
Colloids near phase transition linesColloids near phase transition linesColloids near phase transition linesColloids near phase transition lines
under shearunder shearunder shearunder shear

Colloïden in de buurt van faselijnen onder shear
(met een samenvatting in het Nederlands)

Proefschrift

Ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op het gezag van de Rector Magnificus, Prof. dr. H. Voorma,
ingevolge het besluit van het College voor Promoties in het
openbaar te verdedigen op vrijdag 23 februari 2001 des namiddags
te 14.30 uur.

door

Tjerk Albert Jelle Lenstra
Geboren op 20 mei 1973 te Utrecht



Promotoren:

Prof. dr. H.N.W.Lekkerkerker

Verbonden aan:
Van’t Hoff laboratorium voor Fysiche- en Colloïdchemie, Debye Instituut,
Universiteit van Utrecht

Prof. dr. J.K.G. Dhont

Verbonden aan:
Weiche Materie, Institut für Festkörperforschung, Forschungzentrum Jülich,
Deutsland

                                

The work desribed in this thesis is part of the research program of the Stichting voor
Fundamenteel Onderzoek der Materie (FOM) and was made possible by financial
support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

ISBN  90-393-2621-5





Cover by / Omslag door         Remco Lenstra

Photo on the back of the cover is the experimental birefringence/dichroism set up.
Foto op achterkant van de omslag is de experimentele dubbelbrekings/dichroisme
opstelling.



- 1 -

CONTENTS / INHOUDSOPGAVE

Chapter 1:
COLLOIDS IN SHEAR FLOW 3

Chapter 2:
FLOW DICHROISM IN CRITICAL COLLOIDAL FLUIDS 17

Chapter 3:
SHEAR-INDUCED DISPLACEMENT OF ISOTROPIC-NEMATIC

SPINODALS 45

Chapter 4:
SHEAR-BANDED STRUCTURE IN SUSPENSIONS OF RIGID RODS 75

SUMMARY 87

DE ESSENTIE NA 4 JAAR 91
(SAMENVATTING VOOR NIET-VAKBROEDERS EN ZUSTERS)

NAWOORD 101

LIST OF PUBLICATIONS 104

CURRICULUM VITAE 105



- 2 -



- 3 -

Chapter 1 
COLLOIDS IN SHEAR FLOW
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1.1 INTRODUCTION

Colloidal particles, which have linear dimensions of roughly 1 nm to 10 µm, behave
in much the same way as atoms and molecules do. In experimental investigation, the
advantage of colloidal system is that the length and time scales of interest are much
larger. Dynamics and structure of colloids are therefore much more easily
experimentally accessible as compared to atomic/molecular systems. The two major
differences between colloidal and atomic/molecular systems are that the dynamics of
colloids are affected by so-called hydrodynamic interactions, and that the form of the
pair-interaction potential for colloids can be varied between long ranged repulsive to
short ranged attractive. These kind of interaction potentials which do not exist for
atomic/molecular systems give rise to dynamics and phase behaviour that are specific
for colloids. The hard-core part of the pair-interaction potential between the colloidal
particles can be varied by the shape of the particle, namely by chemically
synthesising spheres, platelet-like and rod-like colloidal particles. The additional
interaction characteristics can be tuned by surface modification and variation of the
solvent.

Due to the fact that the linear dimensions of the colloids are so large, the dynamics
will be relatively slow; forexample, rod-like and plate-like colloids are so large that
the rotational diffusion will be slow compared to atoms/molecules. Due to these
relatively slow dynamics, colloidal systems show interesting behaviour in rheological
experiments, for example, shear-thinning (and some times shear-thickening)
behaviour on increasing the shear rate. The time scale on which microstructure
diffusely evolves is now so large, that for experimentally accessible shear rates the
microstructure cannot respond instantaneously to the applied shear field. For the
anisotropic shaped particle, rods and platelets, this will result in the fact that small
shear rates are sufficient to align the colloidal particles. In case of atomic/molecular
systems, away from a critical point, the microstructural dynamics are so fast, that
unrealistically high shear rates would be necessary to see the same kind of shear-
thinning behaviour.

The experimental work described in this thesis involves time resolved birefringence
and dichroism measurements under shear. In the subsequent chapter, the effect of
shear flow on critical microstructure structure of a mixture of spherical colloids and
polymer, close to it’s gas-liquid critical point, is described. The polymers induce an
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effective attraction between the colloidal particles, which can be sufficiently strong to
induce a gas-liquid phase transition. Near the gas-liquid critical point, the
microstructural dynamics are slow as compared to systems away from a critical point
(a phenomenon that is referred to as “critical slowing down”) and the spatial extent of
microstructure is large in comparison to the size of the colloidal particles. The effect
of shear flow near the critical point is therefore enhanced as compared to, for
example, colloids with a hard-core interaction potential. Due to the long ranged
nature of effective interactions between the colloidal particles close to the critical
point, scaling relations for, for example, shear induced dichroism can be derived.
These relations are universal in the sense that they are independent of the details of
the pair-interaction potential, that is, they are independent of the particular system
under investigation. The corresponding scaling functions can be found within the
mean field region from the solution of the Smoluchowski equation under shear flow
conditions. In fact, dichroism measurements are used to test theoretical predictions on
the microstructure under shear flow. There is no theory yet for the region very close
to the critical point, beyond mean field. A completely different behaviour of the shear
induced dichroism in the mean field as compared to the beyond mean field region is
found.
In Chapter 3 a system of rod-like colloids is investigated, where the effect of shear
flow can essentially be attributed to the shear-alignment, and the effect of shear flow
on correlations can be neglected. This is the complete opposite of effect of shear flow
on critical microstructure of spherical colloids, where the shear induced distortion of
correlations is the sole reason for all shear induced phenomena. The shear
dependence of isotropic-nematic spinodals of suspensions of fd-virus particles is
measured by means of time resolved birefringence measurements. In the final
Chapter 4 we examine a flow instability that was observed in suspensions of stiff, rod
like boehmite particles. In a couette geometry, banded structures along the vorticity
directions are found. The internal microstructural order within the bands is probed by
means of birefringence effects. It turns out that the stationary banded state can not be
identified with a shear-banded state, nor with a state that is normally observed in
incompressible, Newtonian fluids which exhibit the Taylor instability. It could be that
the instability is nevertheless a Taylor instability, but that the final, stationary banded
state differs from that of simple fluids, possibly because of shear-thinning effects and
a possible spatially varying density of the rods.

This introduction discusses, in an intuitive way, what dichroism and birefringence is
and how these are induced by applying a shear flow to colloidal fluids. In addition,
the home built experimental set ups and optical couette cell are discussed.
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1.2 DICHROISM AND BIREFRINGENCE IN SHEARED COLLOIDS.

When light passes through a material the intensity of the transmitted light I  will be
smaller then the intensity 0I  of the incident light beam. The relation between these

two intensities is described by Lambert-Beer’s law,

0

exp( )I l
I

τ= − (1.1)

Here, τ  is the turbidity and l  the path length that the light traversed through the
sample. The loss of intensity is due to absorption and/or scattering of the light. For
the colloidal systems under investigation in this thesis there is no absorption. A finite
value of the turbidity is solely due to scattering of light by the colloidal particles. In
most materials the turbidity τ  is independent of the polarisation state of the light. For
some materials, however, light is attenuated differently with different polarizations
states, that is, the turbidity is polarization state dependent. Such a material is termed
dichroic, and the phenomenon is referred to as dichroism. A daily example of
dichroism that results from absorption rather than scattering are Polariod sun glasses.
The intensity of the light is attenuated by absorption of aligned polymers. Light
polarised parallel to the polymer alignment direction is absorbed most strongly. This
is illustrated in Figure 1.1. For colloids under shear flow, the total amount of
scattered light depends on the polarisation direction due to the anisotropic nature of
the microstructure under shear flow.

unpolarised
light

polarised light

Figure 1.1: Representation of a Polaroid sheet. Light with a polarisation direction
parallel to the aligned polymers is absorbed more strongly as compared to light
with a polarisation direction perpendicular to the polymers. The circle and
ellipsoid on the left and right hand-side of the figure, respectively, are
projections of the electric field component onto the plane of the paper.

A material is called birefringence, when the refractive index is polarisation state
dependent. The velocity of light is now depending on the polarisation state of the
light, and hence the optical path length will be different for differently polarized light.
This results in a phase difference between light with different polarisation states after
having passed the birefringence material. This generally changes linearly polarised
light into to elliptically polarized light, as is illustrated in Figure 1.2. To understand
this in some more detail, the polarisation direction of the light can be decomposed
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into a component parallel to the direction where the refractive index is large and a
component parallel to the direction where the refractive index is small. After having
traversed the sample, there is a relative phase shift of the two field components. The
resulting electric field component, which is the sum of the two fields, is now
generally elliptically polarised, that is, the polarisation direction of the electric field
rotates with the frequency of the original electric field and the field component
strength depends on the polarisation direction.

linear poralised polarisation state rotated

Figure 1.2: Linear polarised light is generally transmitted as elliptically polarised
light through a birefringent material. The ellipse on the right hand-side is a
projection of the electric field component onto the plane of the paper.

Birefringence can occur in colloidal suspensions of rod like particles which are
optically anisotropic in the sense that their refractive index depends on the
polarisation direction of the light relative to their own orientation. When the rods
have a preferred orientation, for example due to an externally applied shear flow, the
suspension behaves as a birefringent material. In fact, since the microstructure is
anisotropic, the suspension will also exhibit dichroism.

1.3 DICHROISM AND BIREFRINGENCE MEASUREMENTS

1.3.1 DESCRIPTION OF THE EXPERIMENTAL SET UP’S

The set up that is used in the present thesis to measure shear induced dichroism and
birefringence is home built, and based on a design proposed by Fuller [1]. A
schematic representation of the optical train is given in Figure 1.3. In the last
subsection the optical train will be discussed in some more detail.
The light of a He-Ne-laser first passes through the beam splitter BS’. This beam
splitter is used in order to monitor the incident light beam intensity with detector D3.
The beam of light then passes the polarizer P1. After this first optical element, the
beam is directed through a pinhole and subsequently through the half wave
retardation platelet R1. This retardation plate is mounted on a rotor (dentist drill with
a hollow axe), which enables to rotate the platelet with an angular velocity dω  of

about 4 kHz.
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Figure 1.3: Schematic of the experimental set-up for dichroism and birefringence
measurements.

The light then passes the shear cell, which will be described in some more detail
below (see Figure 1.5). The transmitted beam is then directed towards two detectors
(D1 and D2) by means of the non-polarizing beam splitter BS. Half of the transmitted
intensity is directed towards detector D1, the other half of the intensity impinges onto
detector D2 after having passed the quarter wave platelet R2 and the polarizer P2.
The polarisation direction of P2 is the same as for P1, while the axis of R2 are at 450.
Both signals of the detectors D1 and D2 are then analysed by two dual phase Lockin-
Amplifiers. These amplifiers filter out the 4ω  component of the detected signals. As
will be shown below, combination of these components from both detectors allow for
the determination of both dichroism and birefringence simultaneously.

When one is only interested in dichroism, a somewhat simpler set up can be used,
which is sketched in Figure 1.4. This is essentially the above described set up where
the detector D2 has been removed. This set up can also be used to measure the
turbidity for a given polarisation state of the light, using Lambert-Beer’s law in
eq.(1.1). To this end, the ratios of the intensities of detectors D1 and D3 are measured
with the sample and just solvent, respectively, in the absence of the rotor R1.
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Figure 1.4: Schematic of the set up that can be used for a dichroism
measurement.

1.3.2 THE SHEAR CELL

The shear cell is a home built, optical couette cell. A sketch of this cell is presented in
Figure 1.5. The optical part of the cell is constructed from BK7 optical glass. The cell
is constructed in such a way that one has the possibility to perform experiments
where the laser beam propagates either along the gradient direction or the vorticity
direction. Although in this thesis, experiments are described only for the case where
the laser beam propagates along the gradient direction, a special feature is included.
To avoid refraction at the meniscus in case the laser beam is directed along the
vorticity direction, a glass ring is installed at the top of the optical part of the cell.
The inner cylinder is rotated by means of a belt around the belt-support S. Within the
hollow inner cylinder, which is filled with toluene, a pinhole P can be used when this
cell is used for light scattering experiments: scattered light from the first gap is now
blocked, and only light that is scattered form the second gap is detected. In case of
dichroism and birefringence measurements this pinhole is absent. The lower, optical
part of the shear cell is placed in a thermostating and optically matching toluene bath.
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Figure 1.5: A sketch of the home built shear cell.

1.3.3 ANALYSIS OF THE OPTICAL TRAINS IN FIGURE 1.3 AND FIGURE 1.4

Chosing the propagation direction of the incident light beam in the z-direction, the
polarization state of the light can be described by a two-vector,

          
x

y

E

E
� �

= � �
� �
� �

E

where  Ex and Ey are the x- and y-components of the electric field strength. The xy-
coordinate system sketched in Figure 1.3 and Figure 1.4. The action of a linear
optical element can now be represented by a two-dimensional matrix. Such matrices
are usually referred to as Jones-matrices. A few Jones matrices are collected in the
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table below, together with their short-hand notation. It is convenient to introduce
complex number as entries in these matrices to specify the phase of both electric field
components [see for more details, [2]]. For example, ( )exp /2x xiE i Eπ=  is phase
shifted over an angle /2π  (that is, a quarter wavelength) relative to xE .   

Physical meaning Matrix Short notation
Polariser aligned in

the x-direction
� �
� �� �
� �

1 0

0 0

( )xP

Retardation elements:
λ/2 plate  and  λ/4

plate

−� �
� �� �
� �

1 0

0 1
 and 

� �
� �� �
� �

0

0 1

i ( )2
1Λ  and ( )4

1Λ

Non-polarising
1-1 beam splitter

� �
� �� �
� �

1
2

1
2

0

0
B

Rotation over an
angle σ

cos sin

sin cos

σ σ
σ σ

� �
� �� �−
� �

( )σR

Table 1.1: Table with Jones matrices and there short hand notations

These Jones matrices will be used in the following discussion to calculate the electric
field strength at the detectors in the experimental set-ups. This interpretation will
make it possible to analyse the detected intensities at the photodiodes in terms of the
apparent dichroism and birefringence of the sheared sample.

The first beamsplitter (BS’) and detector D3 is of no significance for the polarisation
state of the light. First consider the electric field strength at point A (see Figure 1.3
and Figure 1.4). The light, from the He/Ne-laser passes a polariser and a rotation
halfwave platelet (R1). In Jones matrix notation, the formal expression for the electric
field strength AE  at point A is equal to,

( ) ( ) ( ) ( )1
2- t t xω ω= Λ 0AE R R P E (1.2)

where 0E  is the incident field strength. The first matrix ( )xP  from the right is the

Jones matrix for the first polariser (P1), which principle axis is along the x-direction.
The rotation matrix ( )tωR  rotates the coordinate system over the angle tω  between
the original coordinate system and the principle axes of the retardation platelet.
Within this coordinate system the action of the retardation platelet is given by the
matrix ( )1

2Λ  in Table 1.1. The matrix ( )tω−R then transforms back to the original
coordinate system.
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Evaluation of equation (1.2) results in,

ω

ω
� �
� �=
� �
� �

0x

cos(2 )
E

sin(2 )
d

d

t

tAE (1.3)

The electric field point A is thus linear polarized light of which to polarization
direction rotates with an angular velocity of 2ω .

The field AE  now passes the birefringent and dichroic sample. Birefringence gives

rise a relative phase shift ϕ  between xE  and yE , while dichroism introduces a

polarisation dependent attenuation of the electric field strength. We will assume here
that birefringence and dichroism in a sheared colloidal fluid are coaxial, that is, their
principle axes are identically oriented. The Jones matrix with respect to a coordinate
system of which the axes coincide with the principles optical axes that describes the
combined birefringence and dichroism of the sheared sample reads,

( ) ( )
( ) ( )

1
2

1
2

exp exp 0

0 exp exp

x x

y y

i

i

τ ϕ

τ ϕ

−� �
� �=
� �−
� �

M (1.4)

where xτ  and yτ  are the turbidities corresponding to the two principle axes. Before

this Jones matrix acts on the electric field strength, we have to transform the field first
to a coordinate system with it’s base vectors along the principle axes of the sample.
This amounts to a rotation over  the  angle α  between the original coordinate system
and the direction of the principle axes. Transforming back to the original coordinate
system thus leads to the following expression for the Jones matrix for the sample,

( ) ( )α α-   R M R (1.5)
After the sample has been probed, the transmitted light beam is split in two: half of
the intensity is lead to the photodiode cell D1, the other half to detector D2. The field
at detector D1 is the field at point B in Figure 1.3, which is equal to,

( ) ( )α α= -    B AE B R M R E (1.6)

The first matrix on the left hand side represents the beamsplitter (BS). Evaluating
equation (1.6) results in,

( )[ ] ( )[ ]
( )[ ] ( )[ ]

1 1
2 2

0
1 1
2 2

cos cos 2 sin sin 2

2 sin cos 2 cos sin 2

x x y y

x x y y

i i
x

i i

e e t e e tE

e e t e e t

τ ϕ τ ϕ

τ ϕ τ ϕ

α ω α α ω α

α ω α α ω α

− −

− −

� �− − −
� �=
� �− + −
� �

BE (1.7)

The beam intensity at detector D2 is thus equal to,

( ) ( )( )2 20 cos 2 sin 2
2

x y
I

i e t e tτ τω α ω α− −= − + −B (1.8)
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which can also be written as,

( )1
2( )0 cosh " 1 tanh " cos2 cos 4 tanh " sin2 sin 4

2
x y

B

I
i e t tτ τ δ δ α ω δ α ω− += − − (1.9)

where we defined,
1
2" ( )x yδ τ τ= −

Note that the factor ½ is due to the (non-polarizing) beamsplitter BS in the set up
sketched in Figure 1.3. Since this beamsplitter is absent in the set up sketched in
Figure 1.4, the light intensity measured by the detector D1 in this latter set up is given
by eq.(1.9), without the prefactor ½. When one is interested in dichroism only, the set
up in Figure 1.4 suffices. When one is interested in birefringence, however, the
intensity at detector D2 in the set up sketched in Figure 1.3 must be measured in
addition.

