that we previously
referred to as participants, but the term wounded nucleons is often used
interchangeably2.

In Fig. 2.3 two examples are given of wounded nucleon distributions.
Note that even though the number of wounded nucleons is the same, which
corresponds to a similar collision centrality, the density profiles are very
different. The result of these density fluctuations, and the resulting non-
trivial pressure gradients, is that the impact parameter is not the only
direction in which particle production is enhanced. As a consequence, the

2In Figs. 2.2 and 2.3, the coloring of the spectators was determined by whether the
nucleon is in the almond-shaped overlap region instead of whether it interacted. This
is an approximation, however, due to the high packing density of the nucleons it is a
reasonable one.
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FIG. 1. (Color online) Two typical configuration of wounded
nucleons in the transverse plane (dots) generated with GLISSANDO

and the corresponding contours of the smeared density of entropy, s.
Solid, dashed, and dotted lines correspond to isentropes at s = 0.05,
0.2, and 0.4 GeV−3, respectively. The densities for the two events
have radically different rms radii of 3.14 and 2.38 fm, respectively,
despite the equal number of the wounded nucleons, Nw = 100.

As noted in Ref. [1], very similar curves to Fig. 2
are obtained for other variants of Glauber models, such as
models with overlaid distributions of particles produced from
the sources [2], simulations applying a Gaussian wounding
profile [67] for the NN collisions, or the use of the nucleon
distributions including realistic (central) NN correlations of
Refs. [68–70]. This means that the behavior of the initial
geometry shown in Fig. 2 is robust, essentially reflecting the
statistical feature of the Glauber approach.
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FIG. 2. (Color online) Event-by-event scaled standard deviation
of the size parameter ⟨r⟩, evaluated at fixed values of the number
of wounded nucleons Nw from the initial entropy density for events
used in hydrodynamic simulations.

III. VISCOUS EVENT-BY-EVENT HYDRODYNAMICS

It is widely believed that a successful and uniform de-
scription of the physics of relativistic heavy-ion collisions
is achieved with the help of relativistic hydrodynamics (for
reviews see, e.g., [71–73]). Event-by-event hydrodynamic cal-
culations for fluctuating initial conditions have been performed
for perfect fluid [47,56,59,74–76] and for the viscous case
[4,77–79], focusing on collective flow.

In the second-order viscous hydrodynamic formalism
[80–82], the hydrodynamic equations

∂µT µν = 0 (8)

with the energy-momentum tensor

T µν = (ϵ + p)uµuν − pgµν + πµν + %&µν (9)

are supplemented with equations for the stress corrections from
the shear,

&µα&νβuγ ∂γ παβ = 2ησµν − πµν

τπ

− 4
3
πµν∂αuα, (10)

and the bulk viscosity,

uγ ∂γ % = −ζ∂γ uγ − %

τ%

− 4
3
%∂αuα, (11)

σµν = 1
2

(
∇µuν + ∇µuν − 2

3
&µν∂αuα

)
.

Here ∇µ = &µν∂ν , while η and ζ denote the shear and bulk
viscosity coefficients, respectively. In our default calculations
we use constant η/s = 0.08, ζ/s = 0.04 in the hadronic phase,
τπ = 3η/(T s), and τ% = τπ . To test the sensitivity of our
results on viscosity, we perform calculations for η/s = 0.16,
ζ/s = 0.04 and η/s = 0.08, ζ/s = 0.08 as well.

The applied equation of state is a crossover equation of
state, interpolating between the lattice-QCD results at high
temperatures [83] and a hadronic gas equation of state at low
temperatures. The construction of the equation of state follows
the method of Chojnacki and Florkowski [84] (for details
see [3]).
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0.2, and 0.4 GeV−3, respectively. The densities for the two events
have radically different rms radii of 3.14 and 2.38 fm, respectively,
despite the equal number of the wounded nucleons, Nw = 100.

As noted in Ref. [1], very similar curves to Fig. 2
are obtained for other variants of Glauber models, such as
models with overlaid distributions of particles produced from
the sources [2], simulations applying a Gaussian wounding
profile [67] for the NN collisions, or the use of the nucleon
distributions including realistic (central) NN correlations of
Refs. [68–70]. This means that the behavior of the initial
geometry shown in Fig. 2 is robust, essentially reflecting the
statistical feature of the Glauber approach.
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we use constant η/s = 0.08, ζ/s = 0.04 in the hadronic phase,
τπ = 3η/(T s), and τ% = τπ . To test the sensitivity of our
results on viscosity, we perform calculations for η/s = 0.16,
ζ/s = 0.04 and η/s = 0.08, ζ/s = 0.08 as well.

The applied equation of state is a crossover equation of
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temperatures [83] and a hadronic gas equation of state at low
temperatures. The construction of the equation of state follows
the method of Chojnacki and Florkowski [84] (for details
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Figure 2.3.: Wounded nucleon distributions in the plane perpendicular to the
beam axis with NW = 100, generated by GLISSANDO [38]. Figures
taken from Ref. [39].

particle yield can be described using a Fourier decomposition [32]:

dN

dφ
(pT, η) ∝ 1 + 2

∞∑
n=1

vn cos(n(φ−Ψn)), (2.7)

where Ψn is called the flow angle, and the Fourier coefficients vn are often
referred to as flow coefficients. While Ψ2 corresponds approximately to the
direction of the impact parameter, the angles Ψn with n > 2 are randomly
distributed from event to event.

Explicitly referring to vn and Ψn as “flow” parameters is suggestive that
their values are completely determined by hydrodynamic flow. While the
consensus is that this is certainly the largest contribution, it should be clear
that there are also other effects that are not related to hydrodynamic flow
(collectively referred to as non-flow effects), that can cause correlation struc-
tures. Examples of non-flow effects are jets (see Sect. 2.6.1), resonances, final
state interactions, etc. There are several ways to perform vn measurements,
some of which are designed to be less sensitive to non-flow effects. These
include higher order cumulants [40], or the analysis of particle pairs with
a large separation in η. The latter is of importance for us, as we use this
approach to single out the jet-peak contribution from the total particle yield.



20 Background Information

2.4. Statistical Models of Particle Production

After the QCD matter cools down to the critical temperature it hadronizes.
Without considering the microscopic mechanism of hadronization for the
moment, one can study the thermal properties of the hadrons produced in a
heavy-ion collision. If indeed these hadrons are created from a thermalized
medium of quarks and gluons, then one would expect also the hadron gas
to be in thermal equilibrium [41]. Under this assumption, the number of
produced particles of species i can be written as:

Ni = giV

∫
d3p

(2π)2

[
exp

(
Ei(p)− µi

T

)
− ε
]−1

, (2.8)

where V is the volume of the fireball (QCD medium), µ is the chemical
potential, T is the temperature and ε = −1, 0, 1 indicates the statistics
of the particles, i.e., Fermi-Dirac, (classical) Boltzmann and Bose-Einstein
respectively [27, 41, 42]. In practice, one usually determines the most probable
temperature and baryon chemical potential using a χ2 fitting procedure to
the measured particle ratios.

In Fig. 2.4 we show a comparison between the statistical model fits and
data measured at RHIC (left panel) and LHC (right panel). In the compar-
ison with the data the baryon and anti-baryon abundances are somewhat
overestimated, most notably the (anti-)protons at LHC. In fact, in the com-
parison with the LHC data the (anti-)protons were excluded from the fit
in order to improve the fit. One explanation for this overestimate is that
baryon abundances still decrease somewhat after freeze-out due to hadronic
final state interactions [42, 43].

Interestingly, the temperature found at both RHIC and LHC is
T = 163 MeV, which is only slightly below the temperature at which the
phase transition is predicted to occur by Lattice QCD. On the other hand
it has been shown that also the hadron production in e+e− [44] and pp [45]
collisions is well reproduced using a statistical model. The temperature that
was obtained is about T = 170 MeV, and does not seem to depend much
on the center-of-mass energy. The details of the statistical model used are
slightly different from the model used in nuclear collisions. Most notably the
canonical ensemble is used as opposed to the grand canonical ensemble, and
a universal factor γs has to be introduced to account for the production of
strange particles being lower than expected from a thermalized system.



Background Information 21

M
u

lti
p

lic
ity

 d
N

/d
y

-110

1

10

210

Data

STAR

PHENIX

BRAHMS

=35.8/12
df

/N2χThermal model fit, 
3

= 24 MeV, V=2100 fm
b

µT=162 MeV, 

=200 GeVNNsAu-Au  

+π -π
+K

-
K p p Λ Λ

-
Ξ

+
Ξ Ω φ d d K* *Σ *Λ He

3
/He

3

Figure 1: Comparison of thermal model predictions with RHIC data.The data are as compiled in [3], with a recent update
taking into account all available information on feeding via weak decays of multi-strange baryons.

and anti-protons drive the temperature of the fit to a rather low value (T = 152 MeV) while the
yield of multi-strange baryons is significantly underpredicted. This is somewhat similar to the
situation observed at RHIC (Fig. 1). With the more than a factor of 2 smaller error bars of the
ALICE data compared to results from the RHIC experiments the reduced χ2 value approaches 4,
and the temperature parameter is significantly lower than expected from the extrapolation from
the data at lower energies [3].

The right hand panel in Fig. 2 shows the result of excluding protons and anti-protons from
the fit. This leads to a very good description of all remaining data, with excellent χ2 parameter
and a temperature value (164 MeV) completely in line with expectations. Naturally, the nucleon
yields are now about a factor of 1.4 below the calculated values. This apparent proton anomaly
could be due to annihilation in the hadronic phase near the phase boundary. Indeed, schematic
model calculations indicate such an effect [7, 8]. We note, however, that annihilation affects
not only nucleons, but also strange and multi-strange baryons. If annihilation is the explanation
for the proton anomaly then the new ALICE data suggests that the annihilation rate for strange
baryons is significantly less than that for nucleons. Further precision measurements, including
also correlations among baryons and anti-baryons, are needed to shed light on this observation.

In the following we use the statistical model to make predictions for charmonium production
and compare the results to the most recent ALICE data [9, 10]. Suppression of J/ψ mesons in
the QGP was originally predicted [11] as a key signature for a dense partonic phase. In contrast,
in [12] it was argued that charmonium production can be well described in the statistical model
by assuming that all charm quarks are produced in initial, hard collisions. An important further
input is that the QGP provides complete color screening, implying that charmed hadrons and
charmonia are first produced at the phase boundary with statistical weights (for a recent review
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Figure 2: Thermal model fits to ALICE data on hadron production in central Pb–Pb collisions. The left panel shows the
result of the fit to all available data, while protons and anti-protons are excluded from the fit shown in the right panel.
The ALICE data are preliminary results shown at this conference [6].

see [13], for a detailed more technical description see [14]). An important element is thermal
equilibration of charm quarks, at least near the transition temperature Tc. The new ALICE data
[15] on spectra and flow of open charm hadrons and charmonia provide good evidence for this.
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Figure 3: Centrality dependence of RJ/ψ
AA for RHIC and LHC energies at mid-rapidity (left panel) and forward rapidity

(right panel). The two curves shown for the LHC energy coorespond to a range of expected shadowing. The ALICE data
shown in the left panel are preliminary results shown at this conference [9].

The centrality dependence of the nuclear modification factor RJ/ψ
AA as measured recently by

ALICE [10] is shown in Fig. 3, for central and forward rapidity, and compared to RHIC data
from the PHENIX collaboration [16] as well as to predictions from the statistical hadronization
model. We first note that, at LHC energy, much less suppression is observed compared to the
RHIC results, both at forward- and at mid-rapidity. The model calculations [14] reproduce this
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Figure 2.4.: Particle multiplicities measured at RHIC (left panel) and at LHC
(right panel), fitted with a statistical model described in Ref. [41].
Figures taken from Ref. [42].

An interesting recent idea of how to explain this universal hadronization
temperature is that hadronization takes place through a mechanism that is
very similar to Hawking-Unruh radiation [44]. Within this framework the
strangeness suppression can be naturally accounted for by noting that the
causal region in which particles can be produced is much larger in nuclear
collisions than in collisions of elementary particles [46].

2.5. The Standard Model

In the preceding sections we saw that using very general assumptions and
effective models, we could understand some basic properties of the hot QCD
matter created in heavy-ion collisions. To improve on these models however,
a better understanding of the microscopic theory of quarks and gluons is
needed. In this section we briefly describe the Standard Model, which is the
most fundamental description of subatomic physics that we have to date.
As mentioned in Chapter 1, the most important part for understanding the
behavior of quarks and gluons is QCD, which we discuss more extensively in
Sect. 2.6.

The Standard Model is a quantum field theory, in which matter is de-
scribed by spin-1

2
fermions, and all the known forces between matter (except

for gravity) as mediated by spin-1 bosons. Within the Standard Model
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there are two types of matter particles, those which couple to the previously
discussed strong nuclear force (quarks), and those which do not (leptons).
There are also three forces, the electromagnetic force which is mediated by
photons, the weak nuclear force which is mediated by the W± and Z bosons
and the strong nuclear force, mediated by a family of eight gluons.

The structure of the Lagrangian of the Standard Model follows naturally if
one starts from the free field equations of the matter fields, and then demands
that these fields are locally invariant under so-called “gauge transformations”.
To realize this local gauge invariance, additional bosonic fields have to be
introduced, which correspond exactly to the force mediators for the three
fundamental forces. For this reason these fields are collectively known as
“gauge fields”, and the Standard Model is called a “gauge theory”.

Despite the unprecedented success of the Standard Model as a predictive
theory, most physicists believe that the Standard Model provides only an
approximate description of subatomic physics, valid only at limited energy
and length scales. One of the reasons for this belief is the large number
of seemingly arbitrary parameters in the Standard Model, for example the
masses of the quarks and leptons [47], which have to be taken from experiment.
Another reason is that the Standard Model does not include gravitational
interactions between particles. The impact of gravity on earth-bound col-
lision experiments is negligible, however, particle dynamics close to very
heavy objects such as black holes are expected to be affected [48]. Finally,
observations of the large-scale structure of the universe do not coincide with
predictions from General Relativity, given the amount of observed mass and
energy in the universe [49].

Much theoretical effort today is put into addressing these issues, and
into the development theories beyond the Standard Model. One widely
researched example is supersymmetry, where in its simplest implementa-
tion an additional bosonic/fermionic degree of freedom is added for every
fermionic/bosonic degree of freedom in the standard model, see for example
Ref. [50]. Another approach questions the assumption of the Standard Model
that its fundamental particles are described as point-like particles, and in-
stead models them as very small strings [51]. While these studies have had
some theoretical successes, it has not been possible so far to find a solution
that reduces to the Standard Model in the relevant limits.
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2.6. Quantum Chromodynamics (QCD)

The part of the Standard Model that describes the strong force is called
Quantum Chromodynamics (QCD). Its gauge group is SU(3), which cor-
responds to rotations in “color space”. The number of different gluons (8)
corresponds to the number of generators of the gauge group. The Lagrangian
density of the quarks and the gluons is given by3:

LQCD =
∑
f

ψ̄f

[
iγµ∂µ − gsγµ

∑
a

Aaµ
λa

2
−mf

]
ψf −

1

4

∑
a

F a
µνF

µν
a , (2.9)

where ψf represents the quark fields of mass mf and flavor f , with
f ∈ {u, d, s, c, b, t}, γµ are the Dirac matrices, gs is the QCD coupling, Aaµ
represents the gluon fields of the eight different types of gluons (a = 1, . . . , 8),
F a
µν is the field strength tensor of the gluon field4 and λa/2 are the generators

of the group SU(3).
The most straightforward way to calculate the expectation value of

observables (correlation functions, scattering amplitudes, etc.) in a quantum
field theory is by means of a path integral, i.e.:

〈O〉 =

∫
DφiO(φi) exp{i

∫
d4xL}∫

Dφi exp{i
∫
d4xL} , (2.10)

where φi are some fields, O(φi) is an observable depending on those fields,
and the Lagrangian density L describes the dynamics of those fields. For non-
interacting theories, the terms in the Lagrangian density are at most of order
2, making this integral exactly solvable. Interacting theories, however, contain
terms of higher order, rendering the path integral analytically unsolvable. An
example is the term gsψ̄fγ

µAaµ
λa

2
ψf in Eq. (2.9) describing the quark-gluon

coupling. If the coupling gs is small, a perturbative expansion in orders of
the coupling gives a very good approximation of the solution. If gs is large,
then solutions to Eq. (2.10) can only be found numerically.

There are various ways to measure the coupling of QCD. One of the
simplest ways is through the measurement of the three-jet fraction f3 in e+e−

collisions. When an electron and a positron annihilate, a short-lived virtual

3Quarks also couple to the electromagnetic and weak nuclear force, but those terms are
omitted here.

4Fµνa = ∂µAνa − ∂νAµa − gsfabcAµbAνc , where fabc are the structure constants of the group
SU(3).
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photon is created, which subsequently decays into either a lepton and an
anti-lepton (ll̄), or a quark and an anti-quark (qq̄)5. These two processes are
easily distinguishable experimentally, because unlike the leptons, the quarks
cannot exist as free particles. They instead undergo a process known as
fragmentation, in which they turn into a collimated spray of hadrons, also
known as jets.

Different experiments studied e+e− collisions at various center-of-mass
energies, and they observed events with n ≥ 2 jets. At sufficiently high
center-of-mass energy, it was observed that the relative frequency of n-jet
events decreased with n. If we assume that each jet originates from one
parton, then we may identify the di-jet events with the process e+e− → qq̄,
the three-jet events with the process e+e− → qq̄g, etc. If we furthermore
assume that the QCD coupling is sufficiently small to justify a perturbative
approach, the differential cross section for the latter process is given by:

1

σ0

d2σ

dx1dx2

=
2αs
3π

x2
1 + x2

2

(1− x1)(1− x2)
, (2.11)

where αs = g2
s/4π, x1,2 denotes the energy fraction of the two quarks, i.e.,

x1,2 = 2E1,2/
√
s, and the energy fraction of the gluon x3 can be calculated

from energy conservation, i.e., 2 = x1 + x2 + x3. It is important to note that
this cross section is divergent when x1,2 → 1, which corresponds to one of the
quarks radiating a soft collinear gluon. Note also that this singularity does
not pose a problem for the definition of the three-jet cross section f3, since
the jets from two collinear partons are experimentally identified as one jet.
In other words, we only call an event a three-jet event if the angle between
the three jets is sufficient, and x1,2 are not close to one.

From the quark-gluon interaction term in Eq. (2.9) we know that the
probability of gluon radiation is proportional to the QCD coupling. As shown
in Fig. 2.5, measurements of the three-jet fraction f3 show a steady decrease
with the center-of-mass energy of the collision system. This means that
QCD is a strongly coupled when probed at low energies, but weakly coupled
at high energies, providing direct evidence for asymptotic freedom. It also
explains why the probability of radiating a soft (low energy) gluon cannot
be calculated with perturbative methods.

In the following two subsections, we highlight two applications of QCD.
First, in Sect. 2.6.1 we give a brief overview of hadronization in elementary

5To avoid complications, we only consider collision systems with
√
s�MZ0 . Above this

energy different decay channels become possible and in fact become dominant.



Background Information 25

3.3 Jet cross sections 69

30

25

i i i i I i i i i I i i i i | i i i i I i i i i I i i i i I i i i i I i i i i I i i i i

- Energy dependence of three jet production

• JADE
o Mark II
- TASSO
x TRISTAN
* OPAL

20

15

as=const
i i i i i i i i I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

10 20 30 40 50 60 70 80 90 100
Ecm [Gev]

Fig. 3.6. A compilation of three-jet fractions at different e+e~ annihilation
energies. Adapted from ref. [15].

Because the hadronization corrections to / 3 are small, the three-jet rate
provides one of the most precise measurements of as at e+e~ colliders.
A typical fit is shown in Fig. 3.7 [15]. The curves correspond to the per-
turbative predictions calculated in the MS prescription with two different
choices of scale. At large y, the events are mostly classified as two (broad)
jets. As y decreases, and the jets are allowed to be narrower, fewer events
are two-jet and the number of multijet events increases. Notice that at
medium and large y, where these calculations should be most reliable,
both scale choices give equally acceptable fits, but with different values of
A^s". This is an example of the scale-dependence uncertainty discussed
above. At smaller y, there appears to be some preference for the curve
corresponding to the smaller scale. However, some care must be taken
with this interpretation. We have already seen (Eq. (3.35)) that when y is
so small that as In2 y ~ 1, the perturbation series for f2 breaks down. In
fact one can show that all the jet fractions have higher-order corrections
which contain terms like an

s ln2n y at small y. Before concluding anything
about which renormalization scales are 'preferred', we should make sure
that these large corrections are correctly taken into account. We shall
see in Chapter 6 that when this is done, there is no longer any prefer-
ence in the data for a small scale, and indeed the overall scale-dependence
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Figure 2.5.: Observed three-jet rate (f3) in e+e− collisions [7, 52].

particle collisions such as e+e− → hadrons. The concepts developed in
this section are used later when we discuss ways in which hadronization is
modified by the presence of the hot QCD matter. Then, in Sect. 2.6.2 we
briefly discuss Lattice QCD, which aims at calculating the thermal properties
of QCD matter by numerically solving a discretized version of QCD. As this
is a purely numerical approach, there is no problem with exploring the low
energy (strong coupling) limit of QCD.

2.6.1. Hadronization and Fragmentation Functions

Let us now look a bit closer at the mechanism of hadron production in e+e−

collisions. As we discussed before, the hadrons produced in this process
are produced in n ≥ 2 collimated jets, where n corresponds directly to the
number of partons created at large angles. If the center-of-mass energies of
the collision are sufficiently high, then perturbative methods can be used to
calculate the first stage of the hadronization process, where the initial partons
branch off other partons. The final step of the process, where hadrons are
created from the partons, involves low-energy processes, and can therefore
only be treated in a phenomenological way.
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Factorization theorems show that the cross section for the process
e+e− → h+X can be written as the convolution of the partonic cross sec-
tion dσi/dy, calculable using perturbative methods, and a non-perturbative
fragmentation function Dh

i (z,Q2), which gives the probability for a parton i
to create a hadron h with a momentum fraction z at energy scale Q2 [7], i.e.:

1

σtot

dσe+e−→h+X

dx
(x, s) =

∑
i

∫ 1

x

dz

z
Dh
i (z, s)

dσi
dz

(x/z, s). (2.12)

The energy scale in this expression is identified with the center-of-mass
energy, and x denotes the energy fraction of the produced hadron, that is,
x = 2Eh/

√
s. The fragmentation function is not calculable, however, it can be

determined by comparing measured hadronic cross sections with Eq. (2.12),
see for example Refs. [53, 54]. In order to use e+e− data with a wide range of
center-of-mass energies, one needs to be able to relate fragmentation functions
at different energies. This is done by using the so-called DGLAP6 evolution
equations [55]:

Q2 ∂

∂Q2
Dh
i (x,Q2) =

∑
j

∫ 1

x

dz

z

αs
2π
Pji(z, αs)D

h
j (x/z,Q2), (2.13)

where Pji(z, αs) is called the splitting function, and it gives the probability
that a parton of type i branches to a parton of type j with momentum
fraction z. Splitting functions can be calculated perturbatively, in orders
of αs. Intuitively, this equation can be understood by realizing that by
increasing the energy, the parton is probed at a higher resolution. At this
increased resolution, additional colinear partons can be resolved, that “dress”
the original parton.

In Sect. 2.7 and 2.8 we discuss hadronization in the presence of a hot
QCD medium, by generalizing the concepts that were introduced in this
section.

2.6.2. Lattice QCD and the QCD Phase Diagram

To gain insight in the phase diagram of QCD matter, one needs to calculate
its partition function. This can be done by evaluating a path integral similar
to the one in Eq. (2.10), where the time coordinate is rotated to the imaginary

6Dokshitzer, Gribov, Lipatov, Altarelli, Parisi.
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axis7, and interpreted as inverse temperature β. In the most interesting
regions of the phase diagram, non-perturbative effects dominate, hence we
cannot determine the partition function analytically. Fortunately, due to the
Boltzmann factor exp {−βE}, most configurations do not contribute much
to the partition function, which justifies a Monte Carlo approach [56].

In this approach, pioneered by Kenneth Wilson in the 1970s [57, 58],
the QCD Lagrangian in Eq. (2.9) is replaced by a discretized version on a
lattice with lattice spacing a. By “measuring” observables on a lattice with
decreasing a, one can get a good idea of the behavior of those observables
in the continuum limit. The advantage of Lattice QCD is that there is in
principle no restriction on the energy scale at which QCD can be studied.
The discretization procedure introduces a natural largest energy scale, which
is inversely proportional to a, but this can be chosen as small as computer
resources and patience allow. The problems that can be studied using Lattice
QCD are limited to the equilibrium properties of QCD under given ther-
modynamical circumstances. Examples are: the mass spectrum of hadronic
states, the static potential between quarks, and the equation of state (EoS)
[59].

In the first panel of Fig. 2.6 we show the energy density ε, scaled with
T 4, and the specific heat CV , scaled with T 3, calculated at baryon chemical
potential µB = 0. For an ideal, non-interacting gas of quarks and gluons
at zero chemical potential, the energy density is proportional to gQGP

π2

30
T 4

[27], where gQGP = 37(47.5) for two (three) flavors8. The non-interacting
limit indicated in the figure as a dashed line, and for increasing temperatures
the EoS seems to approach this value. The steeply increasing value of ε/T 4

around T ∼ 160 MeV indicates that the effective degrees of freedom change,
which is identified with the confining-deconfining phase transition. The EoS
determined by Lattice QCD can be parameterized, and used in the previously
discussed hydrodynamic models.

The order of the phase transition is still being debated, however, recent
Lattice QCD calculations strongly favor a crossover at µB = 0 [61, 62]. On
the other hand, at large µB the transition is expected to be of first order.
At non-zero µB Lattice QCD calculations cannot be performed exactly, and
the location of the critical point that joins the crossover with the first order
phase transition can only be obtained approximately [56]. A situation with
very high µB and relatively low T , is expected to occur in neutron stars.

