
"Thea! No! What are you doing?"

"I'm going to let the titans in."

The amulet 
ared brightly,

The gate swung open : : :

{from Into the Labyrinth

Chapter 4

Programs and Their Properties

A brief review on the programming logic UNITY will be presented. Special attention will

be given to the issue of compositionality, that is, the ability to decompose a speci�cation

of a program into speci�cations of its components. A new progress operator which is more

compositional will be introduced, and a set of calculational laws for the new operator will

be provided.

4.1 Introduction

T
HE previous chapter introduced the basic building blocks which constitute a pro-
gram, namely variables and actions. In this chapter we will talk about programs
and their behavior. Basically, a program is only a collection of actions. During

its execution, the actions are executed in a certain order. It is however possible to en-
code the ordering in the actions themselves by adding program counters. In this sense,
a program is really a collection of actions, without any ordering. This way of viewing
programs is especially attractive if we consider a parallel execution of actions where
strict orderings begin to break down. In fact, a number of distributed programming
logics are based on this idea. Examples thereof are Action Systems [Bac90], Temporal
Logic of Action [Lam90], and UNITY [CM88].

Recall that we aim to verify the work of Lentfert [Len93] on a general, self-stabilizing,
and distributed algorithm to compute minimal distances in a hierarchical network.
Lentfert's work is based on the programming logic UNITY, which was chosen mainly
for its simplicity and its high level of abstraction. We will simply follow his choice.

Examples of programs derivation and veri�cation using UNITY are many. The
introductory book to UNITY [CM88] itself contains numerous examples, ranging from a
simple producer-consumer program, to a parallel garbage collection program. Realistic
problems have also been addressed. In [Sta93] Staskauskas derives an I/O sub-system
of an existing operating system, which is responsible for allocating I/O resources. In
[Piz92] Pizzarello used UNITY to correct an error found in a large operating system.
The fault had been corrected before, and veri�ed using the traditional approach of
testing and tracing [KB87]. It is interesting to note that the amount of work using
UNITY is small, compared to that of the traditional approach. A review of Pizzarello's
industrial experience on the use of UNITY can be found in [Piz91]. In [CKW+91]
Chakravarty and his colleagues developed a simulation of the di�usion and aggregation
of particles in a cement like porous media.



Page 36 Chapter 4. PROGRAMS AND THEIR PROPERTIES

In practice, many useful programs do not, in principle, terminate; some examples
are �le servers, routing programs in computer networks, and control systems in an air
plane. For such a program, its responses during its execution are far more important
than the state it ends up with when it eventually terminates. To specify such a program
we cannot therefore use Hoare triples as we did in Chapter 3. Two aspects are espe-
cially important: progress and safety. A progress property of a program expresses what
the program is expected to eventually realize. For example, if a message is sent through
a routing system, a progress property may state that eventually the message will be
delivered to its destination. A safety property, on the other hand, tells us what the
program should not do: for example, that the message is only to be delivered to its des-
tination, and not to any other computer. The two kinds of properties are not mutually
exclusive. For example, a safety property, stating that a computer in a network should
not either ignore an incoming message or discard it, implies that the computer should
either consume the message or re-route it to some neighbors. This states progress. In
UNITY there is an operator called unless to express safety properties, and two more
operators, ensures and leads-to, to express progress properties.

In [CM88] two kinds of program composition are discussed. In the �rst, programs
are composed by simply 'merging' them. This can be thought of as modelling paral-
lel composition. In the second, called super-position, actions may be extended with
concurrent assignments to fresh variables. Both will be discussed here, but in a quite
di�erent light than in [CM88]. In addition we will discuss program compositions in
which guards may be added. In the applications veri�ed in this thesis however, only
parallel composition is used.

Ideally, a program is developed hand in hand with its proof. One starts with a
speci�cation, which is re�ned, step by step using a set of rules, until an implementable
program is obtained. In sequential programming, one begins with an imaginary pro-
gram. In each development step, the program is re�ned by adding more details to it.
The original speci�cation is then reduced to speci�cations for the components of the
programs. Subsequently, each component can be developed in isolation. This kind
of hierarchical program decomposition is not an issue which is very well explored in
UNITY. Safety properties decompose nicely. Unfortunately, the same cannot be said
for progress properties, especially with respect to the parallel composition. A general
law to decompose progress is provided by Singh [Sin89]. Similar laws were also used
by Lentfert to decompose self-stabilization. An unpleasant discovery that was made
during our research was that these laws were all 
awed 1 . Fortunately, the 
aw was
not so serious that it bears no consequence to Lentfert's results. To facilitate the me-
chanical veri�cation of Lentfert's work, we have also re-written Lentfert's proofs as to
make them simpler and more intuitive. This is made possible by, among other things,
the Transparency Law (2.2.4). If the reader recalls the discussion in Section 2.2, the
law is used to assign the task of establishing a progress property to a write-disjoint

1 Partly, the discovery is due to the absolute rigor imposed by HOL. When a supposedly obvious
fact seems to be impossible to be proven in HOL, it is a good indication that we do not formulate the
fact correctly and completely.



4.2. UNITY PROGRAMS Page 37

prog Fizban

read fa; x; yg
write fx; yg
init true

assign

if a = 0 then x := 1 else skip

[] if a 6= 0 then x := 1 else skip

[] if x 6= 0 then y; x := y + 1; 0 else skip

J

Figure 4.1: The program Fizban

component. For the purpose of this law, a new progress operator will be introduced.
Section 4.2 brie
y reviews the ideas behind UNITY. Section 4.3 discusses the stan-

dard UNITY operators to express behavior of a program. Various basic laws used to
reason about them are presented in Section 4.4. Section 4.5 introduces the new progress
operator mentioned above. Various laws about parallel composition will be discussed in
Section 4.7. Section 4.8 discusses the parallel composition of write-disjoint programs.
Section 4.9 brie
y discusses some other kinds of program composition. And �nally,
Section 4.10 brie
y discusses the soundness of UNITY with respect to its operational
semantics.

4.2 UNITY Programs

UNITY is a programming logic invented by Chandy and Misra in 1988 [CM88] for
reasoning about safety and progress behavior of distributed programs. Figure 4.1
displays an example. The precise syntax will be given later.

The read and write sections declare, respectively, the read and write variables of
the program 2 . The init section describes the assumed initial states of the program. In
the program Fizban in Figure 4.1, the initial condition is true, which means that the
program may start in any state. The assign section lists the actions of the programs,
separated by the [] symbol.

The actions in a UNITY program are assumed to be atomic. An execution of a
UNITY program is an in�nite and interleaved execution of its actions. In a fully parallel
system, each action may be thought of as being executed by a separate processor. To
make our reasoning independent from the relative speed of the processors, nothing
is said about when a particular action should be executed. Consequently, there is no
ordering imposed on the execution of the actions. There is a fairness condition though:

2 When declaring a variable one may also want to declare its type (instead of assuming all variables
to be of type, say, N). UNITY does not disallow such a declaration, but its logic as in [CM88] does not
include laws to deal with subtleties which may arise from typing the variables. For example, nothing
is said about the e�ect of assigning the number 10 to a B valued variable. Of course it is possible to
extend UNITY with a type theory, but this issue is beyond the scope of this thesis.



Page 38 Chapter 4. PROGRAMS AND THEIR PROPERTIES

in a UNITY execution, which is in�nite, each action must be executed in�nitely often

(and hence cannot be ignored forever).
For example, by now the reader should be able to guess that in the program Fizban,

eventually x = 0 holds and that if M = y, then eventuallyM < y holds.
Notice that the program Fizban resembles the program Fizb in Figure 3.122, which

has the following body:

do forever
begin

if a = 0 then x := 1 else skip ;
if a 6= 0 then x := 1 else skip ;
if x 6= 0 then y; x := y + 1; 0 else skip
end

In fact, Fizb is a sequential implementation of Fizban. Indeed, as far as UNITY con-
cerns, the actions can be implemented sequentially, fully parallel, or anything in be-
tween, as long as the atomicity and the fairness conditions of UNITY are being met.
Perhaps, the best way to formulate the UNITY's philosophy is as worded by Chandy
and Misra in [CM88]:

A UNITY program describes what should be done in the sense that it speci�es
the initial state and the state transformations (i.e., the assignments). A UNITY
program does not specify precisely when an assignment should be executed : : :

Neither does a UNITY program specify where (i.e., on which processor in a
multiprocessor system) an assignment is to be executed, nor to which process an
assignment belongs.

That is, in UNITY one is encouraged to concentrate on the 'real' problem, and not to
worry about the actions ordering and allocation, as such are considered to be imple-
mentation issues.

Despite its simple view, UNITY has a relatively powerful logic. The wide range
of applications considered in [CM88] illustrates this fact quite well. Still, to facilitate
programming, more structuring methods would be appreciated. An example thereof is
sequential composition of actions. Structuring is an issue which deserves more investi-
gation in UNITY.

By now the reader should have guessed that a UNITY program P can be represented
by a quadruple (A; J; Vr; Vw) where A � Action is a set consisting of the actions of P ,
J 2 Pred is a predicate describing the possible initial states of P , and Vr; Vw 2 Var

are sets consisting of respectively read and write variables of P . The set of all such
structures will be denoted by Uprog. So, all UNITY programs will be a member of this
set, although, as will be made clear later, the converse is not necessarily true.

To access each component of an Uprog object, the destructors a, ini, r, and w are
introduced. They satisfy the following property:



4.2. UNITY PROGRAMS Page 39

Theorem 4.2.1 Uprog Destructors ID UPROG

P 2 Uprog = (P = (aP; iniP; rP;wP ))
J

In addition, the input variables of P , that is, the variables read by P but not written
by it, is denoted by iP :

iP = rPnwP (4.2.1)

4.2.1 The Programming Language

Below is the syntax of UNITY programs that is used in this thesis. The syntax deviates
slightly from the one in [CM88] 3 .

hUnity Programi ::= prog hname of programi
read hset of variablesi
write hset of variablesi
init hpredicatei
assignhactionsi

actions is a list of actions separated by []. An action is either a single action or a set of
indexed actions.

hactionsi ::= hactioni j hactioni [] hactionsi
hactioni ::= hsingle actioni j ([]i : i 2 V : hactionsii)

A single action is either a simple assignment such as x := x + 1 or a guarded action.
A simple assignment can simultaneously assign to several variables. An example is
x; y := y; x which swaps the values of x and y. The precise meaning of assignments
has been given in Chapter 3. A guarded action has the form:

if g1 then a1
g2 then a2
g3 then a3
: : :

An else part can be added with the usual meaning. If more than one guard is true then
one is selected non-deterministically. If none of the guards is true, a guarded action
behaves like skip. So, for example, the action "if a 6= 0 then x := 1 else skip" from the
program Fizban can also be written as "if a 6= 0 then x := 1".

In addition we have the following requirements regarding the well-formedness of a
UNITY program:

i. A program has at least one action.

3 We omit the always section and we �nd it necessary to split the declare section into read and write

parts



Page 40 Chapter 4. PROGRAMS AND THEIR PROPERTIES

ii. The actions of a program should only write to the declared write variables.

iii. The actions of a program should only depend on the declared read variables.

iv. A write variable is also readable.

These are perfectly natural requirements for a program. Most programs that a pro-
grammer writes will satisfy them 4 .

In Chapter 3 the notions of ignored and invisible variables have been explained. If
a set of variables V c is ignored by an action a, that is, V c

8 a, then a can only write
to the variables in V . So, ii can be encoded as:

(8a : a 2 aP : (wP )c 8 a)

Quite similarly, If V c is invisible to a, that is, V c
9 a, then a will only depend on the

variables in V . So, iii can be encoded as:

(8a : a 2 aP : (rP )c 9 a)

In [CM88] it is required that all actions in a UNITY program are deterministic.
We �nd that this restriction is unnecessary. If a program contains a non-deterministic
action, the only consequence is that the program will probably show less predictable
behavior. In [CM88] it is also required that all actions in a UNITY program are
terminating. This is a perfectly logical requirement because if a statement does not
terminate, then no further progress will be made, which violates the in�nite execution
model of UNITY. Here, we will refrain from imposing this requirement. We consider
non-termination to be as bad as chaos, which is totally non-deterministic. A program
which contains chaos can always be re�ned by removing some non-determinism at the
action level. We leave it to the designers to come up with actions which are terminating.

The requirement that a UNITY guarded action behaves as skip if none of its guards
is true means that all UNITY actions are required to be always-enabled (= not poten-
tially miraculous). It is also not necessary to require this explicitly, but we will do it
anyway. As we will see later, this requirement is crucial for a law called Impossibility
Law.

Recall that any UNITY program is an object of type Uprog. Now we can de�ne a
predicate Unity to de�ne the well-formedness of an Uprog object. From now on, with a
"UNITY program", we mean an object satisfying Unity.

De�nition 4.2.2 Unity UNITY

Unity:P = (aP 6= �) ^ (wP � rP ) ^ (8a : a 2 aP : �Ena) ^

(8a : a 2 aP : (wP )c 8 a) ^ (8a : a 2 aP : (rP )c 9 a)
J

4 One may however want to drop requirements i and iv. i is required by some laws. So, if omitted
it will re-appear somewhere else. iv was added because it seems convenient.