Since the principle axis of the quarter lambda platelet R2 make an angle of π/4 with
the original coordinate system, while the polariser P2 is oriented along the x-axis, we
find that the field strength at point C is equal to,

( ) ( ) ( ) ( )1
4 4 4x    π π= −C BE P R R EΛΛΛΛ (1.11)

Evaluation of equation (1.11) leads to,

( ) ( ) ( )( )
( ) ( ) ( )( )

1
2

10 2

cos 2 cos 1 sin 1

sin 2 cos 1 sin 1
2 2

0

x x

y y

i d i

x i d i

e e t i i
E

e e t i i

τ ϕ

τ ϕ

ω α α

ω α α

−

−

� �− + + −
� �
� �= + − − − +
� �
� �
� �

CE (1.12)

The intensity at point C, which is the intensity detected by D2, is thus equal to,

( ) ( )( )

( ) ( )( )1 1
2 2

2 20

( ) ( )0

cos 2 sin 2
4

sin 4 2 sin 4 2
8

x y

x y x yi i

I
i e t e t

I
i e e t e e t

τ τ

τ τ ϕ τ τ ϕ

ω α ω α

ω α ω α

− −

− + ∆ − + − ∆

= − + −

+ − − + −

C
(1.13)

or,
1
2( )0 sincosh " 1 tanh " cos2 sin2 cos 4

4 cosh "
sintanh " sin2 cos2 sin 4
cosh "

x y

C

I
i e t

t

τ τ ϕδ δ α α ω
δ
ϕδ α α ω
δ

+ ∆� � �= − +� �� � �	

∆ 
� �− −� � �� � �

(1.14)

Where,

x y-ϕ ϕ ϕ∆ =

is the difference in phase shift of  the x- and y-component of the electric field
strength, xϕ  and yϕ , respectively.
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Equations (1.9) and (1.14) show that combination of the 4ω  frequency components
of the time dependent detector signals (and the dc-response of both detectors) renders
the required information concerning birefringence and dichroism, including the
orientation of the principle axes of the sample. These frequency components can be
filtered from the detector signals by means of lock-in amplifiers.

1.4 RELAXATION OF THE FLOW PATTERN AFTER CESSATION OF

SHEAR FLOW

In some of our experiments, the dynamics of relaxation of dichroism and
birefringence is measured, after cessation of the applied shear flow. It is therefore
important to know how fast the fluid flow itself relaxes. This relaxation time defines
the time window below which no measurements on the dynamics of microstructural
order can be done.

In order to estimate the relaxation time of the flow pattern, we need to solve the
Navier-Stokes equation. Consider a linear flow pattern between two flat plates, as
sketched in Figure 1.6.For a laminar flow in the x-direction, with it’s gradient
direction in the y-direction, the Navier-Stokes equation reads,

( ) ( )2

2

, ,u y t u y t
t y

ρ η∂ ∂=
∂ ∂

(1.15)

x

ul

y

Figure 1.6: Flow pattern between two flat plates

where u  is the fluid flow velocity, ρ  is the suspension mass density and η   is the
suspension shear viscosity. The initial flow velocity varies linearly with the distance
y  from the lower plate,

( ), 0u y t yγ= = � (1.16)

Where γ�  is the shear-rate. For stick boundary conditions we have (for t > 0),

( )

( )

0, 0

,

u y t

u y l t lγ

= =

= = �

(1.17)
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Where l  is the gapwidth, that is, the distance between the two plates. The solution of
the above problem can be written as a sin-series,

( ) ( ) { }1 2 2

2
1

2 1, sin exp
n

n

l y nu y t n t
n l l

γ η ππ
π ρ

+∞

=

� �−= −� �
� �

�

�

(1.18)

The y - and t -dependence of the velocity field is plotted in Figure 1.7. As can be
seen, the flow pattern virtually dropped to 0 for times of the order,

2

24
lρτ

η π
≈ (1.19)

For typical numbers this time is found to equal to τ = 0.1 s. This is the lower time
resolution limit for dynamical experiments.

Figure 1.7: y - and t -dependence of the velocity field
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Chapter 2 
FLOW DICHROISM IN CRITICAL

COLLOIDAL FLUIDS

Due to long range correlations and slow dynamics of concentration fluctuations in the
vicinity of the gas-liquid critical point, shear flow is very effective in distorting the
microstructure of near-critical fluids. The anisotropic nature of the shear-field renders
the microstructure highly anisotropic, leading to dichroism. Experiments on the
dichroic behaviour can thus be used to test theoretical predictions on microstructural
order under shear flow conditions. We performed both static and dynamic dichroism
and turbidity measurements on a colloid/polymer mixture, existing of silica spheres
(radius 51 nm) and PDMS polymer (molar weight 204 kg/mol). Sufficiently far away
from the critical point, in the mean-field region, the experimental data are in good
agreement with theory. Very close to the critical point, beyond mean field, for which
no theory exists yet, an unexpected decrease of dichroism on approach of the critical
point is observed. Moreover, we do not observe critical slowing down of shear-
induced dichroism, right up to the critical point, in contrast to the turbidity.
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2.1 INTRODUCTION

Critical phenomena have been studied for a long time, and the critical behaviour of
various quantities is well understood. The main interest has been to understand the
difference  between the values of critical exponents in the mean-field region and very
close to the critical point. Very little is known about the effects of external fields on
critical behaviour and the critical behaviour of properties that are induced by external
fields. In particular, non-conservative external fields, which cannot be described in
terms of a Hamiltonian or a free energy, do not allow for the well-known
thermodynamic approaches that led to the current knowledge of critical phenomena.
Shear flow is an example of such a non-conservative external field. The critical
behaviour of systems in such non-conservative external fields must be studied on the
basis of kinetic equations. The most fundamental kinetic equation is the equation of
motion for the probability density function of phase-space variables. In principle,
equations of motion for macroscopic variables can be derived from this fundamental
kinetic equation, which then allows for the prediction of their critical behaviour.
Alternatively, the measurement of the critical behaviour of a macroscopic quantity
can be used to test a theoretical prediction for the probability density function under
shear flow conditions.

On approach of the gas-liquid critical point, interactions become very long ranged.
This leads, for example, to the divergence of the turbidity. In addition, the gradient
diffusion coefficient tends to zero so that the dynamics of the system severely slows
down, often referred to as critical slowing down. Due to the long ranged spatial
correlations and their very slow dynamics, the microstructural order near the gas-
liquid critical point is very sensitive to shear flow. For very small shear rates the
turbidity can go down enormously, changing the sample from being white to almost
transparent. This change in turbidity is directly related to the change of the
microstructure due to the applied shear field. Moreover, due to critical slowing down,
one observes very slow relaxation of the turbidity after cessation of the shear flow.

Due to the anisotropic nature of the microstructure under shear flow, besides a change
of the turbidity, dichroism is induced by the shear flow, that is, the turbidity will
depend on the polarization state of the incident light. Measurement of shear induced
dichroism, resulting from scattering by the anisotropic microstructure, is a sensitive
test for the theoretically predicted microstructure under shear flow. This chapter
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presents experimental data on shear induced dichroism as a function of shear rate and
the distance from the critical point. As far as we know, this is the first systematic
investigation of shear induced dichroism near the gas-liquid critical point. In ref.[1] a
single measurement of dichroism in a near critical binary fluid is briefly discussed.

The present study is aimed at the understanding of the critical behaviour of dichroism
in systems under shear flow, on the basis of the solution of the fundamental equation
of motion referred to above. The relevant probability density function is the pair-
distribution function, the Fourier transform of which is the structure factor. There are
a number of theoretical approaches to obtain an expression for the pair-distribution
function for systems under shear flow [2-6]. In this paper we concentrate on an
expression for the structure factor that is believed to be valid for colloidal systems
consisting of spherical particles close to their gas-liquid critical point. This theoretical
prediction is a mean-field result [7-9]. No theory exists yet that is valid beyond mean-
field.

Experimentally we find that the shear induced dichroism increases on approach of the
critical point, in accordance with mean-field predictions, but unexpectedly decreases
again on very close approach of the critical point. Moreover we find no critical
slowing down of the relaxation dynamics of dichroism after cessation of shear flow,
right up to the critical point. This in sharp contrast with the turbidity, which diverges
on approach of the critical point, and which relaxation is severely slowed down.

The colloidal system used is a mixture of spherical colloidal particles and polymers,
dissolved in cyclohexane. The added polymer induces attractions, commonly referred
to as “depletion attractions” [10-12], which attractions give rise to a gas-liquid critical
point [13].

This chapter is organised as follows. Section 2.2 provides the theoretical background
that is necessary to understand the data interpretation. In section 2.3 the colloidal
system is discussed together with the experimental set up that was used to measure
dichroism. In section 2.4 the experimental results and comparison with theoretical
predictions are presented. Section 2.5 contains some concluding remarks.

2.2 THEORETICAL BACKGROUND

This section contains the necessary theoretical background for the data interpretation
that is used in the experimental section. First of all the relation between the
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correlation length and the turbidity of a quiescent, unsheared system is discussed.
This relation will be used in experiments to determine the distance from the critical
point in terms of the correlation length by means of turbidity measurements.
Secondly, the shear distorted stationary structure factor under shear flow is discussed,
and the shear induced dichroism will be expressed as a wavevector integral over this
structure factor. This leads to a scaling relation that will be tested experimentally in
section 2.4. Thirdly, the relaxation dynamics of the turbidity and shear induced
dichroism, after cessation of the shear flow, is addressed.

The flow that we will consider here is chosen in the y-direction, with its gradient in
the z-direction. That is, the flow velocity is equal to = ⋅u rΓΓΓΓ , where ΓΓΓΓ  is the velocity
gradient tensor,

0 0 0

0 0 1

0 0 0

γ

� �
� �

= � �
� �
� �
� �

�ΓΓΓΓ (2.1)

with γ�  the shear rate. The direction of the incident laser beam is along the z-
direction, and the polarization state of the light is specified by the angle α  of the
electric field with the x-axis. This geometry is sketched in Figure 2.1.

Figure 2.1: Geometry used in the theoretical discussion and experimental set-up.

2.2.1 RELATION BETWEEN THE SCATTERED INTENSITY AND THE TURBIDITY

The turbidity measures the loss of intensity as a light beam passes the sample. It is
related to the thickness l  of the sample, the incident intensity 0I  and the intensity sI

after passing the sample by Lambert-Beer’s law,
{ }τ= −0 expsI I l (2.2)

Since the intensity loss is solely due to scattering of light by the colloidal particles,
there is a relation between the turbidity τ  and the integrated scattered intensity,
which in turn is proportional to ( ) ( )P k S k  with ( )P k  the formfactor and ( )S k  the
structure factor. This relation reads (see ref. [7] for the derivation of this equation),
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where the optical constant Cτ  is equal to,

τ

ε ε
ρ

π ε
−

=
2

4
20

2(4 )
p f

p
f

k
C V

with 0 2π λ= wavk  (λwav  is the wavelength of the light in the dispersion), ρ  the
colloidal particle number density, pV  the volume of a colloidal particle, ε p  the

volume averaged dielectric constant of the colloidal particles, and fε  the dielectric

constant of the fluid. The wavevector k  is equal to
( )0 sin cos , sin sin , cos 1k θ ϕ θ ϕ θ− − . The magnitude k = k  of the wavevector is equal

to 02 sin 2k θ , in which θ  is the angle between k  and the z-axis. In the integration  in

eq.(2.3) with respect to the spherical coordinates ϕ  and θ , the θ -integration is
transformed to k –integration.

In case the structure factor is isotropic, that is, when ( )S k  is a function of the
magnitude =| |k k  only, the ϕ-integration in eq.(2.3) can be done analytically
rendering the turbidity independent of α . For such isotropic structures there is no
polarization dependence of the turbidity. Shear flow renders the structure factor
anisotropic, leading to an α -dependent turbidity. Shear flow thus induces dichroism
through it’s effect on the microstructure of the suspension of spherical colloidal
particles. For non-spherical colloidal particles there is an additional contribution to
dichroism that stems from the orientation dependence of the formfactor. In the
present work, where spherical colloids are used, such alignment-dichroism is absent.

2.2.2 RELATION BETWEEN THE TURBIDITY AND CORRELATION LENGTH

The relevance of the relation between the turbidity τ  and the correlation length ξ  for
the work described in the present chapter is, that when a dichroism measurement has
been done, the correlation length is obtained through a turbidity measurement on the
quiescent, non-sheared suspension. Once the relation between the turbidity and the
correlation length is established, such a turbidity measurement suffices to characterise
the distance from the critical point in terms of the correlation length, which is also an
important input when comparing with theory.
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The structure factor for a non-sheared, equilibrium suspension near the critical point
is the Ornstein-Zernike structure factor,

( ) ξ
β ξ

=
Σ +

2

2

1
1 ( )

eqS k
k

(2.4)

where 1 Bk Tβ =  ( Bk  is the Boltzmann constant and T  is the temperature), and Σ  is a

constant related to the Cahn-Hilliard square-gradient coefficient. Furthermore, ξ  is
the correlation length, which measures the largest distance over which particles are
correlated. Eq.(2.4) is a valid expression for the structure factor for small
wavevectors, π< 2 Vk R , where VR  is the range of the pair-interaction potential. For

such small wavevectors the formfactor in eq.(2.3) for the turbidity is almost equal to
1. Correction terms can be obtained by Taylor expansion of the formfactor of
optically homogeneous colloidal spheres,
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Substitution of eqs.(2.4),(2.5) into eq.(2.3) for the turbidity gives,
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(2.6)

where ( )202 kσ ξ= . This equation has been derived by Puglielli and Ford [14].

The Ornstein-Zernike structure factor (eq.(2.4)) is the contribution to the structure
factor due to critical, long range correlations only, and does not contain the non-
critical contributions to the scattered intensity. For the small wavevectors of interest
here, this non-critical background is virtually a constant, not only independent of the
wavevector but also independent of the concentration within the vicinity of the
critical point. This leads to a non-critical additive, constant contribution to the
turbidity in eq.(2.6).

Alternatively, the correlation length can be measured from small angle light
scattering experiments using eq.(2.4) for the structure factor. Since the scattered
intensity is directly proportional to the structure factor at sufficiently small angles,
this equation shows that a plot of 1 ( )S k  versus 2k  is a straight line with a slope equal

to βΣ  and an intercept equal to 2β ξ −Σ . The ratio of the intercept and slope thus equals
the squared reciprocal correlation length. As mentioned above, the Ornstein-Zernike
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structure factor accounts only for the critical contribution to the structure factor. In
experimental practice we shall have to subtract a constant, wavevector independent
background intensity.

2.2.3 CRITICAL MICROSTRUCTURE UNDER SHEAR FLOW

The shear induced turbidity and dichroism can be obtained from eq.(2.3) once the
structure factor under shear flow is known. Concentration and shear rate dependent
turbidity and dichroism measurements actually serve as a tool to test theoretical
predictions for the structure factor under shear flow. Notable theoretical predictions
for the shear rate dependence of the structure factor can be found in refs.[2-6]. Here
we discuss a theory that is specialised to colloidal systems close to their gas-liquid
critical point [7-9].

Starting point is the Smoluchowski equation, which is the fundamental kinetic
equation referred to in the introduction. This is the equation of motion for the
probability density function of the position coordinates of the colloidal particles.
From this kinetic equation one obtains the following equation of motion for the
structure factor under stationary shear flow (for the geometry sketched in Figure 2.1),

2
2

3

( ; | ) 2 ( ) ( ; | ) ( )eff eqk S t D k k S t S k
t k

γ γ γ
� �∂ ∂

� �− = − −� � � �∂ ∂� �� �
k k� � � (2.7)

Note that in directions where 2 0k = , this equation predicts that there is no effect of

the shear flow on the microstructure. Here effD  is an effective diffusion coefficient
which is equal to,

( ) 2
0

eff dD k D k
d

β
ρ

� �Π= + �� �
� �

(2.8)

with 0D  the Stokes-Einstein diffusion coefficient of a non-interacting, free colloidal

particle, Π  is the osmotic pressure (of which the derivative with respect to the
number density ρ  is taken), and Σ  is a constant that is related to the Cahn-Hilliard
square gradient coefficient (the same constant occurs in eq.(2.4) for the Orstein-
Zernike structure factor). The stationary solution ( | )S γk �  of this equation of motion is
conveniently expressed in terms of the relative structure factor deformation,

( | ) ( )( | )
( ) 1

eq

eq

S S k
S k
γλ −Ψ =

−
kk

�

(2.9)

As will become clear later in this subsection, this quantity is well-behaved for all
wavevectors right up to the critical point. From eq.(2.7) one finds,
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where the dimensionless wavevector ξ=  K k  is introduced and,

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2
3 3 3

3 3 2 2 3 5
3 3 3

( | ) 1

1 11 2 2
3 5

F X X K K K K K

X K K K X K

= − − + −

+ − + − + −

K
(2.11)

Here, jK  is the thj  component of the dimensionless wavevector. The upper

integration limit in eq.(2.10) is +∞  when 2 0Kλ >  and −∞  when 2 0Kλ < .

Furthermore λ is a dressed Peclet number,
2 4

0

1
2 ( 0) 2effD k D

γ ξ γ ξλ
β

= =
= Σ

� �

(2.12)

In the second equation in eq.(2.12) we used that [ ]d
dρξ Π= Σ . Note that close to the

critical point ρΠd d  is small, so that effD  is small in comparison to the free diffusion
coefficient 0D  for small wavevectors. This reflects critical slowing down of long

wavelength concentration fluctuations.

The dressed Peclet number λ  in eq.(2.12) measures the effect of shear flow on the
long ranged, critical microstructural order. When λ < 1  the critical microstructural
order is only slightly affected, while for λ > 1  the effect of shear flow is significant.
What is neglected in the derivation of eq.(2.10), is distortion of microstructural order
extending over distances equal or less than the range VR  of the pair-interaction

potential. The extent to which such short ranged microstructural order is affected by
shear flow is measured by the so-called bare Peclet number,

2
0
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R
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D
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=
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(2.13)

Eq.(2.10) is valid whenever <<0 1Pe . Since ξ < VR  and < 0
effD D , the dressed Peclet

number can be large, also for small bare Peclet numbers. This is due to the fact that
large structures are more easily affected by shear flow than small structures, and that
long wavelength critical fluctuations are much slower than density fluctuations with
small wavelengths ( VR� ). One can thus distinguish three shear rate regimes,
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Eq.(2.10) for the structure factor distortion is valid in the weak and strong shear
regime, but not in the very strong shear regime.