7This procedure is called a Wick rotation.
8gQGP = 7

8 · 2q,q̄ · 2spin · 3color ·nf + 2spin · 8color, where nf stands for the number of flavors.
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c2s ¼
∂p
∂ϵ ¼ ∂p=∂T

∂ϵ=∂T ¼ s
CV

: ð18Þ

The quantity Tdðϵ=T4Þ=dT can be calculated directly
from the trace anomaly and its derivative with respect to
temperature,

T
dϵ=T4

dT
¼ 3

Θμμ

T4
þ T

dΘμμ=T4

dT
: ð19Þ

These identities show that the estimates for the specific heat
and the speed of sound should be of a quality similar to
ϵ=T4 or p=T4. In Figs. 7 and 8, we show the agreement
between the bootstrap error bands for these quantities and
the estimates obtained by taking second order derivatives of
the analytic parameterization for p=T4 given in Eq. (16).
The latter are shown as dark lines inside the bootstrap
error bands.

A. Speed of Sound, the Softest Point of the EoS
and the Critical Energy Density

In Fig. 7 (top), we show the speed of sound as a function
of the temperature and compare our results with those
obtained by using the stout action [26]. We find that
the HISQ/tree and the stout results agree within the
estimated errors. The softest point of the EoS [51] at
T ≃ ð145–150Þ MeV, i.e., at the minimum of the speed of
sound, lies on the low temperature side of the crossover
region. At this point, the speed of sound is only slightly
below the corresponding HRG value. This follows from the
good agreement between HRG estimates and our lattice
QCD results for the energy density and the pressure.
Furthermore, the value c2s ≃ 0.15 is roughly half way
between zero, the value expected at a second-order phase

transition with diverging specific heat,3 and the value for
an ideal massless gas, c2s ¼ 1=3. At the high temperature
end, T ∼ 350 MeV, it reaches within 10% of the ideal
gas value.
The softest point of the EoS is of interest in the

phenomenology of heavy ion collisions as it characterizes
the temperature and energy density range in which the
expansion and cooling of matter slows down. The system
spends a longer time in this temperature range, and one
expects to observe characteristic signatures from this
regime. To facilitate a more direct comparison with
experiments, we show c2s as a function of the energy
density in physical units in Fig. 7 (bottom) using the
parametrization given in Eq. (16) to convert temperature
to energy density. At the softest point, the energy density
is only slightly above that of normal nuclear matter,
ϵnuclear ¼ 150 MeV=fm3. In the crossover region, Tc ¼
ð154% 9Þ MeV [5], the energy density varies from
180 MeV=fm3 at the lower edge to 500 MeV=fm3 at the
upper edge, slightly above the energy density inside the
proton ϵproton ¼ 450 MeV=fm3.
The QCD crossover region, thus, starts at or close to the

softest point of the EoS and the entire crossover region
corresponds to relatively small values of the energy density,
ð1.2–3.1Þϵnuclear. This value is about a factor of four smaller
than that of an ideal quark-gluon gas in this temperature
range. In the next subsection, we discuss to what extent this
has consequences for the size of fluctuations in the energy
density, i.e., the specific heat.

B. Specific Heat and Deconfinement

The intuitive characterization of deconfinement at the
QCD phase transition is that the liberation of many new
degrees of freedom give rise to a rapid increase in the
energy density, ideally with an infinite slope at Tc as in a
conventional second-order phase transition. This rapid rise
would then show up as a peak (or even a divergence) in
the specific heat, which could serve as an indicator for
the pseudo-critical (or critical) temperature. However, the
specific heat of (2þ 1)-flavor QCD, shown in Fig. 8,
exhibits a rapid increase but no peak. In the crossover
region, CV=ϵ≃ 8=T is a factor of two larger than for an
ideal quark-gluon gas; the specific heat reaches about half
of its ideal gas value, ðCV=T3Þideal ¼ 4ðϵ=T4Þideal ¼
95π2=15, and the energy density reaches only about one
quarter of its limiting high-temperature, ideal gas value.
The analysis of the quark-mass dependence of the QCD

transition temperature, the chiral condensate, and in par-
ticular, the peak in the chiral susceptibility suggest that for
physical values of the quark masses QCD is sufficiently
close to the chiral limit to be sensitive to the chiral phase

FIG. 8 (color online). Error bands showing the continuum
extrapolation of the specific heat and energy density and solid
lines obtained from the parametrization given in Eq. (16). Also
shown are the HRG estimates at low temperatures and the ideal
gas limit at high temperatures.

3In the case of QCD the specific heat and therefore also the
speed of sound stays finite even at a second-order phase transition
in the chiral limit.
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Figure 2.6.: The thermodynamics of QCD. First panel: QCD EoS at µB = 0,
figure taken from Ref. [59]. Second panel: QCD phase diagram,
based on Lattice QCD (µB � 1), and on phenomenological input for
larger chemical potential. Figure taken from Ref. [60].

Using the information presented, one can compose a phase diagram of QCD,
which we show in the second panel of Fig. 2.6. Experimentally, one can make
an attempt to probe the location of the critical point, by varying the beam
energy. Such a measurement is also known as a beam-energy scan (BES).
The system created in a nuclear collision in principle evolves along a “path”
in the phase diagram. If the center-of-mass energy is sufficient, this path
starts in the deconfined phase, after which it crosses the phase transition
and converges towards the temperature and chemical potential associated
with nuclear matter. By changing the center-of-mass energy of the nuclear
collision, one can alter this path. Certain observables have been predicted
to alter substantially, depending on the nature of the phase transition, and
studying these observables as a function of the center-of-mass energy can
shed light on the position of the critical point. Currently, there is a BES
ongoing at RHIC and recent results are reviewed in Ref. [63]. Unfortunately,
these results do not yet provide conclusive evidence for the location (or in
fact for the existence) of the critical point.

2.7. Particle Recombination

There are clear experimental signatures that imply that the primary mech-
anism of hadron production in AA collisions is different from that in pp
collisions. One of the clearest examples of such a signature is the enhanced
baryon-to-meson ratio compared to a pp reference, that is observed in central
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Fig. 4: Particle ratios as a function of pT measured in pp and the most central 0-5 % Pb–Pb collisions. Statistical
and systematic uncertainties are displayed as vertical error bars and boxes, respectively. The theoretical predictions
refer to Pb–Pb collisions, see text for references.

At LHC energies the mini-jet activity is expected to be larger than at RHIC energies, which motivated
ratio predictions in the framework of recombination models where shower partons in neighboring jets can
recombine to be an order of magnitude larger than the measurements reported here [7]. Other predictions
where recombination only occurs for soft thermal radially flowing partons are, as shown in the figure,
more consistent with the data [4]. The surprising new result is that in central Pb–Pb collisions the
(K+ +K�)/(p+ +p�) ratio also exhibits a bump at pT ⇠ 3 GeV/c. This has not been observed at RHIC
(this could be due to limitations in precision in this pT region) but is also observed in the soft coalescence
model [4]. The Kraków [33] hydrodynamical model captures the rise of both ratios quantitatively well,
while a similar model, HKM [34] that is not shown, does slightly worse. The EPOS [35] event generator
which has both hydrodynamics, but also the high pT physics and special hadronization processes for
quenched jets [36] qualitatively well describes the data but tends to overestimate the peaks. The recent
result [37] that for pT < 3 GeV/c the shape of the phi-to-pion ratio is consistent with the proton-to-pion
ratio, reported here, taken together with the model comparisons shown in Fig. 4 indicate that the peak is
mainly dominated by radial flow (the masses of the hadrons).

For higher pT (> 10 GeV/c) both particle ratios behave like those in pp, suggesting that fragmentation
dominates the hadron production. In this pT regime, the particle ratios in pp are not well described by
the pQCD calculations in [38]. It was recently shown [39] that in general the fragmentation functions
for gluons are badly constrained, leading to disagreement of up to a factor 2 with Nch spectra measured
at LHC. Furthermore it was pointed out that data with pT > 10 GeV/c, as reported here, are needed to
reduce the scale dependence that seems to be the origin of the disagreement.

Figure 5 shows the nuclear modification factor RAA as a function of pT defined as the ratio of the Pb–Pb
spectra to the Ncoll scaled pp spectra shown in Fig. 3. The RAA for the sum of kaons and protons is
included as it allows the most precise quantitative comparison to the RAA of pions. For pT < 10 GeV/c
protons appear to be less suppressed than kaons and pions, consistent with the particle ratios shown in
Fig. 4. At larger pT (> 10 GeV/c) all particle species are equally suppressed; so despite the strong energy
loss observed in the most central heavy-ion collisions, the particle composition and ratios at high pT are
similar to those in vacuum.

8

Figure 2.7.: Particle ratios, measured by the ALICE experiment [64]. The mea-
surements are compared to calculations from a hydrodynamical
model (Kraków) [67], a recombination model (Fries et al.) [68] and a
hydrodynamical model which also describes jet-medium interaction
(EPOS) [69].

AA collisions at intermediate pT. This effect is known as the baryon anomaly.
In Fig. 2.7 we show recent results from the ALICE experiment [64], however,
the effect has been observed before at RHIC, both for strange and non-strange
particles [65, 66]. Its generally thought that in the range pT < 2.0 GeV/c
collective flow is the natural explanation of the baryon anomaly, but that in
the range 2.0 < pT < 8.0 GeV/c the effect is more likely caused by a different
mechanism of hadron production becoming dominant.

In this section we discuss a relatively simple yet quite successful alternative
model for hadronization, known as recombination. The essential mechanism of
hadron production proposed in this model is that the quarks in the deconfined
system cluster together (recombine) and form hadrons. We will start by
describing the basics of this model, and then focus our attention on the
comparison of this model with experimental observations. There are several
different implementations of the recombination model, however here we will
restrict ourselves to discussing the work of Rudolph Hwa and collaborators,
as described in Refs. [70–74].
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The starting point of the recombination model is to write the meson
spectra as:

E
dNM

dpT

=

∫
dp1

p1

dp2

p2

Fq1q̄2(p1, p2)RM
q1q̄2

(p1, p2, pT), (2.14)

and the baryon spectra as:

E
dNB

dpT

=

∫
dp1

p1

dp2

p2

dp3

p3

Fq1q2q3(p1, p2, p3)RB
q1q2q3

(p1, p2, p3, pT), (2.15)

where M and B refer to meson and baryon respectively, with energy E and
transverse momentum pT, the function F denotes the probability of finding
2 (or 3) quarks at momenta p1,2(,3), and the function R, which is called
the recombination function (RF) denotes the probability of those quarks to
recombine into a meson (baryon).

In the most recent versions of the recombination model, it is assumed
that the medium consists of thermal partons which we denote by T and
shower partons which we denote by S. All partons are allowed to recombine,
regardless of their origin, i.e., in the case of a meson the distribution function
F can be written as:

F = T T + T S + SS, (2.16)

Thermal partons are assumed to be distributed according to a thermal
distribution T ∝ exp {−pT/T}. The distribution of the shower partons is
assumed to be of the form:

Sj(p) =

∫
dq

q

∑
i

F̂i(q)S
j
i (p, q), (2.17)

where Sji (p, q) denotes the probability that a jet coming from a parton of
type i and momentum q produces a parton of type j and momentum p,
and F̂i(q) is the distribution of (semi-)hard partons at the surface of the
hot QCD matter. The distribution Sji (p, q) can be determined from the
previously discussed fragmentation functions. The function F̂i(q) can be
further decomposed into an initial distribution of hard partons, convoluted
with a suitable energy loss model, which takes into account that partons need
to traverse a certain distance L through the hot QCD matter before they
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reach the surface. For a complete description of the distribution of shower
partons in heavy-ion collisions, we refer to Refs. [72, 74].
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Figure 2.8.: Pion and proton yield measured by ALICE, and compared to the
recombination prediction. Figures taken from Ref. [74]

While this formalism adequately reproduces RHIC data at√
sNN = 200 GeV, in Ref. [74] it is shown that at the LHC energy√
sNN = 2.76 TeV, shower partons become relatively more important, and

one has to also consider recombination from shower partons originating from
two separate showers to account for the observed spectra. In Fig. 2.8, the
identified pion and proton spectra from Ref. [64] are compared to the re-
combination model. It is shown that hadrons containing at least one shower
parton have a significant contribution to the entire pT range. This suggests
that the picture where low-pT hadrons are solely thermal is oversimplified.

2.8. Hadrochemistry in Jets

So far we have discussed hadron production in two different settings. We
started with hadron production in jets that were essentially produced in
a vacuum background9. Then, we observed that the hadrochemistry in
AA collisions is significantly different at intermediate pT, compared to pp
collisions. We now pose the following question: how do jets created in hot
QCD matter hadronize?

9The cleanest environment is an e+e− collision, however we assume that the main
mechanism of particle production in a pp collision is also vacuum fragmentation.
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There are several observables that show that the characteristics of the
jets produced in heavy-ion collisions are significantly different from those
created in vacuum, a phenomenon referred to as jet quenching. In Chapter
1 we already discussed several such observables, including jet-RAA, i.e., the
suppression of the jet spectrum, and a significant di-jet imbalance in the
most central collisions.

Jet energy loss in the QGP is modeled as being radiative (enhanced gluon
radiation), collisional (with softer or thermal partons) or as a combination of
both. These models successfully account for the aforementioned observables.
On the other hand, it is likely that current models of jet quenching also
cause a change in the hadronic composition of the jet [26]. In this section
we touch upon two ideas that have been proposed to quantify the change
in the jet hadrochemistry induced by the hot QCD medium. The first idea
is to introduce a modified version of the vacuum splitting functions that
were introduced in Sect. 2.6.1. The second idea is to relate the hadrons in
the jet to hadrons that contain at least one shower parton. Neither of these
ideas have been sufficiently developed at the moment to make quantitative
predictions of the outcome of the measurement that we describe in this work,
however it is likely that this is possible in the near future.

2.8.1. Modified Splitting Functions

In Sect. 2.6.1 we saw that the jet evolution was governed by the splitting
functions Pij(z, αs), which could be calculated using perturbation theory.
These calculations however are done in the QCD vacuum, and the splitting
functions are expected to take a different form in the presence of a hot QCD
medium. Several prescriptions for modifying the splitting function exist,
however, instead of elaborating on the details, we argue that a simple but
reasonable modification is sufficient to significantly alter the hadrochemistry
of a jet [26]. The suggested modification is of the type:

Pqq =
4

3

{
2(1 + fmed)

(1− z)+

− (1− z)

}
, (2.18)

where the constant fmed ≥ 0 is the only modification, i.e., fmed = 0 corre-
sponds to the vacuum case. Note that the presence of the additional factor
increases the likelihood of a splitting, which is in accord with the observed soft-
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ening of the jet spectrum10. The other splitting functions (i.e., Pqg, Pgq, Pgg)
are modified in a similar way. For the details of the calculation we refer to
the original paper and references therein.

In Fig. 2.9 we show the main results of the study. It is clear that the
simple ansatz on the medium modified splitting functions has a significant
effect on the particle composition of a jet, for a wide range of jet energies. It
should be mentioned that this study is presented as an exploratory study,
and the results should be seen as a qualitative rather than quantitative.

2.8.2. Shower-Thermal Recombination

One can also use the recombination framework discussed in Sect. 2.7 to study
the hadrochemistry in jets. In Ref. [75] a formalism is proposed to treat
two-particle correlations with a high-pT trigger particle. While the study
is limited to the pion yield associated with a high-pT trigger pion, one can
expect that similar calculations can be performed for other particle species.
In this formalism, the pion yield associated with a high-pT trigger pion is
assumed to contain at least one shower parton. Furthermore, Eq. (2.14) is
generalized to a two-particle distribution, where one of the particles is a
trigger particle, and was assumed to have a large transverse momentum, i.e.:
pT > 4 GeV/c. The main results of this study are shown in Fig. 2.10. In this
figure a good agreement is found with the data from the STAR collaboration,
however it is also clear that a much more extensive study is warranted.

2.9. Did we discover the QGP?

In this chapter we set ourselves two goals: to give a brief introduction to
the field of heavy-ion physics in general and to provide some theoretical
motivation to the study of hadron production in jet-like structures in heavy-
ion collisions. We hope that we succeeded in the latter, but the former is
incomplete without mentioning the status of the discovery of the quark-gluon
plasma (QGP).

Throughout this chapter we avoided using the term quark-gluon plasma,
instead we used “hot QCD matter”. This term only implies that QCD is the
correct theory to describe the matter created in relativistic AA collisions, and
that the matter created has a temperature and energy density exceeding the

10There seems to be no intuitive explanation why the increased splitting directly leads to
a change in jet hadrochemistry [26].
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parameter fmed can be constrained since it determines the
degree to which single inclusive hadron spectra are sup-
pressed. Here, we add the caveat that the MLLA spec-
trum becomes unreliable in the region of large momentum
fraction, ξ < 1 say, mainly since MLLA resums only loga-
rithms in 1/x and not in 1/(1−x). The use of Dh(ξ, Q =
Ejet) as a fragmentation function for leading hadron pro-
duction is thus unreliable. But the finding that in this
way a value fmed = 0.6–0.8 can account for a suppression
∼ 5 of leading hadron spectra may still provide an indi-
cation of the parameter range of fmed supported by the
data [27]. Our only reason for mentioning this argument
is to motivate a choice of fmed. It is clear that at the
LHC, experimental constraints on fmed will come mainly
from measuring the distributions shown in Fig. 3, rather
than from single inclusive hadron spectra. In the absence
of such constraints, we use for the following numerical
studies fmed = 1, which lies certainly in the right order of
magnitude and allows us to illustrate the features of this
model.

We now discuss the modifications of jet observables in-
troduced by this model. As seen in Fig. 3a, enhancing the
parton splitting by a factor (1+fmed) softens the jet multi-
plicity distributions irrespective of the jet opening angle.
Also, this softening is reflected in all identified hadron
spectra; see Fig. 3b. The mass hierarchy of the intra-jet dis-
tributions is preserved in this model: the yields of heavier
hadrons peak at larger momentum fractions and thus at
smaller ξ.

To better characterize the medium-modification of the
jet hadrochemical composition implemented in this model,
we focus in the following not on the absolute yields as in
Fig. 3, but on the ratios of identified hadron yields. Also,
we translate the ξ-dependence at fixed Ejet into a trans-
verse momentum dependence. For a single jet of energy
Ejet, the pT spectrum of identified hadronic fragments of
type h, collected within the opening angle Θc, takes the
form

[
dNh(Θc)

dpT

]

jet

= KLPHDγhK0(Mh)

×
1

pT
Dlim(ζ̄(pT,Mh, Ejet), Ejet,Θc,Λ) .

(12)

Here, γh is an additional particle species-dependent sup-
pression factor. We choose γh = 1 for pions and protons,
and γK = γs = 0.73 for kaons [55], which are the same
choices as made in Sect. 2.1. For the local parton–hadron
duality parameter, we take KLPHD = 0.5. This factor must
be slightly lower than the one used in Fig. 2b, since it deter-
mines the normalization of the identified hadron spectra,
while Fig. 2b shows the spectrum of all charged particles.
We note that for fmed = 1, K0(Mh) changes only by up
to ∼ 12% from its value in the vacuum. In the following,
we shall focus on results for a relatively small opening
angle Θc = 0.28 rad. We have tested that the dependence
of identified particle ratios within the jet on Θc is very
weak.

In our model, the hadrochemical composition of jet
fragments changes significantly in the presence of parton
energy loss (i.e. for finite fmed). Heavier hadrons become
more abundant. As seen in Fig. 4, for an Ejet = 50 GeV
jet, the kaon-to-pion ratio increases by a factor ∼ 50%, the
proton-to-pion ratio by a factor ∼ 100%. These medium-
induced changes persist over the entire transverse momen-
tum range. They decrease slightly with increasing jet en-
ergy but remain clearly visible even for Ejet = 200 GeV jets.

The significant medium-modification of jet hadrochem-
istry is remarkable, since the present model does not en-
code for medium-effects at or after hadronization. Also,
in contrast to the sketch in Fig. 1, the model does not in-
volve color transfer between projectile and target, nor does
it involve the transfer of other quantum numbers. It only
encodes an enhancement of the probability of parton split-
ting, which affects the distribution of the invariant mass of
partons at the end of the parton shower. It is one of the
main results of this paper, that enhanced parton splitting
alone without explicit medium-induced modification of the
hadronization mechanism can lead to significant changes
in the jet hadrochemical composition. In this sense, char-
acteristic deviations in jet hadrochemistry are a generic
characteristic of any parton energy loss mechanism, as long

Fig. 4. Results of the MLLA+LPHD formalism for K±/π±

and p(p̄)/π± ratios in jets with energies Ejet = 50, 100 and
200 GeV. The jet opening angle is Θc = 0.28 and medium-
induced changes are calculated for fmed = 1

Figure 2.9.: Particle ratios in jets of several energies. Figure taken from Ref. [26].
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FIG. 25: Yield per trigger in the near-side jet as functions of
pa for two values of c and three values of pt. Data points are
from Ref. [41]; see text for details.

for per-trigger yield of particles in the near-side jet av-
eraged over all ∆φ in the jet, we have divided the data
by 2 (the range of ∆φ), and include only the points at
passoc

T > 2 GeV/c in the upper panel of Fig. 25. Our curve
for pt = 4 GeV/c agrees very well with those two data
points, which are averaged over the range 3 < pt < 6
GeV/c.
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FIG. 26: (Color online) A 3D plot of Y near
ππ (pt, pa, c) for c =

0.05 (red), c = 0.35 (yellow) lowered by a factor of 10−1, and
c = 0.86 (blue) lowered by 10−2.

An overall view of Y near
ππ (pt, pa, c) as a function of both

pt and pa for three illustrative values of c is shown in
Fig. 26. For clarity’s sake we have multiplied the yield
for c = 0.35 (in yellow) by 10−1 and for c = 0.86 (in blue)
by 10−2. The increase with pt is perceptible, while the
dependence on c is negligible.

For the away-side yield we use Eq. (38) and obtain
the results shown in Fig. 27, where a factor of about 2

increase in the magnitude is seen when c is raised from
0.05 to 0.35. Thus when the nuclear overlap is smaller,
it is easier for the recoil jet to reach the away side and
to produce a particle at pb. The shape of the pb dis-
tribution is basically independent of centrality, since the
hadronization process does not change with c. Figure 28
shows a 3D plot of Y away

ππ (pt, pb, c), again with c = 0.35
(in yellow) and c = 0.86 (in blue) lowered by factors of
10−1 and 10−2, respectively. The near independence on
pt is evident, while the increase with c is only from 0.05
to 0.35, but not from 0.35 to 0.86.
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FIG. 27: Yield per trigger in the away-side jet plotted in the
same format as in Fig. 25 with pa replaced by pb.
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FIG. 28: (Color online) Same as in Fig. 26 but for
Y away

ππ (pt, pb, c).

For fixed c and varying combinations of pt and pb, we
can determine a quantitative measure of the antitrigger
bias by calculating the average ⟨βt′⟩, where t′ denotes the
distance from the hard-scattering point to the away-side
surface. In the calculation we identify βt′ with ln(k/q′)

12

4% when c changes from 0.05 to 0.35. The value of that
ratio is roughly the same as the value of Γnear(pT ) at com-
parable pT in Fig. 5, which corresponds to ⟨q/k⟩ on the
near side without the requirement of a recoil jet. Thus
the medium degrades the parton momentum from k′ to
q′ on the away side by about the same degree as from k
to q on the near side, and the degree of suppression is es-
sentially independent of centrality. The inescapable con-
clusion is then that when symmetric back-to-back hadron
momenta (pt = pb) are required, the dijets that give rise
to them are due to hard partons created very near the
surface on both sides so that they suffer minimal energy
loss as they propagate in opposite directions through the
rim of the nuclear medium. That means they must be
tangential jets. This is a remarkable result that emerges
from the calculation, and is consistent with the dijet+1
correlation data [39] in which no ridge is found and whose

N
2/3
part dependence suggests that they are generated near

the surface, i.e., tangential jets.
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FIG. 23: The ratio ⟨q′⟩/⟨k′⟩ at the symmetry point p = pt =
pb for four values of centrality.

VII. YIELDS AT UNEQUAL TRIGGER AND
ASSOCIATED PARTICLE MOMENTA

Having studied in the previous section on how the yield
at the symmetry point p = pt = pb behaves at differ-
ent centralities, we can finally investigate the properties
at asymmetric points and appreciate the significance of
small variations. We first consider the per-trigger yield
of an associated particle on the near side at centrality
c. The basic formula is as in Eq. (21), except that both
the numerator and denominator must be averaged over
P (ξ, c) separately, similar to Eqs. (36)-(38). The cen-
trality dependence of the result is shown in Fig. 24 for
pt = 4 and 6 GeV/c and pa = 2 and 4 GeV/c. The near-
side yield is nearly constant in c, and decreases with pa

for a fixed pt, but increases with pt for a fixed pa. The
solid lines in that figure represent the integrated results

for 2 < pa < 4 GeV/c. The data in Fig. 24 are for

3 < ptrig
T < 4 GeV/c and passoc

T > 2 GeV/c [40]. The
agreement between our result and the data is remark-
ably good both in magnitude and in c dependence. The
magnitude of the integrated yield is sensitively dependent
on the lower limit of integration in pa, so other data on
centrality dependence with different lower limits, such
as in [18, 41], cannot be compared with the black line
in Fig. 24, although the rough insensitivity to Npart is
seen irrespective of the cut in passoc

T . The approximate
independence on centrality is a manifestation of the trig-
ger bias, as we have already noted in Sec. 4 that the
hard-scattering point is in a layer roughly 13% of L in-
side the near-side surface and is insensitive to how large
the main body of the medium is. However, the thermal
and shower partons have different dependencies on c and
the decrease of TS recombination with increasing c can-
cels the increase of SS recombination with c so that their
sum results in approximate independence on c.
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FIG. 24: (Color online) Yield per trigger in the near-side jet
as functions of centrality c for pt = 4 GeV/c in black lines
and pt = 6 GeV/c in red line. Dash-dotted line is for pa = 2
GeV/c and dashed line for pa = 4 GeV/c. The solid lines
are for the yields integrated over pa from 2 to 4 GeV/c. The

data are from Ref. [40] for 3 < ptrig
T < 4 GeV/c and passoc

T > 2
GeV/c.