4.3. PROGRAMS' BEHAVIOR Page 41

4.2.2 Parallel Composition

A consequence of the absence of ordering in the execution of a UNITY program is
that the parallel composition of two programs can be modelled by simply merging the
variables and actions of both programs. In UNITY parallel composition is denoted by
[]. In [CM88] the operator is also called program union.

De�nition 4.2.3 Parallel Composition PAR

P []Q = (aP [ aQ; iniP ^ iniQ; rP [ rQ;wP [wQ)
J

Parallel composition is re
exive, commutative, and associative. It has a unit ele-
ment, namely (�; true; �; �) (although this is not a well-formed UNITY program).

As an example, we can compose the program Fizban in Figure 4.1 in parallel with
the program below:

prog TikTak

read fag
write fxg
init true

assign if a = 0 then a := 1 [] if a 6= 0 then a := 0

The resulting program consists of the following actions (the else skip part of the actions
in Fizban will be dropped, which is, as remarked in Section 4.2.1, allowed):

a0 : if a = 0 then a := 1
a1 : if a 6= 0 then a := 0
a2 : if a = 0 then x := 1
a3 : if a 6= 0 then x := 1
a4 : if x 6= 0 then y; x := y + 1; 0

Whereas in Fizban x 6= 0 will always hold somewhere in the future, the same cannot be
said for Fizban [] TikTak. Consider the execution sequence (a0; a2; a1; a3; a4)�, which is
a fair execution and therefore a UNITY execution. In this execution, the assignment
x := 1 will never be executed. If initially x 6= 1 this will remain so for the rest of this
execution sequence.

4.3 Programs' Behavior

To facilitate reasoning about program behavior UNITY provides several primitive op-
erators. The discussion in Section 4.2 revealed that an execution of a UNITY program
never, in principle, terminates. Therefore we are going to focus on the behavior of a
program during its execution. Two aspects will be considered: safety and progress.
Safety behavior can be described by an operator called unless. By the fairness con-
dition of UNITY, an action cannot be continually ignored. Once executed, it may



Page 42 Chapter 4. PROGRAMS AND THEIR PROPERTIES

p unless q : p ^ :q
EDGF@A

// // q p ensures q : p ^ :q
EDGF@A

// //! q

J

Figure 4.2: unless and ensures. The predicates p ^ :q and q de�ne sets of states. The

arrows depict possible transitions between the two sets of states. The arrow marked

with ! is a guaranteed transition.

induce some progress. For example, the execution of the action a4 in Fizban [] TikTak
will establish x = 0 regardless when it is executed. Actually, any action which is not
skip or chaos induces some meaningful progress. This kind of single-action progress is
described by an operator called ensures.

In the sequel, P;Q; and R will range over UNITY programs; a; b; and c over Action;
and p; q; r; s; J and K over Pred.

De�nition 4.3.1 Unless UNLESS

P` p unless q = (8a : a 2 aP : fp ^ :qg a fp _ qg)

De�nition 4.3.2 Ensures ENSURES

P` p ensures q = (P` p unless q) ^ (9a : a 2 aP : fp ^ :qg a fqg)
J

Intuitively, P ` p unless q implies that once p holds during an execution of P , it
remains to hold at least until q holds. Figure 4.2 may be helpful. Note that this
given interpretation says nothing about what p unless q means if p never holds during
an execution. P ` p ensures q encompasses p unless q, and adds that there should
also exist an action that can, and because of the fairness assumption of UNITY, will
establish q.

If progress can be made from p to q, and from q to r, we would expect that progress
can also be made from p to r. Similarly, if progress can be made from p1 to q1, and
from p2 to q2, then starting from either p1 or p2, progress will be made to either q1
or q2. These two are natural properties of progress. However, ensures does not have
these properties. It is because it only describes single-action progress. To describe the
combined e�ect of several actions, the smallest transitive and disjunctive closure of
ensures has to be used. This relation is denoted by 7! ("leads-to"). Leads-to describes
progress in general.

The notion of transitivity is well known; we will write Trans:R to denote that a
relation R is transitive. The notion of left-disjunctivity is de�ned below:



4.3. PROGRAMS' BEHAVIOR Page 43

De�nition 4.3.3 Left Disjunctive Relation LDISJ DEF

A relation R over A!B is called left-disjunctive, denoted Ldisj:R i� for all q 2 A!B
and all non-empty sets W (of predicates over A):

(8p : p 2 W : R:p:q) ) R:(9p : p 2 W : p):q
J

The formula above may be confusing. Notice that the 9 on the right hand side of
) denotes 9 on the predicate level, not Boolean level. If we write the formula without
notational overloading (as warned in Section 3.3), it looks like:

(8p : p 2 W : R:p:q) ) R:(�s: (9p : p 2 W : p:s)):q

In a simple case, Ldisj:R impliesR:p1:q^R:p2:q) R:(p1_p2):q. For example, unless
is left-disjunctive. Now we can de�ne TDC, the smallest transitive and disjunctive
closure of a given relation, as follows:

De�nition 4.3.4 Smallest Transitive and Disjunctive Closure TDC

TDC:R:p:q = (8S : R � S ^ Trans:S ^ Ldisj:S : S:p:q)
J

Note that we can also de�ne TDC as follows:

TDC:R = \fS j R � S ^ Trans:S ^ Ldisj:Sg (4.3.1)

which shows more clearly that TDC is some smallest closure of R. Note that the total
relation is transitive and left-disjunctive. Hence the set fS j R � S^Trans:S^Ldisj:Sg
is non-empty, and hence TDC:R is non-trivial.

Now we can de�ne 7! as follows:

De�nition 4.3.5 Leads-to LEADSTO

(�p; q: P` p 7! q) = TDC:(�p; q: P` p ensures q)
J

Introducing TDC may seem only to serve as adding 
avor to the notation, but it
is not. Many useful properties of 7! are actually pure properties of TDC. Later, we
introduce a variant of 7!. The new progress operator is also a TDC-relation, but based
on a di�erent relation. This new operator will then automatically inherit all properties
of TDC. This has saved a lot of time and e�ort in mechanically verifying the properties
of the new operator.

As an example, the program Fizban in Figure 4.1, which has the following assign

section:

if a = 0 then x := 1
[] if a 6= 0 then x := 1
[] if x 6= 0 then y; x := y + 1; 0



Page 44 Chapter 4. PROGRAMS AND THEIR PROPERTIES

satis�es the following properties:

Fizbaǹ (a = X) unless false (4.3.2)

Fizbaǹ true unless (x = 1) (4.3.3)

Fizbaǹ (a = 0) ensures (x = 1) (4.3.4)

Fizbaǹ (a 6= 0) ensures (x = 1) (4.3.5)

Fizbaǹ true 7! (x = 1) (4.3.6)

If (4.3.2) holds for any X then it states that Fizban cannot change the value of a.
(4.3.3) is an example of a property that trivially holds in any program. The reader can
check it by unfolding the de�nition of unless.

(4.3.4) and (4.3.5) describe single-action progress from, respectively a = 0 and a 6= 0
to x = 1. Because 7! is a closure of ensures, and hence includes ensures, we conclude
that (a = 0) 7! (x = 1) and (a 6= 0) 7! (x = 1) also hold. Using the disjunctivity
property of progress, we can conclude (4.3.6), which states that eventually x = 1. Note
that ensures is not disjunctive. So, despite (4.3.4) and (4.3.5), we cannot conclude:

Fizbaǹ true ensures (x = 1) (4.3.7)

The above cannot be true because there is no single action in Fizban which can establish
x = 1 regardless in which state it is executed. The point is that single-action progress
is a bit special and cannot be expressed using 7!. The composition Fizban [] TikTak,
despite property (4.3.6), does not satisfy true 7! (x = 1). On the other hand, composing
TikTak with a program P that does satisfy (4.3.7) yields a program that does satisfy
true 7! (x = 1).

Properties of the form P` p unless false are called stable properties, which are very
useful properties because they express that once p holds during any execution of P , it
will remain to hold. Because of their importance we will de�ne a separate abbreviation:

De�nition 4.3.6 Stable Predicate STABLE

P`�p = P` p unless false
J

P`�p is pronounced "p is stable in P" and p is called a stable predicate. Notice that
� can also be de�ned as follows:

P`�p = (8a : a 2 aP : fpg a fpg) (4.3.8)

Consequently, if p holds initially and is stable in P , it will hold throughout any ex-
ecution of P , and hence it is an invariant. There seem to be at least two notions
of invariant. Here, we de�ne an invariant of a program P as a predicate that holds
throughout any execution of P . Note that with this de�nition, an invariant is not
necessarily stable. For example, consider a program P consisting of a single action a:

if x = 1 then x := 2



4.4. UNITY LAWS Page 45

If iniP = (x = 0), then (x = 0) _ (x = 1) holds initially and throughout the execution
of P . Hence it is an invariant. However, (x = 0) _ (x = 1) is not stable (because if
x = 1 then a will assign 2 to x).

Invariants and stable predicates are disjunctive and conjunctive. That is, if p and q
are invariants (or stable), then so are p ^ q and p _ q. However, whereas invariants are
monotonic with respect to ), stable predicates are not. Invariants are useful, but for
self-stabilizing programs, whose initial condition can be as liberal as true, the notion
of stability is more useful.

4.4 UNITY Laws

Figures 4.3 and 4.4 display a set of basic laws for unless properties. Figure 4.5 displays a
set of basic laws for �, and 4.6 for ensures. The properties are taken from [CM88]. As a
notational convention: if it is clear from the context which program P is meant, we often

omit it from a formula. For example we may write p unless q to mean P` p unless q.
Also, for laws we write, for example:

P :
: : : (p unless q) : : :

r 7! s
to abbreviate:

: : : ( P` p unless q) : : :

P` r� s

Note that the unless Conjunction and Disjunction laws in Figure 4.3 can be
generalized to combine an arbitrary number of unless properties (the generalization has
also been veri�ed). A similar remark also holds for the conjunction and disjunction
of �. Note that ensures is conjunctive but not disjunctive. Note also that the ensures
Introduction law depends on the fact that the program P is non-empty (otherwise
there is no sense in talking about 'single-action' progress).

There is another law of ensures called Impossibility Law, stating that it is impossible
to progress to false unless if one starts from false, which is just not possible:

Theorem 4.4.16 ensures Impossibility ENSURES IMPOS

P :
p ensures false

[:p]
I

A crucial assumption to this law is that all actions in the program P are always-
enabled. Otherwise, if a miracle is possible, then it can be used to establish false, and
then it would follow by the ensures Post-weakening law in page 47 that any progress
is possible. The proof of the Impossibility law is as follows:
Proof:

By de�nition, P` p ensures false implies that there exists an action a 2 aP such that
fpg a ffalseg holds. Since P is a UNITY program, a is always enabled. We derive:

fpg a ffalseg

= f de�nition Hoare triple g



Page 46 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.4.1 unless Introduction UNLESS IMP LIFT1, UNLESS IMP LIFT2

P :
[p) q] _ [:p) q]

p unless q

Theorem 4.4.2 unless Post-weakening UNLESS CONSQ WEAK

P :
(p unless q) ^ [q ) r]

p unless r

Theorem 4.4.3 unless Conjunction UNLESS CONJ

P :
(p unless q) ^ (r unless s)

p ^ r unless (p^ s) _ (r ^ q) _ (q ^ s)

Theorem 4.4.4 unless Disjunction UNLESS DISJ

P :
(p unless q) ^ (r unless s)

p _ r unless (:p ^ s) _ (:r ^ q) _ (q ^ s)

J

Figure 4.3: Basic laws for unless.

Corollary 4.4.5 unless Reflexivity UNLESS REFL

p unless p

Corollary 4.4.6 Anti-Reflexivity UNLESS ANTI REFL

:p unless p

Corollary 4.4.7 Simple Conjunction UNLESS SIMPLE CONJ

P :
(p unless q) ^ (r unless s)

p ^ r unless q _ s

Corollary 4.4.8 Simple Disjunction UNLESS SIMPLE DISJ

P :
(p unless q) ^ (r unless s)

p _ r unless q _ s

J

Figure 4.4: Some corollaries of unless.



4.4. UNITY LAWS Page 47

Theorem 4.4.9 �Conjunction STABLE GEN CONJ

P :
(�p) ^ (�q)

�(p ^ q)

Theorem 4.4.10 �Disjunction STABLE GEN DISJ

P :
(�p) ^ (�q)

�(p _ q)

J

Figure 4.5: Basic laws of �.

Theorem 4.4.11 ensures Introduction ENSURES IMP LIFT

P :
[p) q]

p ensures q

Theorem 4.4.12 ensures Post-weakening ENSURES CONSQ WEAK

P :
(p ensures q) ^ [q ) r]

p ensures r

Theorem 4.4.13 ensures Progress Safety Progress (PSP) ENSURES PSP

P :
(p unless q) ^ (r unless s)

p ^ r ensures (p^ s) _ (r ^ q) _ (q ^ s)

J

Figure 4.6: Basic laws for ensures

Corollary 4.4.14 ensures Reflexivity ENSURES REFL

p ensures p

Corollary 4.4.15 ensures Conjunction ENSURES CONJ

P :
(p ensures q) ^ (r ensures s)

p ^ r ensures (p^ s) _ (r ^ q) _ (q ^ s)

J

Figure 4.7: Some corollaries of ensures



Page 48 Chapter 4. PROGRAMS AND THEIR PROPERTIES

(8s; t :: p:s ^ a:s:t) false)

= f predicate calculus g

(8s; t :: p:s) :a:s:t)

= f a is always enabled, that is, (8s :: (9t :: a:s:t)) g

(8s :: :p:s)

= f de�nition of [:] g

[:p]

N

4.4.1 Transitive and Disjunctive Relations

Recall that the general progress operator 7! is de�ned as the TDC of ensures. That
is, it is the smallest transitive and left-disjunctive closure of ensures. Many laws of
leads-to can be derived from general properties of TDC, which are presented in this
subsection.

