
Stepping through Haskell

Stapsgewijs door Haskell
(met een samenvatting in het Nederlands)

Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag
van de Rector Magnificus, Prof. dr. W. H. Gispen, ingevolge het besluit van het College
voor Promoties in het openbaar te verdedigen op maandag 14 november 2005 des middags
te 14.30 uur

door

Atze Dijkstra
geboren op 19 januari 1960 te Kerensheide (Beek), Nederland

promotor: Prof. dr. S. Doaitse Swierstra, Universiteit Utrecht

Department of Information and Computing Sciences, Universiteit Utrecht

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).

Printed by Ridderprint offsetdrukkerij BV, Ridderkerk.
Cover illustration “λ strolling on the beach” by Atze Dijkstra.

ISBN 90-393-4070-6

Copyright c© Atze Dijkstra, 2005

C

1. Introduction 1
1.1. Overview . 2
1.2. A short EH tour . 7

2. Attribute Grammar (AG) system tutorial 13
2.1. Haskell and Attribute Grammars (AG) 13
2.2. Repmin a la Haskell . 13
2.3. Repmin a la AG . 14
2.4. Parsing directly to semantic functions 20
2.5. More features and typical usage: a pocket calculator 21

3. EH 1: Typed λ-calculus 27
3.1. Concrete and abstract syntax . 28
3.2. Types . 33
3.3. Checking types . 35
3.4. Conclusion and remarks . 56

4. EH 2: Monomorphic type inferencing 57
4.1. Type variables . 58
4.2. Constraints . 59
4.3. Type inference for expressions (Expr) 63
4.4. Type inference for pattern expressions (PatExpr) 68
4.5. Declarations (Let, Decl) . 71
4.6. Conclusion . 71

5. EH 3: Polymorphic type inferencing 73
5.1. Type language . 75
5.2. Type inferencing . 77
5.3. Conclusion . 82

iii

Contents

6. EH 4: Local quantifier propagation 85
6.1. Motivating examples . 86
6.2. Design overview . 87
6.3. It all boils down to fitting . 92
6.4. Type inference . 95
6.5. Conclusion . 98

7. EH 4: Global quantifier propagation 101
7.1. Design overview . 103
7.2. Finding possible quantifiers . 104
7.3. Computing actual quantifiers . 107
7.4. Impredicativity inference . 115
7.5. Related work, discussion . 121

8. EH 4: Existential types 123
8.1. Motivating examples . 124
8.2. Design overview . 126
8.3. Type matching . 127
8.4. Impredicativity inference and type inference 129
8.5. Related work, discussion . 130

9. Making implicit parameters explicit 131
9.1. Introduction . 131
9.2. Preliminaries . 136
9.3. Implicit parameters . 139
9.4. Implementation . 145
9.5. Discussion and related work . 154
9.6. Conclusion . 158

10. Partial type signatures 159
10.1. Partial type signatures . 163
10.2. Quantifier location inference . 165

11. Ruler: programming type rules 167
11.1. Introduction . 167
11.2. Ruler overview . 174
11.3. Preliminaries . 176
11.4. Describing typing rules using Ruler notation 177
11.5. Extending to an algorithm . 183
11.6. Extensions for AG code generation . 187
11.7. Discussion, related work, conclusion . 192

iv

Contents

12. Conclusion and future work 195
12.1. EH, explanation and presentation . 196
12.2. EH, use of explicit and implicit type information 197
12.3. Partitioning and complexity . 198
12.4. Consistency . 200
12.5. EH, formal properties . 202
12.6. EH, relation to Haskell . 203
12.7. AG experience . 203