To see the dependence on pa for fixed pt we show the
yield in Fig. 25 for two representative values of c at 0.05
and 0.35. These distributions are very similar to Y near

ππ

in Fig. 3, which is the yield for fixed βL = 2.9. Thus the
result is the same whether we fix c or βL. The inverse
slope Ta is therefore essentially what is shown in Fig. 4
already. In Fig. 25 we have included two data points
from Ref. [41], where recent results on near-side correla-
tions have been reported. The data for central Au+Au
collisions (0-10%) at 200 GeV are given for integrated jet

yield per trigger (for −1 < ∆φ < 1) with 3 < ptrig
T < 6

GeV/c and 1.5 < passoc
T < ptrig

T . Since our calculation is

Figure 2.10.: The pion yield associated with a high-pT trigger pion. In this figure
c refers to centrality. Figures taken from Ref. [75].

critical values of the deconfining phase transition predicted by Lattice QCD.
The latter is strongly supported by measurements of dN/dy at RHIC and
LHC, combined with simple kinematic arguments presented in Sect. 2.3.1.

There is also strong evidence that the effective degrees of freedom of the
matter created in relativistic AA collisions are not hadronic. The success of
relativistic fluid dynamics in describing soft observables, using an equation
of state (EoS) from Lattice QCD, suggests that the number of degrees of
freedom is much larger than what one would expect from a hadron gas. Also,
the success of the recombination picture points to the existence of deconfined
partons in the produced matter. There are many more arguments, and for a
comprehensive overview see for example Refs. [28, 76].

In order to discuss whether a QGP was created at RHIC or LHC we first
need to establish what we exactly mean by QGP. Soon after the discovery of
asymptotic freedom, physicists started exploring the possibility that under
certain thermodynamic conditions quarks and gluons could exist as a gas
of weakly interacting particles. It was in this context that the name QGP
was first conceived in 1975 by Shuryak [77]. On the other hand, subsequent
experimental observations at RHIC showed evidence for strong collective
behavior of the hot QCD matter. This can only be explained when there is
significant interaction between the relevant degrees of freedom.

For this reason, the hot QCD matter is much better described by a fluid
model than by a weakly interacting gas. Comparisons of fluid models with
the data, in fact suggest that the fluid has a very low viscosity, possibly close
to the value that was recently found to be the lowest possible viscosity in
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AdS/CFT [78]. Some authors11 therefore prefer to use the term sQGP, where
the s refers to “strong”, to make a clear distinction with the originally proposed
weakly interacting QGP, while others caution against the introduction of
imprecise new terminology [79].

The consensus is that the data at RHIC and LHC cannot be explained
under the assumption that the relevant degrees of freedom are hadrons. On
the other hand, the working definition of the QGP usually also includes the
requirement of thermalization, which has not been experimentally established.
While hydrodynamic calculations seem to favor an early thermalization time
of τth ≈ 1 fm/c, this cannot be directly measured. Furthermore, Lattice QCD
also predicts that the deconfinement phase transition should occur almost
simultaneously with the restoration of chiral symmetry, of which there is also
no experimental evidence to date.

In conclusion, the current experimental evidence is sufficient to claim that
a previously unknown type of matter has has been produced in relativistic
heavy-ion collisions. Some important questions regarding the details of this
matter are however still unanswered, and warrant further investigation.

11Most notably Shuryak himself.



Chapter 3.

Experimental Setup

The ALICE detector is one of the four large detectors at the Large Hadron
Collider (LHC) at CERN. It is a general purpose detector, with a strong
focus on measurements aimed at elucidating the nature of the hot QCD
matter that is expected to be created in central heavy-ion collisions. For
this reason, two of the most important design criteria were: the ability to
cope with the large track density dN/dy ∼ 8000 expected to be produced
at the most central Pb–Pb collisions, and good PID capabilities at low to
intermediate transverse momentum.

The rest of this chapter is built up as follows: after a short overview of the
LHC, we proceed by describing the ALICE detector, emphasizing the parts
that are most relevant for this work. We then finalize with a description of
the techniques used to reconstruct events and tracks from the raw data.

3.1. The Large Hadron Collider (LHC)

The Large Hadron Collider is a particle accelerator at CERN, close to Geneva.
It is built in a nearly circular tunnel with a circumference of approximately
27 km, and it is was designed to create proton beams with an energy of
7 TeV, and lead (Pb) ion beams with an energy of 2.76 TeV per nucleon.
As of 2014, the following collision systems were produced at the LHC: pp
collisions at

√
s = 2.76, 7, and 8 TeV, p-Pb collisions at

√
sNN = 5.02 TeV,

and Pb–Pb collisions at
√
sNN = 2.76 TeV.

In Fig. 3.1 a schematic overview is shown of the LHC complex. Before
particles enter the LHC, they are pre-accelerated by several other machines
at the LHC complex. The first acceleration stage for protons happens at a

37
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Figure 3.1.: Schematic overview of the LHC complex [80].

linear accelerator, called LINAC2, which injects them into the booster ring
at an energy of 50 MeV. The booster increases the beam energy to 1.4 GeV,
after which the protons are transferred to the Proton Synchrotron (PS),
and subsequently the Super Proton Synchrotron (SPS). From the SPS, the
protons are sent to the LHC at a beam energy of 450 GeV, and they are
accelerated to the desired beam energy, with a maximum of 7 TeV. For a
lead-ion beam the initial stages of acceleration are different from the proton
beam. Lead ions are first injected into the Low Energy Ion Ring (LEIR)
by LINAC3. From LEIR they are injected into the PS, and the rest of the
sequence is the same as for protons.

3.2. The ALICE Detector

The ALICE detector consists of a large number of smaller sub-detectors, each
being optimized for one or more specific task(s). The main tasks that need
to be performed by these sub-detectors are:
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• Triggering - Determining whether there actually was a collision1, and
whether this collision has (one of) the properties that we are currently
interested in. When a trigger fires, the rest of the ALICE detector
is read out, and an event is recorded. There are triggers that only
fire when a rare event occurs, for example the measurement of a jet
with very large energy. In this analysis, however, we only make use of
the so-called minimum-bias trigger (MB), which selects events with a
minimal bias on the final state2. Triggering is discussed in more detail
in Sect. 3.3.

• Tracking - Directly after recording, an event is nothing more than
a collection of pixels and analog signals, measured by the various
sub-detectors. Fitting algorithms are applied in order to reconstruct
the precise location and time of the collision and to determine the
momentum and pseudorapidity of the particles that were produced.
These algorithms become more reliable as the number of measurements
made along each particles track increases. Detectors that provide input
to these algorithms are called tracking detectors. We come back to the
methods used in primary vertex and track reconstruction in Sect. 3.4.

• Event Characterization - Certain characteristics of the event can
be immediately deduced from the reconstructed tracks. Other charac-
teristics, such as event centrality and the direction of the event plane
(see Sect. 3.4) can be determined with greater accuracy using dedicated
detectors.

• Particle Identification (PID) - Finally, there are several sub-detec-
tors which perform measurements that are sensitive to the identity of a
particle, the so-called PID detectors. The PID detectors of ALICE are
designed to complement one another, so that the combined information
of these detectors allows to distinguish between a number of different
particle species in a wide range of momenta. To achieve this goal, the
PID detectors mostly rely on different techniques, or are strategically
located relative to the primary interaction point. The two detectors used

1There are also triggers which are designed to fire when a cosmic ray has been detected,
and have therefore nothing to do with the occurrence of a collision. These triggers are,
however, not directly important to us.

2The efficiency of the MB trigger is not 100% for collisions where only a few particles
are produced.
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in this analysis for PID are the Time Projection Chamber (Sect. 3.2.3)
and the Time of Flight Detector (Sect. 3.2.4).

We focus in this section on how these main tasks are accomplished by the
various sub-detectors of ALICE. The scope of this discussion is limited to
the sub-detectors that were most important for our analysis, and for a more
comprehensive description of the ALICE detector, its design specifications
and its performance we refer to Refs. [81–84].

3.2.1. Overview

In Fig. 3.2, a schematic overview of the ALICE detector is shown, labeling
all the sub-detectors. The largest structure in the ALICE detector is the
L3 solenoid magnet. It provides a nearly homogeneous magnetic field of
B = 0.5 T parallel to the beam pipe, causing charged particles to travel on
curved paths with radius R = p/(qB). The sub-detectors enclosed within the
solenoid magnet are often referred to as the central barrel detectors. Most
detectors that are relevant for our analysis are central barrel detectors.

3.2.2. The Inner Tracking System (ITS)

The detector that is closest to the interaction point is the Inner Tracking
System (ITS). It consists of six layers, and makes use of three different
detection technologies. The inner- and outermost layers are located at
r = 3.9 cm and r = 43.0 cm respectively, and it has a pseudorapidity
coverage of |η| < 0.9. The two innermost layers are the Silicon Pixel Detector
(SPD). The SPD is essential for determining the exact location of the collision,
i.e., the primary vertex (see Sect. 3.4.2). As is is discussed in Sect. 3.3, the
SPD is also used as trigger detector for certain MB triggers. The next two
layers of the ITS are the Silicon Drift Detector (SDD), and the outer two
layers are the Silicon Strip Detector (SSD). The SDD and SSD are mainly
used for tracking, but also for particle identification of very low momentum
(p < 200 MeV/c) particles.

3.2.3. The Time Projection Chamber (TPC)

Surrounding the ITS is the Time Projection Chamber (TPC), which is
the main tracking detector of the ALICE experiment. The TPC is a large
cylindrical barrel with an inner radius of 85 cm, and an outer radius of 250 cm.
It has a volume of 90 m3, and is filled with Ne-CO2 gas. In the middle of the
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TPC there is a central membrane, which is held at a potential difference of
∆V ∼ 100 kV compared to the end plates. The working principle of the TPC
is that charged particles which traverse the gas ionize the molecules they
encounter. The freed electrons then drift to the end plates due to the large
electric field in the TPC, thereby creating a projection of the trajectory on
the end plates. An end plate consists of 18 different readout chambers, each
covering an angular range of 20 degrees, and having 159 rows perpendicular
to the radial direction. For particles produced within the pseudorapidity
window of |η| < 0.9, the TPC can therefore record up to 159 points along its
track. Due to this large number, the TPC is ideally suited to measure the
momentum and pseudorapidity of the particles, as well as disentangle tracks
in high-density events. In principle, the TPC can also track particles in a
pseudorapidity interval 0.9 < |η| < 1.5, however, with a decreased resolution.
Since the TPC has a significant readout time, it is less suited for coping with
very high luminosities.

ALI-PERF-60751

2013/10/13

Figure 3.3.: Specific energy loss measurement with the ALICE TPC detector.
The expected energy loss for the different particle species is shown.

The TPC can also be used for particle identification, by measuring a
particle’s specific energy loss3. The specific energy loss of a charged particle

3Or ionization energy loss.



Experimental Setup 43

is defined as the energy that it loses per unit path-length (dE/dx) due
to electromagnetic interaction with the material it traverses. This can be
determined by the TPC, since it is directly related to the number of electrons
that are freed, and eventually drift to the end-plates. The TPC can perform
up to 159 specific energy loss measurements per track. These measurements
are not symmetrically distributed around the true value of the specific energy
loss, instead the distribution exhibits a long Landau tail towards large energy
loss. This is due to a small but significant probability that a particle transfers
a lot of energy in a collision with one of the gas molecules. In practice, the
specific energy loss is therefore estimated by a truncated mean, ignoring the
highest values.

The measured specific energy loss can then be compared to the expected
specific energy loss, which, for a heavy particle (much heavier than an
electron), can be calculated using the Bethe-Bloch formula. The Bethe-Bloch
formula only depends on material properties of the gas in the TPC, and on
the velocity β = v/c of the particle:〈dE

dx

〉
∝ 1

β2

[
ln

(
2mec

2β2γ2

I

)
− β2

2
− δ

2

]
, (3.1)

where I is the mean excitation energy of the gas, me is the mass of the
electron, and δ is a factor taking into account density effects [85, 86]. As
the specific energy loss depends only on velocity, it can be combined with a
momentum measurement, to estimate a particle’s mass (mc2 = pc/(βγ)) and
hence its identity.

In Fig. 3.3 we show an ALICE measurement of the specific energy loss as a
function of momentum, with parameterizations of the expected energy loss of
the most abundant particle species superimposed4. At small velocities (β � 1)
Eq. (3.1) falls off as ∝ β−2, whereas at large velocities it rises logarithmically.
This causes the expected energy loss curves for different particle species to
intersect, meaning that at specific momenta the separation power for two
species drops to zero. For these momenta, the TPC measurement needs to
be complemented with information from a different PID detector to create
sufficient separation power. For large momenta (p > 5 GeV/c), the separation
between the most abundant hadrons (π, K, p) is small, but nearly constant.
This makes the TPC the most important detector for PID at large momenta.

4Due to several experimental complications, the actual signal of the TPC is not exactly
proportional to the expected energy loss, see for example Ref. [87].
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The resolution of the dE/dx measurement depends mainly on the number
of freed electrons that reach each TPC cluster. For this reason an increased
gas pressure will improve the TPC’s resolution, due to the increased number
of gas molecules encountered by the particle. For the same reason, tracks
which traverse more gas (large η) also have a somewhat better resolution.
We discuss the PID resolution of the TPC in some more detail in Sect. 4.1.

3.2.4. The Time Of Flight (TOF) Detector

Surrounding the Transition Radiation Detector (TRD), which does not play
a major role in our analysis, is the Time Of Flight detector (TOF). The
TOF detector is a cylindrical Multi-gap Resistive-Plate Chamber (MRPC),
located at a radius of 370 < r < 399 cm, covering a pseudorapidity range of
|η| < 0.9. It has a large number of readout pads (∼ 150, 000), each measuring
2.5× 3.5 cm, so that even high-density events have a reasonable occupancy
rate of about 14% [83, 86]. Its main purpose is to endow TPC tracks with a
time of flight measurement. The integrated path length of a track and the
time of flight can be used in combination with a momentum measurement to
determine the mass of the particle.
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Figure 3.4.: Particle velocity measurement with the ALICE TOF detector. The
pion, kaon, and proton bands are indicated.
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Fig. 3.4 shows a velocity measurement, where the integrated path length
was used as well as the time of flight measurement. Notice that a TOF mea-
surement can only be performed for particles with momenta p & 300 MeV/c,
as particles with a smaller momentum do not reach the TOF detector due
to their small radius of curvature. For momenta p ≤ 2.5 GeV/c, the TOF
separation power is sufficient to separate kaons and pions using a fitting
procedure. Protons and kaons can be separated in the same way, up to about
p ≤ 4.0 GeV/c. Note that these momentum ranges cover the crossing points
of the Bethe-Bloch curves of the TPC in Fig. 3.3, so that an effective strategy
would be to combine both measurements.

There are a significant number of measurements that do not fall on the
bands. These measurements consist mostly of mismatched tracks, i.e., tracks
where the incorrect hit in the TOF detector was associated with a TPC track,
causing a faulty velocity measurement.

A TOF measurement consists of two independent time measurements,
i.e., the time of the interaction tint and the arrival time tarr. To measure tint,
ALICE is equipped with a dedicated T0 detector, consisting of two Cherenkov
rings at forward rapidities, one on each side of the interaction point [88]. An
alternative way to measure tint is to consider one TOF measurement j, and
perform a minimization procedure, using the following χ2:

χ2(tint;m1,m2, ...) =
∑

i∈tracks\j

((tarr,i − tint)−∆texp(mi))
2

σ2
arr + σ2

texp

, (3.2)

where i sums over all tracks except track j, and every particle is assumed to
be a pion, kaon, or a proton. For physics analyses, both tint measurements
are taken into account [89].

The resolution of the total TOF measurement, i.e. σ∆t, depends both on
the uncertainty of the interaction time and arrival time measurements, i.e.:

σ2
∆t = σ2

tint
+ σ2

tarr . (3.3)

The uncertainty of the interaction time measurement decreases rapidly as
more tracks are used in the measurement (σtint ∼ 1/

√
n) [89]. High density

events, such as (semi-)central Pb–Pb collisions, therefore have a significantly
smaller uncertainty of the TOF measurement compared to pp collisions,
where an event often has only a few reconstructed tracks.

The uncertainty of the arrival time is to a large extent hardware related.
The contribution from the hardware to the uncertainty is ∼ 80 ps, and is
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largely independent of the details of the collision system. On top of that,
there is a contribution from the uncertainty of the energy that a particle loses
before reaching the TOF detector. For reasons that are discussed in Sect. 4.2
there is some dependence of the arrival time resolution on the particle’s
velocity and pseudorapidity.

3.2.5. The V0 detectors

Surrounding the beam pipe, at a distance of z = 3.4 m, and z = −0.9 m from
the nominal interaction point there are two scintillator counters installed,
called the V0A and V0C. As is discussed in Sect. 3.4.1, one of the main
functions of the V0 detectors is to determine the centrality of an event. In
case of Pb–Pb collisions, both detectors are used, while for p-Pb only the
V0A is used for this purpose. The V0 detectors can also be used to determine
the direction of the impact parameter, also referred to as the event plane
angle. Finally, they are used for triggering, and for distinguishing beam-beam
interactions from beam-gas interactions.

3.3. Triggering

During data taking, the ALICE detector is programmed to respond to one
or more trigger conditions. Every 25 ns the Central Trigger Processor (CTP)
of ALICE decides whether (one of) the trigger conditions are met, based on
the signals it receives from the various trigger detectors. After data taking,
the recorded events are analyzed further, and additional filtering is applied
in order to remove trigger noise and beam-gas interactions. In this work,
only the minimum bias (MB) trigger is used. The definition of the MB
trigger depends on the collision system and the luminosity. In general, when
an interaction is expected to produce a small number of particles, or the
luminosity is low, a more sensitive trigger definition is used.

The MB trigger for pp collisions is the most sensitive MB trigger, it fires
when there is a signal in either V0 detector or in one of the layers in the SPD.
For p-Pb collisions, it is defined as a signal in both V0 detectors. During the
Pb–Pb data taking of 2010 three different MB hardware triggers were used,
namely:

• A signal in both V0 detectors.

• Two or more signals in the SPD, and a signal in either V0 detector.
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• Two or more signals in the SPD, and a signal in both V0 detectors.

depending on the run period.
For high-multiplicity events, the efficiency of the MB trigger is practically

100%. This holds for all but the most peripheral p-Pb and Pb–Pb events.
The track multiplicity in pp events on the other hand can be very low,
thus significantly reducing the trigger efficiency. Furthermore, different MB
trigger definitions typically have a different sensitivity for non-diffractive
(ND), single diffractive (SD), and double diffractive events, which together
make up the set of inelastic events. For a comprehensive overview of the MB
trigger efficiencies in pp collisions, see Ref. [90].

3.4. Offline Analysis

Most of the processing of the raw data requires significant computing re-
sources, and is therefore postponed until after the data-taking has been
completed. Here we briefly discuss the data processing steps that are essen-
tial for our work, namely, the determination of the collision centrality and
the reconstruction of the collision vertex and the tracks.

3.4.1. Centrality Determination

There are several detectors that can be used to determine the centrality of a
collision. In this work we use the centrality as it is determined by the V0
detectors, while the other centrality measurements are only used to filter out
faulty V0 measurements. As is shown in Fig. 3.5, a more central collision
corresponds to a larger amplitude in the V0 scintillators. By fitting the
distribution of the V0 amplitude with a Glauber model (see Sect. 2.3), one
can relate the centrality percentile to the value of the impact parameter. The
exact procedure is described in great detail in Ref. [31].

3.4.2. Track and Event Reconstruction

The first step in the reconstruction of an event is to estimate the location of
the primary vertex. This is done by extrapolating tracklets from the SPD5,
i.e., lines connecting two points from the SPD, and locating the position
where most lines coincide.

5The term “tracklets” is not reserved exclusively for the SPD, and more generally refers
to tracks consisting of a small number of points.
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Centrality determination with ALICE ALICE Collaboration

Fig. 9: Purity of the 3 online interaction triggers (2-out-of-3, V0AND, 3-out-of-3) and other event se-
lections used for Pb–Pb collisions as a function of the VZERO amplitude calculated with HIJING,
STARLIGHT and QED simulations. The dashed line indicates 90% of the hadronic cross section.

EMD events. However their origin can be also attributed to asymmetric Pb–Pb events, as well
as a pile up of an EMD and a hadronic collision. Since this contamination can not be easily
removed, analyses that use peripheral classes like 80–90% assign an additional 6% systematic
uncertainty on the event selection to take into account the possible contamination from EMD.

Fig. 10: Distribution of the sum of amplitudes in the VZERO scintillators. The distribution is fitted with
the NBD-Glauber fit (explained in the text) shown as a line. The centrality classes used in the analysis
are indicated in the figure. The inset shows a zoom of the most peripheral region.

4.2 Method 2: Fitting the multiplicity distribution

Another independent way to define the AP uses a phenomenological approach based on the
Glauber Monte Carlo to fit the experimental multiplicity distribution. The Glauber Monte Carlo
uses the assumptions mentioned above plus a convolution of a model for particle production,

15

Figure 3.5.: Centrality determination in ALICE, using the V0 scintillators. Figure
taken from Ref. [31]

After that, tracks are reconstructed from the points in the ITS and the
TPC, using an inward-outward-inward procedure [91] based on a Kalman
filter [92]. After the final inward fit has been performed, the momentum and
pseudorapidity (curvature, position) of the track are determined. Using the
fully reconstructed tracks, an improved measurement of the primary vertex
is made. Using the precise location of the interaction vertex, the distance
of closest approach (DCA) of all (extrapolated) tracks can be determined.
This information can be used to filter out tracks produced in weak decays or
tracks originating from material interactions, as these tracks typically have a
large DCA.

The inward-outward-inward reconstruction procedure was designed to
be suitable for the large track density environment of a central Pb–Pb
collision. Efficiency studies indeed show no significant difference in track
finding efficiency between pp and central Pb–Pb events [84].
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Particle Identification

In this chapter we develop a PID method based on the combined signal
of the TOF and TPC detectors. Both the TOF and TPC detectors have
been used individually to identify charged particles, however, using only
one of these detector limits the pT-range over which identification can be
done. While a fit of the TOF signal can separate protons from pions and
kaons up to 4.5 GeV/c, separating pions from kaons becomes difficult already
at 3.0 GeV/c (see Sect. 3.2.4). The TPC detector on the other hand, can
separate pions from kaons and pions from protons much better than kaons
from protons (see Sect. 3.2.3).

As shown in Fig. 4.1, the signals of the TOF and TPC detector complement
one another and the combined signal can be used to identify particles with
a greater separation power and over a larger pT range compared to when a
single detector is used. To get the most accurate results and to be mostly
independent of calibration issues, we chose to fit two dimensional distributions
in (TOF, TPC) instead of using a cut on the detector signal. From these
figures it is clear that at low pT the TPC alone cannot distinguish pions from
kaons, while the TOF provides good separation. At higher pT, the TOF of
pions and kaons becomes comparable, while the TPC has good separation.

There are a number of difficulties that need to be overcome when identi-
fying particles through a fitting procedure. First of all, the expected distance
between the peaks in the PID signal typically depends on the kinematic
variables (pT and η). This means that the (TOF, TPC) distributions should
only contain tracks selected from a narrow window in those variables, to avoid
“smearing” of the peaks. Furthermore, the resolution of both the TOF and
TPC detectors depends on pT and η (see Sects. 4.1 and 4.2). Finally, since
we use two PID detectors simultaneously, the dimension of the parameter
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Figure 4.1.: Examples of combined distributions of the time of flight ∆t, and
energy-loss dE/dx in the TPC, relative to the expected time of flight
and energy loss for pions. The data is collected from Pb–Pb collisions,
and the kinematical cuts on the tracks are: 0.0 < η < 0.1 (both
panels), 1.4 < pT < 1.5 GeV/c (left panel) and 2.5 < pT < 2.6 GeV/c
(right panel). The fit region is indicated with a black rectangle.

space becomes quite large. In our fit function, each peak in the (TOF, TPC)
distribution is described by a function of six parameters, leading to parameter
space of dimension six times the number of included peaks.

The aim in this chapter is to outline the procedure of obtaining identified
particle yields in the interval 1.0 < pT < 4.0 GeV/c, using both TOF and
TPC information. The methods developed in this chapter provide the basis
for the method described in Chapter 5, where we describe a procedure for
identifying the particle yield associated with a high-pT trigger particle. We
also use the fit procedure described in this chapter to obtain identified spectra
which are corrected for detector inefficiencies. These spectra are compatible
with published spectra from ALICE.

This chapter is set up as follows: in Sect. 4.1 and Sect. 4.2 we introduce
the model for the TPC and TOF response. After that, in Sect. 4.3 we discuss
the model used to fit the combined (TOF, TPC) response, as well as the
procedure used to fit this model to the data. We then continue by discussing
the systematic uncertainties of this procedure in Sect. 4.4, and in Sect. 4.5 we
show examples of fit results. In Sect. 4.6 we discuss a method to determine
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the fraction of secondary particles and in Sect. 4.7 we conclude with some
final remarks.