Being the smallest closure of some sort, TDC induces an induction principle. Ac-
tually it is trivial: since TDC:R is the smallest transitive and left-disjunctive closure
of R, any other relation S which includes R, is transitive, and left-disjunctive will also
include TDC:R.

Theorem 4.4.17 TDC Induction TDC INDUCT1

R � S ^ Trans:S ^ Ldisj:S

TDC:R � S
J

The principle gives a su�cient condition for a relation S to include TDC:R. In
[CM88] the principle is invoked many times to prove other laws for 7!.

It can be shown that TDC:R itself includes R, and is transitive and left-disjunctive.
These last two are the most basic properties progress. In addition, it is also monotonic
with respect to �.

Theorem 4.4.18 TDC LIFT, TDC TRANS, TDC LDISJ

(R � TDC:R) ^ Trans:(TDC:R) ^ Ldisj:(TDC:R)

Theorem 4.4.19 TDC Monotonicity TDC MONO

(R � S) ) (TDC:R � TDC:S)
J

In [CM88] some laws of the form 7!� S are proven through 7!� (7! \S). In
general, to show TDC:R � (TDC:R \ S), using TDC Induction it su�ces to show:

(R � TDC:(TDC:R \ S)) ^ Trans:(TDC:R \ S) ^ Ldisj:(TDC:R\ S) (4.4.1)



4.4. UNITY LAWS Page 49

The above is often easier to prove. Note that part of it is by Theorem 4.4.18 trivial 5 .
We have de�ned 7! as the smallest transitive and left-disjunctive closure of ensures.
One may wonder if replacing "transitive" with "right-transitive" would still de�ne the
same relation. That is, we would like to de�ne 7! as:

7! = \fS j ( ensures � S) ^ (ensures ;S � S) ^ Ldisj:Sg (4.4.2)

Note that R;S � S means that S is right-transitive with respect to the base relation
R. The question whether or not the above de�nition of 7! is equal to the old one can
be generalized to the question whether or not the following equation holds:

TDC:R = \fS j R � S ^ (R;S � S)^ Ldisj:Sg (4.4.3)

Let �I:R abbreviate the set fS j R � S ^ (R;S � S) ^ Ldisj:Sg and let TDCI:R
abbreviate \(�I:R). Analogous to the case with TDC, one can show that TDCI:R
itself is a closure of R, is right-transitive, and left-disjunctive. That is, TDCI:R is a
member of �I:R. Being the smallest closure, TDCI also induces an induction principle:

R � S ^ (R;S � S) ^ Ldisj:S

TDCI:R � S
(4.4.4)

This, and TDC Induction state su�cient conditions for TDC to be equal to TDCI.
Among these conditions, the only non-trivial one is that TDCI:R is transitive, but this
can be proven using the induction principle (4.4.4). The conclusion is that TDC and
TDCI are equal:

Theorem 4.4.20 TDC EQU Ri TDC

TDC = TDCI

J

As a corollary, the de�nition (4.4.2) of 7! is equal to the old one. It also means the
following induction principle is applicable to 7!:

P :
(ensures � S) ^ (ensures;S � S) ^ Ldisj:S

7!� S
(4.4.5)

There are cases where the induction principle above is more useful than the one in
Theorem 4.4.17. For example, it has been crucial in proving a progress law called
Completion law (page 52).

Another kind of induction that is often used in practice is well-founded induction.
A relation �2 A!A!B is said to be well-founded if it is not possible to construct
an in�nite sequence of ever decreasing values in A. That is, : : : ; x2 � x1 � x0 is

5 For example, to prove Trans:(TDC:R\ S) we have to prove:

TDC:R:p:q^ S:p:q ^ TDC:R:q:r^ S:q:r ) TDC:R:p:q^ S:p:r

for all p, q, and r. However, since by by Theorem 4.4.18 TDC:R is already transitive, we only need to
show S:p:r.



Page 50 Chapter 4. PROGRAMS AND THEIR PROPERTIES

not possible. For example the ordering < on N and � on sets and relations are well-
founded. A well-founded relation admits the well-founded induction principle given
below 6 .

De�nition 4.4.21 Well-founded Induction ADMIT WF INDUCTION

A relation �2 A!A!B is said to admit the well-founded induction if:

(8y :: (8x : x � y : p:x)) p:y) = (8y :: p:y)
J

Let m be a function |so-called bound function| that maps State to A. If from p a
program can progress to q, or else it maintains p while decreasing the value of m with
respect to a well-founded ordering �, then, since � is well-founded, it is not possible
to keep decreasing m, and hence eventually q will be established. We call this principle
Bounded Progress. It holds for any relation on predicates which is re
exive, transitive,
and left-disjunctive.

Let in the sequel ! be a relation over predicates over B (which can be program
states), � be a well founded relation over a non-empty type A, and m be a mapping
from B to A.

Theorem 4.4.22 Bounded Progress BOUNDED REACH i

Trans:! ^ Ldisj:! ^ q! q

(8M :: p ^ (m =M)! (p ^ (m �M)) _ q)
p! q

I

Note: The notation is overloaded. In the above, "p^(m =M)" and "(p^(m �M))_q"
actually mean, respectively, (�s: p:s ^ (m:s =M)) and (�s: (p:s ^ (m:s �M)) _ q:s)
Proof:

p! q

( f ! is left-disjunctive and B is non-empty g

(8M :: p ^ (m =M)! q)

= f Well-Founded Induction g

(8M :: (8M 0 :M 0 �M : p ^ (m =M 0)! q) ) (p ^ (m =M)! q))

IfM is a minimal element, thus there is noM 0 such thatM 0 �M , then the assumption:

p ^ (m =M)! (p ^ (m �M)) _ q

is equal to p^ (m =M)! q, which trivially implies the last formula in the derivation
above. If M is not a minimal element:

6 It has been showed that the above formulation of well-foundedness is actually equivalent with the
admittance of the well-founded induction itself.



4.5. INTRODUCING THE REACH OPERATOR Page 51

(8M 0 :M 0 �M : p ^ (m =M 0)! q)

) f ! is left-disjunctive g

p ^ (m �M)! q

) f q! q; ! is left-disjunctive g

(p ^ (m �M)) _ q! q

) f from the assumption: p^ (m =M)! (p^ (m �M))_ q;! is transitive g

p ^ (m =M)! q

N

A corollary of the Bounded Progress principle is the following, stating that if
from :p progress can be made in which the value of the bound function m decreases,
then eventually p will be reached.

Theorem 4.4.23 Inevitable Fulfilment BOUNDED ALWAYS REACH i

Trans:! ^ Ldisj:! ^ q! q

(8M :: :p ^ (m =M)! (m �M))

true! p
J

4.4.2 Laws of Leads-to

We are not going to use the 7! operator very often. A variant thereof, better suited for
our purpose, will be introduced in Section 4.5. For the sake of completeness, Figure
4.8 displays a set of basic laws for 7!. Some of them follow directly from the laws
mentioned in the previous subsection. The reader may want to compare those laws
with those of the new operator given in Section 4.5.

4.5 Introducing the Reach Operator

Consider the program P and TikToe in Figure 4.9. The program P can establish x = 1
if a is less than 2. So, it satis�es P` (a < 2) 7! (x = 1). As with Hoare triples, we
may strengthen the 'pre-condition' of 7!, and come up with the following property of
P :

(b = 0) ^ (a < 2) 7! (x = 1) (4.5.1)

We note that P does not write to either a or b, and hence should maintain (b = 0)^(a <
2). We expect then, that if we compose P in parallel with another program which
maintains the stability of (b = 0) ^ (a < 2), but does not write to x |the program
TikToe is an example thereof| then (4.5.1) will be respected by the composition.
At least, this works with P []TikToe. The programs P and TikToe are write-disjoint,
that is, they do not write to a common write variable. Compositions of write-disjoint



Page 52 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.4.24 7! Introduction LEADSTO IMPLICATION, LEADSTO ENS LIFT thm

P :
[p) q] _ (p ensures q)

p 7! q

Theorem 4.4.25 7! Induction LEADSTO INDUCT thm1

P :
(8p; q :: (p ensures q) ) R:p:q) ^ Trans:R ^ Ldisj:R

(8p; q :: (p 7! q)) R:p:q)

Theorem 4.4.26 7! Transitivity LEADSTO TRANS thm

P :
(p 7! q) ^ (q 7! r)

p 7! r

Theorem 4.4.27 7! Disjunction LEADSTO GEN DISJ

For all non-empty sets W :

P :
(8i : i 2 W : p:i 7! q:i)

(9i : i 2 W : p:i) 7! (9i : i 2W : q:i)

Corollary 4.4.28 7! Cancellation LEADSTO CANCEL

P :
(p 7! q _ b) ^ (b 7! r)

p 7! q _ r

Corollary 4.4.29 7! Strengthening & Weakening LEADSTO ANTE STRONG,

LEADSTO CONSQ WEAK

P :
[p) q] ^ (q 7! r) ^ [r) s]

p 7! s

Theorem 4.4.30 7! Progress Safety Progress (PSP) LEADSTO PSP

P :
(p 7! q) ^ (r unless s)

p ^ r 7! (q ^ r)_ s

Theorem 4.4.31 7! Impossibility LEADSTO IMPOS

P :
p 7! false

[:p]

Theorem 4.4.32 7! Completion LEADSTO COMPLETION

For all �nite sets W :

P :
(8i : i 2 W : p:i 7! q:i_ r) ^ (8i : i 2 W : q:i unless r)

(8i : i 2 W : p:i) 7! (8i : i 2 W : q:i)_ r

J

Figure 4.8: Basic laws of 7!



4.5. INTRODUCING THE REACH OPERATOR Page 53

prog P

read fa; xg
write fxg
init true

assign if a < 2 then x := 1
[] if a = 2 then x := x+ 1

prog TikToe
read fa; bg
write fag
init true

assign if a = 0 then a := 1
[] if a = 1 then a := 0
[] if b 6= 0 then a := a+ 1

J

Figure 4.9: The program P and TikToe.

programs are frequently found in practice. In Chapter 2 we hypothesize that the
parallel composition of write-disjoint programs satis�es a principle called Transparency
Principle. It states that progress made through the writable part of a write-disjoint
component P will be preserved by the composition, as long as the other write-disjoint
components respect whatever assumptions P has on its non-writable part. The example
with P and TikToe suggests that the principle is valid. It is valid, as we will see later,
but not if we use 7! to specify progress.

To illustrate the problem with 7! consider the following program P 0, with the same
read and write variables as P , and the same initial condition. However, the action if

a < 2 then x := 1 in P will be broken in two. P 0 has the following assign section:

if a = 0 then x := 1
[] if a = 1 then x := 1
[] if a = 2 then x := x+ 1

The program P 0 also satis�es (4.5.1). However, if composed with TikToe the progress
may fail if both programs choose a wrong order of execution. Consider the following
scheduling of the actions in P 0[]TikToe:

[ if a = 0 then a := 1 ; if a = 0 then x := 1 ; if b 6= 0 then a := a+ 1 ;
if a = 1 then a := 0 ; if a = 1 then x := 1 ; if a = 2 then x := x+ 1 ]*

which is fair, but if initially all a; b, and x are 0, then x will never become 1 in this
execution sequence.

So, if we imagine P as a program which is still under development (so, we cannot
look into its code), and if the speci�cation of P states that it should satisfy (b = 0)^(a <
2) 7! (x = 1) and fa; bg 6� wP , we cannot just say that composing it with TikToe

will preserve (b = 0) ^ (a < 2) 7! (x = 1). The moral of the story is that we cannot
generally conclude the 7! properties of a composite program from the 7! properties
of its components, without further information about the interior of the components,
or at least, information about how the components' properties are derived. There are
however cases where it is possible. A su�cient condition was given by Singh in [Sin89].
This will be discussed in Section 4.7. But even the result by Sigh is not strong enough
to derive the Transparency Principle. In this section, a new progress operator will be
introduced, with which the principle is provable.



Page 54 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Let us de�ne the following variant of ensures:

De�nition 4.5.1 ensures B ENS

J P` p ensures q = p; q 2 Pred:(wP ) ^ ( P`�J) ^ ( P` J ^ p ensures q)
J

Note that ensures only describes progress through the writable part of a program. An
additional parameter J is added, which is required to be stable in the program. Since
the state of the non-writable part of the program cannot change, it can be speci�ed
within J .

A variant of leads-to called "reach", denoted by�, can be de�ned as the smallest
transitive and left-disjunctive closure of ensures. It follows that � can only spec-
ify progress made through the writable part of a program, but this should not be a
hindrance as such is the only kind of progress a program can make.