References 205

Samenvatting 213

Acknowledgements 215

A. Notation 217
A.1. Legenda of notation . 217
A.2. Term language . 218
A.3. Type language . 220

B. Rules generated by Ruler 221

C. Used libraries 223
C.1. Parser combinators . 223
C.2. Pretty printing combinators . 223

Index 223

v

Contents

vi

1 I

This thesis contains a description of an implementation of an extended subset of the pro-
gramming language Haskell. At the same time it is an experiment in merging the descrip-
tion with the actual code of the implementation, thus guaranteeing some form of consis-
tency. Similarly, we guarantee consistency between type rules and their implementation by
using our Ruler system. The thesis is also about making description and implementation
understandable, so that it can be used as a means for education and (Haskell) programming
language research. In this thesis we take a new and stepwise approach to both description
and implementation, which starts with a simple version of Haskell and then, step by step,
we extend this simple version with (amongst other things) mechanisms for the use of ex-
plicit (type) information when implicit mechanisms are inadequate.
The reason to set out on this journey lies in the observation that Haskell [84] has become a
complex language. Haskell includes many productivity increasing features, some of which
are of a more experimental nature. Although also intended as a research platform, realistic
compilers for Haskell [75] have grown over the years and understanding and experimenting
with those compilers is not easy. Experimentation on a smaller scale is usually based upon
relatively simple and restricted implementations [46], often focusing only on a particular
aspect of the language and/or its implementation.
A second reason is that experimenting with Haskell, or language design in general, usually
expresses itself in a theoretical setting, with a focus on the proof of formal properties.
Experimentation also takes place in a practical setting, but often it is not at all obvious
how theory and practice of an experiment relate. We feel that a description of a Haskell
implementation which focusses on a joint presentation of the implementation and its formal
representation (by means of type rules), and their mutual consistency, helps to bridge the
gap between theory and practice.
The complexities of Haskell and its interaction with experimental features cannot be
avoided; even more, it is desirable, as Haskell plays an important role in programming lan-
guage research. Some of those experimental features turn into useful language constructs,
increasing the language complexity as a consequence. The complexity can be made more
manageable by looking at features individually, while not loosing sight of the context with
which such a feature has to coexist. This thesis aims at walking somewhere between this

1

1. Introduction

complexity and simplicity by describing features individually, as separate aspects of a more
complex whole.
In the following section we first give an overview of our goals, the overall organisation
of the road to their realisation, and the organisation of this thesis. The remainder of the
introduction takes the reader on a short tour through the languages for which this thesis
describes implementations.

1.1 Overview

Holy and less holy grails: thesis goals The holy grail of the EHC project [19],
described by this thesis, is to create the following:

• A compiler for Haskell plus extensions, in particular an explicit form of Haskell.
The goal is a compiler that can be used, and is not ‘just’ a toy.

• A description of the compiler, embedded in a generic infrastructure for further ex-
perimentation. The goal is to offer understanding of the implementation so it can
be used for teaching, be a basis for experimentation, and be a bridge between (type)
theory and practice.

Unlike a holy grail, we intend to reach our goal, but we do not expect this to happen
overnight. However, our inspiration comes from:

• TEX, for which documented source code constitutes a stable point of reference [60].

• Pierce’s book [91], which provides a combination of type theory and implementa-
tion of type checkers for discussed type systems, and Jones documented Haskell
implementation [48].

• Work on the combination of explicit and implicit (type) information [92, 81, 87].

On a less ambitious scale, this thesis can be read with the following, somewhat overlapping,
viewpoints in mind; each viewpoint comes with its own goal and design starting point:

• The thesis offers an explanation of the implementation of a Hindley-Milner type
system (Chapter 3 through Chapter 5). The explanation is expressed and explained
in terms of type rules, attribute grammar implementation for those type rules, and
additional infrastructure (encoded in Haskell) to extend it to a full compiler.

• The thesis offers experiments in combining explicitly specified type information (by
the programmer), and implicitly inferred type information (by the system) (Chap-
ter 6 through Chapter 10). The design starting point here is to let programmer and
system jointly specify (the types in) a program, instead of the programmer fighting

2

1.1. Overview

the system’s limitations. This starting point is inspired by the observation that sys-
tems purely based on type inference hinder a programmer, because such a system
does not allow the programmer to specify what the system cannot infer. In particu-
lar, we exploit (higher-ranked) type annotations and allow explicit parameter passing
for implicit parameters (as specified by means of class predicates).

• The thesis offers an experiment in the description of a compiler, the required mech-
anisms to do such a job, and the tools to implement those mechanisms (Chapter 2,
Chapter 11, and other tools). The design starting point is to partition the whole
system into a sequence of steps, each representing a standalone language and im-
plementation. Each step extends a previous step by adding some features. All our
tools therefore somehow need to be aware of the notion of separate steps (or views,
versions).

• The thesis offers an experiment in creating a maintainable and explainable compiler.
The design starting point is that these aspects are best served by consistency, and
consistency between artefacts is best implemented by avoiding the inconsistency
created by duplication of shared material in the first place. The code presented in
the thesis and used for the construction of different versions of the compiler are
generated from common source code. The same holds for (the major part of) the
type rules and their attribute grammar implementation (Chapter 11).