4.1. TPC Detector Response

As mentioned in Sect. 3.2.3, the final dE/dx measurement for a track is
a truncated mean of the individual measurements from the TPC clusters
associated with the track. Provided that the tracks with a small number of
associated TPC clusters are not used, these final dE/dx measurements are
nearly Gaussian-distributed. In this work we only use tracks with at least
60 TPC clusters. This is sufficient to suppress the Landau-tail of the dE/dx
distribution (see Sect. 3.2.3), but decreases the efficiency by 1− 2%.

There are several factors that determine the resolution of the final dE/dx
measurement. First of all, the resolution scales with the inverse square root of
the number of TPC clusters that were used to calculate the truncated mean.
This is another important reason for the requirement of a minimum number
of TPC clusters. In principle the minimum requirement of 60 clusters still
leaves a track sample with a range of TPC resolutions, however, in practice
the vast majority of tracks have a very large number of TPC clusters1.

Furthermore, particles that traverse the TPC gas ionize the gas molecules,
and the signal in each TPC cluster is proportional to the number of freed
electrons that is detected. Therefore, the absolute uncertainty on the single
cluster measurement grows as the square root of the number of observed
electrons, but the relative uncertainty decreases. The number of electrons
that are liberated by a particle is determined by the number of scattering
centers it encounters on its path. The resolving power of the TPC can
therefore be increased by increasing the pressure of the gas.

Note also that due to an increase in path length, a particle at large pseu-
dorapidity liberates more electrons than a particle at mid-rapidity. Moreover,
the electrons freed by a particle at large pseudorapidity have on average a
shorter drift path, which suppresses potential loss of electrons due to diffusion
or absorption by ions. These effects lead to a somewhat better resolution
(and separation power) at large pseudorapidity.

In the rest of this work, we only use the actual signal in the TPC minus the
expected signal for a certain particle species, which can be calculated using
the Bethe-Bloch formula. It is therefore convenient to define the following

1Performing the analysis on several subsets of the data, each containing tracks with a
similar number of TPC clusters, did not significantly improve the results.
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variable:

Xi ≡
dE

dx
−
〈
dE

dx

〉
i

, (4.1)

where the 〈·〉i denotes the expected value, given the reconstructed momentum
and assuming particle species i ∈ {π,K, p}. Using this variable Xi, we can
write the response of the TPC as follows:

dNj

dXi

=
Ntot,j√
2πσj|i

exp

{
−(Xi − µj|i)2

2σ2
j|i

}
, (4.2)

where Ntot,j is the total number of particles of species j, and µj|i and σj|i
stand for the position and width of the peak of species j in a plot with mass
assumption i. Note that if the detector calibration is perfect, then µi|i = 0,
however, as we show Sect. 4.5, some systematic deviations are observed. For
brevity, we omitted explicitly writing the (pT, η) dependence of µ and σ,
however for the various reasons mentioned in this section, this dependence
cannot be neglected.

To obtain the number of particles in an interval a < Xi < b, we simply
integrate Eq. (4.2), i.e.:

Nj|ba =
Ntot,j

2

[
erf

{
b− µj|i√

2σj|i

}
− erf

{
a− µj|i√

2σj|i

}]
. (4.3)

4.2. TOF Detector Response

In Sect. 3.2.4 we already mentioned that part of the TOF resolution is due
to hardware effects and due to uncertainty on the amount of energy lost by
a particle before reaching the TOF detector. In this section we discuss these
points further. We also introduce the model that is commonly used for the
TOF detector response, namely, a Gaussian distribution, smoothly joined
with an exponential tail towards higher TOF2.

Just as for the TPC, the signal strength measured by a MRPC depends on
the amount of electrons that are freed when a particle traverses the detector.
A particle at large pseudorapidity has a longer path through the hardware
of the TOF detector, and therefore frees on average more electrons than a

2The cause of this deviation from a perfect Gaussian is unfortunately not well understood.
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particle at mid-rapidity. The TOF detector records a “hit” whenever the
measured signal strength reaches a certain threshold, and for stronger signals
the exact time that the threshold is reached can be determined with higher
accuracy3. This effect causes a small improvement in the TOF resolution at
large pseudorapidity.

The uncertainty on the amount of energy lost by a particle before arriving
at the TOF detector is related to the amount of energy loss itself. According
to the Bethe-Bloch formula (Eq. (3.1)), the amount of energy loss depends on
the particle’s velocity (or mass and momentum) and on the properties of the
material that it traverses. A substantial part of the energy that the particle
loses is due to traversing the TPC drift gas. Fig. 3.3 therefore implies that in
the range 1.0 < pT < 4.0 GeV/c the TOF resolution will be roughly similar
for pions and kaons, but somewhat worse for protons towards the lower end
of that range.

As in the case of the TPC, it is convenient to define the following variable
for the TOF measurement:

Ti ≡ ∆t− 〈∆t〉i. (4.4)

The TOF signal for particle species j under mass assumption i is modeled
with a piecewise function consisting of a Gaussian, smoothly joined with an
exponential tail in the direction of positive Ti, i.e.:

dNj

dTi
=
Ntot,j Aj|i√

2πσj|i

 exp

{
− (Ti−µj|i)2

2σ2
j|i

}
Ti < κj|i + µj|i

exp
{
−λj|i(Ti − µj|i) +Bj|i

}
Ti > κj|i + µj|i,

(4.5)

where µj|i and σj|i have similar meanings as before, λj|i is the slope of the
exponential tail, κj|i is the place relative to µj|i where the Gaussian is joined
to the exponential. The parameter Aj|i corrects for the exponential having a
larger integral than the Gaussian, consequently we have that Aj|i ≤ 1.

Note that the exponent introduces three extra parameters on top of the
parameters from the Gaussian, however we can solve for two of the parameters
in terms of the others by using the continuity and smoothness condition. The
continuity conditions can be written as:

κ = λσ2, B = λ2σ2/2. (4.6)

3The accuracy is related to the first time derivative of the signal as it reaches the
threshold.
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The two possibilities we have investigated were fixing λ and B (indices
suppressed), or κ and B. We noted that the latter resulted in somewhat
faster convergence in the minimization procedure, so from now on we only
use this choice.

The number of particles in an interval a < Ti < b integral of Eq. (4.5) is
given by:

Nj|ba = Ntot,jA



1
2

[
erf
{
b−µ√

2σ

}
− erf

{
a−µ√

2σ

}]
a, b < µ+ κ

1
2

[
erf
{

κ√
2σ

}
− erf

{
a−µ√
σ

}]
a < µ+ κ, b > µ+ κ

+ eB√
2πλσ

(
e−λκ − e−λ(b−µ)

)
eB√
2πλσ

(
e−λ(a−µ) − e−λ(b−µ)

)
a, b > µ+ κ.

(4.7)

From this equation we find that the total normalization of the probability
distribution function (PDF) is given by:

A =
2

erf
{

κ√
2σ

}
+ 2√

2πλσ
e−B + 1

. (4.8)

Note that as expected
lim
κ→∞

A = 1.

The PDF in Eq. (4.5) only describes the tracks that were matched with
the correct TOF hit. The two other possibilities are that a track is not
matched with a TOF hit at all, or that a track was matched with an incorrect
TOF hit, either with a hit produced by another particle or with a fake hit
due to detector noise. The latter is commonly referred to as a mismatch.
The probability for a mismatch typically gets larger in a high-track density
environment, such as a central Pb–Pb collision. In our analysis, tracks
without a TOF hit are not selected, however, tracks with a mismatched TOF
signal cause a background that needs to be disentangled from the signal.

In Fig. 4.2, we show a typical example of a TOF signal distribution. The
logarithmic scale on the vertical axis is used to emphasize the presence of the
mismatched background. Note that the fraction of mismatched tracks is much
larger in central Pb–Pb collisions than in pp collisions. To correctly subtract
mismatches in the fits, we need a suitable model for it. Unfortunately, it is
not trivial to approximate it with a simple analytic function, and template
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Figure 4.2.: Examples of the TOF response in Pb–Pb and pp. The kinematical
cuts on the tracks are: 0.0 < η < 0.1 and 1.4 < pT < 1.5 GeV/c
(both panels). The gray line is a template which roughly matches
the expected shape of the TOF mismatch band.

histograms, generated using Monte Carlo events and a model of the ALICE
detector in GEANT3 [93], do not describe its shape correctly.

An alternative is to use a data-driven method to generate a template
histogram. We now briefly describe this method, which, at the moment, is
the standard way of describing the TOF mismatches in physics analyses from
the ALICE collaboration [94]. In principle, only those TOF hits that are
matched to a reconstructed track are stored for further analysis. During
data taking however, a time distribution is created, using information from
all TOF hits, including the ones that are not matched4. To make this a
sensible distribution, all TOF hits are corrected for the distance between the
interaction point and the precise location of the TOF cluster involved5. One
can generate a mismatch template by considering all reconstructed tracks,
and assigning an arbitrary TOF measurement to them, which is randomly
taken from the time distribution of all TOF hits. This procedure turns out
to describe the mismatched background reasonably well, especially at larger
momenta.

4This distribution was originally intended to be used for an interaction time estimate
based on the TOF hits.

5Unfortunately all particles are assumed to travel on straight paths, which is not a very
good approximation at low momenta.
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4.3. TOF-TPC Combined Fits

To describe the peaks in the (Ti, Xi)-distributions, we essentially take the
product of the TOF and TPC response, which were described in Sects. 4.1
and 4.2. A template histogram describing the mismatches can be generated
in the same manner as described in Sect. 4.2, however, now the distribution is
filled with a random TOF time, but the true specific energy loss measurement.
The total fit function for the (Ti, Xi)-distribution can be written as:

d2Ntot

dTi dXi

=
∑
j

d2Nj

dTi dXi

+Mi, (4.9)

where, j sums over all the particle species that are included in the fit, and
where Mi stands for the mismatch template generated assuming the peak of
species i is in the origin, and:

d2Nj

dTi dXi

∝ dNj

dTi
× dNj

dXi

. (4.10)

To determine the total yield for particle species i, we only use the histogram
with mass assumption i, i.e., with Ti and Xi on the axes. The reason for this
is that the distance between the peaks depends on momentum, which causes
all peaks except for the one corresponding to species i to be “smeared out”
somewhat, i.e., their resemblance to our fit model diminishes. The impact
of this smearing on our fit results can be minimized by taking narrow bins
in pT and η, and by excluding the proton peak in the pion and kaon fits,
and vice versa in the range pT < 1.2 GeV/c. In the remainder of this section
we outline the procedure that we used to find the optimal parameters to
describe the data, with the emphasis on obtaining the most reliable values
for the pion, kaon, and proton yields.

The first step in the procedure is to find the number of mismatches in the
data. This is achieved by normalizing the template mismatch histogram to
its number of entries, and then to determine the scale factor that is needed
to make the mismatch template fit the data. Note that in this way also data
that does not fall within the domain of the (Ti, Xi) histogram is taken into
account. In principle one should use this scale factor as one of the parameters
in a fitting procedure, however this does not produce good results. Most
notably, since neither the description of the peaks nor the description of the
mismatched background are perfect, the scale factor is typically estimated
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to be much higher than that it should be. For this reason we estimated the
scale factor by comparing the mismatch template with the data in a region
far away from the peaks. A simple check that is described in Sect. 4.4.1
shows that this way of determining the mismatched yield only gives rise to a
very small bias on the fitted particle yields Ntot,i.

After the mismatch template is fixed, what remains is the estimation of
the parameters of the peaks. This is done by maximizing the logarithm of
the likelihood L of the model, assuming the data in the bins of the (Ti, Xi)
histogram are Poisson distributed. In practice, we minimize the following
function:

logL = −νtot +
∑
i∈R

ni log νi, (4.11)

where R is the set of bins that fall within the fit region, νtot is the total fitted
yield in region R, ni is the measured yield in bin i and νi is the yield the
model predicts in bin i. For all PID fits in this work we use the MINUIT
minimizer.

The domain of the (Ti, Xi) histograms used in our analysis is generally
large compared to the typical distance between the peaks that we are inter-
ested in (π, K, p). The main reason for this is to get a substantial number
of bins that are far away from the peaks, which improves the estimate of
the scale factor of the mismatch template. For the sake of computational
efficiency however, one should aim at keeping the region R to be as small
as possible, i.e., much smaller than the full domain of the histogram, but
sufficiently large to fully include the peaks that are included in the fit. The
default choice of the region R is a rectangle shape (See Sect. 4.4.2). Per-
forming the fits with a differently shaped region, leads to small deviations in
the fitted particle yields compared to the default shape. This is most likely
caused by imperfections in our model.

Finally, we found that the parameter λK,i, described in Eq. (4.5) cannot
be determined in a reliable way at high pT by means of the fitting procedure.
The distribution in Fig. 4.1 reveals the reason for this, namely that at high
pT the proton peak largely overlaps the tail of the kaon peak. This means
that the optimal value of λK,i is very sensitive to imperfections in the fit
of the proton peak. Note that the same is not true for the parameters λπ,i
and λp,i. In our procedure we therefore fix the value of λK,i. The systematic
uncertainty caused by this approximation is discussed in Sect. 4.4.4.
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Parameter Value
µTOF, µTPC Taken from the detector calibration

σTOF 85 ps (p-Pb, Pb–Pb) and 115 ps (pp)
σTPC 3.5 a.u.
λTOF 0.008 ps−1

Y ield Estimated from the bins around the expected peak position

Table 4.1.: The initial values that were used in every fit, or the method used to
obtain them.

Table 4.1 summarizes the initial values used in every fit. For the peak
position (µTOF and µTPC) the value from the detector calibration is sufficiently
close to the optimal value to get a stable fit. We estimate the initial values
for the yield by comparing a 2D Gaussian distribution with the initial σTOF

and σTPC, to the values in the bins around the initial peak position. This
estimate could significantly deviate from the final fitted value, especially if
the detector calibration was not optimal. We find, however, that this again
did not lead to instabilities in the fit. To guide the minimizer to the correct
minimum, we perform all fits in two steps. First, the fit is performed with
λTOF fixed to its initial value, for all peaks. After this, all parameters are
released, except for λK,i.

The particle identification method described in this section has not been
used before by the ALICE collaboration. For this reason, we performed a
number of crosschecks, including a comparison of our procedure with bin
counting and with stand-alone TOF fits. The most notable crosschecks are
discussed in Sect. 4.4.

4.4. Systematic Uncertainties

Apart from a few assumptions, the fit function described in the previous
sections is fairly generic. In this section we elaborate on these assumptions,
and give an estimate of the uncertainty that they cause on the measured
pion, kaon, and proton yields.
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Figure 4.3.: Ratio of identified yield after varying the fixed mismatch yield by
10% in Pb–Pb collisions.

4.4.1. Mismatched Background

As mentioned in Sect. 4.3, the mismatch template is fixed in a region far
away from the peaks. To estimate the resulting uncertainty, we refitted
the spectra, but increased/decreased the estimated mismatch yield by 10%.
From Fig. 4.3 it is clear that the effect of varying mismatches is negligible
for Pb–Pb collisions. For p-Pb and pp this also holds, as TOF mismatches
are significantly less abundant in these systems.

4.4.2. Choice of Fit Region

The fit region that is used in this analysis is a rectangle, containing all peaks
up to several times the detector resolution. In Fig. 4.1, these rectangular
fit regions are shown as black boxes around the peaks. If our fit model
(Eq. (4.9)) would be a perfect description of the data, then choosing the
fit region differently would yield a statistically compatible optimized value
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Figure 4.4.: Examples of χ-distributions in (Tπ, Xπ). Mass assumption: pion,
1.0 < pT < 1.1 GeV/c, −0.8 < η < −0.7. Left panel: standard
rectangular fit region, right panel: refit using the smaller fit region
#1, defined in Eqs. (4.12) and (4.13), and Table 4.2.

for all fit parameters, provided that the different fit region includes all the
important features of the distribution.

To estimate the goodness of the fit, we evaluated the χ value6 in all bins in
the region around the center of the fitted peak. An example of this is shown
in the first panel of Fig. 4.4. Taking a closer look at the pion peak, located
approximately in the origin, we see a clear structure in the χ-distribution.
The data in the center of the peak is generally underestimated by our model,
while towards the edge it is sometimes overestimated. This implies that the
tails of the distribution, which are included in the fit region, are not well
described by our model. The other peak in the figure, which is the kaon
peak, is also not described perfectly, however this is less important for our
analysis, and can at least partially be attributed to residual smearing due to
the finite size of the (pT, η) bin.

To estimate the influence of the choice of fit region on our results, we
added a third fitting step to the procedure described in Sect. 4.3, where the
model is refitted in a smaller fit region. This smaller fit region is composed
of two half ellipses, including all the bins which have centers obeying the

6For an observed yield Nobs and fitted model estimate Nmod we have that:
χ = (Nobs −Nmod)/

√
Nobs.
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Region No.
1 2 3 4

rTOF,pos (ps) 300 400 300 400
rTOF,neg (ps) 200 300 200 300
rTPC (a.u.) 8 8 12 12

Table 4.2.: Definition of the smaller fit region parameters.

following inequality:√(
T − µTOF

rTOF,neg

)2

+

(
X − µTPC

rTPC

)2

< 1, (4.12)

if T < µTOF, and:√(
T − µTOF

rTOF,pos

)2

+

(
X − µTPC

rTPC

)2

< 1, (4.13)

if T > µTOF, where the radii rTOF,neg, rTOF,pos and rTPC are given in Table 4.2.
As indicated in this table, the four different regions are significantly smaller
than the default rectangular region, but sufficiently large to contain at least
90% of the estimated yield. The radii of the smallest region, which is the first
configuration, correspond to roughly twice the detector resolution. Notice
that in the TOF direction, the radius in positive direction is taken to be
larger than the one in negative direction. This ensures that the fit region
contains sufficient data for the fit of the parameter λ.

The right panel of Fig. 4.4 shows the χ-distribution after refitting using
fit region #1. The agreement between the model and the data around the
origin has improved compared to the left panel. In Fig. 4.5 we show the result
of this study for all four alternative regions, compared to the original region
for pp, p-Pb, and Pb–Pb. The deviation in the yield for the largest region
(region #4) compared to the regular fit region is typically small (∼ 1− 2%),
with a small dependence on particle species and collision system. From there,
decreasing the fit region in the TOF direction does not seem to alter the
results more than ∼ 1% (region #3). Decreasing the size of the fit region
in the TPC direction has a significant impact on the fitted yield in certain
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cases. This is especially true at high pT and most notably for pions in pp
and Pb–Pb, as well as for kaons and protons in pp, with discrepancies in the
fitted yield up to ∼ 5%.
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Figure 4.5.: Ratio of the identified yield using an alternative fit region and the
default region in pp, p-Pb, and Pb–Pb. The alternative fit regions
are defined in Eqs. (4.12) and (4.13), and Table 4.2.

Closer inspection of the fit results at high pT for pions and kaons does not
show any obvious features in the (Ti, Xi) distributions that are not described
by the model, hence, for Pb–Pb, we choose to assign a systematic uncertainty
to the pion and kaon yield of 1 − 2%, and to the proton yield of 1%. For
p-Pb the same uncertainties are used as for Pb–Pb, except for protons for
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which the uncertainty is ∼ 2%. For pp the systematic uncertainty on the
pions is also 1− 2%, while for kaons and protons it is 2− 3% and 2− 5%
respectively.

4.4.3. Comparison with Other Fit Methods

In the lowest pT bins (1.0 < pT < 1.4 GeV/c) the proton peak is far removed
from the pion and kaon peaks in the (TOF, TPC) plane, and a very good
estimate of the proton yield can be obtained simply by bin counting. These
estimates generally compare very well (. 1%) with the 2D fit method, and
no significant dependence on η is observed.

While the bin-counting comparison provides evidence for the validity of
the fit function, it is limited in its scope. We therefore also compared our
2D fit method with a TOF standalone (SA) fit procedure. For each pT and
η bin, after the regular fit procedure described in Sect. 4.3 is completed, a
TOF SA fit was performed using the fit parameters from the 2D method as
initial values. In Fig. 4.6 we show how with TOF SA fit and the combined fit
procedure compare for pp, p-Pb, and Pb–Pb. The pT range of this study is
limited by the decreasing resolving power of the TOF detector towards higher
pT. In general, we found that without making additional assumptions on the
fit function, the pion and kaon TOF SA fits converge up to pT ∼ 2.4 GeV/c,
while proton fits converge up to pT ∼ 3.4 GeV/c.
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Figure 4.6.: Comparison between the identified yield using a TOF stand-alone fit
method and the (TOF, TPC) fit method for pp, p-Pb, and Pb–Pb.

The first thing that stands out from Fig. 4.6 is that the observed difference
for pions and kaons are anti-correlated. A possible explanation of this effect
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is that when the kaon peak moves closer to the pion peak at higher pT, the
value of λπ becomes more difficult to estimate in the TOF SA fit, and may
be somewhat overestimated, effectively absorbing some kaons into the pion
peak. As the pion production is larger than the kaon production, the relative
effect on the kaons is larger.

Since, upon closer inspection, both the TOF SA and combined fit proce-
dures give reasonable fit results and since it is difficult to precisely pinpoint
the origin of the discrepancy, it is not possible to decide which of the two
methods is superior. While the combined fit procedure clearly has more
resolving power at high pT, imperfections in the description of the TPC
response may in fact make it somewhat less accurate in the pT region where
both methods are competitive. For this reason we take the difference between
the two methods to as systematic uncertainty7.

Since both the systematic uncertainty that is estimated from comparing
different fit regions (Sect. 4.4.2) and the systematic uncertainty that is
estimated from comparing to TOF SA fits are both a measure of how well
the fit function captures the data, it is reasonable to not simply add these
two uncertainties in quadrature, but instead to only use the largest of the
two. The only case where the TOF SA comparison yields larger uncertainties
is for kaons in pp and p-Pb where the uncertainty becomes 2− 5%, and the
maximum value of 5% is attained around pT ∼ 2 GeV/c. For protons the
uncertainties remain unchanged.

4.4.4. Fixing the Tail Parameter

In Sect. 4.3 we mentioned that the parameters λK,i are very sensitive in
the kinematic region where the proton peak overlaps with the exponential
kaon tail. For the sake of fit stability we decide to fix this parameter. In
this section we estimate the influence of this choice on the fitted yield, by
comparing different reasonable values of λK,i.

In the kinematic range where the kaon and proton peaks are well-
separated, the fits where λK,i is allowed to vary yield values in the range
0.008 < λK,i < 0.010, for all (pT, η) bins. Fig. 4.7 shows a comparison between
the fitted pion, kaon, and proton yields under the assumption λK,i = 0.008,
λK,i = 0.010, and λK,i as a free parameter, to the case where λK,i = 0.009.
From this figure it is clear that for pT < 3.0 GeV/c, the true value of λK,i is
fairly constant. It is most likely that the observed deviations between the

7Here we assume the uncertainty at pT beyond the region where the TOF SA fit converges
to be the same as the uncertainty at the upper edge of that region.
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Figure 4.7.: Ratio of raw identified particle yield with λTOF free or fixed, and the
default choice (λTOF = 0.009). This ratio is calculated as a function
of pT and η, and projected onto the pT axis. The error bars reflect
the RMS of the ratio of the different η bins at the same pT. Collision
system: Pb–Pb.

fits where λK,i is and is not fixed are due to the overlapping of the kaon and
proton peak. For this reason we decide to fix λK,i = 0.009 for the entire
pT range, and assign a 0− 3% uncertainty on the kaon yield, and a 0− 2%
uncertainty on the proton yield, depending on pT.

4.4.5. Contamination from Leptons

From the detector response in Figs. 3.3 and 3.4 it is clear that while the TOF
has very limited separation power for pions and electrons, the TPC separates
them very well. In our 2D fit procedure all electron contamination is cut out
by the definition of our fit region.

Muon contamination is more difficult to estimate, since neither TOF nor
TPC has good separation power for muons and pions. It is certainly not
feasible to include a muon peak to our fit model with no further assumptions
on its parameters. A pragmatic approach is to add a highly restricted muon
peak to the fit function, where the “shape” parameters (σ, λ) of the muon
peak are fixed to those from the pion peak, obtained in a previous fit. The
position of the muon peak is also fixed to the position of the pion peak, but
appropriately shifted, to compensate for the small mass difference between
the pion and the muon.

Unfortunately even this minimal approach does not produce reliable fit
results, confirming the very limited separation power. On the other hand,
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the µ/π fraction is small, and since muons typically arise from weak decays,
a large fraction is effectively cut out by the strict DCA requirement on the
tracks (see Sect. 4.6 and Appendix A).

Following other physics analyses in ALICE, the muon contamination in
the pT region of interest is estimated to be less than 1%, and only present in
the lower end of our pT range. We do not apply a correction for the lepton
contribution, as the effect is negligible compared to other effects.

4.5. Fit Results

In Fig. 4.8 we present some results from the fits performed on the p-Pb
dataset, in the kinematic range 1.0 < pT < 4.0 GeV/c, −0.8 < η < 0.8. As
the fit results for the other collision systems are comparable and also the fit
results from the different (Ti, Xi)-planes are also comparable, we only show
the results from the fit in the (Tπ, Xπ)-plane. As mentioned in the beginning
of this chapter, each fit has up to seventeen parameters, however only the
peak that is centered is expected to be unaffected by the “smearing” due to
the dependence of the expected distance between the peaks on the kinematic
variables. Moreover the off-centered peaks are not used for determining a
particle yield, and are only included to take into account their influence
on the centered peak. For this reason Fig. 4.8 only shows the parameters
belonging to the pion peak.

In order to be sensitive to the dependence of the fit parameters on pT and
η, the data is divided in narrow bins in both coordinates. On the other hand,
as each bin corresponds to an independent fit, it is also important to avoid
choosing them too small, so that all bins contain sufficient data for a stable
fit. In η we use a constant bin size of 0.1, while the pT dimension is divided
in 22 bins with increasing bin size, from 0.1 GeV/c at low pT to 0.3 GeV/c at
high pT.