De�nition 4.5.2 Reach REACH

(�p; q: J P` p� q) = TDC:(�p; q: J P` p ensures q)
J

Alternatively, we can also de�ne� as follows:

J P` p� q

=
(P` �J) ^ TDC:(�r; s: (P` J ^ r ensures s) ^ r; s 2 Pred:(wP )):p:q

(4.5.2)

It should now be obvious why we introduced TDC. The properties of TDC men-
tioned in Subsection 4.4.1 can easily be instantiated for�. This operator is not equal
to 7!, but let us postpone the details until Section 4.10. It is however easy to see that:

(true P` p� q)) ( P` p 7! q) (4.5.3)

By its de�nition, true P` p ensures q implies P` p ensures q. Hence, by
TDC Monotonicity

48
, (4.5.3) follows.

As a notational convention: if it is clear from the context which program P or which

stable predicate J are meant, we often omit them from an expression. For example we
may write P` p � q or even simply p � q to mean J P` p � q. Also, for laws we
write, for example:

P; J :
: : : (p unless q) : : :

r� s
to abbreviate:

: : : ( P` p unless q) : : :

J P` r� s

Figure 4.11 displays a set of basic laws of� which have corresponding laws for 7!.
The proofs of these properties follow the pattern of the related proofs for 7! properties
as found in [CM88]. Figure 4.12 displays some laws which have no 7! counterpart.
Some comment as to how the laws can be proven is also included. In particular, the�
Confinement law states that an expression of the form J P` p� q is only valid if both



4.6. ON THE SUBSTITUTION LAW Page 55

prog Bu�er
read fin; inRdy; ack; buf; outg
write fack; buf; outg
init :ack ^ (buf = [])
assign

if inRdy ^ :ack ^ (`:buf < N) then buf; ack := buf ++[in]; true
[] if :inRdy ^ ack then ack := false
[] if buf 6= [] then out; buf := hd:buf; tl:buf

J

Figure 4.10: An N-placed bu�er.

p and q are con�ned by Pred:(wP ). This con�rms what is said before, namely that�
describes only progress through the writable-part of a program. The � Disjunction

states the disjunctivity property of �. It should be noted however, that � is not

disjunctive in its J -argument. That is, J1 ` p� q and J2 ` p� q do not necessarily
imply J1 ^ J2 ` p � q. There are good reasons for this, but let us postpone the
discussion for a while.

As an example, consider the program Bu�er displayed in Figure 4.10. It uses a
bu�er buf of size N . What it does is passing on the values in buf to out, �rst in, �rst
out. Data are entered to buf via the input register in. The boolean variable inRdy is
an input variable, which is expected to become true if a new datum becomes available.
Bu�er is ready to receive a new datum if there is a place in buf and if ack is false. When
a new datum is entered to buf, it is acknowledged by setting ack true. A property of
the program Bu�er is that a new and un-acknowledged datum will eventually appear
in out. Using 7! this can be expressed as follows:

(8X :: Bu�er` (in = X) ^ inRdy ^ :ack 7! (out = X)) (4.5.4)

Using� the property can be expressed as follows:

(8X :: (in = X) ^ inRdy Bu�er` :ack� (out = X)) (4.5.5)

However, the following, which would be quite tempting to write due to its resemblance
to (4.5.4):

(8X :: true Bu�er` (in = X) ^ inRdy ^ :ack� (out = X)) (4.5.6)

is not a valid expression because the argument "(in = X) ^ inRdy ^ :ack" is not a
predicate con�ned by w(Bu�er).

The previously mentioned Transparency Law will be presented and proven in Sec-
tion 4.7.

4.6 On the Substitution Law

Recall that we call a predicate p invariant in a program P if it holds throughout any
computation of P . Consequently, the truth of p can be assumed in manipulating speci-
�cations of P , if by a 'speci�cation' we mean a predicate over all possible executions of



Page 56 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.5.3 � Introduction REACH ENS LIFT,REACH IMP LIFT

P; J :

p; q 2 Pred:(wP ) ^ (�J)
[J ^ p) q] _ (J ^ p ensures q)

p� q

Theorem 4.5.4 � Induction REACH INDUCT1

P; J :

(8p; q :: (p ensures q)) R:p:q)
Trans:R ^ Ldisj:R

(p� q)) R:p:q

Theorem 4.5.5 � Transitivity REACH TRANS

P; J :
(p� q) ^ (q� r)

p� r

Theorem 4.5.6 � Disjunction REACH DISJ

For all non-empty sets W :

P; J :
(8i : i 2 W : p:i� q:i)

(9i : i 2 W : p:i)� (9i : i 2 W : q:i)

Corollary 4.5.7 � Reflexivity REACH REFL

P; J :
p 2 Pred:(wP ) ^ (�J)

p� p

Corollary 4.5.8 � Cancellation REACH CANCEL

P; J :
q 2 Pred:(wP ) ^ (p� q _ r) ^ (r� s)

p� q _ s

Theorem 4.5.9 � PSP REACH PSP

P; J :
r; s 2 Pred:(wP ) ^ (r ^ J unless s) ^ (p� q)

p ^ r� (q ^ r)_ s

Theorem 4.5.10 � Completion REACH COMPLETION

For all �nite and non-empty sets W :

P; J :

r 2 Pred:(wP )
(8i : i 2 W : q:i^ J unless r) ^ (8i : i 2 W : p:i� q:i_ r)

(8i : i 2 W : p:i)� (8i : i 2 W : q:i)_ r

J

Figure 4.11: Basic properties of � which are analogous to those of 7!



4.6. ON THE SUBSTITUTION LAW Page 57

Theorem 4.5.11 � Stable Shift REACH STABLE SHIFT

P :
p2 2 Pred:(wP ) ^ (�J) ^ (J ^ p2 ` p1� q)

J ` p1 ^ p2� q

Can be proven using � Induction.

Theorem 4.5.12 � Stable Strengthening REACH STAB MONO

P :
(�J2) ^ (J1 ` p� q)

J1 ^ J2 ` p� q

Can be proven using � Induction.

Corollary 4.5.13 � Stable Background REACH IMP STABLE

P :
J ` p� q

�J

Follows straightforwardly from the alternative de�nition of� (4.5.2).

Theorem 4.5.14 � Confinement REACH IMP CONF

P; J :
p� q

p; q 2 Pred:(wP )

Can be proven using � Induction.

Theorem 4.5.15 � Substitution REACH SUBST

P; J :

p; s 2 Pred:(wP )
[J ^ p) q] ^ (q� r) ^ [J ^ r) s]

p� s

Follows from� Introduction, Stable Background, Transitivity, and Confinement.

J

Figure 4.12: More properties of �

P . This very natural principle is imposed in [CM88] as an axiom called the Substitution
Law, and has the following form. Let R be either unless, ensures, or 7!:

P :

"J is invariant"

[J ) (p = p0)] ^ R:p:q ^ [J ) (q = q0)]

R:p0:q0
(4.6.1)

The law was a source of anxiety because it was found that the law makes the logic
inconsistent [San91]. On the other hand, without the Substitution Law UNITY is
incomplete relative to a certain operational semantics. In [San91] Sanders proposed
an extension, from which the law can be derived instead of imposed as an axiom. The
consistency of the logic was thus guaranteed.



Page 58 Chapter 4. PROGRAMS AND THEIR PROPERTIES

In this section we will brie
y discuss the Substitution Law and Sander's extension,
and their relation to the UNITY logic plus the � operator as we have described so
far.

As we have no Substitution Law, at least, not for unless, ensures, and 7!, one may
ask what kind of incompleteness one may expect. Let us consider just the case of
unless. The other two operators can be argued about in much the same way. Recall
that in Section 4.3 we have carefully given the following operational interpretation for
unless:

Intuitively, P` p unless q implies that once p holds during an execution of P , it
remains to hold at least until q holds.

This deviates slightly from the traditional interpretation, for example as in [CM88],
in which the "implies" above is replaced by "if and only if". Indeed, we use "implies"
because we wish to avoid questions about incompleteness, until now. Now let us see
what kind of problem we run into if we replace "implies" with "if and only if".

Let P` p U q means "once p holds during an execution of P , it remains to hold at
least until q holds". Now consider a program Lazy as follows:

prog Lazy

read fa; xg
write fxg
init (a 6= 0) ^ (x = 0)
assign if a = 0 then x := x+ 1

In Lazy we have (x = 0) unless (a = 0). Because initially a 6= 0, the value of x will
remain constant. So, (x = 0) U false holds. However, (x = 0) unless false cannot be
derived without the Substitution Law:

(x = 0) unless (a = 0)

= f a 6= 0 is invariant, Substitution Law g

(x = 0) unless false

But Lazy` (x = 0) unless false by the de�nition of unless cannot hold since it is equal to
false. So obviously, unless is not equal to the interpretation U 7 .

In [San91] Sanders introduced a variant unless which is equal to U (and similarly
for ensures and 7!). Let P` �J means that J is invariant. Sanders de�nes unlessS as
follows:

P` p unlessS q = (9J : P` �J : J ^ p unless q) (4.6.2)

For J , one can always choose the strongest invariant of P . This strongest invariant
characterizes all states reachable by P , which is why the Substitution Law is derivable

7 This is caused by the fact that unless is de�ned in terms of all states instead of those states which
are actually reachable from the starting state(s).



4.6. ON THE SUBSTITUTION LAW Page 59

from the de�nition above. The unless as de�ned above coincides with the interpretation
U

To explicitly record on which invariant a property is based, Sanders generalized
(4.6.2) by parameterizing unlessS with an invariant:

J P` p unlessS q = ( P` �J) ^ ( P` (J ^ p) unless q) (4.6.3)

Curiously, Sanders fell into the same trap as Chandy and Misra did in [CM88] by
claiming that the Substitution Law also applies to the parameterized unlessS. Consider
again the program Lazy. Note that x < 2 is invariant. We derive now:

true

= f (4.6.3), x < 2 is invariant, unless Anti-reflexivity46 g

(x < 2) Lazy` (x < 2) unlessS (2 � x)

= f x < 2 is invariant, Substitution Law g

(x < 2) Lazy` (x < 2) unlessS false

) f (4.6.3) g

Lazy` (x < 2) unless false

= f de�nition of Lazy g

false

The 
aw is corrected by Prasetya in [Pra94] by requiring that J is not only an invariant,
but also a 'strong' invariant. A strong invariant is an invariant which is also stable.

De�nition 4.6.1 Strong Invariant Inv

P` s J = [iniP ) J ] ^ ( P` �J)

De�nition 4.6.2 Parameterized unlessS UNL

J P` p unlessS q = ( P` s J) ^ ( P` J ^ p unless q ^ J)
J

One can show that the following Substitution Law holds for the above de�nition of
unlessS. The result extends to ensures and 7!. It has been mechanically veri�ed and
available as part of our UNITY package for the theorem prover HOL.

Theorem 4.6.3 unless Substitution UNL SUBST

P; J :
[J ) (p = p0)] ^ (p unlessS q) ^ [J ) (q = q0)]

p0 unlessS q0

J

The reader may note that the � operator already ful�ls a Substitution57 law. In-
deed, the operator has some 
avor of Sanders' parameterized 7!, but there are some
important di�erences. Sanders' invariant-parameterized 7! is de�ned as follows:

J P` p
S

7! q = ( P` s J) ^ ( P` J ^ p 7! q) (4.6.4)



Page 60 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.7.1 unless Compositionality UNLESS PAR i

(P` p unless q) ^ (Q` p unless q) = (P []Q` p unless q)

Corollary 4.7.2 �Compositionality STABLE PAR i

(P` �J) ^ (Q` �J) = (P []Q` �J)

Follows from unless Compositionality and the de�nition of �.

Corollary 4.7.3 s Compositionality Inv PAR

(P` s J) ^ (Q` s J)

P []Q` s J

Follows from � Compositionality and the de�nition of s .

Theorem 4.7.4 ensures Compositionality ENSURES PAR

(P` p ensures q) ^ (Q` p unless q)

P []Q` p ensures q

J

Figure 4.13: Compositionality of safety properties and of ensures.

In �, the J is only required to be stable, which apparently is enough to have the
Substitution law. This is a useful generalization because when combining parallel

programs, an invariant is easier to be destroyed than a stable predicate. Also, since
S
7!

is based on 7!, which is not con�ned by wP , it will have the same problem as 7! when
it comes to parallel composition, especially the parallel composition of write-disjoint
programs. If one wishes to combine the strength of Sanders' de�nition and that of�,
one will have to parameterize with both stable predicates and invariants.

4.7 Parallel Composition

As has been motivated in Chapter 2, composition laws are useful as they enable us to
decompose a global speci�cation of a program into local speci�cations of the program's
components. Not only that the original problem, which may contain complicated inter-
component dependencies, is thereby broken into more manageable pieces, but also each
component can subsequently be developed in isolation. In this section an overview of
various parallel composition laws that we have veri�ed will be given.

