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Freezing Transition in Very Small Systems of Hard Spheres

Willem K. Kegel,1 Howard Reiss,2 and Henk N. W. Lekkerkerker1

1Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8,
3584 CH Utrecht, The Netherlands

2Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095
(Received 4 June 1999)

By applying a rigorous formalism, the grand distribution function of very small systems of hard
spheres is obtained. The hard sphere freezing transition appears as two peaks of this function. The for-
malism requires input of the available volume, i.e., the configurationally averaged volume of a system
that is available for an additional sphere center. These volumes are computed numerically. We show
that by this treatment the freezing transition (1) follows “naturally,” i.e., properties of the fluid and the
solid phases need not be inserted into the treatment in advance; (2) is already apparent in systems con-
taining a number of spheres as small as eight; and (3) is caused by the system avoiding configurations
that can best be characterized as “defective solids.”

PACS numbers: 64.60.Cn, 64.70.Dv
A considerable fraction of the elements, when com-
pressed, undergo a first order phase transition from a dis-
ordered state (a gas, fluid, or liquid) to a face-centered
cubic (fcc) or hexagonal close packed (hcp) crystal. Com-
puter simulations [1–3], as well as experiments [4] show
that this freezing transition is already apparent in the
simplest model of interacting atoms: a collection of hard
spheres subject to thermal agitation, implying that crystal-
lization requires only excluded volume interactions. To
date, there is no rigorous statistical mechanical proof of
the hard sphere freezing transition, and even simulation is
uncertain in the coexistence region. Theory can explain
only the transition “afterwards”; that is, properties of the
coexisting phases should be inserted into the theories in
advance, and the coexisting densities follow by minimiz-
ing a free energy functional, or, equivalently, requiring the
chemical potentials and the pressures of the two branches
to be equal in the coexistence region. These theories are
often quite accurate quantitatively; i.e., the coexisting den-
sities and the pressure of the coexisting region are in good
agreement with computer simulations; see, for example,
[5]. However, from a fundamental viewpoint they are
still unsatisfactory. The splitting of a hard sphere system
into a fluid and a solid branch at a certain density is, evi-
dently, hidden in the partition function of the system. A
thorough theory of hard sphere freezing should therefore
identify this property of the partition function that leads to
the observed symmetry breaking.

In this work we take a new approach to the freezing tran-
sition and apply it to very small systems of hard spheres.
On the one hand, treating small systems may be consid-
ered as a “step back” compared to theories and simulations
that concentrate on the thermodynamic limit. The reward,
however, is that we show that in small systems, a com-
plete treatment is possible, and thermodynamic properties
within the coexistence region can be obtained. To this
end, we concentrate on the available volumes of these sys-
tems. We compute these volumes numerically as a func-
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tion of the number of spheres, at several constant system
volumes. It is shown that at a certain point, the available
volume increases with the number of spheres. Making use
of an exact relation between available volume and the par-
tition function, this behavior is shown to correspond to a
first order phase transition in the grand ensemble. Interest-
ingly, this behavior is already apparent in extremely small
systems.

Rigorous proof of a first order phase transition (i.e., a
singularity in the appropriate thermodynamic functions)
requires knowledge of the grand partition function [6]

J �
NmaxX
N�0

zNqN . (1)

In this equation, the reduced activity z � �D3�L3�ebm,
where m is the chemical potential, b � 1�kT , and k and
T are Boltzmann’s constant and the absolute temperature,
respectively. The quantities L and D are the thermal
de Broglie wavelength of a hard sphere and its diameter.
It can be shown [7] that the (reduced) canonical partition
function of a system containing N hard spheres is exactly
given by the recursive relation

qN �
y

�N21�
0

N
qN21 , (2)

where y
�N�
0 � V

�N�
0 �D3, V

�N�
0 denoting the available vol-

ume of the system. This quantity is the configurationally
averaged volume that is available for the center of an �N 1

1�th hard space in a system containing N hard spheres in a
volume V , and has a purely geometric character. Indeed,
the idea that the thermodynamic properties of hard sphere
systems is a problem of statistics, dominated by the con-
straints of geometry, forms the basis of “scaled particle
theory” and “statistical geometry”; see [8,9], and refer-
ences therein. We note that y

�N�
0 is different from the “free

volume” (see [10], and references therein) which is defined
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as the space available to a particle with its neighbors
held fixed.