The fit results in Fig. 4.8 possess several notable features. First of all, both
µTOF and µTPC show a statistically significant η-dependence. The fact that
these features persist in pT shows that it is unlikely that they are artifacts
from the fit procedure, instead they probably point to a small mistake in the
detector calibration. It is instructive to compare these discrepancies to the
typical detector resolution, i.e., µTPC ∼ 0.1σTPC, µTOF ∼ 0.3σTOF. While
our analysis should not be affected by these discrepancies, these numbers
show that one should be cautious when performing an identification procedure
based on a cut on the PID signals.
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Figure 4.8.: Fit parameters for the pion peak, from the fit of the p-Pb data in
the (Tπ, Xπ)-plane.
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We also notice a significant η and pT dependence, both in σTOF and σTPC.
These dependencies are however not unexpected. For the various reasons
discussed in Sects. 4.1 and 4.2 both the TPC and TOF are expected to have
a better resolution at larger momenta and pseudorapidity.

4.6. Correction for Secondary Particles

Particles that are produced directly at the collision are called primary particles.
Other particles, originating from weak decays and from the interaction of
particles with the detector material, are called secondary particles. The most
important weak-decay processes producing charged pions and (anti-)protons
are: K0

S → π+ + π−, Λ→ p+ π− and Λ̄→ p̄+ π+. Charged kaons are rarely
produced through weak decays, and can be ignored. Secondary particles
from material interaction are mostly produced at very low pT. In the range
pT > 1.0 GeV/c, the only particle species with a non-negligible (. 3%)
contribution from material interactions are the protons8.

As only the primary particles are sensitive to the mechanism of hadroniza-
tion, we need a method to separate them from the secondary particles.
Primary particles distinguish themselves from the secondary particles by
the small distance of closest approach (DCA) of their (extrapolated) re-
constructed tracks to the primary interaction vertex. The method that we
describe here has also been used by various other analyses performed by
members of the ALICE collaboration.

The first step in the procedure is to use a MC simulation to generate
probability distributions of the radial component of the DCA vector (rDCA)9
for primary particles, weak-decay products and remnants of material inter-
action. These distributions are generated for six types of particles: π+, π−,
K+, K−, p and p.

The second step is to select a pure sample of those six particle types
from the experimental data, in our implementation we do this by selecting
particles from a 1σ-region around the origin in the (Ti, Xi) plane, where i
corresponds to the particle species, and σ is the detector resolution taken
from the detector calibration10. The fraction of secondary particles decreases

8Not anti-protons.
9Defined as the vector pointing from the primary interaction vertex to the (extrapolated)
reconstructed track at its point of closest approach.

10In light of the results presented in Sect. 4.5, we could have made this more accurate by
using the fitted values of µ and σ. On the other hand, it is the purity of the sample
much more than its size that is important for determining particle fractions.
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Figure 4.9.: Example of template fits to the radial component of the DCA distri-
bution for protons (a) and anti-protons (b) in 0− 5% central Pb–Pb
collisions. The total fit is shown as a black line, while the colored
lines represent the individual templates for primary particles, weak
decay products and particles from material interaction. Figure taken
from Ref. [94].

rapidly as a function of pT, and the 1σ requirement gives a sufficiently pure
sample in the pT region of interest. From this pure sample one can extract
the rDCA distributions, as a function of pT.

Finally, the templates that are generated in the first step are fitted to the
rDCA distributions taken from data, using the model:

1

Ntot,i

dNi

drDCA
= fPDP(rDCA) + fWDW(rDCA) + fMDM(rDCA), (4.14)

where i is one of the six particle types, the subscripts P , W and M stand for
“primary”, “weak” and “material” respectively, D represents the normalized
templates from the first step, and the fractions fP,W,M are the fit parameters.

In Fig. 4.9 we show an example of a template DCA fit for (anti-)protons.
From this figure it is clear that each template has a very distinct shape, which
constitutes the working principle of a template fit. It also clearly shows that
material interactions are responsible for some of the proton production, but
that no anti-protons are produced in this way.
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4.7. Summary

In this chapter we introduced a fitting procedure which uses both the TOF
and TPC signal, with the purpose of measuring the pion, kaon, and proton
yield. This procedure is optimized to give stable results for pp, p-Pb, and
Pb–Pb data, in the range 1.0 < pT < 4.0 GeV/c. The fit parameters extracted
from these fits generally depend on both pT and η. While the dependence
of the detector resolution is expected, the dependence of the peak position
likely point to a small error in the calibration. A clear advantage of our
method over methods based on a cut on the detector signal is that it is not
sensitive to these residual calibration discrepancies, and that the results are
not influenced by contamination from other particles.



Chapter 5.

Identified Associated Yield

The final aim of our work is to study the hadrochemistry of the yield
associated with a high-pT trigger particle. In the first half of this chapter
we introduce the general methods used to obtain the associated yield and
to correct it for the finite two-particle efficiency and acceptance1. Next, we
outline the method we used to separate the associated pions, kaons, and
protons. The final analysis of the identified associated distributions are
discussed in Chapter 6.

5.1. Associated Particle Distributions

In a two-particle correlation analysis one studies the per-trigger yield associ-
ated with some trigger particle, i.e., one measures:

1

Ntrig

d2Nassoc

d∆φ d∆η
, (5.1)

where ∆φ ≡ φtrig−φassoc, ∆η ≡ ηtrig−ηassoc, and Ntrig is the number of trigger
particles in the analyzed sample. Notice that by normalizing this quantity
with the number of trigger particles, the observable becomes independent
of the sample size. In this analysis we choose the trigger particle to be
of high-pT. Since high-pT particles are often part of a highly energetic jet,
studying their associated yield is similar to studying the contents of jets.

1Acceptance refers to the physical extent of the sensitive region of the detectors that
we use, while the efficiency denotes the probability of detecting a particle within that
sensitive region.
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Figure 5.1.: Example of a two-particle correlation in central (0-10%) Pb–Pb
collisions. Kinematic ranges: 4.0 < pT,trig < 10.0 GeV/c, and
1.2 < pT,assoc < 1.3 GeV/c. Left panel: raw associated yield dis-
tribution, right panel: mixed event distribution (scaled to be unity
at the origin).

On the first panel of Fig. 5.1 we show an example of the particle yield in
the range 1.2 < pT,assoc < 1.3 GeV/c, associated with a high-pT trigger particle
(4.0 < pT,trig < 10.0 GeV/c), in central (0-10%) Pb–Pb collisions. First of all,
notice the triangular shape of this distribution in the ∆η-direction. This
shape is not physical, but reflects the limited two-particle acceptance, caused
by the requirement that all tracks fall within the range |η| < ηmax = 0.8.
Notice also that there are some “bumps” and “dips” in the ∆φ-direction.
These occur when there are at least two places of increased (decreased)
detector efficiency along the azimuthal angle φ, changing the efficiency of
measuring a pair of particles at an angular difference equal to the angular
difference between the places of increased (decreased) detector efficiency2.

In order to study the physical features of the associated yield distribution,
one has to remove all features that are due to the limited two-particle
efficiency and acceptance by applying a correction. This can be done by
using the two-particle or pair efficiency, which is calculated by taking the
cross-correlation of the trigger particle efficiency and the associated particle

2The roughness in ∆φ does not reflect the tracking efficiency of ALICE, but is due to
the more stringent track cuts that we require in our analysis (see Appendix A).
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efficiency, denoted by εtrig(φ, η) and εassoc(φ, η) respectively, i.e.:

εpair(∆φ,∆η) = A(∆η)−1

4πηmax

∫ 2π

0
dφ
∫ η2

η1
dη εassoc(φ, η)εtrig(φ+ ∆φ, η + ∆η)

= A(∆η)−1

4πηmax
(εassoc ? εtrig)(∆φ,∆η),

(5.2)

where ηmax indicates the size of the sensitive region of the detector, the
integration boundaries are defined as: η1 ≡ max {−ηmax,−ηmax −∆η} and
η2 ≡ min {ηmax, ηmax −∆η}, and the inverse normalization factor is given by:
A(∆η) = (∆ηmax − |∆η|)/(∆ηmax), where ∆ηmax = 2ηmax. On the second
line of Eq. (5.2) it is implied that εassoc and εtrig drop to zero at η = ±ηmax,
so that the integration boundaries η1,2 are automatically enforced. Note that
the function A(∆η) removes the triangular shape, i.e., Eq. (5.2) corrects only
for two-particle efficiency, not for two-particle acceptance. As discussed in
Sect. 6.7, the single-particle efficiencies necessary to calculate the two-particle
efficiency can be determined by means of a MC simulation.

Since the observable in Eq. (5.1) is normalized with the total number of
triggers, the full efficiency correction matrix is given by:
εpair(∆φ,∆η)/ 〈εtrig〉, where the 〈·〉 denotes the average over φ and η. Note
that if either εtrig or εassoc does not depend on φ and η, then the two-particle
efficiency reduces to: εpair = 〈εtrig〉 〈εassoc〉, and the full efficiency matrix
reduces to a constant factor of 〈εassoc〉. Unfortunately neither εtrig nor εassoc

are sufficiently constant to make this approximation, however, as shown in
Eq. (5.4), a somewhat weaker version of this approximation can be used.

There are a number of disadvantages to calculating the pair-efficiency
using Eq. (5.2). First of all, the process of propagating MC particles through
the detector simulation is computationally expensive, and the amount of
available MC events is therefore limited3. This causes a large relative statis-
tical uncertainty between the calculated two-particle efficiencies in different
(∆η,∆φ) bins. Another concern is that this method is relatively sensitive to
errors in the description of the virtual detector in the MC simulation.

An alternative is to use the so-called mixed-event technique. It relies
on the principle that the distribution of the particle yield from one event
associated with trigger particles from another (uncorrelated) event is sensitive
to the limited two-particle efficiency and acceptance, but does not contain any
two-particle correlations by construction. The resulting distribution is called

3Especially in Pb–Pb, where the amount of available MC events is far less than the
amount of recorded events.
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the mixed-event distribution, as opposed to the associated yield distribution,
which, in contrast, is often referred to as the same-event distribution. An
example of a mixed-event distribution is shown on the right panel of Fig. 5.1.
One major advantage of the mixed-event technique, is that by correlating
triggers from one event to particles from many other events, the statistical
fluctuations in the mixed-event distribution can be made extremely small,
thus avoiding additional (relative) statistical fluctuations in the corrected
associated yield distribution.

It is important to stress that the mixed-event distribution does not
necessarily contain the same information as the two-particle efficiency. The
reason for this is that the mixed-event distribution is sensitive to any feature
in the single-particle associated and trigger distribution, regardless of whether
it is due to efficiency or due to a true physical effect. For example, if there is
more particle production at mid-rapidity than at large rapidity, then there
are in fact more pairs with a small rapidity separation, compared to pairs
with a large rapidity separation, also when the two members of the pair are
taken from uncorrelated events. Hence, the mixed-event distribution would
be affected, while the two-particle efficiency remains unchanged. Within
the ALICE acceptance, the true-single particle distributions are to a good
approximation constant4, and in this limit the mixed-event technique is
equivalent to the two-particle efficiency. In this work we exclusively use the
mixed-event technique for the correction of associated yield distributions,
i.e., we use:

εpair(∆φ,∆η) = γME(∆φ,∆η)/A(∆η), (5.3)

where ME = d2Nmixed
d∆φd∆η

. The proportionality factor γ is given by:

γ =

∫
A(∆η)εpair(∆φ,∆η) d∆φ d∆η∫

ME(∆φ,∆η) d∆φ d∆η
=
〈εassoc(φ, η)〉 〈εtrig(φ, η)〉

2 〈ME(∆φ,∆η)〉 , (5.4)

where we used that A(∆η)εpair(∆φ,∆η) = εassoc ? εtrig, and the fact that, due
to the identity F {f ? g} (k) = (F {f} (k))∗ · F {g} (k), where F denotes the
Fourier transform, an integral over a cross-correlation f ? g is equal to the
product of the integrals over the functions f and g individually5.

4At intermediate-pT this is a good approximation.
5This follows from the identity evaluated at k = 0.
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The fully corrected two-particle yield is given by:

1

Ntrig

d2N

d∆φ d∆η
=

1

A(∆η)

〈εtrig〉
εpair(∆φ,∆η)

1

N raw
trig

d2N raw

d∆φ d∆η

=
1

〈εassoc〉
2 〈ME〉

ME(∆φ,∆η)

1

N raw
trig

d2N raw

d∆φ d∆η
.

(5.5)
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Figure 5.2.: Example of an associated yield distribution in central (0-10%) Pb–Pb
collisions, corrected using a mixed-event distribution. No correction
for the single-particle efficiency 〈εassoc〉 is made. Kinematic ranges:
4.0 < pT,trig < 10.0 GeV/c, and 1.2 < pT,assoc < 1.3 GeV/c.

In Fig. 5.2 we show the associated yield from the left panel of Fig. 5.1,
corrected with the mixed-event distribution from the right panel of that same
figure. In this figure, the jet-peak at the origin is clearly visible, on top of a
ridge-structure, extending in ∆η. Also at ∆φ = π we see a ridge-structure,
which is somewhat broader than the one ∆φ = 0. The physics behind these
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features is introduced in Chapters 1 and 2, and in Chapter 6 we discuss
methods to quantify them.

Some words of caution are in order when one uses a mixed-event procedure.
Other analyses show that at low pT,assoc it is important to perform mixed-
event correction in a narrow bins in centrality and in the z-coordinate of the
primary vertex (zvtx), i.e.:

d2N

d∆φ d∆η
∝
∑
i∈bins

SEi
MEi

, (5.6)

where SE represents the same-event distribution, and bins stands for bins
in centrality and zvtx. If one does not do this, the mixed-event corrected
associated yield distribution becomes slightly concave up at large ∆η, an
effect caused by the small acceptance difference between events with a primary
vertex at a different location.

In Sect. 5.2 we discuss a method to identify the same and mixed-event
distributions. This method relies on having a sufficient number of particles
per (∆φ,∆η) bin. The mixed-event correction as described in Eq. (5.6)
requires us to first identify the same and mixed-event distributions for every
centrality and zvtx bin separately, which is not feasible given the size of the
current datasets. For this reason we perform our mixed-event correction by
taking the ratio of the sums instead of the sum of the ratio, i.e.:

d2N

d∆φ d∆η
∝
∑

i∈bins SEi∑
j∈binsMEj

. (5.7)

The expected impact of using Eq. (5.7) instead of Eq. (5.6) is largest for the
associated yield in Pb–Pb collisions at low pT,assoc, since there the jet-peak is
relatively small compared to the background. The corrected associated yield
in Fig. 5.2 shows that the height of the jet-peak in Pb–Pb at low pT,assoc is
typically of the order of a percent of the background. In the same pT,assoc

bin, the difference between using Eq. (5.7) and Eq. (5.6) is found to be three
orders of magnitude smaller, and can therefore be safely neglected.

Finally, when creating a mixed-event distribution, one typically wants
to mix the same trigger and associated particles multiple times, so that the
statistical uncertainty on the mixed-event distribution can be made much
smaller than the statistical uncertainty on the same-event distribution. In
practice, when analyzing a dataset one creates a so-called “trigger pool”, which
keeps track of trigger particles from previous events, in order to correlate
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them to the associated particles of the current event. In our implementation
for example, we store trigger particles of 50 events when analyzing central
Pb–Pb data, and 150 events when analyzing p-Pb or pp data. The main
reason for this difference is that central Pb–Pb events typically contain many
more trigger particles than p-Pb or pp events.

It is important to make sure that we do not use one trigger more often
than the other. In order to achieve this, we only begin mixing events when
the trigger pool is full, i.e., for every centrality and vertex bin we have triggers
from 50 (150) events stored. We then record the event at which we start
mixing, and after the analysis is completed, we go back to the first event and
mix the events up to the point that event mixing started.

5.2. Identifying Associated Yield

To create identified associated yield distributions6, we start by filling three
five-dimensional histograms, one for each particle species i ∈ {π,K, p}:

Ni(pT,∆η,∆φ, Ti, Xi), (5.8)

where ∆η and ∆φ are taken with respect to a high-pT trigger, and Xi

and Ti were defined before, in Eq. (4.1) and Eq. (4.4) respectively. The
five-dimensional histogram essentially contains a (Ti, Xi) plane for every
(pT,∆η,∆φ) bin, from which the identified particle yield can be extracted
using a fit.

In Chapter 4 we described how fits of (Ti, Xi) distribution can be used to
obtain the identified inclusive yield. Identifying the yield associated with a
high-pT trigger particle through a fitting procedure is more involved for a
number of reasons, most importantly:

• Many events do not contain any high-pT trigger particle, effectively
reducing the dataset.

• In bins at large ∆η the particle yield is very small due to “triangular”
acceptance in ∆η, see Fig. 5.1.

• A single bin in ∆η can contain tracks of a large interval in η (see
Fig. 5.3). In Sects. 4.1 and 4.2 we showed that the detector response
varies significantly as a function of η, hence the PID signal in a ∆η

6For the identified mixed-event distribution the procedure is analogous.
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bin is “smeared out”, and the model in Eq. (4.9) no longer provides a
sufficiently accurate description of the data.

In this section we show how the results from Chapter 4 can be used to
construct template distributions for the pion, kaon, and proton peaks in the
(Ti, Xi)-plane, for i ∈ {π,K, p}, and every (pT,∆η) bin, designed to match
the smearing caused by the non-trivial relation between η and ∆η7. For
the TOF-mismatched yield a template can be generated in the same way.
Note that the fit that remains to be done for every (pT,∆η,∆φ) bin only
has a four-dimensional parameter space, each one being the scale factor for
one of the templates. This immediately addresses also the first two points
on the list above, as a low dimensional template fit is much less likely to
fail compared to the seventeen-dimensional fit from Chapter 4, especially
when the histogram contains only a small number of entries. Moreover, the
template fit converges much faster than the seventeen-dimensional fit. This
is a clear advantage, as the number of independent fits per collision system
is around 7,500.

5.2.1. Fit Templates

The principle behind the fit templates is that the detector response as a
function of ∆η can be approximated by an appropriately weighted sum over
the model functions (see Eq. (4.9)), fitted to the inclusive data binned in η,
i.e.,

P assoc
i|j (Tj, Xj; ∆η) =

∑
η

K(η,∆η)P incl
i|j (Tj, Xj; η), (5.9)

where P incl
i|j denotes the inclusive model functions fitted to the inclusive data

for the peak of species i ∈ {π,K, p} in the (Tj, Xj)-plane, K(η,∆η) is a
matrix containing the weight factors, and P assoc

i|j is the fit template.
The first step in generating the fit templates is to determine the ma-

trix K(η,∆η), shown in Fig. 5.3. If the detector efficiency would be in-
dependent of η and φ, a simple analytic expression would suffice, i.e.,
−ηmax −∆η < ηassoc < ηmax −∆η, where ηmax = 0.8 in our analysis. How-
ever, since not all parts of the detector are equally likely to register a trigger
particle, we generated the matrix K by building a random pair distribution
with trigger particles from the dataset with random values of η in the range

7Notice that the shape of the template is unaffected by ∆φ.
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Figure 5.3.: The matrix K(η,∆η), which is proportional to the probability dis-
tribution of finding an associated particle at η, as part of a pair
with a separation ∆η, while only taking into account the detector
efficiency of the trigger particles. The efficiency of the associated
particles is taken into account by explicitly using the fit results P incl

i|j
in Eq. (5.9).

−ηmax < η < ηmax. Notice from Fig. 5.3 that slightly more trigger particles
are measured in the range η < 0, causing a small deviation compared to the
ideal case8. The efficiency of measuring the associated particles is not taken
into account by the matrix K. This can, however, be remedied by using
the actual (unnormalized) fit results for P incl

i|j . This ensures that possible
differences between the efficiency of different particle species are correctly
propagated to the fit templates.

8This can most clearly be seen at ∆η = 0, which corresponds exactly to the likelihood of
observing a trigger particle at η.
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5.2.2. Fit Procedure

Once the fit templates are generated according to Eq. (5.9), all (Ti, Xi)
projections corresponding to single (pT,∆η,∆φ) bins in the 5 dimensional
matrix (Eq. (5.8)) can be fitted using the following model:

d2Ntot

dTj dXj

(pT,∆η,∆φ) =
∑
i

Ni|j P
assoc
i|j (pT,∆η), (5.10)

where the Ni|j are the fit parameters and index i is assumed to run over all
included particle species, as well as the mismatch template.

From this point on, the fit procedure is essentially the same as the one
that we described in Sect. 4.3. First, the number of mismatched tracks is
determined, in a region far away from the peaks. After that, the optimal values
for the remaining parameters Ni|j are found by minimizing the negative log-
likelihood assuming Poisson-distributed data in every bin, and in a restricted
region R that includes all peaks (see Eq. (4.11)).

In Fig. 5.4 we show see an example of how a template is built up from
different fit results. This example shows that the smeared-out peaks are
well-described by our templates. We wish to emphasize that we use this
fitting procedure on the same and mixed-event distributions separately, and
the mixed-event correction is only done afterwards. It is essential that the
order of these steps is not reversed, because the corrected data is not Poisson
distributed. Especially at large ∆η, where the number of entries is typically
small, this becomes an issue.

In pp events, high-pT trigger particles are rare, and the number of particles
per event is small compared to p-Pb and Pb–Pb events, which, especially at
large ∆η and/or high pT leads to relatively sparsely filled (Ti, Xi) histograms.
In these cases it can happen that the region where the number of mismatches
is determined is (almost) empty. In this case, the large uncertainty on the
number of mismatches significantly influences the quality of the entire fit. For
this reason, we demand that there are at least ten entries in the region where
the mismatches are determined. For the histograms where this condition is
not met, we assume that the fraction of mismatches is the same as in the
mixed-event fit of the same (pT,∆η,∆φ) bin. This is a viable solution, as
the amount of data in the mixed-event distribution is about two orders of
magnitude larger than in the same-event distribution.
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Figure 5.4.: Template decomposition of one (∆φ,∆η) bin of an associated yield
distribution. Top row: Different tints represent the fits at different η,
middle row: templates (not normalized), bottom row: template fits.
Collision system: p-Pb, kinematic range: 1.2 < pT,assoc < 1.3 GeV/c,
and 0.0 < ∆η < 0.2.
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Figure 5.5.: The ratio of identified spectra, measured with the template method
and integrated over (∆φ,∆η), and the identified spectra measured
with the inclusive method (see Chap. 4). Collision system: Pb–Pb.

5.3. Systematic Uncertainty

To asses the performance of our template fit method, we applied it on a
dataset generated by a Monte Carlo simulation, where the detector response is
simulated using GEANT3 (see Sect. 6.7). The number of particles determined
using the template PID method shows no significant difference with the
number of generated particles (π, K, p). There are, however, two reasons
why this first check is not sufficient in our opinion. First of all, the available
MC dataset of Pb–Pb events is much smaller than the real dataset, limiting
the pT range in which the check can be performed properly. Second, the
simulated PID response differs from the real PID response. The shape of the
“mismatch band” is significantly different, and the separation power in MC is
typically larger than in reality.
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To further assess the performance of the template PID method, we
compared the template PID method directly with the inclusive PID method
from Chapter 4, by performing the following procedure:

• Fill the Ni(pT,∆η,∆φ, Ti, Xi) as usual.

• Fill a histogram Ni(pT, η, Ti, Xi) with exactly the same tracks. This
means that if an event contains multiple trigger tracks, then the associ-
ated tracks are filled multiple times.

• Perform the template PID method on the first histogram and the
inclusive PID method (Chapter 4) on the second, and calculate the
ratio of the particle yields.

The results of this study are shown in Fig. 5.5. As the agreement of this
comparison is very good, we assume that the systematic uncertainties of the
inclusive PID method carry over to the template PID method.

5.4. Fit Results

In this analysis we created both same-event and mixed-event associated yield
distributions, for pions, kaons, and protons in twenty-two different pT bins, for
three different collision systems. In Fig. 5.6 we show the fit results for pions,
kaons, and protons, in the range 1.8 < pT < 2.2 GeV/c9. The associated
yield distributions of Pb–Pb collisions distinguish themselves by their large
uncorrelated background, and as a consequence, a relatively small signal
(jet-peak) over background (S/B) ratio. In pp collisions, the S/B ratio is
generally large, due to a very small uncorrelated background. In the pion
associated yield of Pb–Pb, the previously discussed correlated background
(“ridges” at ∆φ = 0 and ∆φ = π) is clearly visible. For the other particle
species these features are largely obscured by the statistical uncertainty on
the data points. The associated yield distributions in p-Pb (not shown)
are qualitatively between the pp and Pb–Pb distributions. The background
density is larger than in pp, but much smaller than in Pb–Pb, and also the
S/B ratio is between that of the pp and Pb–Pb associated distributions.

9This is actually the sum over four independent fit results, as the original binning had a
granularity of ∆pT = 0.1 GeV/c.
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5.5. Summary

In this chapter we showed that by means of a template fit method, the yield
associated with a high-pT trigger particle can be measured in an accurate and
efficient way. This method explicitly uses the inclusive fit results, which were
discussed in Chapter 4. Although the template fit method is more involved
than a simple cut on the detector signal, it clearly has a number of advantages.
Similar to the inclusive PID method, these include an independence of the
detector calibration, no misidentified particles, and a better separation power
at high pT.
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Chapter 6.

Associated Yield Analysis

We now turn to the final part of our analysis, which is the analysis of the iden-
tified associated yield distributions. The most straightforward way to analyze
these distributions would be to fit them to a very general model describing
both the near- and away-side peak structures and the flow background. This
approach was, however, unsuccessful, since a model that is sufficiently general
to describe all the typical features of an associated yield distribution has so
much freedom that the resulting fits were typically unstable. We therefore
chose to start by analyzing projections of the associated yield on the ∆η-axis
(Sect. 6.1) and the ∆φ-axis (Sect. 6.2) independently.