The result eq.(2.10) is valid only in the mean-field region around the critical point.
This is due to a linearization of equations of motion with respect to the total-
correlation function ( )h r  for large distances r  between two colloidal particles. In

fact, terms � 2h  are neglected against the term ( )d d hβ ρΠ  for large distances r .

This is only a valid procedure when d dβ ρΠ  is not extremely small, that is, when

the distance to the critical point is not too small. The above predictions are therefore
only valid in the mean-field region.

In the derivation of eq.(2.10) hydrodynamic interactions between colloidal particles
have been neglected. Furthermore, a closure relation has been used in order to
express the three-particle correlation function in terms the pair-correlation function.
This approximate closure relation is reminiscent of the classic super-position closure
relation.

It can be shown rigorously, that the displacement of the critical point for colloidal

systems is proportional to ( )1/0Pe
γ , where 1.23γ =  is the critical exponent of the

compressibility of the quiescent system [15]. The displacement of the critical point
for spherical colloids is related to the distortion of the pair-correlation function for
short  distances, smaller than the range of the pair-interaction potential, and is
therefore a function of the bare Peclet number 0Pe . For the experiments described
here, 0 0.08Pe ≤ , so that the displacement of the critical point is not important for the
present work.

Numerical results for the relative structure factor distortion and the structure factor
itself are plotted in Figure 2.2. In some directions there is enhancement of structure
whereas in other directions destruction of structure is observed, as can be seen from
the plots of Ψ . This can be understood by decomposing a simple shear flow in its
elongational and rotational contributions. The elongational contribution tends to
enhance structure along the y = -z direction, and diminishes structure in the direction
where y = z. These directions correspond to the directions = −2 3k k and =2 3k k ,

respectively. Note that Ψ  is found to be finite right up to the critical point, which is
the reason for introducing this quantity.
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Figure 2.2: Plots of (minus) the relative structure factor distortion ( | )λΨ k and
the structure factor ( | )S γk � , at 1 0K =  and 3 0K = , for various values of λ  as
indicated in the figure. 1 2,K K and 3K  values range from –3 to +3. The

minimum and maximum values of Ψ  are indicated in the figure.

2.2.4 SHEAR INDUCED DICHROISM

The change of the turbidity on applying a shear flow follows from eqs.(2.3),(2.4)
,(2.9) and (2.10). Transforming to the dimensionless K kξ=  variable, and

disregarding the small ( )40K K -terms in eq.(2.3), the turbidity, relative to the

turbidity for 2
πα = , is found to be equal to,

0 2
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2
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�

(2.14)

where the scaling functions scD  and ccD are given by,
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The upper integration limit 02k  in eq.(2.3) is replaced here by ∞ . This can be done

for systems under shear flow, where the structure factor distortion peaks at small
values of K , and tends to 0 for large wavevectors much faster than 21/K   (except in
directions where 2 0K ≈ ) as can be seen from the plots of ( | )S γk �  in Figure 2.2. In

fact, numerical evaluation of the integrals in eqs.(2.15) and (2.16) shows that the
integrals converge to within a fraction of 1 % for an upper integration limit of
typically 5K ≈ . For the same reason, Ψ  is replaced here by *Ψ , which is equal to Ψ
with the angle θ  of k  with the z-axis taken into account to leading order, that is,

( )( )*( , | ) cos , sin ,0 |K Kϕ λ ϕ ϕ λΨ = Ψ =K (2.17)

Numerical evaluation of the scaling functions reveals that for the present geometry
(see Figure 2.1) = 0scD , to within numerical errors. Numerical results for the scaling
functions are plotted in Figure 2.3. Here, the curves labelled with a ‘1’ refer to the
geometry where the direction of the beam is along the vorticity direction, while ‘2’
refers to the geometry sketched in Figure 2.1.  The reason for division by λ  in
eq.(2.15) and eq.(2.16) is that the scaling functions tend to a constant for large
dressed Peclet numbers λ .

 
Figure 2.3: Numerical results for the scaling functions ccD (a) and scD (b). The
inserts show the behaviour for small values of λ , which confirms the
analytically predicted behaviour as discussed in the main text, below eq.(2.18).
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In the weak shear limit, where λ < 1 , for the geometry ‘2’ of interest here, ccD  can be

found by substitution of a regular expansion of the structure factor with respect to λ .

To this end the expansion,
(1) 2 (2)( | ) ( ) ( ) ( ) ...eqS S K S Sγ λ λ= + + +K K K� (2.18)

is substituted into the stationnary form of eq.(2.7). Equating terms of equal powers in
λ  reveals that, for the geometry sketched in Figure 2.1, ϕ�

(1) sinS  and ϕ�

(2) 2cosS .
The ϕ -integration in eq.(2.15) for ccD  renders a linear term in λ  equal to 0, so that,

λ�

3
2

ccD . Dichroism thus varies like γ� 2  for small dressed Peclet numbers. The shear
induced dichroism in the present geometry is thus inherently non-linear. The small
shear rate behaviour of ccD  is plotted in the insert of Figure 2.3 a. The function scD ,
relevant for the geometry ‘1’, varies like 1

2λ  for small λ . In the ‘1’ geometry, there is
thus a non-zero linear-response. Note the very small range of λ ’s in Figure 2.3 where
the leading λ -dependence is dominant.

The regular expansion eq.(2.18) is invalid in a region in wavevector space around
=k 0  of width λ� , even for small values of λ . The reason is that eq.(2.7) is

singularly perturbed by the shear flow contribution. In this so-called (mathematical)
boundary layer at =k 0  there is never linear shear flow response of the structure
factor. The regular expansion eq.(2.18) does make sense, however, when used in
integrals like in eqs.(2.15) and (2.16) for the scaling functions, since the width of the
boundary layer vanishes for small shear rates, and therefore contributes only little to
the value of the integral. In addition, the integrand in eqs.(2.15), (2.16) vanishes for
zero wavevectors, so that the error that is made by using the regular expansion is
further diminished.

The maximum variation of the turbidity on variation of α , multiplied by 2wavλ π

defines the dichroism ∆ "n . From eq.(2.14) we thus finally find the following
expression for the shear induced dichroism for the geometry ‘2’ near the gas-liquid
critical point,

( ) ( )
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kk R R

(2.19)

This result predicts scaling in the sense that dichroism depends on the shear rate and
the distance from the critical point only through the dressed Peclet number λ , except
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for the trivial prefactor 0( )Pe γ� . This scaling implies that experimental data for

γ∆ �"n  taken at various shear rates and distances from the critical point should

collaps onto a single master curve when plotted versus γ ξ� 4 , the form of which
master curve is given by the scaling function in Figure 2.3 a  (geometry ‘2’).

2.2.5 TIME DEPENDENT TURBIDITY AND DICHROISM

Consider an experiment where a stationary shear flow is suddenly swiched off, at
time t = 0, say. The solution of eq.(2.7) for this situation is a single exponential
function of time, where the structure factor ( | )S γk �  in eq.(2.9) is now the structure
factor in the stationary state, before cessation of the flow,

( ) ( ) 2 2; | ( ) 1 ( | )exp 1eq tS t S K K K γγ λ
λ

� �
= − Ψ − +� �� �� �

	 

K K

�
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The dimensionless variables as defined in subsection 2.2.3 are introduced here. The
time dependent behaviour of the turbidity is immediately found by substitution of

eq.(2.20) into eq.(2.3), neglecting terms of order ( )20K K ,
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Similarly as in subsection 2.2.4, the polarization dependence of the turbidity is given
by,
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where,
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and,
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Numerical evaluation of eqs.(2.23) and (2.24) leads to a pronounced difference in
relaxation times for the turbidity and dichroism after cessation of the shear flow.
Dichroism relaxes fast in comparison to the turbidity. Formally, this is due to the
factor 3K  in the integrand in eqs.(2.23) and (2.24) for the dichroism, as compared to
the factor K  in eq.(2.21) for the turbidity. The dynamics of dichroism is connected to
larger wavevectors as compared to the turbidity. The dynamics of concentration
fluctuations pertaining to these larger wavevectors is fast as compared to small
wavevectors.

2.3 EXPERIMENTAL

2.3.1 COLLOIDAL SYSTEM 

The system used in this study consists of colloidal silica particles grafted with stearyl
alcohol. The solvent is cyclohexane. Polydimethylsiloxane (PDMS) is added to
induce depletion attractions between the colloidal particles which give rise to a gas-
liquid critical point. The silica particles were synthesized by the method of Stöber
[16]. The spheres have an average diameter of 102 nm, as determined by dynamic
light scattering. The polydispersity, determined by Transmission Electron
Microscopy, was found to be around 16 %.  The specific mass ρ  of the silica
particles, that relates the volume fraction Φ  to the mass concentration c  as c ρΦ = ,

was determined by Ubbelohde measurements, using Einstein’s formula Φ+= 5.21rη ,
which relates the shear viscosity rη  to the volume fraction Φ  of spheres. The specific
mass ρ  was found to be 1.863 g/ml. The polymer PDMS that we used has a molar
weight of 204 kg/mol. When dissolved in cyclohexane, the spherical coils have a
radius of gyration of around 26 nm (at 25°C).

To determine the phase diagram, a number of samples with various, fixed PDMS to
silica concentration ratios were prepared. By adding or evaporating solvent we moved
along so-called dilution lines in the phase diagram, as depicted in Figure 2.4. The
binodal was found by visual inspection of the samples for the formation of an
interface and the time it takes before an interface could be seen. Close to the critical
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point, phase separation could take a few hours due to the fact that the density
difference between the gas and liquid phases becomes very small. The experimentally
determined phase diagram is shown in Figure 2.4. The critical point was found by
locating the point on the binodal where, after phase separation, the volumes of the
two phases are equal. Close to the critical point phase separation occurred after about
2 hours. All measurements are performed on a sample on the dilution line that
intersects the critical point. The distance from the critical point is varied by gently
evaporating or adding solvent.
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Figure 2.4: Experimental phase diagram (polymer to colloid diameter ratio 0.51).
The binodal points □ are obtained by visual observation.

2.3.2 EXPERIMENTAL SET UPS

The important parameter that characterises the distance from the critical point, which
is also an important input when comparing with theory, is the correlation length.
When performing a dichroism experiment one could measure the concentration of the
sample, and from that derive the correlation length, after the relation between the
correlation length and concentration has been established independently. The relevant
differences in concentration, however, are so small that the determination of the
concentration would be far too inaccurate. Before and after each dichroism
experiment we therefore performed a turbidity measurement on the quiescent,
unsheared sample, and determined the correlation length from the turbidity. To this
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end we first have to establish the relation between the turbidity and the correlation
length. The experimental set up for this purpose is sketched in Figure 2.5.

The laser beam first passes two polaroid’s in order to be able to adjust the intensity of
the beam. A non-polarising beam splitter is used to determine the intensity of the
incident light with detector 1. The sample is immersed in a thermostating optical
matching bath, to prevent scattering from optical imperfections of the cuvette. The
scattered light intensity is measured by means of a photodiode array camera which is
positioned in the focal plane of the optical bath. The scattering angle range is 2-6
degrees. The intensity of the beam that passed the sample is reflected by a mirror to
detector 2. A circular pinhole with a diameter of 0.3 mm has been used to prevent
detection of scattered light by detector 2. The ratio of the intensities of the detectors 1
and 2 is then recorded for an experiment with the colloidal sample and only solvent,
respectively. These two intensity ratios determine the turbidity of the colloidal sample
through Lambert-Beer’s law eq.(2.2). The pathlength of the cuvettes is typically 0.2
cm.

Detector

Detector

Photodiode
array

Sample

Mirror

LASER

Nonpolarising beamsplitter

Polaroid’s

Figure 2.5: Experimental set-up for the determination of the relation between the
turbidity and the correlation length.

The dichroism set up is based on the design by Fuller [17, 18]. The set up was
adjusted to be able to also measure the turbidity of the system, for reasons discussed
above. In our set up, the rotating 1/2 waveplatelet is mounted on a dentist drill, which
accomplishes a rotational speed of about 4 kHz. The shear cell is a home made
optical couette cell with a gapwidth of 2.47 mm, which is placed a thermostating,
optically matching bath. See Chapter 1 for a more detailed description of the
dichroism set up  and the shear cell.

Before an actual dichroism experiment was started, the colloid-polymer mixture was
left to equilibrate for at least 30 min. in the thermostated, optical bath. The turbidity is
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measured before and after each dichroism experiment in order to verify that
evaporation of solvent during the experiment is insignificant It turned out that
evaporation is insignificant over periods of several hours.

2.4 EXPERIMENTAL RESULTS AND DISCUSSION

2.4.1 CORRELATION LENGTH DEPENDENCE OF THE TURBIDITY

Figure 2.6 shows the reciprocal intensity versus the wavevector k  squared, for a
sample with the critical colloid to polymer ratio, for various distances from the
critical point (see the dilution line in Figure 2.4). The solid lines in this figure are
curves fitted to eq.(2.4), where the non-critical background contribution to the
intensity is used as an additional fitting parameter. Relatively far from the critical
point the curves are virtually straight lines, but closer to the critical point, curves
deviate from a straight line. The reason for this is the large variation of the relative
contribution of the non-critical background intensity: for small wavevectors, where
the critical scattered intensity is very large, the relative contribution of the
background intensity is much smaller than for the larger wavevectors. Further away
from the critical point, the relative background contribution becomes almost
wavevector independent and renders Orstein-Zernike plots linear. Except for the
largest correlation lengths shown  in Figure 2.6, the curves have the same slope. The
slope is proportional to βΣ  so that this parameter is seen to be well-behaved near the
critical point, as expected.
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Figure 2.6: Reciprocal scattered intensity versus 2k

We found that on approach of the critical point the time needed to render the
scattered intensity time independent increases. This is a manifestation of critical
slowing down of the dynamics of concentration fluctuations. For very large
correlation lengths (more than about 2500 nm) we observed a decrease of the
measured correlation length over longer periods of time. This is illustrated in Figure
2.7. Right after homogenization of the sample, a fit to the Ornstein-Zernike structure
factor, including the non-critical background contribution, yields a correlation length
of 424 nm. A measurement after some hours yields a correlation length of 5011 nm.
This value then decreases over a period of 8 hours to 1375 nm. The reason for this
decrease in correlation length is probably that density inhomogeneities are so long-
lived, as a result of severe critical slowing down, that sedimentation occurs. The
system then develops large scale concentration gradients. The concentration of the
part of the system from which scattered intensities are measured  differs from the
overall concentration, giving rise to a smaller measured correlation length.
Measurements are therefore only reliable in case the correlation length is smaller than
about 2500 nm.
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Figure 2.7: Time dependence of the reciprocal scattered intensity as a function of
2k

Figure 2.8 shows the correlation length versus the turbidity. The smallest correlation
length of 250 nm is about twice as large as the range of the pair-interaction potential,
which is equal to the sum of the diameters of the colloidal particles and the polymer
diameter of gyration (~150 nm).  The solid curve in Figure 2.8 is a fit to eq.(2.6). The
solid curve will be used to determine the correlation length from turbidity
measurements.
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Figure 2.8: Relation between the correlation length and the turbidity

2.4.2 DICHROISM UNDER STATIONARY SHEAR FLOW

Measurements were done on a sample with the critical concentration ratio of colloid
to polymer. The distance to the critical point is varied by evaporation or addition of
solvent. The actual distance to the critical point in terms of the correlation length ξ  is
obtained from transmission measurements and Figure 2.8. A transmission
measurement was done before and after the dichroism measurements were
performed, in order to ensure that no significant evaporation occurred during the
dichroism measurement.

Dichroism measurement results in the shear rate range of 0.1 to 34.7 s-1 are plotted in
Figure 2.9 for various correlation lengths. The lowest curve (dashed line) is the
dichroism for a sample with silica particles only, without polymer (PDMS). This
curve relates to non-critical contributions to the dichroism. As can be seen, these non-
critical contributions are negligibly small as compared to critical contributions.
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Figure 2.9: Dichroism as a function of the shear rate for various correlation
lengths, as indicated in the figure. The lowest curve is the dichroism of the
sample without polymer.

As can be seen from this figure, dichroism increases with increasing correlation
length up to a certain correlation length after which dichroism decreases. This is
made more explicit in Figure 2.10, where the dichroism at the maximum applied
shear rate (34.7 s-1) is plotted against the correlation length. The mean field theory
described in section 2.2.4 predicts a monotonous increase of the dichroism with the
correlation length. We therefore conclude that the cross-over from mean field to non-
mean field behaviour occurs at a correlation length of about 750 nm.

When comparing to the theory described in section 2.2.4 we therefore have to restrict
to correlation lengths less than 750 nm. Note that since in Figure 2.10 the shear rate is
a constant, the location of the critical point is fixed. The decrease of dichroism can
therefore not be attributed to a shear induced shift of the critical point (see also the
discussion at the end of in section 2.2.3).
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Figure 2.10: Dichroism at γ�  = 34.7 s-1 versus correlation length. The vertical
dotted line indicates where the cross-over from mean field to non-mean field
behaviour occurs.

2.4.2.a DICHROISM IN THE MEAN FIELD REGION

The shear rate dependence of dichroism within the mean field region is plotted in the
insert in Figure 2.11. Within the mean field region, dichroism is monotonously
increasing with increasing shear rate. The experiments for small correlation lengths
(< 300 nm) suggest that the slope of the dichroism against the shear rate is 0 for small
shear rates. This is in accordance with the theoretical result, 2

"n γ∆ �

� for small shear
rates.
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Figure 2.11: Scaling of the experimental data. The solid line corresponds to the
theoretical result (eqs. (2.15) and (2.19)). Insert shows dichroism measurements
in the mean field region. The dashed line is the dichroism for a sample without
polymer.