A singularity in the thermodynamic functions can appear
only when V ! ` [6]. In this thermodynamic limit, the
summation in Eq. (1) runs up to Nmax ! `. However, in
this work we are concerned with only systems where V ,
and thus Nmax, is finite, the last mentioned value being the
maximum number of spheres that can be crammed into V .
In finite systems, a steep change of the thermodynamic
functions, rather than a singularity, suggests a first order
phase transition [11]. Thus, a first order phase transition
can be apparent from a steep change in the average number
of spheres in a box,

�N� �

PNmax
N�0 NzNqN

J
�

NmaxX
N�0

NPN �

µ
≠ lnJ

≠ ln�z�

∂
TV

, (3)

as a function of the activity. This equation defines the
probability that a box contains N spheres, referred to as
the grand distribution function,

PN �
zNqN

J
. (4)

Two peaks of the grand distribution function, at some value
of the activity, are very strong evidence of a first order
phase transition in small systems [12]. We note that it
is prohibitively difficult, in dense systems, to evaluate the
grand distribution function directly by computer simulation
(using the Gibbs ensemble).

We computed the available volumes of N hard spheres
in a box with a fixed geometry and different (fixed) vol-
umes, using a Monte Carlo procedure. In principle, how-
ever, this quantity may be calculated analytically. The
box envelops the centers of the spheres, so that part of a
sphere may stick out of the box. We choose Nmax � 8 and
Nmax � 27. It is convenient to express the volume of the
boxes relative to the volume of their close packed geome-
try, by defining a � y

�0�
0 ��1�

p
2� if Nmax � 8, and a �

y
�0�
0 �4

p
2 if Nmax � 27, where the values of the denomi-

nators reflect the reduced volume of the boxes (with the
proper geometry) in which Nmax spheres are close packed.
For the system with Nmax � 8, a � 1 corresponds to the
smallest possible close packed crystal (fcc or hcp). Of
course, many other geometries of the boxes are possible,
and a systematic study will be published later, as indeed,
(very) small systems show interesting behavior in itself;
see, for example, [13]. However, no qualitatively differ-
ent behavior was observed in other geometries. We avoid
forcing the systems to order into a crystal at N � Nmax by
setting a $ 1.3 for both sizes. The available volumes are
plotted in Fig. 1.

It can be seen from Fig. 1 that at the largest values of
a that were used, the available volumes steadily decrease
with N , as expected. At intermediate values of a, the
available volumes remain roughly constant with increasing
N for N $ 4 �Nmax � 8� and N $ 21 �Nmax � 27�. At
these values of a, the value of Nmax should be considered
FIG. 1. The available volume as a function of the number of
hard spheres in the system. System with Nmax � 8, a � 2.48
(squares), a � 1.68 (triangles), and a � 1.31 (circles); also
for the system with Nmax � 27, and comparable values of
a: 2.65 (squares), a � 1.76 (triangles), a � 1.29 (circles).
Points are connected to guide the eye. Available volumes were
averaged over at least 104 configurations. For the smallest
values of the available volumes, the uncertainty is of the
same order of magnitude as the symbol size. For the other
values the uncertainty is much smaller. Several different initial
configurations were used, and no systematic variation of the
values of the available volumes was observed, indicating that
by this method representative fractions of configuration space
were sampled.

as a constraint imposed on the system; i.e., the boxes can
physically contain more than Nmax spheres. This is not
the case for the smallest values of a used here. At these
values of a, in the system with Nmax � 8, when N $ 4
obviously the available volume increases with N . The
larger system, with Nmax � 27 shows a similar trend. This,
at first sight somewhat counterintuitive result, implies that
the denser the system, the larger the insertion probability
of an additional sphere. It will be shown later that this
behavior corresponds to increasing order in the system.
At this point we mention that it can be proved exactly
by statistical geometrical methods [8], that if a first order
transition occurs, the available volume must increase. On
the other hand, such an increase in itself is not sufficient
proof of a first order transition: this proof can follow only
from the thermodynamic functions.