Thesis contribution Our work complements Pierce’s book [91] in the sense that we
bring together type rules and their implementation, instead of treating these separately. On
the other hand, Pierce provides proofs for various properties, we don’t. Later, when dealing
with impredicativity (Chapter 7) and in the conclusion (Chapter 12), we come back to this.
On a more concrete level, our contribution is summarized by the following:

• We describe a stepwise implementation of an extended subset of Haskell, with the
guarantee that the presented source code and type rules1 are consistent with the
implementation. All the following extensions and tools have been implemented [19].

• We describe an algorithm for the propagation of impredicative type information,
similar to Pottier nd Rémy [94, 95, 93], but taking the propagation a step further by
combining quantifier information from multiple constraints on types (Chapter 7).

• We describe a proposal for explicitly passing parameters for functions expecting
values for (implicit) class constraints (Chapter 9).

• We describe a proposal for partial type signatures (Chapter 10).

• We describe Ruler, a system for specifying type rules, which generates both LATEX
pretty printed and partial Attribute Grammar implementation for the type rules. The
system is used throughout this thesis.

In the conclusion (Chapter 12) we will further detail this.
1See appendix B for which rules this is the case.

3

1. Introduction

Partial type signatures (Chapter 10: eh2-eh9)

AG tutorial (Chapter 2)

Type checking (Chapter 3: eh1)

Introduction (Chapter 1)

Type inference (Chapter 4,Chapter 5: eh2,eh3)

Local impredicativity propagation (Chapter 6: eh4)

Global impredicativity propagation (Chapter 7: eh4)

Existential types (Chapter 8: eh4)

Explicit implicit parameters (Chapter 9: eh9)

Ruler system (Chapter 11)

���

HHH

�����

PPP

PPP

PPP

Figure 1.1.: Thesis roadmap

Thesis overview We assume the reader is familiar with Haskell. We do not assume
familiarity with the Attribute Grammar system (AG) used throughout this thesis. An AG
tutorial is included (Chapter 2), but can safely be skipped if the reader is already familiar
with the AG system (see the roadmap in Fig. 1.1). For the remainder of this thesis we
assume familiarity with type systems; we informally introduce the necessary concepts,
but, as we focus on their implementation, the formalities of type systems are not discussed
in this thesis.
Chapter 3 through Chapter 8 are to be read in the proper order, as they describe develop-
ment steps of the first four of our series of compilers. Chapter 7 has a more experimental
character as it is not (yet) integrated into the last compiler version, so this part can be
skipped. Chapter 10 describes how we can make the specification of a type signature
easier; this subject is relatively independent of the previous chapters. Chapter 9 and Chap-
ter 11 can be read in isolation, as these chapters are based on (submitted) articles.
Throughout the description of the series of compilers we gradually shift from AG based

4

1.1. Overview

latex

lhs2TeXAGAG main

: derived

x
: b derived from a using x

grey

: source

: multiple views/compilers

HS main HS

Ruler rules

a

ruler compiler Text fragments

shuffle

latex

printable

hs compiler

ag compiler lhs2TeX

ehc1ehc2

shuffle

HS fragments

AG fragments

shuffle

shuffle

executable

shuffle

b

Figure 1.2.: System overview

explanation to type rule based explanation combined with examples. The code which
implements those type rules is still referred to from the main text. In the paper version of
this thesis we refer to the electronic version [19] by means of in the margin (like here);
in the electronic version we refer to the proper appendix with a margin reference (like this p 5, 1.1
reference to the current page). We will come back to this in our conclusion (Chapter 12).

System overview The core of this thesis consists of a sequence of compilers, together
named the Essential Haskell project, abbreviated by EH. The construction of these com-
pilers and this thesis is accomplished by the use of several tools (Fig. 1.2):

• Fragment administration and combination (of source text) is managed by a tool
called Shuffle. Shuffle has the same responsibility as weaving and tangling in liter-
ate programming [6], but allows a more flexible recombination of source fragments.
Although we occasionally will refer to Shuffle, we will not discuss Shuffle because
of its resemblance to similar tools.

• The Ruler system (Chapter 11) generates a visual rendering for inclusion in this
thesis, and an AG implementation.