The theoretical result eq.(2.19) implies that "n γ∆ �  is a function of the shear rate

and the correlation length only through the combination 4γ ξ� . Hence, in a plot of

"n γ∆ �  against 4γ ξ�  all experimental curves should collapse onto each other. To

within experimental errors, this is indeed seen to be the case in Figure 2.11. In
addition, the functional form of the dichroism scaling function eq.(2.15), as depicted
in Figure 2.3, can be compared to the experimental master curve in Figure 2.11 as
follows. The dressed Peclet number λ  is directly proportional to 4γ ξ� .  The
proportionality constant between λ  and 4γ ξ� can be found by rescaling the horizontal
axis in Figure 2.11, so as to obtain the best agreement between the theoretical scaling
function and the experimental master curve.  The vertical axis must be rescaled
simultaneously. As can be seen from Figure 2.11, the theoretical scaling function
agrees with the experimental master curve to within experimental errors. The
rescaling factor for the horizontal axis is equal to ( ) 1

02 Dβ −
Σ , according to eq.(2.12),
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while the rescaling factor for the vertical axis is equal to

( ) ( )τ βΣ
3
242

0 0 02V V VC R D k R k R , according to eq.(2.13) and eq.(2.19). The scaling

factors are found to be equal to 25 43.3 10 sm−×  and 8 1/22.0 10 s−× , respectively. From

these numbers it follows that, 2 0.14
V

RβΣ ≈  and ( ) 0.025p f
n n− ≈ , where pn  and 

fn

are the refractive index of the colloidal particles and the solvent, respectively. The
former value is in accordance with a crude theoretical estimate ( 2

V
RβΣ ~0.1) [8, 19],

but differs by a factor of about 10 with results obtained from earlier turbidity
measurements on a similar colloidal system [20]. The refractive index difference with
cyclohexane of 0.025 is in good agreement with the value of 0.02 that is common for
silica spheres prepared by the method of Stöber.

2.4.2.b DICHROISM  BEYOND MEAN FIELD

Dichroism as a function of the shear rate for correlation lengths larger than 750 nm,
corresponding to distances to the critical point which are beyond mean field, are
plotted in Figure 2.9 (filled symbols). Contrary to its mean field behaviour, shear
induced dichroism decreases on approach of the critical point. In the mean field
region there is a bright  streak in the scattering pattern, corresponding to the
unaffected microstructure in directions perpendicular to the flow direction (see
remark just below eq.(2.7) and Figure 2.2). What is observed beyond mean field is
that the intensity of this bright streak is diminished when shear flow is applied, more
so on closer approach of the critical point [21]. This breakdown of microstructure in
directions perpendicular to the flow direction renders the structurefactor more
isotropic, leading to  smaller dichroism. This effect of shear flow on the
microstructure is lost when the equation of motion for the total-correlation function is
linearized (as discussed in section 2.2.3). Beyond the mean field region one should
consider non-linear equations of motion. As far as we are aware, such non-linear
equations have not been analysed yet.

2.4.3 RELAXATION OF DICHROISM AND TURBIDITY

Relaxation behaviour was studied for correlation lengths of 600 nm (mean field) and
1517 nm (beyond mean field). Each measurement was started at time t = 0 and then
shear was applied at t = 7.5 s, and turned off at t = 15 s. Relaxation curves for
dichroism and turbidity are given in Figure 2.12. Figure 2.12 a shows relaxation
curves for a correlation length of 600 nm, within the mean field region. As can be
seen, the shear induced dichroism relaxes within seconds, while the transmitted
intensity (and hence the turbidity) relaxes over a much larger time interval. As can be
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seen from Figure 2.12 b, where relaxation curves for a correlation length of 1517 nm.
are plotted, beyond the mean field region, relaxation of dichroism remains fast.
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Figure 2.12: : a) Relaxation curves for dichroism and the transmitted intensity for
a correlation length of 600 nm. The solid curves are theoretical mean field
predictions based on eqs.(2.21) and (2.22). Shear flow is imposed at 7.5 s and is
turned off at 15 s. Plot b) shows the relaxation of dichroism and transmitted
intensity for the beyond mean field region (ξ = 1517 nm). The insert in b) shows
the extremely long relaxation time for ξ = 1280 nm.
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Relaxation times of the turbidity, however, become larger on approach of the critical
point. The insert in Figure 2.12 b illustrates the extremely long relaxation time of the
turbidity on very close approach of the critical point (ξ = 1280 nm). Hence dichroism
does not show critical slowing down, contrary to the turbidity. Note that the sample in
the beyond mean field region did not reach the stationary state at the time the shear
rate is switched off.
These observed differences in relaxation behaviour of dichroism and turbidity are in
agreement with the mean field theoretical predictions, as discussed in subsection
2.2.5 (see Figure 2.12 a). The integrands in eqs.(2.23) and (2.24) for dichroism are
more sensitive to structure at larger wavevectors (because of the factor 3K ) as
compared to the integrand in eq.(2.21) for the turbidity (a factor K ). Since the
dynamics of density waves with larger wavevectors is faster than for smaller
wavevectors, this results is a faster relaxation of dichroism as compared to turbidity.
The slower relaxation of the turbidity for larger correlation lengths is due to the
smaller value of the effective diffusion coefficient (see eq.(2.8)) for small
wavevectors. The solid lines in Figure 2.12 a are theoretical relaxation curves, based
on the equations in section 2.2.5. The dichroism relaxation curve is calculated from
the constants derived from the scaling analysis of the stationary dichroism
maesurements in section 2.4.2.a, except that the constant ( ) 1

02 Dβ −
Σ  is chosen as

8 1/22.3 10 s−×  instead of 8 1/22.0 10 s−× , in order to obtain agreement for the initial value
of "n∆  (for a single dichroism measurement this lies within experimental errors).
The theoretical intensity relaxation curve is obtained from the constants obtained in
section 2.4.2.a, where the initial value of the intensity was an adjustable parameter
(since we did not measure the incident intensity in this experiment) and the small
experimental offset, due to optical imperfections of the shear-cell, was added to the
calculated intensity. The important thing to note here is that the theoretical; curves
reproduce, within experimental error, the very different experimentally observed
relaxation times for dichroism and turbidity.

2.5 SUMMARY AND CONCLUSIONS

Shear induced dichroism near the gas-liquid critical point behaves completely
different in the mean field region and beyond mean field : for a given shear rate,
dichroism first increases on approach of the critical point in the mean field region, but
then decreases in the beyond mean field region. The decreasing dichroism on
approach of the critical point for the beyond mean field region is probably due to the
breakdown of the structure factor in directions perpendicular to the flow direction.
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This phenomenon is due to non-linear terms in the equation of motion for the
structure factor. These non-linear terms can be neglected in the mean field region. So
far, non-linear equations of motion of the structure factor have not been analysed. In
the mean field region, where equations of motion for the total-correlation function

can be linearised, theory predicts scaling of data for "n γ∆ �  when plotted against
4γ ξ� . This is confirmed by the experiments (see Figure 2.11). Values for 2βΣ VR  and

p fn n−  as found by comparing the experimentally obtained master curve and the

theoretically predicted scaling function are in accordance with a theoretical estimate
for 2βΣ VR  [8, 19] and independent experimental results for p fn n−  (see section

2.4.2.a). Shear rate dependent turbidity measurements close to the critical point on a
similar colloidal system [20] rendered an unexpectedly high value of 3.6 for 2βΣ VR .
The reason for this is not clear.

Relaxation experiments after cessation of the shear flow show that dichroism does not
exhibit experimentally relevant critical slowing down: relaxation times are found of
the order of a second, right up to the critical point. This is in contrast to the turbidity,
the relaxation time of which is found to diverge on approach of the critical point. This
different dynamical behaviour of dichroism and turbidity is in accordance with mean
field theory. Formally, dichroism is more sensitive to the dynamics of density waves
with larger wavevectors (due to the factor 3K  in the integrand in eqs.(2.23) and (2.24)
) as compared to the turbidity  (a factor K  in the integrand in eq.(2.21)). Since the
dynamics of density waves are faster for larger wavevectors, this explains the
relatively fast relaxation of dichroism. It is supprising however, that even very close
to the critical point, the dichroism relaxation dynamics remains fast.
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Chapter 3 
SHEAR-INDUCED DISPLACEMENT

OF ISOTROPIC-NEMATIC

SPINODALS

The shear dependent location of the isotropic-nematic spinodals in suspensions of
bacteriophage fd is studied by means of time resolved birefringence experiments. The
hysteresis in the birefringence on increasing and subsequently decreasing the shear-
rate allows the determination of the location of points in the shear-rate versus
concentration phase diagram between the isotropic-to-nematic and the nematic-to-
isotropic spinodals. Experimental hysteresis curves are interpreted on the basis of an
equation of motion for the orientational order parameter tensor, as derived from the
N-particle Smoluchowski equation. The spinodals are found to shift to lower
concentrations on increasing the shear-rate. Above a critical shear-rate, where shear
forces dominate over thermodynamic forces, no spinodal instability could be
detected.
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3.1 INTRODUCTION

Early experimental observations of isotropic-nematic phase coexistence in systems of
rod-like colloidal particles were made by Zocher [1] and Bernal [2]. In later
experimental studies [3-8], other colloidal systems were found to exhibit isotropic-
nematic phase coexistence as well, and in some studies [9-13] the kinetics of
isotropic-to-nematic phase separation has been addressed. An exact theoretical result
for the isotropic-nematic phase boundaries for very long and thin, rigid rods with
excluded volume interactions has been obtained some 50 years ago by Onsager [14].
More recent theoretical developments on the isotropic-nematic phase transition can
be found in refs. [15-18]. Orientational order parameter dynamics in systems of rod-
like colloids with excluded volume interactions have been considered theoretically by
Doi and Edwards [19] and Maeda [20]. Their approach is extended by Shimada et al.
[21] and very recently by Winters et al. [22], to include inhomogeneities, in order to
describe phase separation kinetics during the initial stage of spinodal demixing. Still
open issues in this area are concerned with the role of attractive interactions and
phase separation kinetics, especially beyond the initial stage (see v.d. Schoot [17],
and Winters [22]).

Phase coexistence and phase separation kinetics in systems of lyotropic rigid rods
under shear flow are less well understood. The only work on rod-like systems in this
respect we are aware of is due to Olmsted [23-25]. This work is partly based on
thermodynamic considerations, where driving forces are assumed to be generated by
gradients in free energy. Olmsted et al. assume local equilibrium and one of the phase
coexistence conditions is equality of chemical potential in both phases. Although
strictly speaking a free energy and chemical potential can not be defined for a system
in a non-conservative external field like the simple shear flow, this work predicts
interesting features. Olmsted addresses the shear induced shift of spinodals and
binodals, the existence of a log-rolling phase, where the director of the aligned rods is
parallel to the vorticity direction, and the occurrence of a hydrodynamic instability
commonly referred to as the shear-banding instability. As far as we know, there are
no experimental results on the shear induced shift of phase coexistence boundaries or
spinodals. In the present paper we present experimental results on the shear induced
shift of the isotropic-nematic spinodals for suspensions of bacteriophage fd-virus.
The experimental technique that we used is time resolved birefringence measurement,
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where the hysteresis in birefringence on increasing and subsequently decreasing the
shear-rate is measured.

This chapter is organised as follows. In section 3.2.2 we shall present the theoretical
background that is necessary to interpret experiments. In particular, we shall define
the notion of spinodals in systems under shear flow, derive an equation of motion for
the orientational order parameter tensor, starting from the N-particle Smoluchowski
equation for rigid rods, and use this equation of motion to calculate hysteresis curves.
In the experimental section 3.3, we shall first describe the colloidal system and the
birefringence equipment, and then proceed with presenting the experimental results
and discussion. Section 3.4 contains a summary and conclusions.

3.2 THEORY

3.2.1 THE SUSPENSION FLOW FIELD

The flow considered here is chosen in x-direction, with its gradient in the y-direction.
That is, the flow velocity is equal to = ⋅U rΓΓΓΓ , where ΓΓΓΓ  is the velocity gradient
tensor,

γ

� �
� �

= � �
� �
� �
� �

�

0 1 0

0 0 0

0 0 0

ΓΓΓΓ (3.1)

with γ�  the shear-rate. The direction of the incident laser beam is along the gradient
direction, as depicted in Figure 3.1, while the polarization state of the light is
characterized by the angle α  of the electric field with the z-axis.

Figure 3.1: Definition of the flow geometry.

3.2.2 DEFINITION OF SPINODALS IN SYSTEMS UNDER SHEAR FLOW

A spinodal is defined as the set of control variables (like temperature, concentration
and shear-rate) where the system in the homogeneous state becomes absolutely
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unstable. That is, the spinodal separates the (meta-) stable region from the unstable
region in the phase diagram, where demixing is initiated by order parameter
fluctuations of arbitrary small amplitude. On the (meta-) stable side of the spinodal,
phase separation is induced only by fluctuations with an amplitude that exceeds some
minimum, finite amplitude. Without shear flow, the spinodal can be obtained from
thermodynamic considerations: by definition the spinodal is the set of variables
where the free energy barrier for phase separation becomes equal to zero. Such a
thermodynamic approach is no longer feasible for systems in a non-conservative
external field, like a simple shear flow. The spinodal must now be obtained from
equations of motion for the relevant order parameter. By definition, the location of
the spinodal can now be obtained by a linear stability analysis of the equation of
motion. The set of control variables where the equation of motion becomes absolutely
unstable defines the spinodal. This kinetic definition of the spinodal should reduce to
the usual thermodynamic definition in the absence of shear flow. In case of the gas-
liquid transition for attractive spherical colloids, the relevant order parameter is the
density. The equation of motion for the density, as derived from the Smoluchowski
equation for spheres, is indeed shown in ref. [26] to reproduce the gas-liquid spinodal
as obtained from thermodynamic considerations, when shear-rate contributions to the
equation of motion are neglected. For the rod-like systems under consideration here,
the equation of motion for the orientational order parameter becomes unstable beyond
some concentration. This equation of motion will be derived in the next subsection.

Experimentally, the location of a spinodal can in principle not be detected to within
arbitrary accuracy. Close to the theoretical spinodal, on the (meta-) stable side, the
amplitude of order parameter fluctuations necessary to initiate demixing is small, but
non-zero. When the change in free energy on creating an order parameter variation of
such small amplitude is less than about Bk T , demixing will occur without any time

delay, as if one quenched into the unstable region of the phase diagram. There is thus
a gradual change of nucleation dominated demixing to spinodal demixing. This
prevents a sharp experimental determination of the location of the spinodal.

3.2.3 AN EQUATION OF MOTION FOR THE ORIENTATIONAL ORDER

PARAMETER TENSOR

The reason for deriving an equation of motion for the orientational order parameter is
twofold. First of all, a linear stability analysis of such an equation renders the shear-
rate dependent location of the spinodals. Second, this equation of motion will be used
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in subsection 3.2.6 to analyse the experimental procedure used here to detect the
location of the spinodals.

The equation of motion that we will derive here from the N-particle Smoluchowski
equation for rigid rods, is very similar to that obtained from the Doi-Edwards
equation [19]. The assumptions involved in the derivation of the equation of motion
for the orientational order parameter tensor are most clearly revealed by starting from
the N-particle Smoluchowski equation. We shall therefore discuss the derivation of
this equation of motion, starting from the N-particle Smoluchowski equation, in some
detail below.

The central quantity is the orientational order parameter tensor, which is defined as,
≡ ˆˆS uu (3.2)

where û  is the unit vector along the long axis of a uni-axial rod, the “orientation” of
the rod, and the brackets denote ensemble averaging. The eigenvector of this tensor
with the largest eigenvalue is commonly referred to as “the director”, and points into
the preferred orientation of the rods. Equations of motion for S  have been considered
before by Hess [27], and Doi and Edwards [19]. Hess’s derivation is based on
thermodynamic arguments, while Doi and Edwards start from their equation of
motion for the probability density function (pdf) of the orientations of a rod. Here we
will start from the N-particle Smoluchowski equation for the pdf P  of the positions

( )1 2, ,...,
N

r r r  and orientations ( )1 2
ˆ ˆ ˆ, ,...,

N
u u u  of all N rods in the system under

consideration. In analysing this equation of motion we will recover the equation of
motion used by Doi and Edwards, which is known to reproduce the Euler-Lagrange
equation that complies with Onsager’s free energy functional without shear flow [28].
The Smoluchowski equation is a continuity equation for translational and rotational
motion and reads,

( ) ( )
=

∂ � �= − ∇ ⋅ + ⋅
� �∂ �

1

ˆ
N

j j j j
j

P P P
t

v ΩΩΩΩ� (3.3)

with jv  the transitional velocity of rod j  and jΩΩΩΩ  it’s angular velocity, ∇ j  is the

gradient operator with respect to jr , and ĵ�  is the rotation operator which is defined

as,

( ) ( )= × ∇ˆ ˆ... ...
jj j uu�

with ∇
ju  the gradient operator with respect to the orientation ˆ ju  of rod j.
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On the Brownian time scale, where there is a force and torque balance, the
translational and rotational velocities of the rods can be expressed as functions of
positions and orientations. To this end, a rod is represented as a string of spherical
beads, and Faxen’s theorem is applied to each of the beads. Analysing the resulting
relation between the bead velocities and the hydrodynamic forces on the beads for
very long, thin rods (similar to ref. [29]), the following expression for the
translational velocity is obtained,

( ) ( )β� �= − ⋅ ∇ Ψ + ∇ +� �ˆ lntj j j j jD Pv D u U r (3.4)

with β = 1/ Bk T  and,

( )
πη

=
0

ln /
4

B
t

k T L D
D

L

which is proportional to the orientationally averaged translational diffusion
coefficient for a free, non-interacting rod, with L  the length and D  the diameter of
the rod, and η0   the viscosity of the solvent. Furthermore,

( ) ≡ +ˆˆ ˆˆD u I uu

while Ψ in eq.(3.4) is the total potential energy and U  is the suspension flow
velocity. The rotational velocity is found similarly and equals,

( )ˆ ˆ ˆ ˆlnrj j j j j j jD Pβ � �� �= − Ψ + + × ⋅ ∇� � � �
u u U rΩΩΩΩ � � (3.5)

 with,

( )
πη

= 3
0

3 ln /B
r

k T L D
D

L

the rotational diffusion coefficient for a free, non-interacting rod.