The relevant thermodynamic functions are shown in
Figs. 2 and 3, where we plotted �N� versus ln�z�, and the
probability distributions at different z, respectively. It
is obvious that for the smallest studied values of a, the
systems convincingly show the signature of the freezing
transition, the transition being sharper (i.e., more like a
singularity) for the larger system. The two peaks of the
grand probability distribution function is the strongest
evidence for this transition. It is rather surprising that
even the smallest system �Nmax � 8� already shows the
small-system analog of the freezing transition. This result
emphasizes the geometric character of this transition.
Comparison with the behavior of the available volume
as a function of N , see Fig. 1, immediately reveals that
the “jumps” of �N� in Fig. 2, as well as the values of N
5299
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FIG. 2. Average number of spheres in a box, �N�, as a
function of the reduced activity, ln�z�. System with Nmax � 8,
a � 2.48 (dashed line), a � 1.68 (dotted line), and a �
1.31 (solid line); also for the system with Nmax � 27, and
comparable values of a: 2.65 (dashed line), a � 1.76 (dotted
line), a � 1.29 (solid line). The steep increase of �N� points
to the small-system analog of a first order phase transition.

in between the two peaks of the probability distribution,
Fig. 3, correspond to the interval in N where the available
volume increases. Thus, the freezing transition appears as
a consequence of the available volumes passing through a
minimum as a function of the number of spheres. Before
discussing this observation in terms of the structure of
the system, we make a comparison to systems in the
thermodynamic limit. We define the volume fraction of
hard spheres in the system as f � �N�Nmax�a21�p�3

p
2�,

where the last term on the right-hand side refers to the
volume fraction where hard spheres are close packed
in an fcc or hcp structure. A proof showing that this
value indeed reflects the most dense packing of spheres
in three dimensions has recently been presented [14]; see
also [15]. In the small systems studied here, however,
volume fraction does not have the same significance as
it has in the thermodynamic limit, where both N and
V go to infinity at the same time, keeping their ratio
constant. In the small system (with Nmax � 8), taking
the somewhat arbitrary smallest value of a used here,
the values of the coexisting volume fractions are ff �
0.28 and fm � 0.56 (the subscripts denote the “freezing”
and the “melting” volume fraction, respectively), while
in the larger system (with Nmax � 27, and again for the
smallest value of a), these volume fractions are ff � 0.43
and fm � 0.57. In the smallest system, in particular,
the freezing volume fraction is far away from the values
estimated for infinitely large systems [3], where ff �
0.494 and fm � 0.545. Clearly the freezing volume
fraction in the system with Nmax � 27 is much closer
to the value for a “bulk” system. Computer simulations
[16] indeed indicate that the freezing transition shifts to
lower densities upon decreasing the system size. In the
systems studied here, we speculate that there may be an
additional effect due to the presence of the walls, where
5300
FIG. 3. Grand probability distribution PN vs N for different
values of z. System with Nmax � 8; a � 1.31. (a) ln�z� �
10; (b) ln�z� � 12.45, corresponding to the maximum in s

2
N �

�N2� 2 �N�2; (c) ln�z� � 15. (d) As (a)– (c), but now for the
system with Nmax � 27; a � 1.29, ln�z� � 14.5 (maximum in
s

2
N ). Note that “intermediate” PN ’s, in between the two peaks,

become very close to 0 upon increasing the system size from
Nmax � 8 to 27 [compare (b)].
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FIG. 4. Projection of the positions of sphere centers of 104

configurations, in the plane where the layers are hexagonally
packed at close packing. The coordinates are in units of the
sphere diameter. System with Nmax � 8, a � 1.68, N � 4,
corresponding to the minimum of V

�N�
0 (a), and N � 5 (b).

hard spheres are observed to undergo “prefreezing”at a
volume fraction smaller than the freezing volume fraction
[17,18]. Both effects tend to broaden the coexistence
region. We also compare the reduced activities, where the
systems split into two densities, to the estimated value in
the thermodynamic limit. The latter value [19] is ln�z� �
17.13, while the values found here are ln�z� � 12.45 for
the smaller system and ln�z� � 14.5 for the system with
Nmax � 27; see Fig. 3 (and again taking the smallest used
value of a). These values are not too far off and increase
with system size.