• The specification of the (remaining parts of the) implementation is expressed by an

5

1. Introduction

EH Feature(s) Implemented Chapter In GHC
1 type checking + 3 +

2 type inference + 4 +

3 Hindley-Milner type
inference

+ 5 +

4 higher-ranked types,
existential types

+ 6, 7, 8 +, existential types
tied to data types

5 data types + - +

6 kind inference, kind
polymorphism

+ - +/-, no kind polymor-
phism

7 records (non-
extensible)

+ - +/-, tied to data types

8 code-generation +/- - +

9 class system, explicit
implicit params

+ 9 +/-, class system only

10 records (extensible) + - -
2 - partial type signatures + 10 -

Figure 1.3.: Implementation status

Attribute Grammar (AG) and Haskell code.

The partitioning into multiple steps, called views in the remainder of this thesis, influences
the tools used. A view extends another view by adding new material or replacing old
material. Either a tool manages views itself, or is unaware of views. For example, the
Ruler system manages named views on type rules. However, Haskell compilers are not
aware of our idea of views, so Shuffle takes care of properly generating source code for
views.

Context of this thesis, project status This thesis represents a snapshot of the de-
scription of an ongoing project, the Essential Haskell (EH) project. From the www site
[19] of the EH project both the source code and the electronic version of the thesis can
be downloaded; the electronic version of the thesis includes more material than the paper
version, and will be updated regularly.
Fig. 1.3 presents an overview of the features which are described in this thesis, and which
features are present in GHC (version 6.4 [75]); the many features present in GHC but not
in EH have not been included. We have described the most informative parts: the first
chapters provide the basic structure of EH, presenting type rules, and AG implementation
side by side. Remaining chapters describe experiments with explicit and implicit (type)
information, and the Ruler tool.

6

1.2. A short EH tour

The source code presented in this thesis is exactly the same code as used for the imple-
mentation. Although the source code forms the core around which the thesis has been
constructed, only the first chapters of this thesis have incorporated source code. Later
chapters involve more complex issues, which, we feel, are better presented using examples
and type rules.
Much of the type rule related AG code is generated directly from the type rules by Ruler
(Chapter 11). This is not (yet) done for all type rules (in particular, not for Chapter 9);
appendix B provides a list of the type rules for which AG code is generated. The use
of Ruler allows us to focus on type rules, but work still needs to be done (see also the
conclusion, Chapter 12) to allow even more AG code to be replaced by Ruler generated
AG code.
Between Chapter 8 and Chapter 9 data types, kind inference/checking, code generation
for GRIN [14, 13], and extensible records appear (Fig. 1.3). Most of these features are
required for the implementation of Chapter 9; their description will be included in later
versions of the full description of EH, to appear after the publication of this thesis.
Parts of this thesis have been published in an earlier version in a different form: Chapter 1
through Chapter 5 are updated from an AFP (Advanced Functional Programming) tutorial
[21], and Chapter 9 and Chapter 11 are available as technical reports [23, 24].
Additional work in the following areas is currently in progress:

• A compiler for GRIN [14, 13] to C– [3]. We are also looking at extending GRIN
with exceptions.

• Extending EH with GADT’s (Generalised Algebraic Data Types).

1.2 A short EH tour

Although all compilers described in this thesis deal with a different issue, they all have
in common that they are based on the λ-calculus, most of the time using the syntax and
semantics of Haskell. The first version of our series of compilers therefore accepts a lan-
guage that most closely resembles the λ-calculus, in particular typed λ-calculus extended
with let expressions and some basic types and type constructors such as Int, Char and
tuples (see appendix A.2 for all terms used throughout this thesis).
We note that code generation is included in EH8. Although we call all compilers ‘com-
piler’, the versions before EH8 actually are type checkers as no translation to an equivalent
executable program is computed.

EH version 1: λ-calculus An EH program is a single expression, contrary to a Haskell
program which consists of a set of declarations forming a module.

let i :: Int

7

1. Introduction

i = 5
in i

All variables need to be typed explicitly; absence of an explicit type is considered to be
an error. The corresponding compiler (EH version 1, Chapter 3) checks the explicit types
against actual types. For example:

let i :: Char
i = 5

in i

is not accepted.
Besides the basic types Int and Char, more complex types can be formed by building tuples
and defining functions:

let id :: Int → Int
id = λx→ x
fst :: (Int,Char)→ Int
fst = λ(a, b)→ a

in id (fst (id 3, ’x’))

All types are monomorphic.