The compositionality of safety properties follows a very simple principle: the safety
of a composite follows from the safety of its components; the laws are given in Figure
4.13. As for the compositionality of progress properties, only the compositionality of
ensures was known in the �rst place. A parallel component may write to a common
variable, and thereby a�ecting, or even, destroying a progress property of another com-



4.7. PARALLEL COMPOSITION Page 61

buffer

outin

sender

buf

inRdy

ack

prog Sender
read fack; in; inRdyg
write fin; inRdyg
init :inRdy
assign if :inRdy ^ :ack then in; inRdy := "generate a new datum"; true
[] if inRdy ^ ack then inRdy := false

prog Bu�er
read fin; inRdy; ack; buf; outg
write fack; buf; outg
init :ack ^ (buf = [])
assign if inRdy ^ :ack ^ (`:buf < N) then buf; ack := buf ++[in]; true
[] if :inRdy ^ ack then ack := false
[] if buf 6= [] then out; buf := hd:buf; tl:buf

J

Figure 4.14: A sender and an N-placed bu�er.

ponent. The phenomenon was not well understood and it was thought that except in
the most trivial cases, no useful result can be obtained for progress properties expressed
by 7!. A step forward is made by Singh [Sin89]. Although no claim is made on the
strength of Singh's results, we believe that it is fairly strong. The results will be dis-
cussed in the sequel. However, instead of 7!,� will be used to express progress. The
laws will look slightly di�erent but the idea remains the same.

Stronger results can be obtained for parallel composition of programs which share
no common write variables, but � is really required here. Perhaps, it should also
be noted that as we attempted to verify Singh's results it was discovered that his
main theorem is 
awed. The 
aw may look trivial and can be easily removed, but a
considerably more sophisticated proof is required. This should illustrate a bit as how
poor the issue was |and probably still is| understood.

4.7.1 General Progress Composition

Consider again the program Bu�er in Figure 4.10 and a new program Sender, both
displayed in Figure 4.14. Both programs are intended to be put together in parallel.
The picture in Figure 4.14 may be helpful. The program Sender generates data and
sends it through in to the program Bu�er. The latter puts the data in an N -placed
bu�er buf and meanwhile, it also passes the data to out, �rst in, �rst out. The reader
may notice that the synchronization between Sender and Bu�er is a hand-shake protocol



Page 62 Chapter 4. PROGRAMS AND THEIR PROPERTIES

:inRdy ^ :ack //�

S
inRdy ^ :ack

��

�B

BCED N�`:bufGF��

:inRdy ^ ack

OO

B

inRdy ^ ackoo
S

Note: S abbreviates Sender and B Bu�er. � produces a new datum and � put the datum in buf, if

there is a place for it.

J

Figure 4.15: A 4-phase hand-shake protocol between Sender and Bu�er.

with the following phases:

phase 0 : :inRdy ^ :ack
phase 1 : inRdy ^ :ack
phase 2 : inRdy ^ ack

phase 3 : :inRdy ^ ack

A new datum can only be generated in phase 0, which subsequently brings the system
to phase 1. A new datum can only enter buf in phase 1 (and if buf has a place free),
which subsequently brings the system to phase 2. Then, Sender will 
ip its inRdy,
bringing the system into phase 3, and Bu�er its ack, reverting the system to phase 0.
The transition graph in Figure 4.15 may be helpful.

Let SB abbreviate Sender [] Bu�er. A fundamental property which we claim that
SB has is the following:

(8X :: true SB` (in = X) ^ inRdy ^ :ack� (out = X)) (4.7.1)

stating that a new, un-acknowledged datum will eventually reach out. This progress
property can be proved directly from the code of SB. However, let us now see how it can
be derived from the properties of Sender and Bu�er. Let us �rst do some calculation,
starting from (4.7.1):

(in = X)^ inRdy ^ :ack� (out = X)

( f� Transitivity56 g

((in = X) ^ inRdy ^ :ack� X 2 buf) ^ (X 2 buf� (out = X))

Now, by applying � PSP56 to the �rst conjunct using the following instantiation of
the law:

p  (in = X)^ inRdy ^ :ack

q  X 2 buf _ (in 6= X)_ :inRdy _ ack

r = p

s  X 2 buf

J  true



4.7. PARALLEL COMPOSITION Page 63

we can re�ne the last speci�cation to the following:

SB` (in = X)^ inRdy ^ :ack unless X 2 buf (4.7.2)

true SB` (in = X)^ inRdy ^ :ack� X 2 buf _ (in 6= X)_ :inRdy _ ack (4.7.3)

true SB` X 2 buf� (out = X) (4.7.4)

(4.7.2) states that while in phase 1 the system (SB) can only either remain there, or
put the value of in into buf. We leave it to the reader to �gure it out why SB satis�es
this. (4.7.4) should be provable from the fact that this is a 'local' progress of the Bu�er.
We will return to this later. Let us for now concentrate on (4.7.3). Something that
might help to prove this is the following property of Bu�er:

(in = X) ^ inRdy Bu�er` true� X 2 buf _ ack (4.7.5)

But how can this be exploited to prove (4.7.3)? Note that the only way Sender can
in
uence Bu�er is through the variables in and inRdy. However, Sender cannot modify
any of those if inRdy ^ :ack holds. Consequently, if in addition in = X then either by
(4.7.5) Bu�er will make its progress to X 2 buf_ack, or either program does something
to inRdy, ack, or in which it invalidates either inRdy ^ :ack or in = X. In other words,
(4.7.3) is implied!

The principle used to conclude (4.7.3) from(4.7.5) is an instantiation of a composi-
tion law known as Singh's Law [Sin89]. Before it can be presented, �rst we need some
de�nitions.

De�nition 4.7.5 !? DVa

Q!?P = wQ \ rP
J

So, Q!?P denotes the variables through which Q can in
uence P . For example,
Sender!?Bu�er is fin; inRdyg. In practice people often use the term 'shared variables'.
This term is ambiguous because it is not clear whether it is meant variables which are
read, or written in common, or some other combination.

Let V be a set of variables. Let Q` p unlessV q roughly mean that under condition
p, Q cannot alter the variables in V without establishing q:

De�nition 4.7.6 unlessV

Q` p unlessV q = (8X :: Q` p ^ (8v : v 2 V : v = X:v) unless q)
J

Note: the dummy X has the type Var!Val. By omitting some overloading we can
also write the formula above as:

Q` p unlessV q = (8X :: Q` p ^ (�s: s�V = X �V ) unless q)



Page 64 Chapter 4. PROGRAMS AND THEIR PROPERTIES

In particular, Q` p unlessQ!?P q means that under condition p, Q cannot in
uence
P without establishing q. For example, Q` p unlessQ!?P false means that Q cannot
in
uence P as long as p holds; Q` true unlessQ!?P q means that Q always marks its
interference to P by establishing q. Recall that the program Sender cannot in
uence
Bu�er as long as inRdy ^ :ack holds. So, Sender satis�es:

Sender̀ inRdy ^ :ack unlessSender!?Bu�er false (4.7.6)

There are two lemmas that we are going to use later. The �rst states that if p is
a predicate con�ned by rP , then Q cannot destroy p without changing a variable in
Q!?P :

Lemma 4.7.7 CONF SAFE

p 2 Pred:(rP )

Q` p ^ (�s: s�U = X �U) unless (�s: s�U 6= X �U)
where U = Q!?P

I

To prove the above lemma, the theory developed in Chapter 3 will now be brought
into play.
Proof:

p ^ (�s: s�U = X �U) unless (�s: s�U 6= X �U)

= f de�nition unless, predicate calculus g

(8a : a 2 aQ : fp ^ (�s: s�U = X �U)g a f(�s: s�U = X �U)) pg)

( f U = wQ \ rP , Theorem 3.4.533 g

p 2 Pred:(rP ) ^ (8a : a 2 aQ : (wQ)c 8 a)

( f de�nition Unity g

p 2 Pred:(rP ) ^ Unity:Q

N

Lemma 4.7.8

p 2 Pred:(rP ) ^ (Q` r unlessQ!?P s)

Q` p ^ r unless s
I

Proof:

Let U = Q!?P . We want to prove p ^ r unless s. Using unless Simple Disjunction
46
it

su�ces to show that for all X:

p ^ r ^ (�s: s�U = X �U) unless s

Using unless Conjunction46 and Post Weakening46 it su�ces to show:

r ^ (�s: s�U = X �U) unless s

p ^ (�s: s�U = X �U) unless (�s: s�U 6= X �U)



4.7. PARALLEL COMPOSITION Page 65

The �rst follows from Q` r unlessU s. The second follows from Lemma 4.7.7.
N

Now here is the Singh law. If P can make progress p � q, and under condition
r, Q cannot in
uence P without establishing s, then in the composition P []Q starting
from p and r, either P makes its progress to q, or it does something that invalidates r,
or Q writes something to P , in which case s will hold. The law is formulated below.
A more general version is also provided.

Theorem 4.7.9 Singh Law REACH SINGH

r; s 2 Pred:w(P []Q) ^ (Q` �J) ^ (Q` J ^ r unlessQ!?P s) ^ (J P` p� q)

J P []Q` p ^ r� q _ :r _ s

Theorem 4.7.10 (General) Singh Law REACH SINGH g

r; s 2 Pred:w(P []Q) ^ p1 2 Pred:(wP [ (Q!?P ))
( P []Q` �J) ^ (Q` J ^ r unlessQ!?P s) ^ (J ^ p1 P` p2� q)

J P []Q` p1 ^ p2 ^ r� q _ :p1 _ :r _ s
I

Only the proof of the General Singh Law will be presented.
Proof:

By applying� Induction56, it su�ces to show that R = (�a; b: J P []Q` p1^a^r� b_
:p1_:r_s) is transitive, left-disjunctive, and includes E = (�a; b: J^p1 P` a ensures b).
To show that R is transitive is easy:

(p1 ^ a ^ r� b _ :p1 _ :r _ s) ^ (p1 ^ b ^ r� c _ :p1 _ :r _ s)

= f predicate calculus g

(p1 ^ a ^ r� (p1 ^ b ^ :r) _ :p1 _ r _ s) ^ (p1 ^ b ^ r� c _ :p1 _ :r _ s)

) f� Cancellation56 g

p1 ^ a ^ r� c _ :p1 _ :r _ s

The left-disjunctivity of R follows directly from� Disjunction56. It remains to show
that R includes E.

By applying� Introduction56 and ensures Compositionality60, R:a:b is implied
by:

i. (p1 ^ a ^ r) 2 Pred:(wP []Q)

ii. (b _ :p1 _ :r _ s) 2 Pred:(wP []Q)

iii. P []Q` �J

iv. P` J ^ p1 ^ a ^ r ensures b _ :p1 _ :r _ s

v. Q` J ^ p1 ^ a ^ r unless b _ :p1 _ :r _ s

The �rst two are easy and left to the reader. iii appears in the assumption. Using
ensures Post-weakening47, iv is implied by P` J ^ p1 ^ a ^ r ensures b, which follows
from E:a:b. For v we derive:



Page 66 Chapter 4. PROGRAMS AND THEIR PROPERTIES

J ^ p1 ^ a ^ r unless b _ :p1 _ :r _ s

( f unless Post-weakening46 g

J ^ p1 ^ a ^ r unless s

( f P []Q` �J implies Q` �J , unless Simple Conjunction46 g

p1 ^ a ^ r unless s

( f Lemma 4.7.8 g

(p1 ^ a) 2 Pred:(rP ) ^ r unlessQ!?P s

( f predicate con�nement distributes over ^; assumptions g

p1 2 Pred:(rP ) ^ a 2 Pred:(rP )

( f con�nement is monotonic with respect to �; de�nition E g

p1 2 Pred:(wP [ (Q!?P )) ^ E:a:b

N

Let us now try to apply the law to our example with Sender and Bu�er. Recall that
we want to obtain the speci�cation (4.7.3) from (4.7.5). The �rst is re-displayed below:

true SB` (in = X) ^ inRdy ^ :ack� X 2 buf _ (in 6= X) _ :inRdy _ ack

By applying the General Singh Law, we can re�ne the above to the following:

i. (inRdy ^ :ack) 2 Pred:(w(Sender[]Bu�er))

ii. false 2 Pred:(w(Sender[]Bu�er))

iii. (in = X) ^ inRdy) 2 Pred:(w(Bu�er) [ Sender!?Bu�er)

iv. (in = X) ^ inRdy Bu�er` true� X 2 buf _ ack

v. Sender̀ inRdy ^ :ack unlessSender!?Bu�er false

The �rst three are trivial. iv is (4.7.5). v is (4.7.6), stating that Sender cannot in
uence
Bu�er as long as inRdy and :ack hold. It is not too di�cult to conclude from its code
that Sender has this property.

The Singh Law, although it formulates a very intuitive idea, looks complicated. The
law reduces a progress speci�cation of a program to a progress speci�cation of one of
its component, two safety speci�cations, and some 'type' restrictions on the predicates
that occur in the speci�cations. At �rst sight, applying the law seems only to generate
more proof obligations and one may therefore question the merit of using the law.
However, recall that a � (or 7!) progress property is proved by composing a number
of ensures properties. Without the Singh Law, or some other parallel composition law,
all these ensures properties will have to be veri�ed with respect to the whole program.
With the Singh Law they only have to be veri�ed with respect to a component program.
If the number of ensures properties and the average size of the component programs
are su�ciently large, then applying the Singh Law will become more economical.

In some cases, the law can be simpli�ed. The following corollaries show some of
these cases. In the linear temporal logic there is a relation called until. A program P

satis�es P` p until q if whenever p holds during an execution of P , afterwards q will



4.7. PARALLEL COMPOSITION Page 67

eventually hold but in the meantime p will continue to hold until q holds. This sounds
very much like ensures, but until is actually larger than ensures. Roughly speaking,
until is equal to 7! \ unless . Consequently, either p ` true � q or (true ` p �

q) ^ ( ` p unless q) imply p until q. If either holds in P , and under condition p, Q
cannot in
uence P without establishing q then one can conclude that p� q must hold
in the composition P []Q. This is what the following two corollaries state.