In both eqs.(3.4) and (3.5) the total potential energy accounts for direct interactions
between the rods. The total potential energy is now assumed to be pair-wise additive,
that is,

( ) ( )
<

Ψ = −�1 1
ˆ ˆ ˆ ˆ,..., , ,..., , ,i j i jN N

i j

Vr r u u r r u u

where V  is the interaction potential for two isolated rods: the “pair-interaction
potential”. In case of excluded volume interactions this is an exact relation.
Integration of the Smulochowski equation eq.(3.3) with respect to 1 2, ,..., Nr r r  and

2
ˆ ˆ,..., Nu u , after the substitution of eqs.(3.4) and (3.5), results in the equation of

motion for the reduced pdf ˆ( , )P tu  for the orientation û  of a rod. This equation of
motion depends on the two-particle pdf ( )ˆ ˆ, ', , 'P r r u u . In order to obtain a closed
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equation of motion, let us first introduce the pair-correlation function g . For a
homogeneous system the pair-correlation function is defined as,

( ) ( )
( ) ( ) ( )

3 3 3 3

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ', , ', , ', ,..., , , ', ,..., ,

1 ˆ ˆ ˆ ˆ, ', , ', , ',

N N N NP t d d d d P t

P t P t g t
V

≡

≡

� � � �r r u u r r u u r r r r u u u u

u u r r u u

� �� �

(3.6)
We shall approximate the pair-correlation function  as,

( ) ( )β= − −ˆ ˆ ˆ ˆ, ', , ', exp ( ', , ')g t Vr r u u r r u u (3.7)

This expression is correct for homogeneous systems in equilibrium, for long, thin
rods with repulsive pair-interactions. Effects of shear flow on g  are neglected in
eq.(3.7). The effect of shear flow on the one-particle pdf ˆ( , )P tu  is probably much
more important.

Substitution of eqs.(3.4) and (3.5) into eq.(3.3), and then performing the integration
as described earlier, one finds,

( ) ( ) ( ) ( )( )
( ) ( )( )

β∂ = ⋅ −
∂

− ⋅ × ⋅ ∇

ˆ ˆˆ ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆ, ,

rP t D P t P t t
t

P t t

u u u T u

u u u U r

� �

�

(3.8)

where ( )ˆ,tT u  the average torque on a rod, which is equal to,

( ) ( ) ( ) ( )ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, ' ' ', ', , ', ', , 't d d P t g t Vρ= − − −� �T u r u u r r u u r r u u� � (3.9)

with ρ = /N V  the number density. To within the approximation eq.(3.7) for the pair-
correlation function, we have, for excluded volume interactions,

( ) ( ) ( )β χ−− − = −1ˆˆ ˆ ˆ ˆ ˆ ˆ', , ' ', , ' ', , 'g Vr r u u r r u u r r u u� (3.10)

where χ  is the characteristic function for core-overlap, that is, χ = 1  when the cores
of the rods overlap and is 0 otherwise. Since for very long, thin rods,

( )χ − = ×�
2ˆ ˆ ˆ ˆ' ', , ' 2 'd DLr r r u u u u (3.11)

the average torque is found to be equal to,

( ) ( )1 2 ˆˆ ˆ ˆ ˆ ˆ, 2 ' , 't DL d P tβ ρ−= − ×�T u u u u u�� (3.12)

We shall expand the right hand-side of this equation to fourth order in bilinear
products of the orientations û  and ˆ 'u . This Ginzburg-Landau type of expansion
results in a fourth order expansion of the free energy with respect to S , in the case
where no shear flow is applied. Such an expansion captures the essential physics.
Hence, we shall approximate, ( )× ≈ − ⋅ 21

2ˆ ˆ ˆ ˆ' 1 'u u u u , which is reminiscent to the well
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known Maier-Saupe approximation for the pair-interaction potential for two hard rods
[30-32]. Evaluation of the average torque now results in,

( ) ( )[ ]1 2ˆ ˆ ˆ, 2t DL tβ ρ−= × ⋅T u u S u (3.13)

Multiplying both sides of eq.(3.8) by ˆˆuu , using eqs.(3.13) and (3.9), and then
integrating with respect to û , yields an equation of motion for the order parameter
tensor S . This result is only valid for the homogeneous system, where the shear-rate,
the density and orientational order are independent of position,

( )2 (4)

(4)

ˆ2 3 2 :

ˆ ˆ ˆ:

rD DL
t

ρ

γ

∂
� �= − − − ⋅ −� �∂

� �+ ⋅ + ⋅� �

S S I S S S S

S S S� ΤΤΤΤΓ Γ − 2 ΓΓ Γ − 2 ΓΓ Γ − 2 ΓΓ Γ − 2 Γ
(3.14)

where,

=(4) ˆˆˆˆS uuuu

is a fourth order tensor. To be able to evaluate eq.(3.14), (4)S  must be expressed in
terms of S . Following Hinch [33], such a closure relation can be constructed by
noting that the degree of alignment of the rods is a monotonically increasing function
of the shear-rate. An interpolation between the known forms of (4)S  for the isotropic
and the perfectly aligned states is therefore expected to be reasonably accurate.
Assuming a second order polynomial in S  for (4)S , a calculation of the coefficients
from the known forms for the isotropic and fully aligned states, and imposing trivial
contraction properties, yields, for arbitrary tensors M ,

� �= ⋅ + ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ +� �
1
5ˆˆˆˆ : 2 3 :

S S S S S S
uuuu M S M M S S S M M S S S M S SS M

    (3.15)
with,

= +� �� �
1
2

T
SM M M

the symmetric part of M . Using this closure relation in eq.(3.14), we finally find,

(
) ( )

2
5

212
5

2 3 :

ˆˆ ˆ 6 2 :

S S S S S S

r

t
D DL

γ

ρ

∂
� �= − ⋅ + ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ +� �∂

� �− ⋅ − ⋅ − − − ⋅ −� �

S S M M S S S M M S S S M S SS M

S S S I S S SS S

�

ΤΤΤΤΓ ΓΓ ΓΓ ΓΓ Γ

    (3.16)
This is the equation of motion that is at the basis of our interpretation of experimental
data and the calculation of the phase diagram as far as the spinodals are concerned.

As can be seen from the above derivation, the Doi-Edwards equation is obtained
when assuming that the pair-correlation function has the form as given in eq.(7), that
is, when higher order correlations are neglected. For very long, thin rods this is
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probably a good approximation. Furthermore the translational and rotational diffusion
coefficients relate to diffusion of a single, non-interacting rod, and are therefore
independent of concentration. The concentration dependence of diffusion coefficients
can in principle be calculated from the Smoluchowski equation, similar to
calculations for spherical colloids  [see for example ref. [29]].

3.2.4 THE SHEAR-RATE DEPENDENT SPINODALS

Let us first define the effective rotational diffusion coefficient eff
rD as follows. Let 0S

denote a stationary solution of the equation of motion eq.(3.16). Now write
( ) ( )δ= +0t tS S S , and linearize the equation of motion eq.(3.16) with respect to

( )δ tS . The linearized equation of motion will be of the form,

( ) ( )δ δ∂ = −
∂

eff
r

t cD t
t

S S (3.17)

with c  a numerical constant that is chosen such that for infinite dilution, in the
absence of shear flow, the effective diffusion coefficient eff

rD  becomes equal to the
single particle diffusion coefficient. The effective rotational diffusion coefficient
depends on concentration and on 0S . When eff

rD  is positive, the stationary solution 0S

is stable, when eff
rD  is negative it is unstable. By definition (see subsection 3.2.2) the

density and the state 0S  are on the spinodal when eff
rD  is zero. The rotational

dynamics are thus extremely slow close to the spinodal (this is analogous to critical
slowing of translational diffusion in case of a gas-liquid transition). The spinodal
concentration where the isotropic state without shear flow becomes absolutely
unstable can be found by linearization around 1

30
ˆ=  S I . Hence we write,

( ) ( )δ= +1
3
ˆt tS I S (3.18)

and linearize eq.(3.16) with respect to ( )δ tS . The solution of the resulting linear
equation of motion is,

( ) ( ) { }δ δ= = −0 exp 6 eff
rt t D tS S (3.19)

where the effective rotational diffusion coefficient is given by,

( )ρ= − 22
151eff

r rD D DL (3.20)
For concentrations where 22

15 1DL ρ > , the effective rotational diffusion coefficient is
negative, so that eq.(3.19) predicts an exponential increase of ( )δ tS  with time. The
spinodal concentration for the isotropic-to-nematic transition, in terms of the volume

fraction ϕ  of rods, is thus found to be equal to ϕ =L
D

5.89. This number should be
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compared to its exact value, 4, for very long, thin rods as found by Onsager [14]. The
discrepancy between our result and the exact value is primarily due to the Ginzburg-
Landau type of expansion, and to a lesser extent, to the closure relation.

In the case where shear flow is applied it is convenient to introduce the dimensionless
rotational Peclet number,

γ⋅=0
r

r
Pe D (3.21)

and the dimensionless time,
τ = rD t (3.22)

The rotational Peclet number measures the effect of the shear flow on orientational
microstructure in the case where the effective diffusion coefficient is not very
different from the bare diffusion coefficient rD . The stationary state under shear flow
around which one should linearize the equation of motion eq.(3.16) is not known
analytically, but must be found numerically. Bifurcation diagrams, where the largest

eigenvalue λ  of the order parameter tensor S  for stable states is plotted versus ϕL
D

,

are collected in Figure 3.2 for various shear-rates.

5 6

0.4

0.6

 

0.02

L/D

0.20

0.14
0.08

0

 λ

φ

Figure 3.2: The largest eigenvalue of S  versus concentration. The lines represent
stable solutions of the equation of motion (eq.(3.16)), for various bare Peclet
numbers as indicated in the figure.
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Diagrams of this sort are extensively discussed in refs. [34, 35]. The curves in the
diagram are attractors for the equation of motion eq.(3.16) for a given Peclet number

0
rPe . The spinodal points are the points where the curves terminate: here the attractor

becomes a repellor. As can be seen, for small enough shear-rates there is a
concentration range where there are two stable solutions of eq.(3.16): a so-called
paranematic state (the isotropic state which is slightly shear-aligned) and a nematic
state. These concentrations are within the two-phase region. Above a certain critical
shear-rate, corresponding to a Peclet number equal to 0

,r cPe ≈ 0.15, the paranematic

and the nematic branches merge into one single curve. For these large shear-rates,
thermodynamic forces are too small in comparison to shear forces to be able to
induce a discontinuous phase transition. The non-equilibrium phase diagram, as far as
the spinodals are concerned, is given in Figure 3.3.

0.00

0.05

0.10

0.15

5.0 5.5 6.0

a

b

critical
shear rate

critical 
concentration φL/D

Per
0

Figure 3.3: Non-equilibrium spinodals. The lower solid line (a) is the spinodal
where the nematic phase becomes unstable on lowering the concentration (the
nematic-to-paranematic spinodal), while the upper solid line (b) is the spinodal
where the paranematic phase becomes unstable on increasing the concentration
(the paranematic-to-nematic spinodal). The dotted line is the predicted
experimental curve as obtained from birefringence hysteresis experiments,
calculated from the equation of motion eq.(3.16) (see subsection  3.2.6).
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3.2.5 THE RELATION BETWEEN BIREFRINGENCE AND THE ORIENTATIONAL

ORDER PARAMETER TENSOR 

Before describing the experimental method to obtain the shear-rate dependent
spinodals, we shall have to establish the relation between birefringence and the
orientational order parameter tensor. Let ε

�
 and ε⊥  denote the dielectric constants for

polarisation directions of the light parallel and perpendicular to the rod’s long axis,
respectively. These values are assumed to be constant within the core of the rod. The
difference between ε

�
 and ε⊥  comprises both intrinsic anisotropy of the rod material

as well as ‘form contributions’ due to intra-particle multiple scattering.

By decomposing an incident electric field into a component parallel to the unit vector
û  that specifies the orientation of the long axis of a rod and a component
perpendicular to it, the dielectric constant rodεεεε  of the rod is found to be equal to,

ε ε

ε ε
⊥
� �= + −� �

� �= + ∆ −� �

�

1
3

ˆˆˆ ˆˆ

ˆ ˆˆˆ

rod uu I uu

I uu I

εεεε
(3.23)

with,

( )ε ε ε ε ε ε⊥ ⊥= + ∆ = −
� �

1 2 ,
3

The dielectric constant is now a tensorial quantity. The dielectric constant of the
suspension is a linear combination of the dielectric constants of the solvent and the
rod material. This is a very good approximation, certainly at the very low volume
fractions of interest for the long and thin rods under consideration. The apparent
dielectric constant of the suspension εεεε , relative to that of the solvent, is thus equal to
(with ε f  the dielectric constant of the solvent and ϕ  the volume fraction of rods),

( )

( )

ϕ ϕ ε

ϕε ϕ ε ϕ ε

ε ϕ ε

= + −

� � � �= + − + ∆ −� �� �

≡ + ∆

1
3

ˆ1

ˆ ˆˆˆ1

ˆ ˆˆ,

rod f

f

iso

I

I uu I

I uu

ε εε εε εε ε

(3.24)

with εiso  the isotropic part of the dielectric tensor, which is equal to,

( )
( )

ε ϕε ϕ ε ϕ ε

ϕε ϕ ε
⊥

⊥

= + − − ∆

= + −

1
31

1
iso

f

We assumed, in eq.(3.24), that all rods are identical in optical properties. The
apparent dielectric constant ε ˆ( )n  for a given polarisation direction n̂  of the light is
equal to ⋅ ⋅ˆ ˆn nεεεε . The corresponding macroscopic refractive index is equal to
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( ) ( )ε�ˆ ˆmn n n , where the brackets <…> denote ensemble averaging with respect

to orientation. To leading order in ε ε∆ / iso  we thus find,

( ) εϕ
ε

� �∆= + ⋅ ⋅� �
� �

1
2ˆ ˆ ˆ1m iso

iso

n nn n S n (3.25)

where ε�iso ison  is the refractive index corresponding to the dielectric constant εiso .

The assumption here is that the magnetic susceptibility of the fluid and the rods are
both equal to that of vacuum.

The birefringence ∆ 'n  is defined as the maximum difference in the refractive index
( )ˆmn n  on varying n̂  within the plane perpendicular to the propagation direction of

the light beam. In our experiments, the light beam propagates along the gradient
direction (the y-direction, see Figure 3.1). Since for the geometry used here we have

( )2ˆ ,0, 1µ µ= −n , with 0 µ≤ ≤ 1, it is found that ( )2
33 33

ˆ ˆ S S Sµ 11⋅ ⋅ = − +n S n  (note

that 13 0S = , due to symmetry with respect to the xy-plane). Hence the maximum and

minimum values of the refractive index are taken by µ =0 and µ =1, that is, for n̂
along the x- and z-direction, respectively. We thus find that,

33 11'n c S S∆ −� (3.26)

with ijS  the thij  component S  and c the concentration. This is a special case of the

formula given by Fuller  [ [36], page 113], with 13 0S = .
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3.2.6 THE EXPERIMENTAL PROCEDURE

The intuitive idea behind the procedure used to obtain the shear-rate dependent
spinodals is the following. Consider a homogeneous system of rod-like particles with

a concentration below the nematic-to-isotropic spinodal concentration ϕ =L
D

5.24,

and above the critical concentration (see Figure 3.3).

time

shear rate

0

Acceleration Deceleration
Figure 3.4: A shear-rate sweep. The shear-rate is increased linearly in time, after
which the shear-rate is kept constant for 10 seconds and then decreased linearly
in time to 0 within the same time span.

Suppose the system is subjected to a  “shear-rate sweep” as depicted in Figure I.4 :
the shear-rate is increased with time up to some value, which is then maintained for
some time, after which the shear-rate is decreased to zero. On increasing the shear-
rate, the concentration where the paranematic phase becomes unstable decreases, as
can be seen from the bifurcation diagram Figure 3.2. At a certain shear-rate (γ� 1 , say),
the paranematic-to-nematic spinodal concentration will be lower than the actual
concentration. The system will then, initially very slowly, evolve towards the stable
nematic state. On decreasing the shear-rate after some time, the nematic state will
become unstable again at a certain shear-rate (γ� 2 , say). The system will then return to

the paranematic state. Since γ γ>� �

1 2 , as can be seen from the bifurcation diagrams in
Figure 3.2, there will be a hysteresis in the measured birefringence during such a
shear-rate sweep. The shear-rate where the maximum hysteresis in birefringence
occurs will be in between the two shear-rates γ� 1  and γ� 2  where the paranematic and
nematic phase become unstable, respectively. On variation of the concentration, this
procedure provides a line in the non-equilibirum phase diagram that is in between the
two spinodals. Since rotational dynamics close to the spinodals are very slow, the
form of the hysteresis curve will probably depend on the shear sweep rate, that is, the
rate of change of the shear-rate. The effect of the very slow dynamics near the
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spinodal points can be eliminated by extrapolating hysteresis curves to a sweep rate
equal to zero. For concentrations above the nematic-to-isotropic spinodal

concentration ϕ =L
D

5.24, the system will tend towards the stable nematic state above

a certain shear-rate, and will not return to the isotropic branch again on subsequent
decrease of the shear-rate. There may be an exception when the system is not allowed
to actually attain the stable nematic state before decreasing the shear-rate again, that
is, when the state of the system remains in the basin of attraction of the paranematic
branch during the entire experiment. These intuitive ideas will be quantified below on
the basis of the equation of motion eq.(3.16).

There are two assumptions made in the above reasoning. First of all it is assumed that
phase separation under shear does not occur during a shear-rate sweep. For the fd-
system this was tested and no phase separation under shear flow was observed over a
period of 2 days, while the birefringence experiments take about 5 minutes. Secondly,
it is assumed that the orientational order parameter is independent of position, that is,
the possible existence of domains with different directors is ignored. In the absence of
shear flow such domains will certainly exist, while in the presence of strong shear
flow this is probably a reasonable assumption.

The shear-rate sweep that we employed in our experiments is as follows. The shear-
rate is increased linearly in time during a certain time interval up to a certain final
shear-rate. This time interval and the final shear-rate determine the shear sweep rate.
The final shear-rate is maintained for 10 seconds, after which the shear-rate is
decreased again to 0 within the same time span (see Figure 3.4).
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To relate the shear-rate with the bare Peclet number (see eq.(3.21)) and time with the
dimensionless time (see eq.(3.22)), we used the bare rotational diffusion coefficient
of 20.9 s-1 as reported in ref. [37]. Hysteresis curves can be obtained from eq.(3.16),
where the shear-rate is now a prescribed function of time. Figure 3.5 shows plots of
the hysteresis in birefringence, as obtained from eq(3.16), as a function of the actual
bare Peclet number 0

rPe  during a shear-rate sweep.
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Figure 3.5: Birefringence hysteresis curves (as calculated from eq.(3.16)) for
concentrations in the four different concentration regimes as defined in the main
text. Plotted is the birefringence hysteresis ( )11 33S S∆ − (see eq.(3.26)) versus

the actual shear-rate during a shear-rate sweep, for different shear sweep rates.
The shear sweep rates are indicated in the figures, and are defined here as τ1 end ,

with τend the dimensionless time interval during which the maximum shear-rate
is achieved in the acceleration period of the sweep (see Figure 3.4).