EH version 2: Explicit/implicit typing The next version (EH version 2, Chapter 4) no
longer requires the explicit type specifications, which in that case will be inferred by the
compiler. For example for:

let i = 5
in i

the compiler will infer the type specification i :: Int.
The reconstructed type information is monomorphic, for example the identity function in:

let id = λx→ x
in let v = id 3

in id

is inferred to have the type id :: Int → Int.

EH version 3: Polymorphism The third version (EH version 3, Chapter 5) performs
standard Hindley-Milner type inferencing [16, 17] which also supports parametric poly-
morphism. For example,

let id = λx→ x
in id 3

is inferred to have type id :: Int; id has type id :: ∀ a.a→ a.
A (polymorphic) type for a value can also be specified explicitly

8

1.2. A short EH tour

let id :: a→ a
id = λx→ x

in id 3
The type signature is checked against the inferred type.

EH version 4: Higher ranked types Standard Hindley-Milner type inferencing cannot
infer polymorphic parameters, so-called higher-ranked types. A higher-ranked type may
have a quantified type at an argument position, allowing for polymorphic function argu-
ments. In general, this is a hard thing to do and even impossible for rank-3 (and higher)
types [40, 53, 54, 55], so the fourth version (EH version 4, Chapter 6) does not infer this
type information, but allows for explicitly specified polymorphism for (e.g.) parameters.
For example, the following is allowed.

let f :: (∀ a.a→ a)→ (Int,Char)
f = λi→ (i 3, i ’x’)

in f

Note that the type signature is thus required here.
This version also provides some notational sugaring by allowing one to omit the explicit
quantifiers from the type signature (separately discussed in Chapter 10). For example, if
the universal quantifier ∀ in the previous example is omitted the correct location for the
quantifier is inferred, based on the occurrences of type variables in a type expression:

let f :: (a→ a)→ (Int,Char)
f = λi→ (i 3, i ’x’)

in f

infers f :: (∀ a.a→ a)→ (Int,Char)
Specifying a complete type signature can be difficult for complicated types, so it is also
permitted to leave argument and results of a function unspecified using a partial type sig-
nature (separately discussed in Chapter 10).

let id :: ∀ a.a→ a
id = λx→ x
f :: (∀ a.a→ a)→ ...
f = λi→ (i 3, i ’x’)

in f id

Here, for f only the part that cannot be inferred is given in the signature.
Finally, type information can be hidden, or encapsulated, by using existential quantifica-
tion:

let id :: ∀ a.a→ a
xy :: ∃ a.(a, a→ Int)
xy = (3, id)
ixy :: (∃ a.(a, a→ Int))→ Int

9

1. Introduction

ixy = λ(v, f)→ f v
xy′ = ixy xy
pq :: ∃ a.(a, a→ Int)
pq = (’x’, id) -- ERROR

in xy′

The tuple xy contains an Int (this type information is ’forgotten’ via existential quantifica-
tion) and a function constructing an Int from the value of which the type has been hidden.
Access to the elements of such a tuple is done by pattern matching, as in the argument
position of the function ixy. The attempt to construct pq fails.
When a value of an existentially quantified type is opened, that is, it is bound to a value
identifier, the hidden type becomes visible in the form of a fresh type constant.

EH version 5: Data types The fifth version (EH version 5, not included in this thesis)
adds data types and opening/unpacking/scrutinizing a data type value by means of a case
expression.

let data List a = Nil | Cons a (List a)
in let v = case Cons 3 Nil of

Nil → 5
Cons x y→ x

in v

EH version 6: Kinding The previous version allows incorrect programs because data
types can be used incorrectly (type signature declarations without a corresponding value
declaration are allowed until the code generation version of EH):

let data List a = Nil | Cons a (List a)
v :: List

in v

The type of v is not a type of a value, and thus the type of v itself is not well-typed. The
sixth version (EH version 6, not included in this thesis) adds kind (that is, the type of a
type) inferencing.
With the notion of the kind of a type we also allow the notion of polymorphism for kinds:

let data Eq a b = Eq (∀ f .f a→ f b)
id = λx→ x

in Eq id

infers for type constructor Eq:
Eq :: ∀k.k → k → ∗

Explicit kind signatures for types are also allowed, similar to type signatures for values.