Corollary 4.7.11 until Compositionality UNTIL COMPO1

(Q` �J) ^ (Q` J ^ p unlessP?!Q q) ^ (P` J ^ p unless q) ^ (J P` p� q)

J P []Q` p� q

Corollary 4.7.12 until Compositionality UNTIL COMPO2

p 2 Pred:(wP [ (P?!Q)) ^ (P []Q` �J)
(Q` J ^ p unlessP?!Q q) ^ (J ^ p P` true� q)

J P []Q` p� q
J

4.7.2 Exploiting Fix Point

A state s is called a �x point of a program P , if s remains unchanged under the
execution of any action in P . The notion can be lifted to the predicate level. A
predicate p is called a �x point of P , denoted by p 2 Fp:P , if all states s 2 p are �x
points.

De�nition 4.7.13 Fix Point FPp DEF

p 2 Fp:P = (8a; s : a 2 aP : p:s ^ a:s:t) (s = t))
J

Note that the de�nition above may not match its intended interpretation if P contains
an action a which is not always-enabled (that is, for some begin state s, a may not be
able to make any transition). However, in the case of UNITY programs, their actions
are assumed to be always-enabled.

Fix points can be useful in parallel composition. If a program P has reached a �x
point, then certainly it cannot in
uence any other program Q. If Q cannot throw P

from its �x points space, then any progress in Q will be preserved in the composition
P []Q. In fact, this principle is a corollary of the Singh law. Before its formulation is
presented here are some basic properties of �x points. Fix points are anti-monotonic
with respect to ). In addition, if a predicate q is a �x-point of P , then for any p, p^ q
is stable in P .



Page 68 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.7.14 Fp Monotonicity FPp MONO

[p) q] ^ q 2 Fp:P

p 2 Fp:P

Theorem 4.7.15 Fp Stability FPp IMP STABLE

q 2 Fp:P

(p ^ q) 2 Fp:P
J

We now present the composition law using �x points we mentioned before 8 :

Theorem 4.7.16 REACH COMPO BY FPp

( P` � (J1 ^ J2)) ^ J2 2 Fp:Q ^ (J1 P` p� q)

J1 ^ J2 P []Q` p� q
I

Proof:

J2 2 Fp:Q ^ (J1 P` p� q)

) f Theorem 4.7.15; de�nition of unlessV g

( Q` J1 ^ J2 ^ true unlessQ!?P false) ^ (J1 P` p� q)

) f P` � (J1 ^ J2), �Conjunction47 g

( Q` J1 ^ J2 ^ true unlessQ!?P false) ^ (J1 ^ J2 P` p� q)

) f Singh Law65 g

J1 ^ J2 P []Q` p� q

N

4.7.3 Why the Original Version of Singh Law is Flawed

Earlier it was mentioned that the original version of the Singh law is 
awed. Let us
now take a look at this and see what we can learn from it. However, if the reader
wishes, he can skip this entire subsection.

A simple form of the original Singh Law [Sin89] looks as follow:

(Q` true unlessQ!?P s) ^ ( P` p 7! q)

P []Q` p 7! q _ s
(4.7.7)

stating that if Q cannot in
uence P without establishing s, then any progress made
by P will be preserved in the composition P []Q, or Q interferes and establishes s.

Note that there is no restriction on p; q and s. They may be any predicates! Now
consider the following programs:

8 The law was given �rst by Singh in [Sin89].



4.7. PARALLEL COMPOSITION Page 69

prog P

read fxg

write fxg
init true
assign x := x+ 1

prog Q

read fag

write fag
init true
assign a := :a

Since the programs share no variable then obviously Q cannot in
uence P (Q!?P =
�), and hence it satis�es:

Q` true unlessQ!?P false (4.7.8)

A valid property of P is P` a ^ (x = 0) 7! a ^ (x = 1). Using (4.7.8) and Singh law
(4.7.7) we conclude the progress also holds in P []Q. But this cannot of course be true.

As no restriction is put on p and q in (4.7.7), the progress p 7! q may actually refer
to some internal variable of Q, and this is what causes the problem above. Let us now
put a restriction on them and see how we can prove the law:

p; q 2 Pred:(rP ) ^ (Q` true unlessQ!?P s) ^ ( P` p 7! q)

P []Q` p 7! q _ s
(4.7.9)

To prove the above we do not have many options but to resort to 7! Induction52.
So, assuming Q` true unlessQ!?P r, prove that R = (�p; q: p; q 2 Pred:(rP ) ) ( P []Q`
p 7! q_ s)) is transitive, left-disjunctive, and includes ensures. But we have now a new
problem. The transitivity (and left-disjunctivity) of R cannot be proved:

p; q 2 Pred:(rP )) ( P []Q` p 7! q _ s))

q; r 2 Pred:(rP )) ( P []Q` q 7! r _ s))

are not su�cient to prove

p; r 2 Pred:(rP )) ( P []Q` p 7! r _ s))

So, let us instead prove a slightly di�erent law:

Theorem 4.7.17 Simple Singh Law for 7!

(Q` true unlessQ!?P s) ^ ( P` p 7! q)

P []Q` (p�rP ) 7! (q �rP ) _ s
I

Note that if p; q 2 Pred:(rP ), hence in other words (p = p�rP ) ^ (q = q �rP ), the
above implies (4.7.9).
Proof:

Assuming Q` true unlessQ!?P s, the law above will be proved using 7! Induction52.
So, it will be showed that R = (�p; q: P []Q` (p � rP ) 7! (q � rP ) _ s) is transitive,
left-disjunctive, and includes (�p; q: P` p ensures q). For the transitivity:

((p�rP ) 7! (q �rP ) _ s) ^ ((q �rP ) 7! (r �rP ) _ s)



Page 70 Chapter 4. PROGRAMS AND THEIR PROPERTIES

) f 7! Cancellation52 g

(p�rP ) 7! (r �rP ) _ s

The left-disjunctivity of R follows directly from 7! Disjunction52 and the fact that
the con�nement of predicates distributes over _.

As for the inclusion of ensures, assume P` p ensures q. We derive:

P []Q` (p�rP ) 7! (q �rP ) _ s

( f 7! Introduction52 g

P []Q` (p�rP ) ensures (q �rP ) _ s

( f ensures Compositionality60 g

( P` (p�rP ) ensures (q �rP ) _ s) ^ (Q` (p�rP ) unless (q �rP ) _ s)

( f ensures Post-weakening47; Corollary 3.4.331 g

(8a : a 2 aP : (rP )c9 a) ^ ( P` p ensures q) ^ (Q` (p�rP ) unless (q �rP ) _ s)

( f assumption, de�nition Unity
40
g

Unity:P ^ (Q` (p�rP ) unless (q �rP ) _ s)

( f unless Post-weakening46 and Lemma 4.7.864 g

Unity:P ^ p�rP 2 Pred:(rP ) ^ (Q` true unlessQ!?P s)

= f P is a UNITY program, p�V is always con�ned by Pred:V g

Q` true unlessQ!?P s

N

4.7.4 A Short Overview

At this point, the reader may begin to lose track as to where we are aiming at. Just
to remind him: we have introduced the logic UNITY and discussed how to represent a
UNITY program. We have presented the standard UNITY operators, used to express
the behaviors of a program, and discussed their shortcomings. We gave a special
attention to progress properties and extended UNITY with a new progress operator
which we claim to have a nice compositional property |this will be made clear in
the next section. In the mean time, many calculational laws concerning the extended
logic have been presented. Some of the laws will be used later, but some will not. In
general though, the reader will likely �nd those laws to be useful for designing his own
programs.

As said, the next section will present more compositionality results of the new
progress operator �. It is an important section. The two sections that follow the
next section are included for the completeness sake. The �rst will discuss program
transformations, which can be used as an alternative method to design a program as
in [Bac90, R.95]. The second will present a standard operational semantics for UNITY
and present some soundness results of the UNITY logic with respect to the mentioned
semantics.



4.8. WRITE DISJOINT COMPOSITION Page 71

4.8 Write Disjoint Composition

Stronger compositionality results can be obtained for programs that are write-disjoint.
Recall (from Chapter 3) that two programs P and Q are said to be write-disjoint if
they write to no common variable. This is denoted by P �Q. If two programs P and
Q are write-disjoint, Q can only in
uence P through P 's input variables, that is, the
variables read by P but not written by it. Consequently, once P and Q agree on a set
of input values for P , whatever progress P makes through its write variables will be
preserved in the parallel composition of P and Q. In Chapter 3 we hypothesized a law
called Transparency law which states exactly this. This will be proven in this section.
The Transparency law is fundamental for write-disjoint composition. Some well known
design techniques that we use in practice are corollaries of this principle. A progress
property is usually constructed, either using transitivity or disjunction, from a number
of simpler progress properties. Using the principle we can delegate each constituent
property, if we so desire, to be realized by a write-disjoint component of a program.

Parallel composition of write-disjoint programs is also attractive because it occurs
frequently in practice. The pictures in Figure 2.3 show various instances of composition
of write-disjoint programs. We will de�ne some of them below.

De�nition 4.8.1 Write-disjoint Programs WD DEF

P �Q = (wP \wQ = �)

De�nition 4.8.2 Layering LAYERING

P . Q = (P �Q) ^ (wP � iQ)

De�nition 4.8.3 Fork FORK

P t Q = (P �Q) ^ (iP = iQ)

De�nition 4.8.4 Non-Interfering (Parallel) FPAR

PkQ = (P �Q) ^ (rP \ rQ = �)
J

If P �Q, then the parallel composition of P and Q is also called the write-disjoint

composition of P and Q. Obviously, if .;t, and k are all instances of �.

In a non-interfering parallel composition of two programs, both programs are in-
dependent from each other. In a fork, the programs based their computation on the
same set of input variables. For example if we have a program that computes the
minimum of the values of the variables in V , and another program that computes the
maximum, we can put the two programs in parallel by forking them. In a layering

we have two layers. If P . Q holds, then P is called the lower layer and Q the upper

layer. The computation of the upper layer depends on the results of the lower layer.



Page 72 Chapter 4. PROGRAMS AND THEIR PROPERTIES

The converse does not necessarily hold. For example, the lower layer can be a pro-
gram that constructs a spanning tree from a vertex i and the upper layer is a program
that broadcasts messages from i, using the constructed spanning tree. Layering works
like a higher level sequential composition. However, the two layers do not have to be
implemented sequentially, especially if they are non-terminating programs.

Before the Transparency law can be proven, �rst we need the following lemma,
stating that if P and Q are write disjoint, then Q cannot destroy a predicate con�ned
by wP :

Lemma 4.8.5 CONF Local

(P �Q) ^ p 2 Pred:(wP )

Q`�p
I

Proof:

The lemma follows from Lemma 3.4.633 in Chapter 3:

Q`�p

= f de�nition of � (4.3.8) g

(8a : a 2 aQ : fpg a fpg)

( f Lemma 3.4.6
33
g

(8a : a 2 aQ : wP 8 a ^ p 2 Pred:(wP ))

( f P and Q are write-disjoint g

p 2 Pred:(wP )

N

Now the transparency law:

Theorem 4.8.6 Transparency Law REACH TRANSPARANT

P �Q ^ (Q` �J) ^ (J P` p� q)

J P []Q` p� q
I

Proof:

By applying � Induction56 it su�ces to show that R = (�p; q: J P []Q` p � q) is
transitive, left-disjunctive, and includes E = (�p; q: J P ` p ensures q). That R is
transitive and left-disjunctive follows from � Transitivity56 and Disjunctivity56.
For the inclusion of E we derive:

J P []Q` p� q

( f� Introduction56 g

p; q 2 Pred:(w(P []Q)) ^ ( P []Q` �J) ^ ( P []Q` J ^ p ensures q)

( f wP � wP []Q; Confinement Monotonicity30 g



4.8. WRITE DISJOINT COMPOSITION Page 73

p; q 2 Pred:(wP ) ^ ( P []Q`�J) ^ ( P []Q` p ^ J ensures q)

= f � Compositionality60 g

p; q 2 Pred:(wP ) ^ ( P`�J) ^ (Q`�J) ^ ( P []Q` p ^ J ensures q)

( f ensures Compositionality
60
and the de�nition

54
of ensures g

(Q`�J) ^ (Q` p ^ J unless q) ^ (J P` p ensures q)

( f unless Post-weakening46; de�nition of �; � Conjunction47 g

(Q`�J) ^ (Q`�p) ^ (J P` p ensures q)

( f Lemma 4.8.5 g

(Q`�J) ^ p 2 Pred:(wP ) ^ (P �Q) ^ (J P` p ensures q)

= f de�nition54 of ensures g

(Q`�J) ^ (P �Q) ^ (J P` p ensures q)

N

For example consider again the example with Sender and Bu�er in Figure 4.1461.
Recall that we were discussing about the speci�cation (4.7.1) of Sender[]Bu�er:

(8X :: true SB` (in = X) ^ inRdy ^ :ack� (out = X))

The speci�cation was re�ned into a number of speci�cations. One of them is (4.7.4):

true Sender[]Bu�er̀ X 2 buf � (out = X)

By looking into the code of Bu�er we conclude that this progress will be established
by Bu�er, no matter what Sender does. But how can we conclude this without having
to look into the code of Bu�er? Notice that Sender and Bu�er are write-disjoint. Using
the Transparency law we can re�ne the above to:

true Bu�er` X 2 buf � (out = X) (4.8.1)

stating that the required progress can indeed be delegated to Bu�er.
One may ask, whether a special law for write-disjoint programs is really necessary.