Four different concentration regimes may be distinguished: concentrations below the

critical concentration ( ϕ <L
D

5.07), concentrations in between the critical
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concentration and the nematic-to-isotropic spinodal (5.07 ϕ< <L
D

5.24), in between

the nematic-to-isotropic spinodal and the isotropic-to-nematic spinodal

(5.24 ϕ< <L
D

5.89), and larger concentrations ( ϕ >L
D

5.89). We shall refer to these

concentration regimes as the regimes I, II, III and IV, respectively. Figure 3.5 a-d
relate to these concentration regimes. As explained above, a clear maximum in the
hysteresis curve is expected in regime II, and is indeed found in  Figure 3.5 b, since
during a sweep, first the paranematic state becomes unstable on increasing the shear-
rate and then the nematic state becomes unstable on decreasing the shear-rate. The
maximum becomes much less pronounced in regime III (see Figure 3.5 c), since then
the system attains the nematic state on increasing the shear-rate and remains in that
state when the shear-rate is decreased, in accordance with our intuitive reasoning
above.

Below the critical concentration, in regime I, the magnitude of the hystresis goes to
zero as the sweep rate is diminished, as can be seen in Figure 3.5 a. For a finite sweep
rate there is a finite hysteresis because of the slow rotational dynamics close to the
spinodals. At very small sweep rates, the upward and downward measured
birefringence curve will overlap, so that the birefringence hysteresis will disappear.
Note, however, that the extrapolated shear-rate where the maximum hysteresis occurs
still extrapolates to a finite value, which is indicative for the location of the critical
shear-rate. For lower concentrations, further away from the spinodals, where
rotational dynamics is relatively fast for all shear-rates, the magnitude of the
hysteresis rapidly decreases to a value that is probably too small to be measured. For
concentrations above the isotropic-to-nematic concentration, regime IV, the
amplitude of the hysteresis remains large. However, its maximum value extrapolates
to a zero shear-rate, as can be seen in Figure 3.5 d. This is due to the fact that one
starts with a paranematic state, while after the sweep, the system remains in the
nematic state, similar to what happens in regime III.

The Peclet number at which the hysteresis maximum is observed is plotted as a
function of the sweep rate in Figure 3.6 for various concentrations. The values of this
Peclet number, extrapolated to zero shear-rate, are plotted in Figure 3.3 (the dashed
line). As can be seen, this line lies in between the two spinodals, and is therefore an
indication of how the location of the spinodal changes with shear-rate. Note that the
critical shear-rate coincides with the shear-rate obtained from the above described
experimental method.
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Figure 3.6: The bare Peclet number at which the maximum hysteresis is found as
a function of the sweep rate, with τend  the dimensionless time during which the
final shear-rate is reached. The numbers in the figure refer to the various

concentrations in terms of ϕL
D

.

On increasing the shear-rate during a sweep, one might expect a sudden increase in
the birefringence once the paranematic-to-nematic spinodal point is crossed, and a
subsequent sudden decrease on lowering the shear-rate when crossing the nematic-to-
paranematic spinodal again. It turns out that the dynamics close to the spinodal points
are so slow, that an unambiguous identification of the shear-rate where the expected
sudden increase or decrease occurs can not be determined accurately enough to really
distinguish these from the shear-rate where the maximum in the hysteresis curve
occurs.

What is neglected in the above analysis is the existence of distinct nematic domains,
which might be important for lower shear-rates. The order parameter tensor S  is
assumed to be the same everywhere in the system. It is unclear what the influence of
the formation of inhomogeneties is on the measured birefringence.
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3.3 EXPERIMENTAL METHODS AND RESULTS

3.3.1 THE COLLOIDAL SYSTEM

The system used in this study consists of bacteriophage fd. These bio-polymers have
a contour length of =L 880 nm and a diameter =D 6.6 nm, as obtained with electron
microscopy. The persistence length of these molecules is =P 2000 nm, which is
about twice the contour length [37]. Fd-virus is therefore somewhat flexible. The
solvent is a 10 mM Tris(hydroxymethyl)-aminomethane buffer (pH = 8.15) with 25
mM NaCl added. The pH was adjusted by adding a dilute solution of hydrochloric
acid (HCl) to the fd-solution.

Fd-virus molecules are charged, resulting in an effective diameter that is larger than
the above mentioned thickness of 6.6 nm. From Onsager’s expression for the
effective diameter of a charged rod [14] we obtain a diameter of 14.8 nm at an ionic

strenght of 30 mM. The effective aspect ratio is thus equal to =L
D

60.

Experimentally, the two binodal concentrations without shear flow are found to be
equal to 13.0 mg/ml and 14.5 mg/ml, respectively. These corresponds to values of

ϕL
D

 of 4.5 and 4.8, respectively (using a molar mass of 1.64×107 gram [37]). These

numbers are higher than the respective predicted values of 3.3 and 4.2 by Onsager
[14]. This discrepancy is due to the slight flexibility of fd-virus [38, 39].

3.3.2 EXPERIMENTAL SET-UP

The home-built birefringence set-up is based on the design by Fuller and Mikkelsen
[40] (see Chapter 1 for more details). The rotating half-wave plate is mounted on a
dentist drill, which can achieve a rotational speed of about 4 kHz. The shear cell is a
home-built optical couette cell with a gapwidth of 2.47 mm, which is placed in a
thermostating, optical matching bath. The largest shear-rate that is applied is 7 s-1.
The acceleration and deceleration times during a shear-rate sweep varied from 0.5 s
to 1.0 s (see Figure 3.4). The direction of the laser beam relative to the shear
geometry is depicted in Figure 3.1.

3.3.3 
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SHEAR ALIGNMENT OF FD-VIRUS
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Figure 3.7: Birefringence as a function of time, where the shear-rate is linearly
increased between 5 and 6 seconds, and decreased to 0 again between 16 and 17
seconds after the start of the measurement. In the time interval 6 to 16 seconds,
the shear-rate is kept constant. Figure (a) is for a final shear-rate of 1 s-1 and (b)
for 7 s-1. The numbers in the figures refer to concentrations in mg/ml. The inserts
in both plots are numerical results as obtained from the equation of motion
eq.(3.16). The proportionality constant in eq.(3.26) is determined from the
stationary experimental birefringence level for the highest concentration.
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Before discussing the shear induced shift of spinodals as obtained by the above
described hysteresis measurements, flow alignment experiments will be presented in
the following subsection. As will be seen, there is qualitative agreement between
experiment and theory, which validates the use of eq.(3.16) for the interpretation of
the experimental results to obtain the shear induced shift of spinodals. Due to the
Ginzburg-Landau type of expansion that was employed to derive the equation of
motion eq.(3.16), and the neglect of defects, there is only qualitative agreement.

Flow alignment experiments are performed on suspensions of fd-virus for shear-rates
varying from 1 and 7 s-1, and concentrations varying from 3.5 mg/ml (the overlap
concentration is 0.076 mg/ml), up to 14.05 mg/ml, which is close to the binodal
nematic concentration. Figure 3.7 shows typical birefringence curves, where the
shear-rate is linearly increased from 0 to it’s final value within the time interval 5 to 6
seconds, and linearly decreased again to 0 in the time interval 16 to 17 seconds.

As expected, birefringence increases with increasing shear-rate and increasing
concentration. In Figure 3.7, numerical results obtained from eq.(3.16) are plotted in
the inserts. The proportionality constant in eq.(3.26) is chosen so as to match the
birefringence level for the highest concentration. The proportionality constant that
appears on the right hand-side of eq.(3.26) is found to be equal to 0.33×10-4, when
the concentration c is expressed in mg/ml. Mapping of the concentration in mg/ml

onto ϕL
D

 can be done by relating the spinodal concentrations found from eq.(3.16)

and the experimentally found binodal concentrations with Onsager’s exact results.
Since the coexistence region for fd-virus suspensions is much narrower than
predicted by Onsager, there is no unambiguous choice for the proportionality constant

between values of ϕL
D

 and concentrations in units of mg/ml. We chose a value of

0.38 ml/mg for the proportionality constant so as to have an optimum match between
the experimental shear alignment experiments and the theoretical prediction based on
eq.(3.16). For the calculation of the bare rotational Peclet number and the
dimensionless time we used a bare rotational diffusion coefficient of 11 s-1. This
value of the rotational diffusion coefficient is found by comparing the critical shear-
rates as obtained from eq.(3.16) (see Figure 3.12). The difference with the value of
20.9 s-1 that was found in ref.  [37] is probably due to the approximate nature of our
theory and differences in contributions from electrolyte friction  [41]. As can be seen,
the experimental birefringence curves are in qualitative agreement with theory,
except that for the highest concentrations theory predicts no decay of the
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birefringence to 0. For these higher concentrations the system remains in the stable
nematic state after cessation of the shear flow. The experimentally observed
relaxation of birefringence is probably due to the formation of domains with different
directors. The formation of such inhomogeneities has been neglected in our theory.
No more than qualitative agreement can be expected, due to the approximate nature
of the Ginzburg-Landau type of expansion that was used.

Note the overshoot in birefringence in Figure 3.7 a and b that occurs only for
concentrations which are close to the nematic binodal concentration. This effect is
more pronounced for larger shear-rates. It is unclear what the precise microscopic
origin of the overshoot is. As can be seen from in Figure 3.7, this overshoot is not
predicted by theory.
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Figure 3.8: Birefringence as a function of concentration for four shear-rates,
which are indicated in the figure. The insert shows the theoretical prediction
according to eq.(3.16).

The concentration dependence of the stationary value of the birefringence for four
different shear-rates is shown in Figure 3.8. A strong non-linear increase of the
birefringence in the neighbourhood of the binodal concentration (14.5 mg/ml) is
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found. For these larger concentrations, thermodynamic forces assist the shear forces
to align the rods. Note the almost linear increase of birefringence with concentration
for the lowest shear-rate of 1 s-1, up to about 13.00 mg/ml, beyond which
thermodynamic forces render a rapid increase.
The insert in Figure 3.8 is the theoretical prediction from eq.(3.16) for the same
shear-rates as in the experiments. Theory underestimates the birefringence at
somewhat lower concentrations. The critical shear-rate for the fd-virus suspension is
1.6 s-1 (see the subsequent subsection). Only the smallest shear-rate in Figure 3.8 is
below this critical shear-rate. For larger shear-rates the birefringence is therefore
expected to change continuously as a function of concentration. For the smallest
shear-rate, the theoretically found concentration dependence exhibits a discontinuity
where the paranematic state becomes unstable, and the systems jumps to the nematic
state. The resolution in concentration for the data points in Figure 3.8 is too crude to
really see this discontinuity.
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Figure 3.9: Birefringence as a function of shear-rate for various concentrations,
as indicated in the figure. The insert shows theoretical results as obtained from
eq.(3.16).

The shear-rate dependence of stationary birefringence is shown in Figure 3.9 for
various concentrations. The insert shows theoretical results obtained from eq.(3.16).
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For the two highest concentrations, theory predicts a jump discontinuity at low shear-
rates, where the system jumps from the paranematic branch to the nematic branch.

In all the above described experiments, we found qualitative agreement between
experiment and theory. This validates the use of the theory described in section 3.2.3
for the interpretation of the experimental procedure described in section 3.2.6 in order
to obtain the shear-rate induced shift of spinodals.

3.3.4 HYSTERESIS EXPERIMENTS

The experimentally applied time dependence of the shear-rate during a sweep is
sketched in Figure 3.4. The corresponding time dependence of the measured
birefringence during a sweep (solid lines) and the difference between the two (dotted
line) is plotted in Figure 3.10 for three different concentrations; 5.84, 11.18 and 13.88
mg/ml.
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Figure 3.10: Left column of figures: birefringence as a function of the actual
shear-rate during a sweep (solid lines) and the hysteresis (dotted line), for four
concentrations: (a) 5.84, (b) 11.18 and (c) 13.88 mg/ml. The rate of change of the
shear-rate is 7 s-2 (corresponding to the theoretically defined sweep rate

τ =1
end

0.335, for a bare rotational diffusion coefficient of 20.9 s-1), while the

highest shear-rate is 7 s-1 (corresponding to a bare rotational Peclet number of
0.33). The actual time dependence of the measured birefringence during a sweep
cycle resembles the plots in Figure 3.4. Right column of figures: hysteresis
curves for three different sweep rates. The numbers in the figure refer to sweep

rates γ�d
dt

 in units of s-2.

For the lowest concentration (Figure 3.10 a), the amplitude of the hysteresis curve is
found to be much smaller than for the higher concentrations. This is in accordance
with the theoretical prediction in Figure 3.5, pertaining to the concentration regime I
as defined in subsection 3.2.6. The experimentally observed sweep rate dependence
of the shear-rate where the maximum in the hysteresis curves occurs, however, is
experimentally found to be more sensitive on the sweep rate as compared to theory.
The form of the hysteresis curves in Figure 3.10 b resembles the theoretical curves in
Figure 3.5 b, corresponding to the concentration regime II. The predicted gradual
disappearence of a clear maximum in the regimes III and IV (see Figure 3.5 c and d)
is also observed in the experimental Figure 3.10 c.
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Figure 3.11: The sweep rate dependence of the shear-rate where the maximum
hysteresis is found, for the concentrations: (a) 5.84, (b) 10.59, (c) 11.18 and (d)
13.88 mg/ml. The solid lines are linear fits, where data points for very small
sweep rates are omitted.

The sweep rate dependence of the shear-rate where the maximum hysteresis occurs is
plotted in Figure 3.11 for four different concentrations. There are two differences
with the theoretical predictions in Figure 3.6. First of all, except for the lowest
concentration, the curves sharply bend towards a zero shear-rate on lowering the
sweep rate. The predicted essentially linear dependence is only found for somewhat
larger sweep rates. In the extrapolation procedure to zero sweep rate we omitted data
points for the very small sweep rates, where the sharp downward bend occurs.
Secondly, the shear-rate that is found from a linear extrapolation to zero sweep rate
remains finite below the critical shear-rate. This “background” is independent of
concentration and seems to be equal to a similar offset at very high concentrations.
These discrepancies are not yet understood. The shear-rates found from such linear
extrapolations to zero sweep rates are plotted in Figure 3.12.
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Figure 3.12: The experimentally obtained non-equilibrium phase diagram. This
plot corresponds (in part) to the dotted line in Figure 3. The points ○ mark the
binodal concentrations without shear flow. A dotted line is plotted to guide the
eye.

The data in Figure 3.12 should be compared to the dotted line in the non-equilibrium
phase diagram in Figure 3.3. The critical shear-rate that follows from Figure 3.12 is
1.6 s-1. Comparing to the theoretically predicted critical Peclet number in Figure 3.3
gives a bare rotational diffusion coefficient of 11 s-1. This value has been used in the
previous subsection to compare experimental shear alignment curves with theoretical
predictions.
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3.4 SUMMARY AND CONCLUSIONS

Time resolved birefringence measurements have been used to probe the shear
dependent location of isotropic-nematic spinodals in a suspension of fd-virus. The
shear-rate where the maximum hysteresis occurs during a shear sweep, where the
shear-rate is first increased and subsequently decreased, lies in between the
paranematic-to-nematic and the nematic-to-paranematic spinodals in the shear-rate
versus concentration phase diagram. The critical shear-rate beyond which no
distinction can be made between the nematic and paranematic states is found to be
equal to 1.6 s-1. The corresponding critical concentration of fd-virus is 10.9 mg/ml,
which should be compared to the binodal concentrations in the absence of shear flow
of 13.0 mg/ml and 14.5 mg/ml. There is thus an appreciable shear induced shift of the
spinodals, since the spinodal concentrations without shear flow are in between the
binodal concentrations.

The birefringence hysteresis curves are calculated from an equation of motion for the
orientational order parameter tensor, which is derived here from the N-particle
Smoluchowski equation for rigid, lyotropic rods. This equation of motion is believed
to be only qualitatively correct as a result of a Ginzburg-Landau type of expansion
that is employed in its derivation, and due to the use of an approximate closure
relation for a fourth order ensemble average. A very similar equation of motion has
been considered by Doi and Edwards [19]. There are two experimental observations
which are not accounted for by the above mentioned equation of motion. First of all,
on extrapolation of the shear-rate where the maximum hysteresis occurs to zero
sweep rates, curves turn sharply to a zero shear-rate for small sweep rates. Second,
there is a “background” shear-rate outside the spinodal region, that is, the shear-rate
where the maximum hysteresis occurs at zero sweep rates is found to be non-zero.
These discrepancies are not yet understood. In addition, shear alignment suspensions
lose their birefringence on cessation of shear flow, where the equation of motion
predicts a stable nematic state. This is probably due to the formation of
inhomogeneities.
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Chapter 4 
SHEAR-BANDED STRUCTURES IN

SUSPENSIONS OF RIGID RODS

We observed the formation of stable banded structures under stationary shear flow
conditions in suspensions of boehmite rods. The question addressed in this chapter is
whether this banded structure is due to a Taylor instability or a shear-banding
instability.
Beyond some shear rate, the position of the bands begin to oscillate in time. On
further increasing the shear rate, the oscillatory behaviour becomes irregular in time.
The behaviour of the banded structure is investigated for various concentrations as a
function of shear rate. The Taylor number where banding is observed, is a factor two
to three below the critical Taylor number. Since the well-known critical value of the
Taylor number, where the Taylor instability occurs in molecular systems, may be
different for colloidal systems, this does not exclude the possibility that we
nevertheless observed a Taylor instability. The internal microstructure of the bands is
probed by birefringence experiments, where the transmitted light through two crossed
polarizers, with an optical couette cell in between, is measured. The internal structure
of the shear-bands is not in accordance with what is expected for shear-banding nor
for a Taylor-banded state. It could be that the instability is a Taylor instability, but
that the final, stationary banded state is more complicated compared to molecular
systems, due to shear-thinning effects and the existence of concentration gradients.
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4.1 INTRODUCTION

Although not yet observed experimentally, one expects on the basis of theoretical
considerations that in suspensions of rigid rods the so-called shear-banding instability
will occur [1-3]. Shear-banding is the result of a delicate interplay between shear
forces and thermodynamic forces. Theory predicts shear-banding in the
neighbourhood of the paranematic-nematic two-phase region.