An interesting observation that we made from the ∆η and ∆φ analyses
was that the “width” of the jet peak decreases as a function of pT and as
a function of particle mass. On the other hand, we did not see evidence
for a significantly different jet-peak shape in the different collision systems.
In principle, the ∆η and ∆φ analyses provide us with an estimate of the
per-trigger jet-peak yield. We found, however, that these estimates were not
very reliable, for reasons that we elaborate upon in Sects. 6.1 and 6.2.

In Sects. 6.3 and 6.4 we describe a different method to determine the per-
trigger yield in the jet peak, using the background model that we obtained
from the ∆φ analysis and the estimate of the peak width from both the
∆φ and ∆η analyses. This method entails subtracting the background from
the (∆η,∆φ)-distributions, and simply counting the remainder in a circular
region around the origin. The radius of the circular region that we use is
proportional to the jet-peak “width”, determined from the independent ∆η
and ∆φ analyses.

The associated yield distributions of the different collision systems gener-
ally do not have the same prominent features. For example, in pp events there

87
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is no flow background, and the distribution can be completely characterized
by the near-side jet peak at (∆η,∆φ) = (0, 0), and the away-side jet “ridge”
at ∆φ = π. In central Pb–Pb events on the other hand, the flow background
dominates at low pT, and the away-side jet is absent. In an attempt to avoid
large differences in the systematic uncertainty on the results between collision
systems, we made the analysis procedure as similar as possible.

In Sect. 6.5 we describe a study that we performed to assess the robustness
of the method described in Sects. 6.3 and 6.4, by applying it to data which
was generated by a toy model. After that, in Sect. 6.6, we outline how one
can correct the identified associated yield for secondary particles. In Sects.
6.7 and 6.8 we describe how we corrected the identified associated yield for
detector efficiency and we estimate the size of the most important sources of
systematic uncertainty. Finally, in Sect. 6.9 the results are shown and we
discuss the most interesting observations in some detail.

6.1. A Model for the ∆η Projection

We start by analyzing the ∆η projections of the near-side (−π
2
< ∆φ < π

2
).

The advantage of studying the ∆η projection is that we do not need to
consider flow, as this is assumed to be independent of ∆η. The drawback is
that due to the approximately triangular acceptance in ∆η (see Sect. 5.1),
the statistical uncertainty at large ∆η is large.

The simplest model that we tried to fit to the ∆η projection was a single
Gaussian on top of a constant background. As can be seen on the first panel
of Fig. 6.1, this model does not possess sufficient freedom, and, as can be
seen on the second panel of the same figure, we achieved much better fit
results by using a double Gaussian on top of a constant background, i.e.,

dN

d∆η
= C +Njet

[
f√

2πσ1

exp

{
−∆η2

2σ2
1

}
+

1− f√
2πσ2

exp

{
−∆η2

2σ2
2

}]
, (6.1)

where C, Njet, f , σ1 and σ2 are fit parameters. Note that we use the fit
parameters Njet and f instead of, for example, Njet,1 and Njet,2. The reason
for this is that by using this parameterization, the statistical uncertainty
on Njet can immediately be determined, and we do not explicitly need to
consider the anti-correlation between Njet,1 and Njet,2.

In the example of Fig. 6.1, we observe that the jet peak can be character-
ized as a “narrow” Gaussian peak on top of a “broad” Gaussian background.
This qualitative description turns out to apply to the jet peaks of pions,
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kaons, and protons alike, irrespective of the collision system or pT range1.
As is shown in a moment, the width of the complete jet-peak structure in
∆η typically decreases with increasing pT or decreasing particle species mass.
When we compare the single- and double-Gaussian fit, we find that the
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Figure 6.1.: Fits of the ∆η-projection of the pion associated yield distribution in
p-Pb collisions with a single Gaussian (left), and a double Gaussian
(right). The kinematic range is: 1.8 < pT,assoc < 2.2 GeV/c.

width from the single-Gaussian fit falls between the two widths found in the
double-Gaussian fit, but is most comparable to the width of the narrowest
Gaussian. In case of the example in Fig. 6.1 we found for the single-Gaussian
fit: σ ≈ 0.22, while for the double-Gaussian fit we found: σ1 ≈ 0.18, and:
σ2 ≈ 0.41.

The example shown in Fig. 6.1 is relatively easy to fit, since pions are the
most abundant species, and they have the most narrow jet-peak structure, so
that even the broad background structure generously falls within the limited
∆η-acceptance. In many other instances however, the projections were much
harder to fit, and the statistical uncertainties on the fit parameters became
prohibitively large.

1Another parameterization that gives a reasonable description of the data is a properly
normalized t-distribution on top of a constant background, with a scaled dependent
parameter ∆η, i.e., dN/d∆η = A · T (B∆η, C) + D, where T (x, ν) represents the
t-distribution and A−D are fit parameters. Unfortunately, our fits did not produce a
smooth dependence of the fit parameters on pT.
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6.2. A Model for the ∆φ Projection

We now turn to the analysis of the ∆φ projection of the distribution of
associated particles. A clear advantage of studying the ∆φ projection over
the ∆η projection is that all data points have a comparable statistical
uncertainty. Furthermore, the ∆φ analysis should give a better estimate of
the background yield than the ∆η analysis, since it does not rely only on the
data at large ∆η. On the other hand, the model that we use to describe the
data is more complicated due to the presence of a significant away side jet
peak at ∆φ ∼ π, and a flow background in case of p-Pb and Pb–Pb.

In its most general form, the model that we use is the following2:

dN
d∆φ

=
〈
dNbgd
d∆φ

〉
(1 + 2

∑
n Vn∆ cosn∆φ)

+Njet,NS

[
f√

2πσNS1
exp

{
− ∆φ2

2σ2
NS1

}
+ 1−f√

2πσNS2
exp

{
− ∆φ2

2σ2
NS2

}]
+

Njet,AS√
2πσAS

exp
{
− (∆φ−π)2

2σ2
AS

}
,

(6.2)

where Vn∆ are the pair-anisotropy coefficients, which have been shown to be a
good description of long-range ∆η correlations in Pb–Pb [16]. The subscript
“NS” refers to the near-side jet peak at ∆φ ∼ 0, and the subscript “AS” refers
to the away-side peak. As in Eq. (6.1), we use the fit parameters Njet,NS and
f for the NS jet.

Our first attempt was to directly fit the model in Eq. (6.2) to the data.
Dependent on the collision system, we fixed several parameters to zero. In
case of pp we neglected any anisotropies in the background, i.e., we fixed
Vn∆ = 0, but left all other parameters free. For p-Pb it was shown that
the only significant contribution to the azimuthal anisotropy came from the
second Fourier coefficient [95], hence we fixed Vn∆ to zero for all n, except
for n = 2. Finally, in case of central Pb–Pb collisions we allowed Vn∆ to vary
for n = 1− 4. The anisotropy coefficients for n > 4 are small compared to
the lower orders, and are therefore neglected. The away-side jet is hard to
distinguish from (a combination of) lower-order anisotropy coefficients, and
its influence is so small that we fixed Njet,AS = 0.

As in the analysis of the ∆η projection, one of the main complications
with this approach was that while the double-Gaussian description of the
NS peak is clearly superior to the single-Gaussian description, fits with the
double-Gaussian model tend to be unstable. Another complication was that

2In the actual implementation of the model it is important to take the implied periodicity
in ∆φ into account.
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the statistical uncertainties on the proton and kaon distributions in Pb–Pb
were often too large to give reliable fit results.

6.3. Jet-Peak Yield Measurement

Since we found that for a substantial part of the data a direct fit to the
(∆η,∆φ)-plane, as well as to its projections, did not provide a viable option
for measuring the jet-peak yield, we devised an alternative method. In the
introduction of this chapter we already briefly mentioned this approach, and
in this section we work it out further.

Using this method one measures the near-side jet-peak yield Njet,i
3, the

average background density d2Nbgd,i/d∆φd∆η, the anisotropy coefficients
Vn∆, and the near-size peak widths σ∆η and σ∆φ. The following steps outline
the method:

1. Remove all bins outside the range −1.4 < ∆η < 1.4. The statistical
uncertainty on the data outside this range is extremely large. In fact,
for pp data at high pT, these bins often had no data at all.

2. Project the (∆η,∆φ)-distribution onto the ∆η-axis, and fit the resulting
distribution with a constant plus a Gaussian (see the first panel of
Fig. 6.1). The fitted standard deviation, σ∆η,i(pT), where i ∈ {π,K, p},
serves as a pT and species-dependent estimate of the jet-peak width.

3. Project the (∆η,∆φ)-distribution onto the ∆φ-axis, but ignore all bins
with a bin center obeying the following inequality:√

∆η2 + ∆φ2 ≤ min{ασ∆η,i(pT), 1}. The implications of various choices
for the value of the factor α are discussed later in this section. The
maximum radius of one is chosen so that there are still sufficient data
points left at ∆φ ∼ 0 to determine the background (see next step).

4. Under the assumption that the jet peak does not influence the projection
from the previous step, we can determine the constant background,
as well as the anisotropy coefficients by applying a discrete cosine
transform (DCT). The relation between the DCT coefficients and the
anisotropy coefficients is described in Appendix C. In case of pp and
p-Pb, only the data in the range −π

2
< ∆φ < π

2
can be used, as for

these systems the away-side jet is assumed to dominate the correlation
3The subscript “NS” for near-side will from here on be omitted.
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structure in the range π
2
< ∆φ < 3π

2
. Two examples of this step are

shown in Fig. 6.2. Additional examples are shown in Appendix D.

5. We now create a background-subtracted ∆φ-projection of the associated
yield by using the results from the previous step. We do this by
subtracting a constant (pp), a constant plus second harmonic (p-Pb),
or a constant plus the first four harmonics (Pb–Pb). The resulting
distribution is then fitted with a constant plus a single Gaussian at
∆φ = 0 and at ∆φ = π (pp and p-Pb), or only a single Gaussian at
∆φ = 0 (Pb–Pb). From the Gaussian fitted to the NS peak we find
σ∆φ,i.

6. From the analysis of both pp and p-Pb datasets we find that the
fitted standard deviation of the ∆φ and ∆η projections are approx-
imately equal, i.e., σ∆η,i(pT) ≈ σ∆φ,i(pT) (see Fig. 6.3). Furthermore,
the peak widths seem to agree very well among these two systems. The
peak widths measured from the Pb–Pb dataset are compatible as well,
however, for all but the pion measurement, the statistical
uncertainty is very large. Based on this observation, we define
σjet,i ≡ Avg{σpp

∆η, σ
pp
∆φ, σ

p-Pb
∆η , σp-Pb

∆φ }. As can be seen in Fig. 6.3, the
function σjet,i(pT) is very well described by a polynomial of order two.
At this point we repeat steps 3-5, but use the polynomial fit of σjet,i(pT)
as an estimate for the peak width instead of the measurement of
σ∆η,i(pT), thereby improving the measurement of the background pa-
rameters. After that, we continue with measuring the jet-peak yield in
the next step.

7. The jet-peak yield is measured by taking a sum over all bins with a bin
center within the disc

√
∆η2 + ∆φ2 = min{ασjet,i(pT), 1}, subtracting

from each bin the background from the previous steps, evaluated in the
center of that bin. The statistical uncertainties on the pair anisotropy
coefficients as well as on the constant background are propagated to
the peak-yield measurement by adding them in quadrature, properly
scaled by a factor ∂N/∂σVn∆

. The way to determine these statistical
uncertainties from the data is described in Appendix C.

In the following we refer to the set of bins that are used to estimate the
background parameters (〈dNbgd/d∆φ〉 and Vn∆) as the background region,
and to the set of bins that are used for counting the number of particles in
the jet peak as the jet-peak region.
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Figure 6.2.: Examples of background measurements in pion associated yield, in pp
(left panel) and Pb–Pb (right panel). The total background (α = 3)
is indicated with a solid red line in both panels, and the anisotropy
coefficients for 1 ≤ n ≤ 4 are shown as dashed lines. As a comparison,
in the left panel the background measurement with α = 4 is shown
in blue. The kinematic range is: 1.8 < pT,assoc < 2.2 GeV/c.

From the example of the background estimate of typical pp data shown
in Fig. 6.2, it is clear that when α = 3 the measurement of the uncorrelated
background (solid red line) is biased. As expected, this bias is significantly
reduced when α = 4. In Sect. 6.4 we outline the by that should be considered
when choosing a value for α and in Sect. 6.5 we discuss how the associated
bias influences the peak-yield and background measurement.

In Fig. 6.3 we show the result of the jet-peak width measurements. We
observe that for all pT bins σjet,π < σjet,K < σjet,p. It can also be seen that
in the pT range of this analysis, the maximum jet-peak width (protons at
low pT) is around 0.4. The average jet-peak width measurements are well
described by a second order polynomial, i.e.: σjet = a0 + a1pT + a2p

2
T, where

the coefficients ai are given in Table 6.1.

The stacked bar charts in Fig. 6.4 are meant to give an impression of the
jet-peak yield measurement. In this figure, the background is represented
by the blue bars, with the jet peak stacked on top in red. This figure is
created as follows: all the bars outside of the jet-peak region belong to the
background and are colored blue, while the bars within the jet-peak region
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Figure 6.3.: Peak widths determined with a Gaussian fit of dN/d∆φ and dN/d∆η
for pp and p-Pb (left panel), and the average of the peak width
measurements (right panel). The solid line is a polynomial fit of
order two through the averaged points. The “clusters of points” in
the left panel are all measured at the same pT, however, the points
are spread out for clarity.

a0 a1 a2

π 0.433± 0.003 −0.137± 0.002 (0.171± 0.005) · 10−1

K 0.544± 0.014 −0.193± 0.010 (0.244± 0.019) · 10−1

p 0.582± 0.030 −0.168± 0.022 (0.176± 0.041) · 10−1

Table 6.1.: Fit parameters of the polynomial fit of σjet.

are blue up to the value of the background function (see Fig. 6.2) evaluated
at the bin center and red beyond that value.

We wish to stress that these figures do not give a completely faithful
representation of the jet-peak yield measurement, as it does not explicitly
show bins with a negative contribution to the jet-peak yield. Due to statistical
fluctuations it is possible for the background function to exceed the total
content in the bin, in which case no red bar is shown. These bins, however,
do contribute to the peak-yield measurement, as these statistical fluctuations
are “balanced out” by upward statistical fluctuations in other bins.
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Figure 6.4.: Examples of peak yield measurements in pp (left panel) and Pb–Pb
(right panel). The blue bars are background, while the red bars
stacked on top constitute the jet-peak yield. The kinematic range is:
1.8 < pT,assoc < 2.2 GeV/c.

6.4. Choice of Peak Region in (∆η,∆φ)

In the previous section we proposed a procedure for measuring the jet-peak
yields, without clearly motivating some seemingly ad-hoc choices for the size
and definition of the jet peak and background regions. In this section we
motivate these choices by discussing their advantages over some reasonable
alternative approaches.

Choosing an optimal value for the scale factor α is not trivial, as both
small and large values for α come with distinct advantages and disadvantages.
A clear advantage of choosing α small (∼1) is that one can obtain a small
statistical uncertainty on the jet-peak yield measurement, because the bins
close to the center of the peak deviate the most from the background model.
On the other hand, since we do not exactly know the optimal model for
the jet peak (or at least we cannot reliably determine its parameters), we
cannot simply take a small α and extrapolate the total jet-peak yield. The
obvious advantage of choosing α large is that the measurement is guaranteed
to count the yield in the entire jet-peak structure, while being independent
of the specifics of the shape. This, however, comes at the price of a decreased
significance on the jet-peak yield measurement, since the bins in the tail
of the jet peak on average only deviate very little from the background.
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Put differently: by choosing α large, the jet-peak yield measurement entails
subtracting two large numbers with a small difference compared to the size
of those numbers. Additional practical limits on how large one can choose
α are given by the limited two-particle acceptance of the ALICE detector
(∆η < 1.6) and by the constraint that sufficient data at ∆φ ∼ 0 needs to be
“reserved” to perform the measurement of the background parameters.

In the procedure described in Sect. 6.3 we used all bins in a circle around
the origin to measure the jet peak, and all the remaining bins to measure the
background. While it is clear that bins which are part of the jet-peak region
should not be part of the background region, it is an obvious choice to use
the compliment of the jet-peak region. Ideally one would like to determine
the background as far away from the jet-peak structure as possible, so for
small α our approach does not seem to be a good option. Not only would
this exclude a sizable part of the tail of the jet peak from the jet-peak region,
it would in fact include it in the background region, resulting in a less reliable
measurement of the background parameters4. Note that this also induces
an additional bias on the jet-peak yield measurement, as the subtracted
background is higher than the true background.

An alternative approach that could potentially solve this problem is to use
two scale factors: αjet and αbgd, such that αjet < αbgd, in which case we would
define the jet-peak region as all bins with a bin center in the disc R < αjet,
ignore bins in the ring αjet ≤ R < αbgd, and to define the background region
as R > αbgd, where R ≡

√
∆η2 + ∆φ2. We finally decided not to use this

approach, since the spatial extent of the jet-peak structure of protons at
low-pT makes it impossible to find a value for αbgd that is larger than αjet, yet
leaves sufficient data to perform a reliable measurement of the background
parameters.

Another alternative would be to choose α to be an increasing function
of pT and/or a decreasing function of particle mass. Since the width of
the jet-peak structure decreases with higher pT and smaller particle mass
(see Fig. 6.3), this is in principle a viable option. As discussed previously,
this approach would lead to a decreased statistical significance at higher
pT, however, there is an even more important reason to disfavor this option.
While it would largely eliminate the bias at high pT, it would not cure the
problem at low pT, and as a consequence it would result in a pT (and mass)
dependent bias in the measured particle spectra. In our opinion, the gains

4For example, the observed 〈dNbgd/d∆φ〉 will be larger than its true value if part of the
jet-peak tail is included in the background measurement.
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of a non-constant α are not worth the price of losing homogeneity of the
analysis by introducing procedural changes as function of mass and pT.

It is clear from the previous discussion that the choice of jet peak and
background region should be the result of a practical compromise to suit
the various extremes encountered in our analysis (large/small S/B ratio,
data sample, peak width, etc.). The key features that we want to achieve in
this analysis are: stability by avoiding the use of a numerical minimization
procedure, and homogeneity by choosing a “one size fits all” strategy, i.e.,
not using procedural changes in the extremes of the analysis.

After comparing several values for α, we found that choosing α = 3.0
leaves sufficient data outside of jet-peak region to estimate the anisotropy
coefficients with a reasonable statistical uncertainty, while still counting true
jet-peak yield with high efficiency. As discussed in Sect. 6.5, if the true
jet-peak structure would be exactly a Gaussian, close to 99% of the jet-peak
structure would fall within the 3σ region, and the bias on the background
measurement due to including part of the jet-peak tail in the background
region should be minimal. In reality, the this number is smaller due to the jet
peak being only approximately Gaussian, however, the bias on the jet-peak
yield and background is expected to be independent of particle species, so
that the measurement of particle ratios is unbiased.

6.5. A Toy-Model Study

In this section we discuss a toy-model study, designed to test the robustness
of the procedure described in Sect. 6.3. The aim of this study is to apply our
analysis procedure on a large number (∼ 103) of random associated-yield
distributions, generated with parameters that are known a priori, in order
to assess whether the estimators in our procedure are biased. Formally, an
estimator θ̂ for a model parameter θ, is said to be biased if E[ θ̂ ] 6= θ, where
the operator E[ · ] stands for the expectation value [96]. If an estimator θ̂ is
biased, then the bias b is defined as: bθ̂ = E[ θ̂ ]− θ. By increasing the size
of the set of generated associated-yield distributions, one can in principle
determine the expectation value of an estimator (and hence its bias) to
arbitrary precision. Another interesting quantity is the mean squared error
(MSE) of the estimator, which is defined as: MSE = E[ (θ̂ − θ)2 ]5. Using the
MSE one obtains a measure of the relevance of the bias with respect to the
statistical uncertainty on that parameter.

5The MSE is related to the variance: MSE = V [ θ̂ ]− b2.
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For this study to be meaningful, it is important that the randomly
generated distributions resemble the experimental distributions as closely
as possible. We randomly generate an associated-yield distribution of the
background particles using the “background part” of Eq. (6.2) as probability
density function (PDF), i.e.:

d2Nbgd

d∆φ d∆η
∝ A(∆η)

(
1 + 2

∑
n

Vn∆ cosn∆φ

)
, (6.3)

and similarly, to generate an associated-yield distribution of the jet-peak
particles using a two-dimensional Gaussian as PDF:

d2Njet peak

d∆φ d∆η
∝ A(∆η) exp

{
−(∆φ2 + ∆η2)

2σ2
jet peak

}
, (6.4)

where A(∆η) = (∆ηmax−|∆η|)/(∆ηmax), and ∆ηmax = 1.6. Note that we did
not use the more realistic double-Gaussian PDF for the jet-peak structure,
as we cannot reliably determine its true parameters. The function A(∆η)
is included to model the pair-acceptance of the detector. Its main function
is to obtain an associated-yield distribution with an increasing statistical
uncertainty towards larger ∆η6.

The first step in generating the associated distributions is to scale the PDFs
in Eqs. (6.3) and (6.4) such that they represent the expected number of counts
per bin. After that, the associated distributions can be generated by drawing
for each bin a random Poisson-distributed variable, with an expectation value
given by the scaled PDFs. Then, the associated yield distributions have to
be corrected for “mixed events”, which is done by dividing it by the function
A(∆η). Finally, we normalize the generated histograms with the number of
“trigger particles”, apply the analysis described in Sect. 6.3 on the sum of the
jet peak and background distributions, and compute the expectation value
for each estimator.

Since we wish to get an estimate of the bias under realistic circumstances,
the study is set up as follows: for every measured associated yield distribution
in our analysis we generate 103 random associated yield distributions with the

6The model assumes a detector with perfect single-particle efficiency, however, this
approximation should not have a noticeable influence on our results.
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Figure 6.5.: Gaussian fits to data generated with the toy-model and analyzed with
the method described in Sect. 6.3. The generated associated yield
distributions resemble the associated pion distribution from p-Pb
collisions, at 2.2 < pT < 2.6 GeV/c. Left panel: measured jet-peak
yield over true jet-peak yield, right panel: measured background
density over true background density.

same parameters (flow coefficients, jet-peak width, etc.). From this sample,
we calculate the bias and MSE for every measured observable7.

As an example, in Fig. 6.5 we show the ratio of the measured jet-peak
yield and the true jet-peak yield, as well as the ratio between the measured
background density and the true background density. Notice that, as expected,
the choice of α = 3 induces a small bias in the background density observable,
which occurs because the background does include some of the tail of the jet
peak. Also, the jet-peak yield observable is biased; there is a bias of about
∼ 1% due to the jet region containing 3σ of the jet peak, and there is a
small additional bias due to the subtraction of an overestimated background
density.

In Fig. 6.6 the results of the study are shown as a function of pT. Note
that while the bias on the jet-peak yield measurements is nearly equal in
magnitude for the different collision systems, for pions it is significantly larger
than the statistical uncertainty, while for protons the statistical uncertainty
is larger than the bias. Furthermore, in jet-dominated events (pp) the

7For the MSE to be meaningful, it is important that the statistical uncertainties on the
generated points are comparable to the data points.
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Figure 6.6.: Bias on the jet-peak yield and background density, determined by
applying our measurement technique (Sect. 6.3) on data generated
by the toy model and comparing the results to the true values. The
error bars represent the MSE.
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ratio of the bias to the statistical uncertainty is generally larger than in
background-dominated events (central Pb–Pb). As expected, the bias is to a
good approximation the same for pions, kaons, and protons, except in the
first two pT bins for protons and the first pT bin for kaons, where the bias
is ∼ 1% larger. This is due to the fact that the jet region has a radius of
one, since for aforementioned bins have ασjet > 1 (see step 3 in Sect. 6.3).
There is also a bias of about ∼ 1% on the background-density estimator in
pp events. For the other systems the bias becomes negligible due to the fact
that the events are background-dominated.

The results of the study show that while there is a bias on the estimators
for the jet and background yield, they do not depend significantly on the
particle species, hence the particle ratios that are presented in Sect. 6.9 are
not expected to be biased. The jet-peak and background density spectra
that are also presented in Sect. 6.9 are expected to be somewhat biased,
however, we also decide not to correct for this. The main reason for this
is that it is not possible to exactly estimate the size of the bias, as we do
not have sufficient knowledge at present about the exact shape of the jet
peak. A justified criticism that one can have is that this decision makes the
results presented in Sect. 6.9 dependent on the details of the method that
we used to perform the measurement. This is true, however, we advocate
that it is worse to impose a correction for the bias based on a model we are
not certain about. Crucially, the method that we use to obtain the results is
well-defined, which makes the results reproducible.

6.6. Correction for Secondary Particles

In Sect. 4.6, we presented a method to determine the fraction of particles
coming from weak decays and material interactions, using fits of the DCA
distribution. Unfortunately, this method cannot be used to determine these
fractions in the jet peak and the background separately, as it is not possible
to create DCA distributions for the jet peak. While there is no reason to
assume that the fraction of secondaries from material interactions is different
in the jet peak and in the background, it is not a priori clear that the same
holds for the secondaries from weak decays. In fact, if the difference in the
hadrochemistry of the jet peak and the background extends to the strange
sector8, then the relative importance between different weak-decay channels
is altered as well.

8For example, a smaller Λ/K0
S ratio in the jet peak.
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The final results of our analysis are obtained from tracks with a tight
cut on the DCA (see Appendix A), which removes most of the secondary
particles. To study whether the remaining fraction of secondary particles is
significantly different in the jet peak and the background, we also measured
the jet-peak and background spectra using a loose DCA cut, removing almost
no secondary particles. Notice that the dataset with the tight DCA cut is a
subset of the dataset with the loose DCA cut. Similar to Sect. 4.6, where
we used a MC simulation to generate template DCA distributions, a MC
simulation can be used to determine the fraction of primary particles and
weak-decay particles that are selected by the loose DCA cut, but also the
tight one. Typical survival rates of primary particles are as high as 98− 99%,
while for secondary particles from weak decays it is approximately 15− 25%,
both increasing towards higher pT. Under the assumption that the fraction
of secondaries from material interactions is known, the measurement with
the loose and tight DCA cuts, supplemented with these survival fractions, is
sufficient to determine the fraction of primaries and secondaries in both jet
peak and background.