From Figs. 2 and 3 it follows that the “dense branch”
of the systems always corresponds to the highest possible
density (i.e., �N� � Nmax). We seek an explanation for
this by plotting the positions of N sphere centers of 104

configurations in the system with Nmax � 8, for N � 4
and N � 5, in Fig. 4, using a � 1.68 (where the first
sign of the freezing transition appears). It is clear from
Fig. 4 that in the system containing four spheres, the
centers tend to occupy positions at the corners and along
the walls, but there is no sign of ordering into distinct
lattice positions. When N � 5, on the other hand, the
system preferentially occupies eight lattice positions and
resembles a “defective solid” (there are only five spheres
for eight lattice positions). A comparable behavior was
observed in the system with Nmax � 27. Thus, the
increasing value of the available volume with N (Fig. 1)
is a result of “defects” that decrease in number but
become more localized when N increases. The defective
solid configurations are clearly undesirable in the grand
ensemble; i.e., their occupation numbers become very
small; see Fig. 3. Note that these configurations were
generated in the �NVT � ensemble (i.e., the ensemble in
which the available volume was evaluated). It is only
at the point where the constraint of constant N is replaced
by a constant chemical potential that these (homogeneous)
configurations become unstable.

The signature of the hard sphere freezing transition
is already present in systems containing a number of
spheres as small as eight. Further progress towards a
noncomputational theory requires analytical expressions
for the available volumes, a massive task ahead.

We are grateful to Dr. J. S. van Duijneveldt for per-
forming preliminary computer simulations of a con-
strained system and to Dr. J. K. G. Dhont for critically
reading the manuscript. The contribution of W. K. K. to
the work presented here has been made possible by a fel-
lowship of the Royal Netherlands Academy of Arts and
Sciences.

[1] W. W. Wood and J. D. Jacobsen, J. Chem. Phys. 27, 1207
(1957).

[2] B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208
(1957).

[3] W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609
(1968).

[4] P. N. Pusey and W. van Megen, Nature (London) 320, 340
(1986).

[5] M. Baus and J. F. Lutsko, Phys. A 176, 28 (1991).
[6] C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
[7] R. J. Speedy, J. Chem. Soc. Faraday Trans. 2 73, 714

(1977).
[8] H. Reiss and A. D. Hammerich, J. Phys. Chem. 90, 6252

(1986).
[9] H. Reiss, J. Phys. Chem. 96, 4736 (1992).

[10] W. G. Hoover, N. E. Hoover, and K. Hanson, J. Chem.
Phys. 70, 1837 (1979).

[11] T. L. Hill, Thermodynamics of Small Systems, Part I
(Dover, New York, 1994).

[12] T. L. Hill, Statistical Mechanics; Appendix 9 (McGraw-
Hill, New York, 1956).

[13] Z. T. Németh and H. Löwen, J. Phys. Condens. Matter 10,
6189 (1998).

[14] T. C. Hales, http://www.math.Isa.umich.edu/ hales/
countdown.

[15] N. J. A. Sloane, Nature (London) 395, 435 (1998).
[16] R. J. Speedy, J. Phys. Condens. Matter 9, 8591 (1997).
[17] D. J. Courtemanche and F. van Swol, Phys. Rev. Lett. 69,

2078 (1992).
[18] D. J. Courtemanche, T. A. Pasmore, and F. van Swol, Mol.

Phys. 80, 861 (1993).
[19] D. Frenkel and B. Smit, Understanding Molecular Simu-

lation (Academic Press, San Diego, London, 1996).
5301