Shear-banding was first observed in polymer extrusion experiments on polyethylene
melts [4]. Here a sudden increase of material throughput is observed on increasing the
extrusion rate. This phenomenon is now referred to as “the spur effect”. As far as we
know, McLeish and Ball [5, 6] were the first to explain this effect in terms of a flow
instability. The apparent viscosity in the polyethylene extrusion experiment suddenly
seems to decrease, this will give rise to a discontinuous increase of the material
throughput. The usual flow pattern will become unstable, and the flow pattern
changes abruptly to a “banded” state. Shear-banding is observed for a number of
systems, like wormlike-micelles [7, 8], other kinds of surfactant systems [9-11],
polycrystalline colloids of spherical particles [12-14], and in polydisperse granular
matter [15]. Under controlled shear rate conditions, two different kind of shear-
banded states are observed in a couette geometry, which are schematically depicted in
Figure 4.1.

a    b
Figure 4.1: Possible shear-banded flow patterns in a Couette geometry. a) Bands
in the gradient direction and b) bands in the vorticity direction. The dark area
represent region with higher concentration, whereas the lighter ones represent the
lower concentration.

Banded structures are observed when two bands of different shear rates “coexist” (see
Figure 4.1 a). Within each band the shear rate is a constant, and the bands are
interconnected by an “interface” where the spatial derivative of the shear rate is very
large. The shear rate changes only along the gradient direction. The other banded
structure that is observed is a structure where the microstructure of the system varies
periodically along the vorticity direction (see Figure 4.1 b). The shear rate is probably
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constant throughout the system, but the stresses in the gradient direction for the two
states is different.
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Figure 4.2: a) The van der Waals loop-like behaviour of the stress as a function
of the shear rate, leading to shear-banding along the gradient direction as
depicted in Figure 4.1 a, and b) the multivalued stress, leading to shear-banding
along the vorticity direction as depicted in Figure 4.1 b.

Intuitively the instability of the usual linear flow profile can be understood as follows.
Consider a homogeneous suspension of rod like colloids with a concentration just
below the critical concentration (see Figure 3.3). On gradually increasing the shear
rate, the viscosity η  will decrease because of the shear induced alignment of the rods.
The friction coefficient for sliding layers of suspension is lowered on the alignment
of the rods. In the neighbourhood of the critical shear rate, a small increase of the
shear rate leads to a relatively strong enhancement of the alignment. This is due to the
very slow rotational dynamics in the neighbourhood of the spinodals, which is not
sufficiently fast any more to counterbalance the aligning shear forces. This severe
shear thinning behaviour can lead to a van der Waals loop-like behaviour of the stress

( )σ γ η γ= � � , as depicted in Figure 4.2 a. It is easily shown that the Navier-Stokes

predicts an unstable linear flow profile when the derivative d dσ γ�  is sufficiently

negative [2]. The stable stationary state under controlled shear rate conditions is now
the shear-banded state as sketched in Figure 4.1 a. Stability of this banded state
requires the stresses along the gradient direction to be equal in the two bands, that is,
the two shear rates must give rise to the same stress. For higher concentrations, within
the two-phase region, the two stable states each have their own stress versus shear
rate dependence. These are the two branches plotted in Figure 4.2 b. Under controlled
shear rate conditions bands can now “coexists” with identical shear rate but each with
a microstructure that pertains either to the nematic branch or the paranematic branch.
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A second kind of instability that occurs in a couette geometry, which is also found in
molecular systems, is the Taylor instability [16, 17]. This is an instability that occurs
at relatively high shear rates, and is due to large centrifugal forces on suspension
volume elements. This classic instability gives rise to a flow pattern as depicted in
Figure 4.3. Bands are formed along the vorticity direction, like in the shear-banding
scenario depicted in Figure 4.1 b, but the bands now have a more complicated
internal structure.

Figure 4.3: The stable flow pattern in a Taylor-banded structure [18].

In this paper we investigate possible flow instabilities in a colloidal system of rigid,
rod-like particles. The colloidal system and the experimental set up are introduced in
section 4.2, section 4.3 contains the experimental observations and we conclude with
a discussion.

4.2 THE COLLOIDAL SYSTEM AND EXPERIMENTAL SET-UP

The system used to preform the experiments exists of boehmite rods. The synthesis of
these aluminium hydroxide particles is described by Buining [19]. The rods have an
average length of 108 nm with a polydispersity of 30% and a thickness of 9 nm with
a polydispersity of 23 %, as determined from electron microscopy. The solvent is
water. To stabilise the rods against van der Waals attractions, 0.5 weight % of ACH
(Aluminium Chlore Hydrate) is added. ACH strongly absorbs onto the rods and
provides a stabilising polymer-like layer [20]. To reduce and control the double layer
interactions, 0.01 M NaCl was added [20]. To our surprise we could not detect the
isotropic-to-nematic phase transition in the quiescent system.
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An outline of the experimental set up is given in Figure 4.4. A 2D CCD-camera
detects the white light that is transmitted through an optical couette cell, immersed in
a thermostating optical bath containing toluene. This bath is located in between two
crossed polarizers. The angles of the polarizers with respect to the vorticity direction
will be varied in an experiment.

CCD
light
source

Figure 4.4:  The experimental set up. White light is direction along the gradient
direction of an optical couette cell, which is located between two crossed
polarizers. The transmitted light is detected by means of a 2D CCD-camera.

All CCD-pictures are corrected for background intensity. The couette cell is
described in Chapter 1: the inner cylinder is rotated here with respect to the stationary
outer cylinder, the gapwidth is 2.47 mm and the radius of the inner cylinder is 21.5
mm.

4.3 EXPERIMENTAL RESULTS

A typical CCD-picture is shown in Figure 4.5. The polarization direction of the
incident light is along the vorticity direction.
These results are typical for the volume fraction range of 1 to 3 %. The transmitted
light pattern was found to be independent of the shear history of the system: fast and
slow shear rate accelerations gave rise to identical CCD-patterns. For zero shear rate
the CCD-picture is uniformly black, indicating that the microstructure at rest is
isotropic. For a relatively low shear rate, the shear forces uniformly align the rods
into a paranematic state, giving rise to a uniformly white CCD-pattern (see Figure 4.5
a).
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Figure 4.5: CCD-pictures for a volume fraction of 1.8 % at various shear rates: a)
79, b) 108, c) 173 and d) 284 s-1. The polarization direction of the first polarizer
(the polarizer on the left in Figure 4.4) is along the vorticity direction.

The inhomogeneity seen in Figure 4.5 a is due to optical effects of the shear cell and
the thermostating bath, as well as the finite diameter of the incident beam of white
light. The gap as seen in the flow direction (at the edges on the left and right sides of
Figure 4.5 a) is relatively bright due to the large optical path length. Above a certain
shear rate, a banded structure is observed, as can be seen in Figure 4.5 b. Increasing
the shear rate further, the banded structure begins to oscillate, rendering a CCD-figure
that is a bit blurred, especially at the edges, where the optical path length is relatively
large (Figure 4.5 c). Increasing the shear rate even further, the band oscillations
change to an irregular time dependence of the position of the bands, rendering the
blurry CCD-pattern shown in Figure 4.5 d.

The banded structures described above are observed at all concentrations we
investigated (between a volume fraction of 1 and 3 %). A “non-equilibrium phase
diagram” is shown in Figure 4.6. Four different regions can be distinguished: A
homogeneous paranematic state (corresponding to Figure 4.5 a), a stable banded
structure (Figure 4.5 b), an oscillating banded structure (Figure 4.5 c) and an
“unstable” banded structure, where the position of the bands fluctuate in an irregular
fashion. As can be seen, the “state-transition points” tend to shift to higher shear rates
at higher concentrations.
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Figure 4.6: The non-equilibrium phase diagram. The lines indicate the transition
from one state to the other. The various states are described in the main text.

To further investigate the flow pattern in case a stable banded structure is observed,
where no oscillations nor irregular movement of the bands occur, CCD-patterns are
recorded for different orientations of the two polarizers. In this way the
microstructure within the bands can be resolved to some extent. The CCD-pictures
that were taken for different polarizer orientations are shown in Figure 4.7. Figure 4.7
a, where the first polarizer is along the vorticity direction, shows a band structure
where thick and thin white bands seem to alternate. The thicker bands can be seen to
be somewhat tilted with respect to the horizontal thinner bands. It seems as if the
thicker bands form a spiral-like structure. Rotating the polarizers 25 degrees, relative
to the flow direction clockwise (see Figure 4.7 b), gives a banded structure that is
very coarse in comparison to the previous case in Figure 4.7 a. A further clockwise
rotation to 45 degrees yields a CCD-pattern where pairs of bands are seen (see Figure
4.7 c). Three broad bands are observed with an internal structure that leads to a
relatively dark region in the middle of the bands. For an angle of 65 degrees of the
first polarizer with respect to the vorticity direction, three uniform white bands
separated by a broad black region are observed (see Figure 4.7 d). Note that the white
regions in the gaps (at the edges of the CCD-pattern) seem to be “out of phase” with
the observed white bands.
In Figure 4.8 it is shown what happens to the CCD-pattern on reversing the rotational
velocity of the inner cylinder. Although difficult to see from Figure 4.8, the narrow
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white bands remain horizontal on reversing the rotation direction of the inner
cylinder. The broad white bands, however, reverse their tilt.

Figure 4.7: CCD-patterns of a stable banded structure for various orientations of
the polarizers, as indicated in the figures. The angles of the first polarizer (the
polarizer on the left in fig.4) relative to the flow direction are a) 0, b) 25, c) 45
and d) 65 degrees.

Figure 4.8: CCD-patterns for two different rotation directions of the inner
cylinder. The arrows indicate the velocity of the face of the inner cylinder closest
to the CCD camera. The volume fraction is 1.8 % and the shear rate is 110 s-1,
corresponding to the situation in Figure 4.7 a.
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The average width of these bands could in principle be affected by the height of the
sample within the gap of the couette cell. As can be seen from Figure 4.9, however,
the width of the bands is almost independent of the sample height, except for very
small sample heights. It thus seems that the suspension boundaries at the top and
bottom of the couette cell hardly affect the shear-banded structure.
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This criterion for the occurrence of the Taylor instability is valid for Newtonian
fluids, where the viscosity is shear rate independent, and the density is uniform. For
the low volume fractions of interest here, the mass-density of the suspension is almost
equal to that of water. Shear viscosity data for our boehmite system are plotted in
Figure 4.10 as a function of the shear rate for various volume fractions of rods. The
suspension is found to be shear-thinning slightly only at volume fractions above
approximately 2 %. One might therefore conclude that the above criterion for the
occurrence of the Taylor instability is accurate for our boehmite suspensions.
However, since the local shear rates within the banded structures can be much larger
than the overall applied shear rate, this statement should be interpreted with some
care. It might be that the local shear rates within the banded structure are so large that
shear-thinning does influence the above criterion. In addition, concentrations of
boehmite rods may not be uniform in a shear banded state, leading to a spatial
variation of the viscosity.
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Figure 4.10: Shear viscosity as a function of the shear rate for various volume
fractions of boehmite rods, as indicated in the figure.

The Taylor number as calculated from the above viscosity data for the lowest shear
rate where a banded structure is found is always less than half it’s critical value (see
the table below). In view of the reservations concerning the validity of the above
mentioned criterion for a Taylor instability to occur, it remains uncertain whether we
have observed a Taylor instability or a shear-banding instability.
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Volume
fraction

Taylor number

1.2 1749

1.8 1273
2.4 1085

Table 4.1: The Taylor number for three different concentrations for the smallest
shear rate where banding is observed.

The internal structure of the bands as probed by rotation of the polarizers in section
4.3 is quite different for a banded state due to a Taylor instability or a shear-banding
instability. What is not expected for both instabilities is the tilt of some of the bands.
What is expected to be seen in case of shear-banding is that on rotation of the
polarizers the white bands turn black and vice versa, since within the bands the
microstructure should be uniform. From Figure 4.7 it is clear that the bands have a
non-uniform internal microstructure. What is not in accordance with a Taylor
instability is an alternating structure of broad white bands and relatively thin white
bands as found in Figure 4.7 a. It could be that the instability that occurs in our
boehmite system is nevertheless a Taylor instability, but that the final, stationary state
is different from that of molecular systems, due to shear-thinning effects and the
existence of concentration gradients. The precise structure of the banded state
requires additional experimentation.
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SUMMARY

The aim of this thesis is to investigate the structure formation and deformation in
colloidal systems due to an externally applied shear flow. The focus is on two
different kind of colloidal systems: suspensions of attractive spherical colloidal
particles in the neighbourhood of a gas-liquid critical point and suspensions of rod-
like colloidal particles.

In Chapter 2 deals with the shear induced deformation of long ranged, critical
microstructure of a colloid-polymer mixture close to it’s gas-liquid critical point. The
colloidal system consists of stearyl silica spheres and Polydimethylsiloxane (PDMS)
dissolved in cylcohexane. The polymer PDMS induces so-called depletion attractions
between the colloidal spheres, giving rise to a gas-liquid critical point. Close to the
critical point, the spatial extent of effective interactions between the colloidal
particles is very large and the dynamics of concentration fluctuations is very slow.
These two properties of near-critical systems causes their microstructure to be
sensitive to an externally applied shear flow. Shear flow does not affect correlations
in the plane perpendicular to the flow direction, whereas in other directions there is a
severe breakdown of structure. The microstructure under shear sflow is thus
extremely anisotropic. This anisotropy in microstructure leads to a turbidity that is
dependent on the polarisation direction of the light, a phenomenon that is commonly
referred to as dichroism. Shear induced dichroism is measured as a function of shear
rate and the distance from the critical point. Our experiments are in agreement a
theoretical mean-field scaling relation that is derived from the Smoluchowski
equation. This scaling relation predicts that a plot of the shear induced dichroism
divided by the square-root of the shear rate versus the shear-rate multiplied by the
fourth power of the correlation length is independent of the distance to the critical
point. All experimental curves indeed collapse onto the same master curve, which
agrees with the theoretically predict curve, up to a correlation length of about 700 nm.
For correlation lengths larger than 750 nm, an unexpected decrease of the dichroism
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on approach of the critical point is observed. Theory in this beyond mean-field region
requires the solution of non-linear equations of motion for the pair-correlation
function. So far, these non-linear equations of motion have not been solved

In Chapter 3, the shear-rate dependent location of paranematic-nematic spinodals for
suspensions of fd-virus particles is investigated. Fd-virus is a rod-like plant virus with
a length of 880 nm, a thickness of 6 nm and has a persistence length of 2000 nm.
Contrary to the above described critical system, the shear-rate dependence of the pair-
correlation is relatively unimportant for these rods-like colloids as compared to the
shear-rate dependence of single particle probability density functions. The tendency
of the shear flow to align the rods is the most important feature that causes the shear
rate induced shift of phase transition lines. The experimental technique used here is
time resolved birefringence. Hysteresis experiments are performed, where the shear-
rate is first increased in time and subsequently decreased. The shear-rate where the
maximum hysteresis in birefringence is found is a measure for the location of the
paranematic-nematic spinodals. The hysteresis experiments are interpreted on the
basis of an approximate solution of the Smoluchowski equation for stiff rods. There
are some features that we find experimentally, which are not yet understood. The
measured spinodal concentrations shift to lower values on increasing the shear-rate,
as expected. The critical shear rate, beyond which no phase transition occurs
anymore, is in reasonable agreement with the prediction of the approximate solution
of the Smoluchowski equation.

In Chapter 4 of this thesis, we report preliminary results on a flow instability that is
observed in suspensions of stiff, rod-like colloids. The colloidal system consists of
boehmite rods, partly stabilized against van der Waals attractions by absorbing a
polymer on the surface of the rods. Under shear flow, two kind of flow instabilities
can in principle occur: the classic Taylor instability and the shear-banding instability.
In both case on observes a banded structure along the vorticity direction in a couette
cell. The internal microstructure of the bands, however, is different for both
instabilities. We attempted to study the microstructure within the bands by measuring
the transmitted intensity, with the shear cell located in between two crossed
polarizers. It was found that the internal band structure does not comply with either
the classic Taylor structures nor with the structure that is expected for the shear-
banding instability. What probably happens is that the initial instability is of the
Taylor type, but that the final stationary state is different from what is predicted for
Newtonian fluids with a constant density, due to shear-thinning effects and possible
variations of boehmite concentrations. Local shear-rates are probably very large, so
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that shear-thinning may play a role in determining the final stationary state. In
addition, in these suspensions the concentration of boehmite rods may be
inhomogeneous: such density inhomogeneities are absent in incompressible simple
fluids. Further research is required to fully unravel the internal microstructure of the
bands.
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DE ESSENTIE NA 4 JAAR

In de loop der jaren heeft de schrijver ondervonden dat het uitleggen van wat zijn
onderzoek inhield, geen vanzelfsprekendheid was. Wanneer de resultaten concreet
bruikbaar zijn in het dagelijkse leven, dan begrijpt men het sneller. Helaas, het
onderzoek beschreven in deze thesis heeft nog geen enkele directe toepassing. De
hele opzet van het werk bestaat uit experimenten en mathematische modellen die een
verklaring proberen te vinden voor bepaalde fysische fenomenen. Dit is een zoektocht
naar zuiver wetenschappelijke kennis, die ons misschien veel later van pas kan zijn.
Deze tekst is een korte samenvatting van 4 jaar bloed, zweet en tranen. Niet alle
aspecten van het onderzoek zullen worden behandeld omdat men dan verdwaalt in
alle gegevens.



De essentie na 4 jaar

- 92 -

TUSSEN ATOMEN/MOLECULEN EN ZANDKORREL

Een heel belangrijk thema in deze thesis zijn colloïden. Wat zijn dat nu? Colloïden
zijn kleine deeltjes met een grootte tussen een 1000 000ste en een 1 000ste van een
millimeter. Om de lezer een idee te geven van de grootte; ongeveer een factor 10
kleiner dan de rode bloedcellen in ons lichaam (rode bloed cel, rond schijfje van
ongeveer 0.008 op 0.002 millimeter).
De colloïdale systemen, ook wel dispersies genoemd, waarmee in dit vakgebied
gewerkt wordt, bestaan uit een vloeistof (het oplosmiddel) en de colloïdale deeltjes.
Het geheel is dus niets anders dan een pot met een vloeistof en hele kleine niet
opgeloste vaste deeltjes erin, denk aan een pot met modder. Het enige verschil met de
modder is dat colloïden kleiner zijn dan de zand korrels en er wordt meestal gewerkt
met veel verdundere systemen (vergelijkbaar met 100 gram zand op een emmer water
(10 liter)). Nu zijn scheikundige erin geslaagd om colloïden te maken met
verschillende goed gedefinieerde vormen zoals staven, bollen, plaaten,… (zie Figuur
1). In een colloïdale dispersie zijn de colloïden bijna allemaal even groot en dat helpt
bij de bestudering van hun gedragingen.