That is, whether it can derived from the Singh Law given in the previous section. The
latter expresses how, in general, a progress property of a program P may be in
uenced
by another program Q (through the variables in Q!?P ). However, the Singh Law does
not discriminate between progress properties which are 'directly' dependent on Q!?P
and those that are not. For example, we cannot obtain (4.8.1) above from

true Sender[]Bu�er̀ X 2 buf � (out = X)

using the Singh65 law because the law presumes the worst case, which is that any
progress made by Bu�er may su�er from interference by Sender, which is not always
true.

An instance of write-disjoint composition called layering |also called collateral
composition| has been recognized by Herman [Her91] and Arora [Aro92] as an im-
portant technique to combine self-stabilizing programs. The following law is especially
useful to handle layering.



Page 74 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.8.7 Spiral Law REACH SPIRAL

(P �Q) ^ ( P` � (J ^ q)) ^ (Q` �J)
(J P` p� q) ^ (J ^ q Q` true� r)

J P []Q` p� q ^ r
J

If P . Q holds, P []Q is a layering with P as the lower layer and Q as the upper
layer. According to the law, a progress property p� r in P []Q can be split into p� q

in the lower layer P , and q ` true� r in the upper layer Q. The Spiral law is used
to implement a sequential division of tasks. For example if we want to do a broadcast,
we can think of a two-steps process: �rst, construct a spanning tree, and then do the
actual broadcast. Usually we have separate programs for both tasks. The Spiral Law
provides the required justi�cation for this kind of separation, where in this case P

constructs the spanning tree and Q performs the broadcast under the assumption that
q describes the existence of this spanning tree.

4.9 Program Transformations

Parallel composition or sequential composition are, as the name implies, program com-
position in which two programs are combined to form a larger one. There are also
program transformations in which a program is transformed into another one. In
[CM88] only the addition of assignments to fresh variables is mentioned. There are of
course more useful transformations but at the time not much was known about how
exactly they a�ect the behavior of a program. Recent results were given by Singh in
[Sin93] who exposed data re�nement, guard strengthening, and re�nement of atomicity,
and investigated the kind of program properties preserved by these transformations.
There is also the work by Udink, Herman, and Kok in [UHK94] which presented ac-
tion duplication, data re�nement, guard strengthening, and action substitution using
invariants, and proved that these transformations preserved some form of local safety
and progress properties.

In this section several program transformations will be discussed. The main ques-
tion that we wish to address is how the transformations a�ect the � properties of a
program. We expect that the results in [CM88] and [Sin93] for 7! will translate well to
results in�. In addition, we �nd the laws of superposition (additions of assignments
to fresh variables) in [CM88] to be somewhat informally stated. We will re-state them,
with proper details. The reader may also �nd it interesting to see how the transfor-
mation laws presented later can be neatly proven from the laws at the action level
presented in Chapter 3. The proofs are collected separately in Section 4.12. Program
transformation is however not a main issue in this thesis. The technique is not going
to be used in the applications presented later in this thesis. Therefore we are not going
to be too elaborate. The results are also not mechanically veri�ed yet.

If P is a UNITY program, adding variables to P , or a skip action, preserves the
properness of P . That is, the resulting program also satis�es Unity:P . Obviously, this
simple transformation preserves whatever unless, ensures,�, and invariant properties



4.9. PROGRAM TRANSFORMATIONS Page 75

of P . In addition, strengthening the initial condition of a program also preserves such
properties.

Recall than an action a can be extended with an assignment b to some fresh variables
by composing b 'in front of' a: b; a. Assume that V are the variables read by a.
Naturally, we expect that extending a with b preserves any Hoare triple speci�cation of
a, as long as the speci�cation does not refer to the fresh variables. This is justi�ed by
Corollary 3.4.432 from Chapter 3 which states that fpg a fqg implies fp�V g b; a fq �V g.
The same should also hold at the program level. In UNITY, the addition of assignments
to fresh variables is called superposition. In addition, if we can extend the actions in a
program with assignments to fresh variables, we can also add new actions which only
assign to fresh variables.

Theorem 4.9.1 Primitive Properties after Superposition

Let P and Q be UNITY programs and f 2 Action! Action such that: aQ =
ff:a; a j a 2 aPg [ ff:a j a 2 Ag for some A � Action. Let R be either unless or
ensures. We have:

(8a : a 2 aP : rP 8 f:a) ^ ( P` p R q)

Q` (p�rP ) R (q �rP )
J

Notice that Q is obtained from P by extending each action a of P with an assignment
f:a (which can also be skip). The �rst conjunct in the assumption of the above law
expresses the fact that f:a only assigns to fresh variables. A similar law also exists for
�. It can easily be proven using � Induction56.

Theorem 4.9.2 � after Superposition

Let P and Q be UNITY programs and f 2 Action!Action such that wP � wQ and:
aQ = ff:a; a j a 2 aPg [ ff:a j a 2 Ag for some A � Action. We have:

(8a : a 2 aP : rP 8 f:a) ^ (J P` p� q)

J �rP Q` p� q
J

An action a can be strengthened with a guard g by extending it to if g then a. The
meaning of this action, according to the convention made Section 4.2 is:

(�s; t: (g:s) a:s:t) ^ (:g:s) (s = t)))

It is known that strengthening the actions of a program with guards preserves its safety
properties:



Page 76 Chapter 4. PROGRAMS AND THEIR PROPERTIES

Theorem 4.9.3 Safety under a Stronger Guard

Let P and Q be UNITY programs, g 2 Action!Pred, and A � aP such that aQ =
(aPnA) [ fif g:a then a j a 2 Ag We have:

P` p unless q

Q` p unless q
J

Notice that Q is obtained from P by adding a guard g:a to each action a from A.
If an action a in P is strengthened with a guard g, whatever progress by � in P

will be preserved in the new program, if the other actions cannot destroy g, and if it
will eventually hold. This is expressed by the following theorem 9 .

Theorem 4.9.4 Progress under a Stronger Guard

Let P and Q be UNITY programs, g 2 Action!Pred, and A � aP such thatwP � wQ

and aQ = (aPnA) [ fif g:a then a j a 2 Ag. Let Q�a be the same program as Q,
except that the action a is deleted. We have:

(8a : a 2 A : (Q�a` �J ^ g:a) ^ (J Q` true� g:a)) ^ (J P` p� q)

J Q` p� q
J

Notice that the condition J Q ` true � g:a states that in the new program Q,
eventually the guard g:a becomes true. The condition Q�a

` � J ^ g states that no
other action but a can falsify the guard g:a.

If P ` J ^ p unless q holds, and in addition J implies that g = h, then replacing
an action if g then a in P with if h then a preserves J ^ p unless q. Typically J is an
invariant, or at least a stable predicate. A similar result also exists for ensures and�.

Theorem 4.9.5 Actions Substitution

Let P , Q and R be UNITY programs such that

Q = P [](fif g1 then assign:x:f1g; iniP; rP;wP )

R = P [](fif g2 then assign:x:f2g; iniP; rP;wP )

and x 2 wP . Let R be either unless or ensures. If J satis�es [J ) (�s: f1:s; g1:s =
f2:s; g2:s)] then we have:

Q` J ^ p R q

R` J ^ p R q
and

J Q` p� q

J R` p� q
J

As an example consider two programs P and Q which communicate through the
assignment (of P ) if g then y := x where x is intended to be a variable of P and y of
Q. The assignment can be viewed as an action by P to send a new datum it keeps in

9 A stronger result was given by Singh in [Sin93].



4.9. PROGRAM TRANSFORMATIONS Page 77

x to the variable y. As it is, P can send a new datum whenever g is true. Suppose
that we want to implement this communication on a synchronous machine. That is,
sending a new datum is only possible if not only P , but also Q is ready to receive the
datum. Below we show an implementation of this. The read, write, and init sections
are omitted for the sake of simplicity.

prog P 0

assign
: : :

[] if Prdy^ Qrdy then if g then y;Prdy := x; false
[] if :Prdy ^ :Qrdy then Prdy := true

prog Q0

assign
: : :

[] if Prdy^ :Qrdy then Qrdy := true
[] if :Prdy ^Qrdy then Qrdy := false

The variables Prdy and Qrdy are assumed fresh with respect to P and Q. P 0 is
ready to send a new datum if Prdy is true and Q0 is ready to receive one if Qrdy is true.
Only when Prdy and Qrdy are both true then a communication can take place. Notice
that the protocol is in fact the 4-phase hand-shake protocol as in Figure 4.14.

We feel that P 0[]Q0 somehow 'implements' P []Q. But how can one justify this?
We observe that we can obtain P 0[]Q0 from P and Q through a series of previously
described transformations, and recall that the transformations preserve |under some
conditions| unless and � properties.

First, we can transform P by adding an assignment Prdy := true and extending the
action if g then y := x with if g then Prdy := false. Notice that these are assignments
to Prdy, which is fresh. We obtain the following program:

prog P1
assign

: : :

[] (if g then Prdy := false) ; (if g then y := x)
[] Prdy := true

By adding assignments to the fresh variable Qrdy we can also transform Q to the
following:

prog Q1

assign
: : :

[] Qrdy := true
[] Qrdy := false

By adding guards we can obtain P 0 from P1 and Q0 from Q1.
By the transformation laws given earlier, it can be concluded that P []Q` p unless q

implies P 0 []Q0` p unless q and J P []Q` p� q implies J P 0 []Q0` p� q, if J , p, and q are all



Page 78 Chapter 4. PROGRAMS AND THEIR PROPERTIES

con�ned by Pred:(rP ) and if each new guard eventually holds and can only be falsi�ed
by the action it stands guard for. If the reader observes the code of P 0 and Q0 and
considers the fact that Pry and Qrdy are fresh variables, he should be able to conclude
that the latter condition is met.

One can continue |or take di�erent transformations| by, for example, sharpening
the condition that determines the readiness of Q to receive and hence giving Q more
control in synchronizing with P .

4.10 The Semantics of UNITY

Eventually, one may want to relate the logic de�ned by UNITY and some operational
semantics. In doing so, one usually hopes to investigate how far the logic re
ects
the 'real' world. This raises the question of soundness and completeness of the logic
with respect to the given operational semantics. Another reason is that in some cases,
reasoning may be easier if conducted at the operational level. So, some ability to go
back and forth between the logical and operational level will be appreciated.

In this section, an operational semantics for UNITY will be given. The semantic
domains are quite straightforwardly chosen, namely all possible sequences of states
which can be generated by a UNITY program (this is a standard model). An opera-
tional notion of unless and 7! (leads-to) will be de�ned based on these semantics. It
has been proven that these two operators are sound with respect to their operational
counterparts, but not complete. It has been shown that Sanders' version of unless
and 7! are complete [San91, Pac92]. There is no reason for us to repeat these results.
However, we wish to mention here that we have mechanically veri�ed the soundness
results. Quite unfortunately, due to time constraints, we did not succeed in verifying
the completeness results.

Recall that an execution of a UNITY program is an in�nite sequence of actions
such that each action occurs in�nitely often (fairness). Let exec:P denote the set of all
possible UNITY execution of P . We will represent an in�nite sequence over A with a
function from N to A. Let tr be the set of all possible sequence of states which can be
generated by the executions in exec. A member of tr:P is called a trace of P .

De�nition 4.10.1 Execution Set EXEC DEF

� 2 exec:P = (8i :: �:i 2 aP ) ^ (8i; a : a 2 aP : (9j : i � j : �:j = a))

De�nition 4.10.2 Trace Set TRACE DEF

� 2 tr:P = iniP:(�:0) ^ (9� : � 2 exec:P : (8i :: (�:i):(�:i):(�:(i+ 1))))
J

Let P` p U q mean that for any trace � of P , if �:i satis�es p ^ :q, then �:(i+ 1)
satis�es p _ q. Let P` p L q mean that for any trace � of P , if �:i satis�es p, then
there exists a j, i � j, such that �:j satis�es q. Indeed, U and L are intended to be the



4.10. THE SEMANTICS OF UNITY Page 79

operational interpretation of unless and 7!.

De�nition 4.10.3 Operational Unless tUNLESS ADEF1

P` p U q = (8i; � : � 2 tr:P : (p ^ :q):(�:i) ) (p _ q):(�:(i+ 1)))

De�nition 4.10.4 Operational Leads-to tLEADSTO ADEF1

P` p L q = (8i; � : � 2 tr:P : p:(�:i) ) (9j : i � j : q:(�:j)))
J

unless and 7! are sound with respect to the above operational interpretation. They
are however not complete. The Sanders' de�nition of unless and 7! (given in Section
4.6) are complete with respect to the above interpretation. The soundness of Sanders'
de�nition follows from the soundness of the standard unless and 7!. We did not verify
any completeness result. If the reader is interested, an elegant completeness proof can
be found in [Pac92].