To show this explicitly, consider a yield measurement N using the
loose DCA cut9, and the same yield measurement N ′ using a tight DCA
cut. Reusing the notation from Sect. 4.6, the sum of the fractions of pri-
mary particles, secondaries from weak decays, and secondaries from ma-
terial interaction add up to one for both loose and tight DCA cuts, i.e.,
fP + fW + fM = f ′P + f ′W + f ′M = 1, where the prime again indicates the tight
DCA cut. Denoting the MC survival fractions of primary particles and weak
decay products by SP,W, one can write: SP(W)fP(W)N = f ′P(W)N

′. Assuming
that the fractions of secondaries from material interactions fM and f ′M are
known, the fraction of primary particles after the tight DCA cut is given by:

f ′P =
SP(1− f ′M)− SPSW

N
N ′ (1− fM)

SP − SW
. (6.5)

Notice that the primary fraction in Eq. (6.5) depends linearly on the ratio
of the measurements with loose and tight DCA cuts. A possible difference in
the primary fraction in jet peak and background can therefore be written as

9The argument does not depend on particle species, pT range, or whether it is a jet-peak
or background yield. If the yield is associated with a trigger particle, as is the case
here, then it is assumed to be normalized by the number of trigger particles.
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a difference in these ratios, i.e.:

f ′P,jet − f ′P,bgd =
SPSW

SP − SW
(1− fM)

[
Njet

N ′jet
− Nbgd

N ′bgd

]
. (6.6)

For pions in pp and p-Pb collisions we find a statistically significant difference
in the ratios of ∼ 2%, i.e., in the jet peak, the tight DCA cut removes a
larger fraction of particles than in the background. For protons we observe
differences of a similar magnitude, but with with much less significance. In
Pb–Pb collisions, we see no significant difference for any particle species,
however, the statistical uncertainty on the jet-peak measurements are very
large.

Using the typical values for the survival rates and the material fraction
of protons (fM . 2 − 3%)10, we find that the pre-factor in Eq. (6.5) is
approximately 0.2 − 0.3. This means that the difference in the primary
fraction when using the tight DCA cut is . 1%, and can safely be neglected.

6.7. Efficiency Correction

As described in Eq. (5.5), the mixed-event distribution can be used to correct
for two-particle acceptance and two-particle efficiency effects. In this section
we discuss the remaining overall efficiency factor, the average single-particle
efficiency of the associated particles, i.e., 〈εassoc〉.

As is standard in analyses using particle identification, the single-particle
efficiency is written as the product of three types of efficiencies, which are
listed below. In the description of the different types of efficiencies we often
refer to the track cuts, which are detailed in Appendix A.

• Tracking Efficiency - The probability that a particle’s track is success-
fully reconstructed, and that it passes the standard track cuts. The
tracking efficiency is denoted by: εtracking.

• PID Efficiency - The probability that a reconstructed track that passes
the standard track cuts also has a usable signal from both TOF and
TPC detectors. This means, for example, that the track needs to have
a sufficiently large number of specific energy-loss measurements along
the track. Furthermore, the track needs to be matched with a hit in

10For protons the material fraction is much larger than for the other particle species.
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the TOF detector, essentially this means that a TOF hit needs to be
found which is sufficiently close to the reconstructed track. The PID
efficiency is denoted by εPID.

• TOF Good-Matching Efficiency - The probability that a reconstructed
track with usable signals from TOF and TPC is matched with the
correct TOF hit. While the PID efficiency includes the probability for
finding a match with a TOF hit, this match is not guaranteed to be
correct. The TOF good-matching efficiency is related to the number
of mismatches and is most important for events with a high track
density, i.e., for central Pb–Pb events11. The TOF matching efficiency
is denoted by: εTOFGoodMatch.

These different efficiencies can be calculated by means of a Monte Carlo
simulation, and a virtual model of the ALICE detector. First, an event
is generated using an event generator such as PYTHIA for pp events [97],
DPMJet for p-Pb events [98], or Hijing for Pb–Pb events [99]. The generated
particles are subsequently propagated through the virtual ALICE detector,
and the interactions of the particles with the detector material are modeled
by dedicated simulation software, which in our case is GEANT3 [93]. This
way a virtual “measurement” of the generated event is created, and the
track reconstruction algorithms can be applied. The tracking efficiency is
calculated by taking the ratio of the number of reconstructed tracks and
the number of generated particles. Similarly, the PID efficiency and TOF
matching efficiency can be determined from the reconstructed tracks and
the criteria listed above. The efficiencies are calculated for primary particles
only, as secondary particles are removed from our final results.

The reliability of the efficiency factors depends on how close the resem-
blance is between the response of the true detector and the detector model.
One known issue with the MC runs used for determining the efficiencies
for pp and Pb–Pb (see Appendix B) is a problem with GEANT3, which
overestimates the annihilation cross-section of anti-protons, and to a much
lesser extent that of anti-kaons, with the detector material [100]. For this
reason the produced efficiencies are too small, and a correction factor needs to
be applied. This correction factor is determined using the FLUKA simulation
package [101].

In Fig. 6.7 we show the different efficiency factors for central Pb–Pb
collisions as a function of pT.

11The TOF matching efficiency is only applied in the Pb–Pb analysis.
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Figure 6.7.: Tracking, PID, and TOF matching efficiency for central Pb–Pb
collisions.

6.8. Systematic Uncertainties

Several sources of systematic uncertainty on the jet-peak and bulk density
spectra are due to imperfections in the model of the ALICE detector, used to
determine the efficiencies. These are common to all (PID) analyses in ALICE,
which is why we use the same uncertainties, determined during previous
analyses. The relevant sources are: tracking efficiency, TOF matching
efficiency,12 and secondary correction. The relatively large uncertainty on the
TOF matching efficiency is due to the presence of the Transition Radiation
Detector (TRD), which constitutes a significant amount of material in between
the TPC and the TOF detector. As described in Ref. [94], the TRD was
not fully installed in 2010, hence the associated systematic uncertainty can
be estimated by explicitly comparing identified spectra in regions with and
without TRD.

As discussed in Sects. 4.4 and 5.3, the most important sources of systematic
uncertainty coming from the TOF/TPC fit method are due to an imperfect
model of the detector response. Three different checks were performed to
asses the extent of the uncertainty: the dependence of the fitted yield on
the choice of fit region, the comparison with TOF SA fits (in Tables 6.2 and
6.3 these two sources are collectively referred to as “Fit Function”), and the
effect of fixing the tail-parameter λK|i. Finally, as discussed in Sect. 6.5,
the method for determining the jet-peak yield and background density is
12Note that in this analysis the TOF matching efficiency is included in the PID efficiency.

It is not the TOF good-matching efficiency.
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π± K± p and p̄
pT range (GeV/c) 1 4 1 4 1 4

Tracking Eff. [95, 102] 3% 3% 3% 3% 3% 3%

ITS-TPC Matching Eff. [102] 2% 2% 2% 2% 2% 2%

TOF Matching Eff. [94, 102] 3% 3% 6% 6% 4% 4%

Secondary Correction [94] 1% 1% negl. negl. 2% 1%

Fit Function (pp)13 1% 2% 2% 5%14 2% 5%

Fit Function (p-Pb)13 1% 2% 2% 5%14 2% 2%

Fit Function (Pb–Pb)13 1% 2% 1% 2% 1% 1%

Fixing Tail Parameter (Ch. 4) 0% 0% 0% 3% 0% 2%

Choice of α N/A N/A N/A N/A N/A N/A
Total (pp) 5% 5% 7.5% 9% 6% 7.5%

Total (p-Pb) 5% 5% 7.5% 9% 6% 6%

Total (Pb–Pb) 5% 5% 7% 8% 6% 6%

Table 6.2.: Main sources of systematic uncertainty on jet-peak and background
density spectra.

expected to be slightly biased. As we do not have sufficient information
about the shape of the jet peak to exactly estimate the size of the bias,
we have decided to present the results without correcting for this bias. By
doing this we essentially adopted a working definition of the “jet peak” and
“background density” to be that what is measured by our method, and for this
reason no systematic uncertainty is assigned. The main sources of systematic
uncertainty in our measurement are collected in Table 6.2.

The systematic uncertainties that are discussed so far apply to the jet-peak
yield and the background density. For the ratio of the yield of two different
particle species, some of these uncertainties can reasonably be assumed to be
correlated (tracking efficiency, matching efficiencies), and therefore the overall
effect on the ratio is reduced. For this reason, the systematic uncertainty
on the tracking efficiency and both matching efficiencies is taken to be the
absolute difference of the two particle species involved, with a minimum of
13Based on Sects. 4.4.2 and 4.4.3.
14Maximum value attained at pT = 2.0 GeV/c.
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K++K−
π++π−

p+p̄
π++π−

pT range (GeV/c) 1 4 1 4
Tracking Eff. 1% 1% 1% 1%

ITS-TPC Matching Eff. 1% 1% 1% 1%

TOF Matching Eff. 3% 3% 1% 1%

Secondary Correction 1% 1% 1% 1%

Fit Function (pp)13 2% 7%14 2% 5%

Fit Function (p-Pb)13 2% 7%14 1.5% 3%

Fit Function (Pb–Pb)13 2% 3% 1.5% 3%

Fixing Tail Parameter 0% 3% 0% 2%

Choice of α N/A N/A N/A N/A
Total (pp) 4% 8.5% 3.0% 5.5%

Total (p-Pb) 4% 8.5% 2.5% 4.0%

Total (Pb–Pb) 4% 5.5% 2.5% 4.0%

Table 6.3.: Main sources of systematic uncertainty on particle ratios.

1% per effect. This minimum of 1% is introduced because while the efficiency
correction and matching efficiencies are similar from species to species, they
are not exactly the same (see Sect. 6.7). For the systematic uncertainty
due to the secondary correction, we use the uncertainty from the pions. In
case of the K/π ratio, the reason is that the amount of secondary kaons is
negligible and in case of the p/π ratio, the reason is that the most important
process that produces secondary protons is lambda decay, which produces
pions in equal amounts (see Sect. 4.6). The uncertainty due to the choice of
fit region is only partially correlated (see Sect. 4.4.2), while the uncertainty
from the TOF SA comparison is fully anti-correlated for pions and kaons (see
Sect. 4.4.3). The appropriate values for the ratios are evaluated by taking
the ratio of the histograms in the different panels of Figs. 4.5 and 4.6. Finally,
since fixing the TOF tail parameter λK|i has a negligible effect on the pion
measurement, the systematic uncertainty on the K/π and p/π ratio are
simply the uncertainties on the kaon and proton spectra respectively. The
uncertainties that are used for the measurement of the identified ratios are
summarized in Table 6.3.
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6.9. Results

The first interesting observation that we made was that the width of the jet
peak (both in ∆η and ∆φ) turns out to increase with larger mass and smaller
pT (see Fig. 6.3). In Fig. 6.8 we show a qualitative comparison between
the (normalized) peak shapes in a narrow pT interval in pp collisions and in
PYTHIA (Perugia 11 tune, using the CTEQ5L parton distribution functions).
The left panel of this figure clearly shows that peak width increases with the
mass of the particle, i.e., σjet,π < σjet,K < σjet,p, while the right panel shows
that this feature does not seem to be reproduced by PYTHIA.

A possible explanation of the widening of the proton peak would be that
the majority of protons are produced by gluon jets [103, 104], and that gluon
jets are generally wider than quark jets [105]. However, if this were the
explanation, then we would also see a similar widening of the proton peak
in the PYTHIA results. We therefore conclude that the mass-dependence is
not a natural consequence of the fragmentation dynamics in PYTHIA.

We also noted that the jet-peak shape appeared to be non-Gaussian (see
Fig. 6.1). One possibility is that the non-Gaussianity is caused by the fact
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Figure 6.10.: The K/π ratio in jet peak (blue) and background (red), in pp,
p-Pb, and Pb–Pb collisions. The error bars represent the statistical
uncertainty, while the boxes represent the systematic uncertainty.
On the left panel we make a comparison between pp and p-Pb
collisions, while on the right panel we compare pp and Pb–Pb
collisions. Both panels include a PYTHIA reference at

√
s = 7 TeV.

that we integrate over a reasonably large pT interval, and that the width
of the jet peak is pT-dependent. To check if this could cause an effect of
the same magnitude as observed in the data we performed a simulation
of a toy model, using a reasonable parameterization of the pT spectrum,
assuming a Gaussian shape of the peak width, and taking σ(pT) from a
second order polynomial with the parameters as denoted in Table 6.1. This
way we simulated a jet peak integrated over a pT range comparable to the
bin sizes used in our analysis. The non-Gaussianity of the simulated peaks
was in general negligible, and we conclude that there must be a different
underlying cause.

The identified jet-peak and average background spectra for pp, p-Pb, and
Pb–Pb collisions are shown in Fig. 6.9. Notice that while the jet-peak spectra
for each collision system are of the same order of magnitude, the background
density spectra differ by one or two orders of magnitude.

To study the hadrochemical composition of the jet peak and the back-
ground, we show the K/π ratio in Fig. 6.10 and the p/π ratio in Fig. 6.11,
together with a PYTHIA reference at the same center of mass energy as
the pp collisions (

√
s = 7 TeV). To make sure that the PYTHIA results can
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Figure 6.11.: The p/π ratio in jet peak (blue) and background (red), in pp,
p-Pb, and Pb–Pb collisions. The error bars represent the statistical
uncertainty, while the boxes represent the systematic uncertainty.
On the left panel we make a comparison between pp and p-Pb
collisions, while on the right panel we compare pp and Pb–Pb
collisions. Both panels include a PYTHIA reference at

√
s = 7 TeV.

be compared with the measurements, we have performed exactly the same
analysis on the generated dataset as on the experimental dataset.

There are several interesting observations one can make from Figs. 6.10
and 6.11. One observation is that within each collision system, the K/π
and p/π ratio are significantly larger in the background than in the jet
peak, most prominently so for the p/π ratio in Pb–Pb collisions. In central
Pb–Pb collisions, the large p/π ratio of the background at intermediate pT

is also seen in the inclusive spectra, and is known as the baryon anomaly
(see Sect. 2.7). For pT . 2.0 GeV/c, the baryon anomaly is explained by
collective flow effects, while for higher pT it can be understood in terms of a
recombination model, where the dominant mechanism of hadronization is
the recombination of (mostly thermal) partons. The fact that the p/π ratio
in the jet peak does not show a similar dramatic increase suggests that the
mechanism of hadron production is not the same as in the background, and
is likely for a large part determined by the dynamics of jet fragmentation.
In pp events on the other hand, the production of all hadrons is generally
modeled by independent fragmentation of color strings between the partons
in the parton shower and the partons in the beam remnants [97]. From this
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it is not immediately obvious why there is a difference in the particle ratios
in jet peak and bulk in pp collisions.

Another interesting comparison can made between the particle ratios
in the jet peak among the three collision systems. It has been suggested
that the particle ratios in the different systems may be similar due to the
so-called surface-bias, i.e., the fact that the high-pT trigger particles are
more likely to originate from a parton shower that was initiated from a
hard partonic collision that took place close to the surface of the hot QCD
medium. This would imply that the fragmenting partons may have had very
little interaction with the medium, suggesting that the resulting jet should
be similar in composition to a jet created in a pp collision. We observe,
however, that the p/π ratio in the jet peak in Pb–Pb collisions is larger
than the same ratio in pp and p-Pb collisions, which suggests that there
is some influence from the hot QCD medium on the hadronization process.
Similarly, we observe that the K/π ratio in the jet peak is, both in Pb–Pb
and p-Pb collisions, significantly larger than in pp collisions. It is somewhat
surprising that we also observe a difference between pp and p-Pb collisions.
This observation adds an additional piece of information to the discussion
that pp and p-Pb events are not as similar as initially expected.

Two possible mechanisms through which the QCD medium can affect the
hadronization of the jet were introduced in Chapter 2, namely: recombination
of thermal and shower partons (Sect. 2.7) and medium-induced modification
of the splitting functions (Sect. 2.8). In order to investigate the origin of
the presented observations, a more thorough study using these models is
warranted.

It should be noted that the center-of-mass energies of the three systems
under study are not the same15. For this reason it cannot be ruled out that
the differences between the three systems are due to the difference in center-
of-mass energy. In order to investigate this, we ran PYTHIA simulations at√
s = 2.76, 5.02 and 7 TeV, and in Fig. 6.12 we compare the particle ratios in

jet peak and background from the PYTHIA simulation to the particle ratios
measured in pp, p-Pb, and Pb–Pb collisions. From this figure it is clear that
the particle ratios from PYTHIA, both in the jet peak and the background,
show very little dependence on

√
sNN, while a clear trend as a function of

energy or system size is seen in the data. For this reason, we conclude that

15ALICE has also taken pp data at
√
s = 2.76 TeV, however, this dataset is too small to

perform the analysis presented in this work.
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Figure 6.12.: The K/π and p/π ratios in jet peak and background in one single
pT,assoc bin, as a function of

√
sNN. We compare results from pp,

p-Pb, and Pb–Pb collisions in one figure, and PYTHIA results are
included in the same figure as reference. The size of the statistical
uncertainty is smaller than the marker size for all but the p/π ratio
in the jet peak in Pb–Pb collisions.

the observed differences in the particle ratios between the collision systems
are most likely due to the difference in system size.
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6.10. Summary

In this chapter we discussed several methods that can be employed to study
the near-side structure of the (identified) yield associated with a high-pT

trigger particle. We presented results on several observables: the width of the
jet peak, the jet-peak yield and the average particle density of the underlying
event.

Given the size of the dataset that is presently available, numerically fitting
the associate yield distribution in (∆η,∆φ) with an appropriate model does
not yield sufficiently stable results for all particle species and pT bins to be
generally used, unless an oversimplified model of the jet-peak shape is used.
To quantify the background density and the number of particles in the jet
peak, the preferred method is a combination of a discrete Fourier transform,
and a simple counting method. This method is stable by construction, and
is shown to have a minimal bias.

One interesting observation that could be made from fitting the jet peaks,
projected either onto the ∆η or ∆φ axis and using a simplified model for the
jet peak, is that the width of the jet peak is larger for heavier particles and
smaller at higher pT. Furthermore, the width is independent of the collision
system within the present uncertainties.

Finally, the p/π and K/π ratios in the jet peak and background for pp,
p-Pb, and Pb–Pb collisions are presented as a function of pT. In all collision
systems we found that the p/π and K/π ratios are significantly smaller in
the jet peak compared to the underlying event. We furthermore found that
at intermediate pT (2.6 < pT < 4.0 GeV/c), both p/π and K/π ratios in the
background are smaller in pp than in p-Pb collisions and also smaller in p-Pb
than in Pb–Pb collisions. The particle ratios in the jet peak show a similar
trend, except the K/π ratio, which is similar in p-Pb and Pb–Pb.

In addition, PYTHIA calculations show that the center of mass energy
dependence of the p/π and K/π ratio in jet peak and background are
negligible, which indicates that the observed effect is related to the difference
in system size.



Chapter 7.

Discussion and Outlook

In this work we have developed a new and powerful particle identification
strategy, based on fitting the combined signal of two independent detector
systems, the TOF (∆t) and the specific energy loss (dE/dx) measured by the
TPC. While there are several complications to this method, most notably the
large number of fit parameters, at intermediate pT (1.0 < pT < 4.0 GeV/c)
it has a much better separation power than methods based on a single
detector signal. The pT range of the TOF-TPC method could be extended to
higher pT, however, this most likely requires making some assumptions on the
parameters of the fit function. One way to do this would be to parameterize
some parameters as a function of pT.

As the shape of the TOF and TPC detector response depends on different
kinematic parameters, including η, the response as a function of ∆η is
“smeared out”. In this work we showed that the response as a function of ∆η
can effectively be modeled by fit-templates, constructed by taking a linear
combination of the model functions fitted to the inclusive data for different
values of η. Fitting (TOF, TPC) distributions with templates reduces the
number of fit parameters to the number of particle species in the analysis,
plus one for the TOF mismatched particles. The decreased dimensionality
of the parameter space is in particular useful for fits of the associated yield
distribution with a high-pT trigger, as the high-pT trigger requirement greatly
reduces the size of the dataset. This high-pT trigger cut is especially stringent
in pp collisions. In this work we have used the template fit method exclusively
to perform fits in the (TOF, TPC) plane, however, the same strategy can in
principle be applied to any type of PID method that uses a fit procedure.

Using the TOF-TPC template fit method we performed a measurement of
the identified (π, K, p) yield associated with an unidentified high-pT trigger
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particle for pp, central p-Pb, and central Pb–Pb collisions. Using Gaussian
fits of the near-side jet-peak structure, we observed that the width of the jet
peak is larger for heavier particles and smaller towards larger pT. Using a
discrete Fourier transform we determined the background density and the
flow coefficients as a function of pT particle species. The identified jet-peak
yield was measured by first subtracting the background from the data, and
subsequently counting the remainder in a circle of three times the expected
width of the jet-peak structure, which was determined by the Gaussian fits.
Using the resulting identified spectra, we studied the hadrochemistry of the
jet peak and background.

In all three systems, we observe that the K/π and p/π ratios are much
larger in the background than in in the jet peak. The difference is largest
in Pb–Pb collisions. These observations indicate that the mechanism of
hadronization is different in the jet peak and the background, however, further
theoretical studies of this effect are warranted. The composition of the jet
peaks in the three different systems also turns out to be somewhat different,
however, the difference is not as large as in the background. Comparisons
with PYTHIA results suggest that the observed differences between the
collision systems are indeed due to the difference in system size, and not due
to a difference in the center-of-mass energy.

The difference between the p/π ratio in the jet peak and underlying event
in central Pb–Pb collisions was presented at the 5th Hard Probes conference
in 2012 [106], and the current work extends on this study by improving
the particle identification method, including kaons in the analysis, and by
performing the same analysis on p-Pb, and pp collisions. Furthermore, it
provides a preliminary study of the near-side jet-peak shape for identified
particles, a topic that was previously only studied for unidentified associated
particles [107].

The results presented in this work open up a number of possibilities for
further investigation. There are several extensions that are possible with the
currently available datasets. For example, one can measure the Λ/K0 ratio
in jet peak and background; this study is currently underway.

As mentioned in Sect. 6.9, it is possible that there is a surface-bias, i.e.,
jets containing a high-pT trigger particle are more likely to originate from
a parton-parton collision that took place near the surface of the hot QCD
medium. This could explain why the difference in the particle ratios from
system to system is relatively small, since the parton at the origin of the jet
containing the high-pT trigger particle may have had little interaction with
the hot QCD medium. One way to study this is by measuring the particle
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ratios in the away-side jet peak as a function of collision centrality. If the
high-pT trigger requirement indeed causes a bias towards probing near-side
jets originating from partons with a very short path-length through the
medium, then conversely, the parton at the origin of the away-side jet must
have traveled a much longer distance through the medium. This distance
should, however, decrease as a function of centrality, so if there is indeed a
surface-bias, then one would expect to see a centrality dependence of the
hadrochemistry in the jet peak.

For pp collisions, measuring the particle ratios in the away-side jet peak
is a relatively straightforward extension of the current analysis, and also
for p-Pb collisions one can likely separate the away-side ridge into a part
due to collective flow and a part due to the away-side jet peak. For Pb–Pb
collisions, the situation is more complicated because collective flow dominates
the away-side structure. One possibility is to start by analyzing peripheral
Pb–Pb collisions, and work towards more central collisions, up to the point
where the analysis of the away-side peak is no longer feasible.

We used the fact that PYTHIA calculations showed no center-of-mass
energy dependence of the particle ratios in jet peak and background as an
important piece of evidence for the conclusion that the differences in particle
ratios between collision systems are related to differences in the size of the
collision system. The fact that the particle ratios measured in the inclusive
yield of pp and p̄p collisions are nearly independent of center-of-mass energy
for
√
s & 1 TeV [102] leads us to believe that the same will hold for the

particle ratios in jet peak and background. Nonetheless, our conclusion
would be stronger if we could confirm this experimentally. For this, a pp data
sample would be required of similar size (∼ 200M events) at

√
s = 2.76 TeV

or
√
s = 5.02 TeV.

Towards lower pT, the most important limiting factor in the study of the
jet-peak structure is the increasing width of the jet peak, combined with
the ALICE detector acceptance of |∆η| < 1.6. Especially for protons we
expect that for this reason the jet-peak structure will be difficult to study
at pT,assoc < 1.0 GeV/c. Given the size of the current dataset, the lower
limit at which we could study the proton jet peak was pT,assoc ∼ 1.4 GeV/c,
however, we expect that by increasing the size of the dataset this can be
extended down to the point where the acceptance becomes the limiting factor.
Towards higher pT, the main difficulty with the current analysis is the particle
identification. Similar to most PID methods, the separation power of the
combined fit method decreases with increasing pT. Furthermore, the number
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of available associated particles becomes smaller at larger pT. With a larger
dataset the current analysis can likely be extended to pT,assoc ∼ 5− 6 GeV/c.

Furthermore, with a larger dataset, several extensions to the current study
become possible. One option is to perform the study with trigger particles
at higher pT, and make a comparison with the current results. Furthermore,
for Pb–Pb collisions, a larger dataset would allow us to examine the shape
of the jet-peak structure in more detail.



Appendix A.

Event and Track Cuts

Event Cuts

Only those events are used of which the primary vertex is reconstructed
at most 7cm away from the center of the detector, in the direction of the
beam-axis. For p-Pb and Pb–Pb we also demand that the event belongs to
the 10% most central events.