  
Figuur 1: Foto’s gemaakt met een krachtige microscoop. a) Aluminiumhydoxide
staafjes 500 nm lang en 10 nm dik b) Latex bollen met een diameter van 1200 nm.
en c) Aluminiumhydroxide  plaatjes met een dikte van 10 nm en een diameter van
200 nm.

Omdat colloïden zo klein zijn zinken ze niet naar de bodem, maar ze bewegen zich
door het oplosmiddel, ze vertonen diffuus gedrag. Deze random beweging door de
oplossing word ook wel Brownse diffusie genoemd. Het is zo dat in een glas met
water de moleculen op het eerste oog stil staan want er is geen stroming te zien in het
glas. In werkelijkheid bewegen en botsen ze als gekken en dit komt door de warmte.
Dit geldt voor alle vloeistoffen, ook voor het oplosmiddel van onze colloïdale
dispersie. Bij deze bewegingen botsen vele oplosmiddel-moleculen tegen de grotere
colloïden die op hun beurt in beweging komen. Je kunt het vergelijken met de
thermiek in de bergen. Zweefvliegers maken gebruik van die stroom van warme lucht
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om te blijven zweven. De ‘warme’ lucht atomen/moleculen botsen tegen de
onderkant van de vleugels van de zweefvlieger en die blijft daarom zweven. Het enig
verschil met de colloïdale wereld is dat deze thermische luchtstroming 1 kant op gaat
en bij colloïdale dispersies gaan de moleculen willekeurig alle kanten op. Het totale
gedrag van de colloïden bestaat dus uit onregelmatige bewegingen, alle kanten op,
eigenlijk net als de oplosmiddel moleculen. Omdat colloïden een factor 100 groter
zijn dan de moleculen/atomen van het oplosmiddel, bewegen ze wel trager, hetgeen
ons zeker van pas komt omdat de experimentele apparatuur moeite heeft met de
kleine en snelle atomen/moleculen.
Wat de wetenschappers nu doen is het oplosmiddel weg denken. In de theorie
‘vergeet’ men dat de colloïden zich in een vloeistof bevinden. De reden dat dit kan is
juist dit verschil in de grootte. Op de tijdschaal dat we de colloïden proberen te
bestuderen zijn de atomen en moleculen niet meer van belang omdat ze juist zo snel
bewegen t.o.v. van de colloïden. Je kan het vergelijken met het volgende. Je wil een
foto nemen van een voortbewegende schildpad. Je neemt dan een langere sluitertijd
omdat de schildpad zich langzaam voortbeweegt. Wanneer er dan een haas snel door
het beeld gaat bewegen, dan krijg je vegen in de foto. Bewegen er nu miljoenen
hazen snel alle kanten op dan is de hele foto vaag en zou je met foto-trucage de
constante ‘achtergrond’ gewoon kunnen weghalen om een scherpe foto van de
schildpad te krijgen. De moleculen/atomen geven ook zo’n vaag constant beeld en
wij denken ze gewoon weg omdat ze toch overal zitten.

METEN IS …

Wat er bestudeerd gaat worden, is het gedrag van colloïden in stromingen, of anders
gezegd, wat gebeurt er als een dispersie wordt geroerd. Om dit te kunnen bepalen is
er een speciaal apparaat gemaakt dat bepaalde optische eigenschappen van colloïdale
dispersies kan onderzoeken (zie tekening Figure 1.3, p 8 en foto achterkant kaft). Om
het varhaal niet te ingewikkeld te maken wordt beschrijving van de experimentele
opstelling achterwegen gelaten. Ook de uitleg nodig om de optische effecten in de
geroerde dispersies te begrijpen, word overgeslaan omdat dit te ver zou leiden.
Eén aspect betreffende de experimentele opstelling moet wel even kort vernoemd
worden, dat is namelijk de cel waar de colloïdale dispersie in werd geroerd (zie
Figure 1.5, p 10). Dit roeren gebeurde op een speciale manier zodat de stroming die
er ontstaat goed gedefinieerd is. De binnencilinder wordt gedraaid met als gevolg dat
de vloeistof in de spleet tussen de twee cilinders (aangegeven met ‘sample’ in Figure
1.5) gaat stromen met een goed bekend stromings-en snelheidsprofiel (zie tekening
Figuur 2).
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snelheid vloeistofstroom

vloeistofstroom

Figuur 2: Bovenaanzicht stromingsprofiel in monster cel. Binnen cylinder draait
rond. De snelheid waarmee de vloeistof mee beweegt neemt linear af naar de
buiten cylinder, waar de vloeistof stil staat. Dit profiel is voorgesteld door de
pijlen, hoe groter de pijl hoe harder de vloeistof mee vloeit. De pijlen geven niet
de stroom richting aan, die is concentrisch aan de twee cylinders van de cel.

De reden dat we dit goed gedefinieerde stromingsveld willen hebben, is dat er voor
dit stromingsveld goede beschrijvende formules bestaan die eenvoudig zijn in de
berekeningen. Stel we zouden andere stromingspatronen aanleggen met bijvoorbeeld
een mixer, dan worden de berekeningen een heel stuk moeilijker.

EN DAN … WETENSCHAP

In deze thesis is er duidelijkheid gezocht voor drie verschillende problemen. Alle
hebben ze colloïden en roeren gemeen.
Men kan zich voorstellen dat de vorm van het kleine deeltje invloed heeft op de
reactie op het opgelegde stromingsveld. Dit is te vergelijken met een bal en een speer.
Als de bal weg gegooid wordt, maakt het niet uit hoe je de bal vast pakt omdat die
rond is. De bal vliegt altijd even ver. Wil je een speer weg gooien, dan maakt het wel
degelijk uit hoe je de speer vasthoudt. Gooi je de speer parallel met zijn
voortbewegingsrichting, net als een speerwerper, dan vliegt hij een behoorlijk eindje
weg. Gooi je de speer daarentegen loodrecht op zijn voortbewegingsrichting dan kom
je niet ver door de extra weerstand die deze oriëntatie heeft. Deze
vormafhankelijkheid en oriëntatie afhankelijkheid vind je ook in stromingen van
colloïdale dispersies. Er is nu wel een extra factor die een rol speelt, namelijk het feit
dat er niet één colloïd zich beweegt in de vloeistof stroming, maar miljarden en dat
heeft zijn gevolgen want ze zullen elkaar beïnvloeden door bijvoorbeeld botsingen.
In de nu drie volgende paragrafen zal ingegaan worden op de onderwerpen
onderzocht in deze thesis.
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A) BOLLEN

Vaste stoffen hebben een regelmatige structuur. De atomen/moleculen zijn
gerangschikt over grote afstanden en ze blijven netjes op hun plaats zitten, zoals
bijvoorbeeld in ijs, suiker en zout kristallen en nog veel meer. Nu hebben vloeistoffen
ook een soort van structuur. Deze is niet zo regelmatig als een vaste stof maar toch, er
is een bepaalde regelmatigheid in te vinden, vooral op zeer korte afstanden (enkele
malen de diameter van een atoom, dus heel kort). Het gaat nu niet over vaste posities
van atomen/moleculen net als in vaste stoffen, maar meer over waar deeltjes zich
gemiddeld het vaakste bevinden.
Nu bestaat er nog een fase, namelijk de gasfase. In deze toestand, waar er weinig
deeltjes zijn per volume, bestaat er geen enkele orde meer, de deeltjes zijn
ongeordend. Hieronder zijn plaatjes van hoe men vaste, vloeistoffen en gassen kan
voorstellen.

(b) vloeistof

kans op 
een deeltje

gemiddelde
kans

kans op 
een deeltje

kans op 
een deeltje

afstand tot referentie deeltjeafstand tot referentie deeltje afstand tot referentie deeltje

(a) vaste stof (c) gas

Figuur 3: Schematische voorstelling van een a) vaste stof; b) vloeistof en c) gas.
Onder de tekening zijn correlatie functies getekend. Voor een vloeistof dempt de
functie naar een gemiddelde kans die niet meer afhandkelijk is van de positie
t.o.v. een referentie deeltje. Bij een gas toestand is die afhankelijkheid
onmiddellijk weg en is er overal een even grote kans. Bij de vaste stof zijn
duidelijk posities waar deeltjes zitten en waar er geen zijn en deze positie
afhankelijkheid zeer lang doorgaan.
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Nu hebben wetenschappers bedacht om die positie ordening wiskundig voor te
stellen, namelijk met behulp van een correlatie functie. Deze functie stelt de kans
voor dat een deeltje op een bepaalde plaats zit ten opzichte van een referentie deeltje.
In de tekening Figuur 3, kan je duidelijk het verschil zien tussen een vaste stof, waar
de deeltjes regelmatige posities hebben en een vloeistof. In de vloeistof is te zien dat
dicht bij het referentie deeltje er posities zijn waar de andere atomen/moleculen liever
zitten. Dit is voorgesteld door de punten in de curve die boven de gemiddelde kans
liggen. Er zijn ook plaatsen waar de deeltjes minder graag zitten, en daar ligt de curve
onder de gemiddelde kans. Uiteindelijk oscilleert de curve naar een gemiddelde kans
positie onafhankelijk ver van het deeltje. Bij de gas toestand is geen enkele structuur
meer te zien, duidelijk voorgesteld door de correlatie functie, die overal een gelijke
kans geeft om deeltjes aan te treffen. Wat nu geld voor alle toestanden, vast of
vloeibaar of gas, het maakt niet uit welke kant je gaat kijken, naar links, rechts, boven
of onder, de correlatie functie is overal gelijk, ‘symmetrisch’ kan men ook gezeggen.

Atomen/moleculen en colloïden hebben veel punten van overeenkomst en net als
atomen vormen colloïdale oplossingen ook vaste, vloeistof en gas structuren, zoals
net voorgestel. Nu is het de bedoeling om de structuur van een colloïdale oplossing
onder stroming te bepalen. Wat veranderd in deze ordening wanneer er een
stromingsveld op de colloïdale dispersie word aangebracht. Het colloïdale systeem
wat we hier gebruiken bestaat uit bolletjes met een straal van 51 nm. (0.000000051
m.) opgelost in cyclohexaan.
Er was reeds een theorie bedacht die probeerd te voorspellen wat er zou gebeuren.
Wij gaan  experimenteel proberen die theorie te bevestigen. De theorie heeft een vrij
eenvoudig basis, namelijk de Newtoniaanse wetten. Anders gezegd, als men de plaats
en de snelheid van deeltjes weet, kan men veel uitrekenen steunent op het ‘actie geeft
reactie’ principe. Als twee colloïden elkaar raken dan weet je wat er na de botsing
gebeurd en omdat je dat van alle deeltjes kan berekenen is het dus mogelijk om de
structuur te berekenen ook als je een stromingsveld aanlegt.
Wat deze theorie voorspelt is een anisotropische structuur wanneer er een vloeistof
stroom op de dispersie wordt aangebracht, anders gezegd een niet symmetrische
structuur. Zonder stroming is de structuur van de colloïden in alle richtingen dezelfde,
kijk naar uitleg bij tekening Figuur 3.  De stroming die hier gebruikt wordt, is niet
symmetrisch. Men kan het vergelijken met de wind, die heeft een richting (westen
wind) en een snelheid (90 km/uur). Als de windrichting draait (oosten wind) dan krijg
men niet hetzelfde effect, bomen gaan een andere kant op buigen.
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kans op 
een deeltje

loodrecht op stroming met stroming mee

kans op 
een deeltje

afstand tot referentie deeltje afstand tot referentie deeltje
Figuur 4: Correlatie functies in twee richtingen met strooming. Loodrecht op de
stromingsrichting blijft de structuur die van een vloeistof. Het rare is dat de
structuur met de stroming mee veranderd in die van een gas fase. Dus men krijgt
twee soorten fase.

Wat blijkt uit de experimenten is dat de vloeistofstroming ervoor zorgt dat de
colloïden mixen, maar niet in alle richtingen en dat is het rare. In de richting van de
vloeistof stroom (de wind) worden de colloïden gemixed en verliezen ze hun
structuur en veranderd de correlatie functie naar een vlakke curve (zie Figuur 4) en
word het een soort gasvormige fase. Alle structuren loodrecht op de stromingsrichting
blijven behouden en de correlatie functie blijft onveranderd. De deeltjes blijven,
loodrecht op de stromingsrichting, als het ware op hun relatieve plaatsen zitten en er
blijft een vloeistof te zien. Als er heel hard geroerd word, verlies je deze speciale
situatie en dat is iets wat de theorie niet voorspeld heeft maar dit is wel iets wat we
gemeten hebben.

B) STAVEN

De herstructureringen, bestudeert in de vorige paragraaf, kunnen ook bij andere
deeltjes vormen bekeken worden. Er zullen dan heel andere uitkomsten te zien zijn,
zoals zal blijken. In deze thesis is ook gekeken naar staaf vormige deeltjes, om
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preciezer te zijn. Er werd gewerkt met een virus, het fd virus. Dit virus is 880 nm lang
en 15 nm breed (0.00088 mm op 0.000015 mm) en een beetje flexibel. (Het virus
zorgt alleen voor wat buikinfecties bij biggetjes en is dus onschadelijk voor de mens)

Figuur 5: Foto van een fd-virus deeltje gemaakt met krachtige microscoop

Stel je hebt heel veel staafvormige deeltjes, dan zul je ze, als je ze economisch wilt
stapelen, het liefst allemaal parallel moeten leggen, net als het pak spaghetti. Doe je
dat niet dan heb je veel meer ruimte nodig. Deze fd-virussen en alle staafvormige
colloïdale deeltjes stapelen zich zelf spontaan. Als je nu veel van die deeltjes bij
elkaar stopt in een kleine ruimte, dan zullen ze op een gegeven moment allemaal
spontaan parallel gaan liggen. Dit noemen we van isotroop (alle wanordelijk) naar
nematische structuur (alle parallel) gaan (zie tekening Figuur 6).

a) isotrope fase b) nematische  fase

Figuur 6: Isotroop (a) en nematische (b) fase. In de isotrope fase hebben alle
deeltjes  een random oriëntatie, in de nematische fase liggen ze allemaal min of
meer parallel aan elkaar.

Nu brengen we een stromingsveld op een monster aan met deze fd-staafjes. Het
resultaat zal zijn dat de deeltjes alle langzaam parallel aan het stromingsveld zullen
gaan staan, net als een vlag in de wind. Hoe harder de stroming hoe beter ze parallel
liggen. Door de stroming gaan ze dus eigenlijk een nematische of opgelijnde
structuur vormen en dit verschijnsel hebben we in Chapter 3 uitgebreid bestudeerd.
Ook hier is een theorie opgesteld met als startpunt de Newtoniaanse wetten, net als
bij de bollen. Wat men nu moet weten van elk deeltje is de positie, de snelheid en de
oriëntaties.
Ook nu weer zijn theorie en experiment vergeleken en zijn er overeenkomsten
gevonden. De experimenten begonnen aan monsters met een zo hoge concentratie dat
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de staafjes spontaan oplijnen  en telkens werden ze verdund, dus minder fd-virussen
per volume monster. Het resultaat was dat er telkens een sterkere stroming door de
monster cel moest worden opgelegd om de opgelijnde structuur te vinden, tot op een
gegeven moment dat die opgelijnde nematische structuur helemaal niet meer werd
gezien.
De theorie die betreffende dit onderwerp al gepubliceerd is samen met diegene hier
door ons opgesteld, wordt nu voor het eerst getoetst aan experimenten. Er werden
resultaten gevonden die overeenkomsten toonde tussen theorie en experiment, zoals
het steeds harder moeten roeren en het plots niet meer zien van die opgelijnd
structuur. Er werden ook punten van verschil gevonden die tot nu toe nog niet
begrepen worden. Deze discrepanties van de experimenten met de theorie geven ons
gelukkig nog een beetje werk om uiteindelijk de puntjes op de i te kunnen zetten.

C) STAVEN TE HARD GEROERD

Tijdens het uitlijnen en testen van de experimentele apparatuur in de test fase en
latere experimenten, zijn er rare fenomenen gezien. Op het eerste zicht leken dit op
een soort gestreepte structuur (foto’s in Chapter 4, Figure 4.5, p. 80). Theoretische
modellen voorspellen dit soort structuren, maar voor zover bekend zijn ze nog nooit
gezien in staafvormige colloïden. Het systeem waarin dit fenomeen gezien werd en
wat dus gebruikt is voor de experimentele opstelling te testen, bestond uit kleine
aluminium staafjes, zeg maar super kleine naalden (foto Figuur 1 a). Deze zijn rond
de 100 nm lang en ongeveer 10 nm dik. Niet tegenstaande dit ook staafjes zijn, zijn ze
een 8 maal korter dan de fd-virussen en dit kan en oorzaak zijn dat we de banden
structuur niet gezien hebben in de fd systemen.
In dit hoofdstuk is geprobeerd een beter experimenteel inzicht te krijgen in deze
banden structuur bij de aluminium staafjes. De reden dat dit zou kunnen ontstaan is
dat bij het punt van oplijnen van de staafjes, er een delicate balans is tussen het roeren
en het niet willen oplijnen. Het systeem gaat zich scheiden in twee gebieden: een
gebied waar er veel deeltjes zitten die allemaal opgelijnd zijn, deze regio beweegt
snel. De andere regio met een lagere concentratie aan staafjes die niet opgelijnd zijn,
stroomt veel langzamer. Dit opsplitsen in regio’s wordt ‘shear banding’ genoemd en
resulteert in zo’n gestreepte structuur. Helaas is er, na uitvoerig onderzoek, een
andere oorzaak van de bandenstructuur gevonden. Het eindbeeld op foto lijkt wel
veel op shear banden, maar het heeft er niets mee te maken. De oorzaak van de
banden structuur ligt in het feit dat als er hard word geroerd er een ander
stromingpatroon ontstaat in de monster cel (zie tekening Figure 4.3, p 78) en niet
meer het patroon voorgesteld in tekening Figuur 2.
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het jeugdwerk. Bonny bedankt.
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ondersteuning is. Goed wetenschappelijk onderzoek vraagt goed technisch kunnen,
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