Theorem 4.10.5 Soundness of unless UNLESS IMP tUNLESS

( P` p unless q) ) ( P` p U q)

Theorem 4.10.6 Soundness of 7! LEADSTO IMP tLEADSTO

( P` p 7! q) ) ( P` p L q)
J

Now, how about the operational meaning of �? We could not come with any
satisfactory answer. The only thing that we know is, as given equation (4.5.3)54 in
Section 4.5, that � includes 7!:

(true P` p� q) ) ( P` p 7! q)

Or, slightly more general, we can prove:

(J P` p� q) ) ( P` J ^ p 7! q) (4.10.1)

Since J P ` p � q also implies P ` J unless false, It follows then, that J P ` p � q

implies P` J U false and P` J ^ p L q. We do not expect equivalence though, because
� is quite di�erent from 7!. This has been suggested early in Section 4.5, but let us
go over an example presented there again. Consider the following program:

prog P

read fa; xg

write fxg
init true
assign if a = 0 then x := 1
[] if a = 1 then x := 1
[] if a = 2 then x := x+ 1



Page 80 Chapter 4. PROGRAMS AND THEIR PROPERTIES

In the above program we have (b = 0) ^ a < 2 7! (x = 1). We expect that the�
version of this property, namely (b = 0)^ a < 2 ` true� (x = 1), also holds. But this
is not true. The property (b = 0)^a < 2 7! (x = 1) can be concluded because we have
(b = 0) ^ (a = 0) ensures (x = 1) and (b = 0) ^ (a = 1) ensures (x = 1) and we can join
them using the disjunctivity of 7!. Unfortunately we cannot do the same with �. If
we do that, we will get an unsound logic. Consider the program TikToe in Figure 4.9.
It is redisplayed below:

prog TikToe
read fa; bg
write fag

init true
assign if a = 0 then a := 1
[] if a = 1 then a := 0
[] if b 6= 0 then a := a+ 1

The programs P and TikToe are write-disjoint. Suppose (b = 0) ^ a < 2 P `
true� (x = 1) holds. The predicate (b = 0) ^ a < 2 is also stable in Tiktoe. By the
Transparency72 principle we conclude that (b = 0) ^ a < 2 P []TikToe` true � (x = 1)
also holds. But this simply cannot be true. Consider the execution:

[ if a = 0 then a := 1 ; if a = 0 then x := 1 ;
if a = 1 then a := 0 ; if a = 1 then x := 1 ;
if a = 2 then x := x+ 1 ; if b 6= 0 then a := a+ 1 ]*

which is a fair execution of P []TikToe, but with this execution x will never be equal to
1 if initially x 6= 1 ^ a < 2 ^ (b = 0).

So, � is not as disjunctive as 7! can be: it has to be less disjunctive because, as
we have seen, this is crucial for the Transparency law. As said, we could not come
up with a satisfactory operational semantics for (�p; q: J P ` p � q). We suspect
however, that this is the largest subrelation of (�p; q: P` J ^ pLq) which satis�es the
Transparency law.

4.11 Related Work

In [UHK94], Udink, Herman, and Kok de�ned a new progress operator. The new
operator is somewhere between ensures and 7!. It has a very nice compositionality
property but it is a rather complicated operator. However, the authors also provided
a class of program transformations which preserve safety and progress under the new
operator. Reasoning can be carried out in terms of transformations. In fact, the
transformations discussed in Section 4.9 were much inspired by the work in [UHK94].

The issue of compositionality in distributed programming has received quite a lot
of attention. In [Zwi88] Zwiers proposed a compositional logic for synchronously com-
municating processes. In [dBvH94] de Boer and van Hulst proposed a compositional
logic for asynchronous systems, and in [PJ91] Pandya and Joseph proposed yet an-
other compositional logic for both synchronous and asynchronous systems. The focus



4.12. POSTPONED PROOFS Page 81

of these papers are focussed around the assumed means of communication, namely
channels. Partial correctness is considered. In UNITY however, total correctness is
very important, since otherwise no progress can be concluded. In this thesis, attention
is focused on the compositionality of progress in general, but indeed further research
is required to develop some basic theory for UNITY regarding channel-based commu-
nication. Such an investigation will surely bene�t the results of the above mentioned
papers.

Closely related work was done by de Boer and his colleagues in [dBKPJ93] where
they gave a compositional semantics of local blocks. A local block is a part of a program
in which it does some internal computation. Such a computation is not visible from
outside, and therefore cannot be directly in
uenced either. Recall that in Section 4.8
we discussed write-disjoint programs. If two programs P and Q are write-disjoint, then
the write variables of P are in a sense local, because they cannot be written by Q |
although Q may still be able to observe them. In [UK93a] Udink and Kok investigated
the relation between various operational semantics for UNITY and the preservation
of UNITY properties under program re�nement. In their subsequent paper [UK93b],
semantics that preserves program re�nement within a context were proposed.

4.12 Postponed Proofs

Theorem 4.9.1

Let P and Q be UNITY programs and f 2 Action!Action such that: aQ = ff:a; a j a 2
aPg [ ff:a j a 2 Ag for some A � Action. Let R be either unless or ensures. We have:

(8a : a 2 aP : rP 8 f:a) ^ ( P` p R q)

Q` (p�rP ) R (q �rP )
I

Proof:

We will only show the case R = unless. The case of ensures can be proven in a much
similar way. We have to show:

Q` (p�rP ) unless (q �rP )

By the de�nition42 of unless it su�ces to show that for all b 2 aQ we have:

f(p�rP ) ^ :(q �rP )g b f(p�rP ) _ (q �rP )g

If b = f:a; a, for some a 2 aP , we derive:

f(p�rP )^ :(q �rP )g f:a; a f(p�rP )_ (q �rP )g

= f projection distributes over predicate operators g

f(p^ :q)�rPg f:a; a f(p _ q)�rPg

( f Corollary 3.4.432 g



Page 82 Chapter 4. PROGRAMS AND THEIR PROPERTIES

rP 8 f:a ^ (rP )c 9 a ^ fp ^ :qg a fp_ qg

= f P is a UNITY program g

rP 8 f:a ^ fp^ :qg a fp _ qg

= f assumption g

fp ^ :qg a fp _ qg

The last follows from P` p unless q.
If b = f:a, for some a 2 A, then it can also be written as f:a; skip and an argument

quite similar to the one applies.
N

Theorem 4.9.4

Let P and Q be UNITY programs, g 2 Action!Pred, and A � aP such that wP � wQ

and aQ = (aPnA) [ fif g:a then a j a 2 Ag. Let Q�a be the same program as Q,
except that the action a is deleted. We have:

(8a : a 2 A : (Q�a` �J ^ g:a) ^ (J Q` true� g:a)) ^ (J P` p� q)

J Q` p� q
I

Proof:

Using� Induction56 it su�ces to show thatR = (�p; q: J Q` p� q) is transitive, left-
disjunctive, and includes E = (�p; q: J P` p ensures q), assuming that Q�a

` �J ^ g:a

and J Q` true� g:a hold for all a 2 A.
The transitivity and left-disjunctivity of R follow from � Transitivity56 and

Disjunction56. As for the inclusion of E, assume E:p:q. Hence, by the de�nitions of
E, ensures , and ensures we have:

p; q 2 Pred:(wP ) (4.12.1)

P` �J (4.12.2)

P` J ^ p unless q (4.12.3)

fJ ^ p ^ :qg a fqg (4.12.4)

for some a 2 aP . If a 62 A (and hence a 2 aQ) we derive:

J Q` p� q

( f� Introduction56 g

p; q 2 Pred:(wQ) ^ (Q` �J) ^ (Q` J ^ p ensures q)

= f wP � wQ, Confinement Monotonicity30, (4.12.1) g

(Q` �J) ^ (Q` J ^ p ensures q)

( f de�nition of ensures, a 2 aQ g

(Q` �J) ^ (Q` J ^ p unless q) ^ fJ ^ p ^ :qg a fqg

= f (4.12.4) g

(Q` �J) ^ (Q` J ^ p unless q)



4.12. POSTPONED PROOFS Page 83

( f de�nition44 of �, Theorem 4.9.376 g

(P` �J) ^ (P` J ^ p unless q)

The �rst is (4.12.2) and the second is (4.12.3). If a 2 A we derive �rst:

J Q` p� q

( f� Cancellation56 g

q 2 Pred:(wQ) ^ (J Q` p� (p ^ g:a)_ q) ^ (J Q` p ^ g:a� q)

( f� PSP56 g

p; q 2 Pred:(wQ) ^ (Q` J ^ p unless q) ^ (J Q` true� g:a) ^ (J Q` p ^ g:a� q)

= f wP � wQ, Confinement Monotonicity30, (4.12.1) g

(Q` J ^ p unless q) ^ (J Q` true� g:a) ^ (J Q` p ^ g:a� q)

( f Theorem 4.9.376 g

(P` J ^ p unless q) ^ (J Q` true� g:a) ^ (J Q` p ^ g:a� q)

The �rst conjunct is (4.12.3) and the second is an assumption. Let Qa be de�ned as:

Qa = (fif g:a then ag; iniQ; rQ;wQ)

Note that Q = Q�a[]Qa. For the third conjunct we derive:

J Q` p ^ g:a� q

( f� Introduction56, con�nement is preserved by ^ g

p; g:a; q 2 Pred:(wQ) ^ (Q` �J) ^ (Q` J ^ p ^ g:a ensures q)

= f wP � wQ, Confinement Monotonicity30, (4.12.1) g

g:a 2 Pred:(wQ) ^ (Q` �J) ^ (Q` J ^ p ^ g:a ensures q)

( f Theorem 4.9.376, de�nition44 of �, (4.12.2) g

g:a 2 Pred:(wQ) ^ (Q` J ^ p ^ g:a ensures q)

( f Q = Q�a[]Qa, ensures Composition60 g

g:a 2 Pred:(wQ) ^ (Q�a` J ^ p ^ g:a unless q) ^ (Qa` J ^ p ^ g:a ensures q)

( f unless Simple Conjunction46, de�nition44 of � g

g:a 2 Pred:(wQ) ^ (Q�a` J^p unless q) ^ (Q�a` �J^g:a) ^ (Qa` J^p^g:a ensures q)

= f aQ�a � aQ, assumption g

g:a 2 Pred:(wQ) ^ (Q` J ^ p unless q) ^ (Qa` J ^ p ^ g:a ensures q)

= f Theorem 4.9.376, (4.12.3) g

g:a 2 Pred:(wQ) ^ (Qa` J ^ p ^ g:a ensures q)

= f de�nition of ensures and Qa g

g:a 2 Pred:(wQ) ^ fJ ^ p ^ g:a^ :qg if g:a then a fqg

The �rst conjunct follows from J Q` true � g:a and � Confinement57. For the
second, we derive:

fJ ^ p ^ g:a^ :qg if g:a then a fqg

= f de�nition Hoare triple and if g:a then a g



Page 84 Chapter 4. PROGRAMS AND THEIR PROPERTIES

(8s; t :: (J ^ p ^ g:a^ :q):s ^ (g:a:s) a:s:t)^ (:g:a:s) s = t) ) q:t)

= f de�nition of predicate operators g

(8s; t :: (J ^ ^p ^ :q):s ^ g:a:s ^ (g:a:s) a:s:t) ^ (:g:a:s) s = t) ) q:t)

( f predicate calculus g

(8s; t :: (J ^ p ^ :q):s ^ a:s:t ) q:t)

= f de�nition of Hoare triple g

(4:12:4)

N

Theorem 4.9.5

Let P , Q and R be UNITY programs such that

Q = P [](fif g1 then assign:x:f1g; iniP; rP;wP )

R = P [](fif g2 then assign:x:f2g; iniP; rP;wP )

and x 2 wP . Let R be either unless or ensures. If J satis�es [J ) (�s: f1:s; g1:s =
f2:s; g2:s)] then we have:

Q` J ^ p R q

R` J ^ p R q
and

J Q` p� q

J R` p� q
I

Proof:

We will only proof the unless case. The ensures case can be proven in much the same
way and the� case can subsequently be proven easily using� Induction56. It su�ces
to show that:

fJ ^ p ^ :qg b f(J ^ p) _ qg

holds for all b 2 aR. If b 2 aP then it is trivially implied by Q` J ^ p unless q. If
b = if g2 then assign:x:f2 we derive:

fJ ^ p ^ :qg if g2 then assign:x:f2 f(J ^ p) _ qg

= f de�nition of Hoare triple, if-then construct, and assignment g

(8s; t :: (J ^ p ^ :q):s ^ (g2:s) (t:x = f2:s)^ (t�fxgc = s�fxgc)) ^
(:g2:s) (s = t)) ) ((J ^ p)_ q):t)

= f de�nition of predicate operators g

(8s; t :: J:s ^ (p ^ :q):s ^ (g2:s) (t:x = f2:s)^ (t�fxgc = s�fxgc)) ^
(:g2:s) (s = t)) ) ((J ^ p)_ q):t)

= f [J ) (�s: f1:s; g1:s = f2:s; g2:s)] g

(8s; t :: J:s ^ (p ^ :q):s ^ (g1:s) (t:x = f1:s)^ (t�fxgc = s�fxgc)) ^
(:g2:s) (s = t)) ) ((J ^ p)_ q):t)

= f de�nition of Hoare triple and if-then construct, assignment g

fJ ^ p ^ :qg if g1 then assign:x:f1 f(J ^ p) _ qg

N