Standard Track Cuts (2010)

The standard track cuts (2010) on the ITS and TPC parameters, which we
used for the pp and Pb–Pb datasets, are shown in the table below.

ITS Require clusters in ITS: At least one hit in the SPD
Maximum χ2 per cluster: 36

Require ITS refit: YES
zDCA < 2.0 cm

TPC Minimum number of clusters: 70

Maximum χ2 per cluster: 4

Require TPC refit: YES
Accept Kink Daughters: NO
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Standard Track Cuts (2011)
The p-Pb dataset was collected in 2011, and the standard track cuts on
the ITS and TPC are slightly altered from the year before. Instead of the
requirement of 70 TPC clusters, the track is required to have crossed at least
70 rows in the TPC. Also, the number of crossed rows has to be more than
80% of the number of findable clusters1.

Standard Track Cuts, Loose DCA
The standard cuts are used, however, with a less strict DCA cut:√

x2
DCA + y2

DCA

2.4 cm
+

zDCA

3.2 cm
< 1. (A.1)

Standard Track Cuts, Tight DCA
The standard cuts are used, however, with a very strict DCA cut:√

x2
DCA + y2

DCA <

(
0.0182 +

0.0350

pνT

)
cm, (A.2)

where ν = 1.01 for the 2010 datasets from 2010 and ν = 1.1 for the datasets
from 2011. Additionally, the χ2 of the global track constrained to the primary
vertex cannot be larger than 36. These two cuts remove a large fraction of
secondary particles.

PID Specific cuts
For the associated tracks the following PID flags are required:

TOF A valid interaction time measurement (tint).
A hit in the TOF detector, assigned to the global track.

TPC At least sixty dE/dx measurements per track.

1The number of findable clusters decreases for large η, as well as for tracks that intersect
a boundary between the readout chambers in the TPC.
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Data Sample

pp

• LHC10d (AOD135) - NMB = 110M
126437, 126432, 126425, 126424, 126422, 126409, 126408, 126407,
126406, 126405, 126404, 126403, 126359, 126352, 126351, 126285,
126284, 126283, 126168, 126160, 126158, 126097, 126090, 126088,
126082, 126081, 126078, 126073, 126008, 126007, 126004, 125855,
125851, 125850, 125849, 125848, 125847, 125844, 125843, 125842,
125633, 125632, 125630, 125628, 125296, 125134, 125101, 125100,
125097, 125085, 125023, 124751, 122375, 122374.

• LHC10e (AOD135) - NMB = 95M
130840, 130834, 130799, 130798, 130795, 130793, 130704, 130696,
130519, 130517, 130480, 130356, 130354, 130343, 130342, 130179,
130178, 130172, 130158, 130157, 130149, 129983, 129961, 129960,
129959, 129744, 129742, 129738, 129736, 129735, 129729, 129726,
129725, 129723, 129667, 129666, 129659, 129654, 129653, 129652,
129650, 129647, 129641, 129639, 129599, 129587, 129586, 129540,
129528, 129527, 129523, 129520, 129514, 129513, 129512, 128913,
128855, 128853, 128843, 128836, 128835, 128833, 128824, 128823,
128820, 128778, 128777, 128678, 128677, 128615, 128611, 128609,
128605, 128582, 128507, 128504, 128503, 128495, 128494, 128486,
128483, 128452, 128366, 128260, 128192, 128191, 128189, 128186,
128185, 127942, 127941, 127940, 127937, 127936, 127935, 127933,
127822, 127718, 127714, 127712.
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• LHC10f6a, MC (AOD161) - NMB = 120M
125855, 125851, 125850, 125849, 125848, 125847, 125101, 125100,
125097, 125085, 125023, 126097, 126090, 126008, 126007, 126004,
125844, 125843, 125842, 125633, 125632, 125630, 125186, 125156,
125140, 125139, 125134, 125133, 122375, 126158, 126088, 126082,
126081, 126078, 126073, 125296, 122374.

p-Pb

• LHC13c, pass2 (AOD154) - NMB = 11.6M (0− 20%)
195529, 195531, 195566, 195567, 195568, 195592, 195593, 195596,
195633, 195635, 195644, 195673, 195675, 195677.

• LHC13b2_efix, MC (AOD158) - NMB = 29M (0− 20%)
195344, 195346, 195351, 195389, 195390, 195391, 195478, 195479,
195480, 195481, 195482, 195483, 195529, 195531, 195566, 195567,
195568, 195592, 195593, 195596, 195633, 195635, 195644, 195673,
195675, 195677.

Pb–Pb

• LHC10h, pass2 (AOD160) - NMB = 1.37M (0− 10%)
139510, 139507, 139505, 139503, 139465, 139438, 139437, 139360,
139329, 139328, 139314, 139310, 139309, 139173, 139107, 139105,
139038, 139037, 139036, 139029, 139028, 138872, 138871, 138870,
138837, 138732, 138730, 138666, 138662, 138653, 138652, 138638,
138624, 138621, 138583, 138582, 138579, 138578, 138534, 138469,
138442, 138439, 138438, 138396, 138364, 138275, 138225, 138201,
138197, 138192, 138190, 137848, 137844, 137752, 137751, 137724,
137722, 137718, 137704, 137693, 137692, 137691, 137686, 137685,
137639, 137638, 137608, 137595, 137549, 137544, 137541, 137539,
137443, 137441, 137440, 137439, 137434, 137432, 137431, 137430,
137366, 137243, 137236, 137235, 137232, 137231, 137230, 137162,
137161, 137135.

• LHC11a_10a_bis, MC (AOD143) - NMB = 80k (0− 10%)
same runs as LHC10h.



Appendix C.

The Discrete Cosine Transform

The discrete cosine transform (DCT) can be used to determine the Fourier
cosine coefficients of a discrete data set. There are several prescriptions on
how to discretize the continuous formulation of the cosine transform, however
in this work we will only use the most common one, DCT-II.

Suppose, one period of a signal has been measured on N equally spaced
intervals, then the DCT-II transform Xn is defined as:

Xn =
N−1∑
k=0

xk cos

[
π

N

(
k +

1

2

)
n

]
, (C.1)

where xk are the measurements. Treating these measurements as uncorrelated,
we can write the statistical uncertainty σXn as:

σXn =

√√√√N−1∑
k=0

σ2
xk

cos

[
π

N

(
k +

1

2

)
n

]2

. (C.2)

Now we turn to the application of the DCT to determine the flow coeffi-
cients vn∆. In Eq. (6.2) we defined these coefficients as follows:

dN

d∆φ
=

〈
dN

d∆φ

〉(
1 + 2

∞∑
n=1

Vn∆ cosn∆φ

)
. (C.3)
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Using the DCT, the average yield can be extracted as follows:〈
dN

d∆φ

〉
=

1

π

∫ π

0

dN

d∆φ
d∆φ ' 1

N

N−1∑
k=0

(
dN

d∆φ

)
k

=
X0

N
, (C.4)

where:
(
dN
d∆φ

)
k

= dN
d∆φ

(∆φk), and ∆φk = π
N

(k + 1
2
).

The flow coefficients can be written as:

Vn∆ =
1

π
〈
dN
d∆φ

〉 ∫ π

0

dN

d∆φ
cos(n∆φ)d∆φ

' 1

X0

N−1∑
k=0

(
dN

d∆φ

)
k

cos

[
π

N

(
k +

1

2

)
n

]
=
Xn

X0

, (C.5)

where we used the identity
∫ π

0
cos(nx) cos(mx)dx = π/2 for n = m 6= 0.



Appendix D.

Associated Yield Projections

In this appendix we provide some additional figures, illustrating the way we
model the background of the associated yield distribution in central Pb–Pb
collisions. In Fig. D.1 we show the values of Vn∆ with n = 1...4 for pions,
kaons, and protons.
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Figure D.1.: Vn∆(pT) with n = 1...4 for pions, kaons, and protons. These values
are determined using a DCT (see Eq. (C.5)) on the identified yield
associated with a high-pT trigger particle, with the near-side peak
removed (see Sect. 6.3).

In Fig. D.2 we show examples of the decomposition of the background,
used to measure the values in Fig. D.1. For each particle species (π, K, p),
we show a low-pT bin and a high-pT bin. From these figures one can clearly
see the difference in signal strength between low and high pT and among the
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different particle species. Furthermore, it can be seen that the first four DCT
coefficients give a good description of the background.

Finally, in Fig. D.3, we show examples of the projection of the associated
yield onto the ∆η axis, using the same pT bins as in Fig. D.2. The range in
∆φ is chosen to correspond to the size of the jet-peak region (see Sect. 6.3).
From these figures, we can clearly see that the jet peaks are much wider at
low pT compared to high pT. At high pT, the jet peaks become sufficiently
narrow to see that the background at large ∆η becomes flat.
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Figure D.2.: Decomposition of the identified yield associated with a high-pT

trigger particle, using the first four terms of the DCT expansion
(see Eq. (C.5)).
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Summary

The nucleus of any atom consists of neutrons, which carry no electrical charge,
and positively charged protons. As protons electrically repel each other, there
must be another force holding the atomic nucleus together as a stable entity.
This force is called the nuclear force, and it is the energy stored in the
nuclear force fields that is harnessed in nuclear fission and nuclear fusion.
An interesting property of the nuclear force is that its strength becomes
negligible at scales larger than the typical size of an atomic nucleus.

Today, the nuclear force is understood as an effective force, resulting
from a more fundamental theory that describes the dynamics of the interior
of protons and neutrons. In this theory, called quantum chromodynamics
(QCD), protons and neutrons are a bound state of several lighter particles,
called quarks, held together by a fundamental force called the strong force.
The mediator particles of the strong force are called gluons and the charge
of the strong force, which is only carried by quarks and gluons, is called
color charge. The proton and neutron are composed of quarks in such a
way that they are themselves color neutral, which means that to first order
they do not interact with other color-neutral objects through the strong
force. However, because protons and neutrons have a non-trivial color charge
distribution, a residual force exists between them, reminiscent of the van
der Waals force. This residual force is nowadays identified with the nuclear
force. While protons and neutrons are the most well-known bound states
of quarks, many more occur in nature. These bound states are collectively
called hadrons. In this work we are concerned with the three electrically
charged hadrons that are most copiously produced in relativistic hadronic
and nuclear collisions, namely the pion (π), kaon (K), and proton (p).

Only color-neutral particles have been observed as free particles. In
particular, no free quark or gluon has ever been observed, an effect known
as confinement. Numerical studies of QCD thermodynamics suggest that at
extreme temperatures quarks and gluons are no longer confined, instead QCD
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undergoes a phase transition to a phase where quarks and gluons become
deconfined, i.e., they can move over distance scales that are much larger
than the typical size of a proton or neutron. This phase is known as the
Quark-Gluon Plasma (QGP).

The temperatures necessary to achieve the deconfinement phase transition
are so high that a QGP does not occur naturally on Earth or even in our
solar system. One way to create a physical system with a sufficiently high
temperature in the laboratory is by colliding heavy ions, for example lead
(Pb) or gold (Au), at extreme collision energies. The resulting QGP exists
only very briefly, as it rapidly expands and cools directly after the collision.
Once the system cools to a temperature below the temperature of the
deconfinement phase transition the quarks and gluons turn into hadrons
again. This process is also referred to as hadronization. The properties of the
produced hadrons (identity, momentum, energy) can be determined using a
particle detector, and observables based on these properties can be compared
to model predictions or to observations from simpler particle collisions, for
example, proton-proton collisions. From these comparisons one can infer
information about the nature of the QGP.

The details of the mechanism driving hadronization in a cooling QGP
are as of yet not known. In much simpler particle collisions, such as proton-
proton collisions, relatively few quarks and gluons are produced, and the
dominant mechanism of hadronization is fragmentation. The quarks and
gluons radiate off other quarks and gluons, producing showers, which then
hadronize into a collimated spray of hadrons, called a jet. The key feature
here is that much of the information about the original quark or gluon (energy,
momentum) is still contained in the jet it produces. On the other hand,
when a QGP hadronizes, the density of quarks and gluons is much higher
than in a proton-proton collision. It is therefore plausible that hadronization
can take place though the recombination of thermalized quarks, or though a
combination of fragmentation and recombination.

Measurements of hadron production ratios, in particular the p/π ratio,
have shown to be much larger in central (head-on) Pb–Pb collisions than
in pp collisions at intermediate transverse momentum1 (1 < pT < 8 GeV/c).
The p/π ratio is Pb–Pb collisions was found to be consistent with various
recombination models.

1The transverse momentum pT is the component of the momentum transverse to the
beam pipe of the collider.
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In this work we have extended on these previous results by investigating
the hadron production ratios in the jet peaks and background of the yield
associated with a high-pT trigger particle. This means that in every collision
we collect the particles with a large transverse momentum (pT > 4 GeV/c),
and create a distribution of all the particles produced in the same collision
with 1 < pT < 4 GeV/c as a function of the difference in the azimuthal
angle ∆φ and the pseudorapidity ∆η with respect to the high-pT (trigger)
particle2. As the trigger particle was likely part of a jet, the associated
particle distribution has an (approximately Gaussian) peak structure at the
origin, where the particle production is increased compared to the rest of the
event. We investigated both the p/π and K/π ratios in this “jet peak” as well
as in the background, that is, the region at large (∆η,∆φ). We performed
this measurement for pp, central p-Pb, and central Pb–Pb collisions.

We developed several analysis techniques to make this measurement
possible. The identification of the particles was done using two separate
detector systems, namely the Time-of-Flight (TOF) detector and the Time
Projection Chamber (TPC). The TOF detector is located far from the
interaction point, and it measures ∆t, the time a particle takes to travel from
the interaction point to the TOF detector. The TPC consists of a cylindrical
chamber filled with gas and it measures dE/dx, the energy that a charged
particle loses per unit distance as it traverses the gas. Previously, fits to the
individual TOF and TPC signals were used to identify particles, however, we
performed a fit of the combined signal, thereby increasing the pT-range over
which a reliable identification could be achieved. The fit function, containing
parameterizations for pions, kaons, and protons, consists of nineteen fit
parameters.

To identify the yield associated with a high-pT trigger particle, we created
a four-dimensional matrix (∆η,∆φ,∆t, dE/dx), and determined the number
of pions, kaons, and protons in each (∆η,∆φ) bin by performing a fit to
the combined (∆t, dE/dx) signal for that bin. Since the detector response
(expected value, resolution) is generally a function of pT and η, the signal
in a single (∆η,∆φ) bin is “smeared out”. To deal with this we constructed
fit-templates of the expected shapes of the response, based on the full nineteen-
dimensional fits performed as a function of pT and η. An additional advantage
of using these fit templates was that the number of free parameters in the fit
reduced to four, making the fit usable for much smaller datasets.

2Just like ∆φ, ∆η can be thought of as a measure of the angular distance to the trigger
particle.
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After we obtained the identified associated yields, we measured the yield
in the jet peak by subtracting the background. The level of the background
was determined at (∆η,∆φ) greater than approximately three times the
expected Gaussian width of the jet peak, which was found by performing
fits to the ∆φ and ∆η projections of the associated yield. In the case of
pp collisions, the background is flat, however, in case of p-Pb and Pb–Pb
collisions there is a dependence on ∆φ due to radial flow3. The radial flow
was included in the description of the background by performing a discrete
cosine transform.

We found that the Gaussian width of the jet peak decreases with pT and
increases with the mass of the particle. This behavior is not reproduced by
calculations from the PYTHIA model. We also found that in pp, p-Pb and
Pb–Pb collisions, both the p/π and K/π ratio are larger in the background
than in the jet peak, the difference being the largest in the p/π ratio in
Pb–Pb collisions. This suggests that in the jet peak of Pb–Pb collisions,
fragmentation plays an important role in the production of hadrons. Addi-
tionally we found that there is a system-size dependence in the particle ratios
in the jet peaks. This leads us to believe that, while fragmentation plays
an important role in the hadron production in these jets, the fragmentation
process is likely influenced by the presence of the QGP.

3Fluid behavior of the QGP.



Samenvatting

De nucleus van een atoom bestaat uit neutronen, die elektrisch neutraal zijn,
en positief geladen protonen. Omdat protonen elkaar elektrisch afstoten,
moet er een andere kracht zijn die er voor zorgt dat het atoom niet uit
elkaar valt. Deze kracht heet de kernkracht, en het is de energie in de
kernkrachtvelden van een atoom die wordt gewonnen bij kernsplijting of
kernfusie. Een interessante eigenschap van de kernkracht is dat de sterke
van de kracht verwaarloosbaar klein wordt op schalen die groter zijn dan de
typische grootte van een atoomkern.

Tegenwoordig wordt de kernkracht begrepen als een effectieve kracht,
voortkomend uit een fundamentelere theorie die beschrijft hoe protonen
en neutronen van binnen werken. Binnen deze theorie, genaamd quantum
chromodynamica (QCD), worden protonen en neutronen beschreven als een
gebonden toestand van verschillende lichtere deeltjes genaamd quarks, welke
bij elkaar worden gehouden door een fundamentele kracht genaamd de sterke
kernkracht. De deeltjes die deze kracht doorgeven worden gluonen genoemd,
en de lading van de sterke kernkracht, die alleen gedragen wordt door quarks
en gluonen heet kleurlading. De quarksamenstelling van protonen en neu-
tronen zijn zodanig dat het proton en het neutron kleurneutraal zijn, dit
betekent dat ze tot op eerste orde niet via de sterke kernkracht interacteren
met andere kleurneutrale objecten. Echter, omdat de kleurlading binnenin
een proton en neutron niet homogeen verdeeld is, bestaat er een restkracht
tussen het proton en het neutron, vergelijkbaar met de van der Waals kracht.
Deze restkracht is precies de kernkracht wat het atoom stabiel houdt. Proto-
nen en neutronen zijn de meest bekende gebonden quarktoestanden, maar er
blijken er veel meer voor te komen in de natuur. Een gemeenschappelijke
naam voor deze gebonden toestanden is hadronen. In dit proefschrift houden
we ons uitsluitend bezig met de drie elektrisch geladen hadronen, die het
meest geproduceerd worden in een relativistische hadronische botsing. Dit
zijn: het pion (π), het kaon (K) en het proton (p).
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Alle vrije deeltjes die ooit zijn geobserveerd blijken kleurneutraal te zijn.
Een vrij quark is dus nooit waargenomen, dit effect wordt ook wel confinement
genoemd. Numerieke berekeningen van QCD thermodynamica laten zien dat
bij zeer extreme temperaturen quarks en gluonen zich wel als vrije deeltjes
kunnen gedragen. Er vindt een faseovergang plaats van een fase waar quarks
en gluonen “opgesloten” zitten in hadronen naar een fase waar ze zich kunnen
voortbewegen over afstanden die veel groter zijn dan de grootte van een
proton of neutron. Deze fase het het Quark-Gluon Plasma (QGP).

De temperaturen die nodig zijn om een QGP te vormen zijn dusdanig
hoog dat ze niet voorkomen op de aarde of zelfs in ons zonnestelsel. Een
manier om in het laboratorium een fysisch systeem te creeëren met een
voldoende hoge temperatuur, is door zware ionen, bijvoorbeeld lood (Pb) of
goud (Au), met extreem hoge kinetische energieën op elkaar te laten botsen.
Het QGP wat in zo’n botsing gecreëerd wordt bestaat maar voor een zeer
korte tijd, omdat het direct na de botsing uitdijt en afkoelt. Als het QGP
voldoende is afgekoeld vindt er weer een faseovergang plaats, waarna de
materie weer uit hadronen bestaat. Dit proces wordt ook wel hadronisatie
genoemd. De eigenschappen van de geproduceerde hadronen (type, impuls,
energie) kunnen bepaald worden door middel van een deeltjesdetector, en
observabelen gebaseerd op deze eigenschappen kunnen vergeleken worden
met modelvoorspellingen of met observaties die zijn gedaan bij simpelere
botsingssystemen, zoals proton-proton botsingen. Met behulp van deze
vergelijkingen kunnen we de eigenschappen van het QGP bepalen.

Het is nog niet bekend hoe de hadronisatie van het afkoelende QGP
precies in zijn werk gaat. In simpelere botsingssystemen, zoals proton-proton
botsingen, worden relatief weinig quarks en gluonen geproduceerd, en hadro-
nisatie vindt plaats via fragmentatie. De quarks en gluonen stralen andere
quarks en gluonen af, waardoor showers ontstaan. Deze showers hadroniseren
in een gecollimeerde spray van hadronen, wat ook wel een jet wordt genoemd.
Een belangrijke eigenschap van zo’n jet is dat verschillende eigenschappen
van het originele quark of gluon (energie, impuls) behouden blijft in de jet.
In een QGP is de dichtheid aan quarks en gluonen veel groter dan in een
proton-proton botsing. Het is daarom plausibel dat de hadronisatie ook kan
gebeuren door het samengaan van gethermaliseerde quarks (recombinatie),
of door een combinatie van recombinatie en fragmentatie.

Metingen van de hadron productieratios, laten zien dat met name de
p/π ratio in centrale Pb–Pb botsingen veel groter is dan in pp botsingen, in
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het transversale impuls4 interval 1 < pT < 8GeV/c. De p/π ratio in Pb–Pb
botsingen bleek consistent met verschillende recombinatie modellen.

In dit proefschrift bouwen we voort op deze resultaten, door de hadron
productieratios te bepalen in de jet piek en in de achtergrond van de deelt-
jesproductie geassocieerd aan een hoog-pT triggerdeeltje. Dit wil zeggen
dat we voor elke botsing alle deeltjes met een groot transversaal impuls
(pT > 4 GeV/c) verzamelen en een distributie creëren van alle deeltjes uit
dezelfde botsing met 1 < pT < 4 GeV/c, als functie van de azimut ∆φ en
de pseudorapiditeit ∆η ten opzicht van het triggerdeeltje5. Omdat het trig-
gerdeeltje waarschijnlijk onderdeel was van een jet, bevat de geassocieerde
deeltjesdistributie een gepiekte structuur in de oorsprong, waar de productie
groter is dan in de rest van de distributie. Wij hebben zowel de p/π en K/π
ratio gemeten in zowel deze “jet piek” als in de achtergrond, dat wil zeggen,
bij grote (∆η,∆φ). Deze meting hebben we uitgevoerd voor pp, centrale
p-Pb en centrale Pb–Pb botsingen.

We hebben verschillende technieken ontwikkeld om deze meting mogelijk
te maken. De identificatie van de deeltjes hebben we gedaan door gebruik te
maken van twee verschillende detectorsystemen, de Time-of-Flight (TOF)
en de Time Projection Chamber (TPC). De TOF detector bevindt zich
ver van het botsingspunt, en het meet ∆t, de reistijd die het deeltje van
het botsingspunt naar de TOF detector. De TPC is een met gas gevuld
cylindervormig vat, en het meet dE/dx, de energie die een geladen deeltje
verliest per meter, als het door het gas heen vliegt. Voorgaande metingen
hebben gebruik gemaakt van fits aan het TOF of TPC signaal om deeltje
te identificeren, wij hebben echter gebruik gemaakt van een fit aan het
gecombineerde signaal, zodat deeltjesidentificatie tot op hogere pT mogelijk
werd. De fitfunctie die we hebben gebruikt bevat parameterisaties voor
pionen, kaonen en protonen, en heeft 19 vrije parameters.

Om de geassocieerde deeltjesproductie te identificeren hebben we een
4-dimensionale matrix (∆η,∆φ,∆t, dE/dx) gecreëerd, en voor elke losse
(∆η,∆φ) bin hebben we de hoeveelheid pionen, kaonen en protonen bepaald
door een fit uit te voeren op het bijbehorende (∆t, dE/dx) signaal. Omdat
de detectorrespons (verwachtingswaarde, resolutie) afhangt van pT en η is
de respons in een (∆η,∆φ) bin “uitgesmeerd”. Om dit op te lossen hebben
we fit-templates gemaakt van de verwachte vorm van de respons, gebaseerd
op de resultaten van de volledige 19-dimensionale fit als functie van pT en

4Het transversale impuls pT is de component loodrecht op de botsingsas.
5Net zoals ∆φ kan ∆η gezien worden als een maat voor de hoekafstand tot het trig-
gerdeeltje.
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η. Een bijkomend voordeel van de fit-templates is dat de hoeveelheid vrije
parameters in de fit tot vier kan worden teruggebracht.

Nadat we de geïdentificeerde geassocieerde deeltjesproductie hebben geme-
ten kunnen we de productie in de jet piek meten door de achtergrond af te
trekken. Het achtergrondsniveau is bepaald in (∆η,∆φ) groter dan ongeveer
drie maal de verwachte jet piek breedte, bepaald door Gaussische fits uit te
voeren op de ∆φ en ∆η projecties van de geassocieerde deeltejsproductie. In
pp botsingen is de achtergrond vlak, maar in p-Pb en Pb–Pb botsingen is er
een afhankelijkheid van ∆φ door radiële stroming6. Deze radieële stroming
is gemeten door het toepassen een discrete cosinus transformatie.

Uit onze metingen blijkt dat de breedte van de jet piek afneemt als functie
van pT, maar toeneemt als functie van de massa van het deeltje. Dit gedrag
wordt niet voorspeld door berekeningen van het PYTHIA model. Ook bleek
uit onze metingen dan in pp, p-Pb en Pb–Pb botsingen, zowel de p/π als
de K/π ratio groter is in de achtergrond dan in de jet piek. Het grootste
verschil is te zien in de p/π ratio in Pb–Pb botsingen. Dit suggereert dat
in de jet piek van Pb–Pb botsingen fragmentatie een belangrijke rol speelt
in de deeltjesproductie. Verder vonden we ook een afhankelijkheid van de
systeem grootte op de deeltjesproductieratios in de jet pieken. Dit doet
ons vermoeden dat het fragmentatie proces wel beïnvloed wordt door de
aanwezigheid van het QGP.

6Dit is een gevolg van het vloeistofachtige gedrag van het QGP.
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