10

1.2. A short EH tour

EH version 7: Non-extensible records The seventh version (EH version 7, not in-
cluded in this thesis) extends tuples to (non-extensible) records. Fields can be named. For
tuples the default field names are their position (starting at 1):

let r = (i = 3, c = ’x’, id = λx→ x)
s = (r | c B 5)

in let v = (r.id r.i, r.id r.c)
vi = v.1

in vi

The proposal by Jones [49] is followed.

EH version 8: Code generation The eighth version (EH version 8, not included in
this thesis) adds code generation for a GRIN (Graph Reduction Intermediate Notation)
like backend [14, 13]. The generated code can be run (for testing purposes only) by a
small GRIN interpreter (grini).

EH version 9: Implicit parameters, class system The ninth version (EH version 9,
Chapter 9) adds a class system, and explicit parameter passing to implicit parameters:

let data List a = Nil | Cons a (List a)
class Eq a where

eq :: a→ a→ Bool
ne :: a→ a→ Bool

instance dEqIntf Eq Int where -- (1)
eq = primEqInt
ne = λx y→ not (eq x y)

nub :: ∀ a.Eq a⇒ List a→ List a
nub = λxx→ case xx of

Nil → Nil
Cons x xs→ Cons x (nub (filter (ne x) xs))

eqMod2 :: Int → Int → Bool
eqMod2 = λx y→ eq (mod x 2) (mod y 2)
n1 = nub (!dEqIntf Eq Int!) -- (2)

(Cons 3 (Cons 3 (Cons 4 Nil)))
n2 = nub (!(eq = eqMod2 -- (2)

, ne = λx y→ not (eqMod2 x y)
)f Eq Int

!)
(Cons 3 (Cons 3 (Cons 4 Nil)))

in ...

On top of a class system, we allow instances to be named (1), and passed explicitly (2)
when expected to be passed implicitly.

11

1. Introduction

EH version 10: Extensible records The tenth version (EH version 10, not included in
this thesis) adds extensible records (again following Jones [49]), using the class system to
allow:

let add :: Int → Int → Int
f :: (r\x, r\y)⇒ (r | x :: Int, y :: Int)→ Int
f = λr → add r.x r.y

in
let v1 = f (x = 3, y = 4)

v2 = f (y = 5, a = ’z’, x = 6)
in v2

Tuple access functions can also be used in a more general way:
let snd = λr → r.2
in
let v1 = snd (3, 4)

v2 = snd (3, 4, 5)
in v2

12

2 A G (AG) 


This chapter contains a small tutorial on the Attribute Grammar (AG) system used to de-
scribe the greater part of the implementation of the compilers in this thesis. The tutorial
explains the basic features of the AG system. The explanation of remaining features is
postponed until the end of the tutorial in the form of a list of explanations which should
be read within the context referred to (which occurs later in the thesis). The tutorial can
safely be skipped if the reader is already familiar with the AG system.

2.1 Haskell and Attribute Grammars (AG)

Attribute grammars can be mapped onto functional programs [61, 41, 12]. Vice versa, the
class of functional programs (catamorphisms [74, 28, 104]) mapped onto can be described
by attribute grammars. The AG system exploits this correspondence by providing a no-
tation (attribute grammar) for computations over trees which additionally allows program
fragments to be described separately. The AG compiler gathers these fragments, combines
these fragments, and generates a corresponding Haskell program.
In this AG tutorial we start with a small example Haskell program to show how the compu-
tation described by this program can be expressed in the AG notation and how the resulting
Haskell program generated by the AG compiler can be used. The ‘repmin’ problem [12] is
used for this purpose. A second example describing a ‘pocket calculator’ (that is, expres-
sions) focusses on more advanced features and typical AG usage patterns.

2.2 Repmin a la Haskell

Repmin stands for “replacing the integer valued leaves of a tree by the minimal integer
value found in the leaves”. The solution to this problem requires two passes over a tree
structure, computing the miminum and computing a new tree with the minimum as its
leaves respectively. It is often used as the typical example of a circular program which

13

2. Attribute Grammar (AG) system tutorial

lends itself well to be described by the AG notation. When described in Haskell it is
expressed as a computation over a tree structure:

data Tree = Tree Leaf Int
| Tree Bin Tree Tree

deriving Show

The computation itself simultaneously computes the minimum of all integers found in the
leaves of the tree and the new tree with this minimum value. The result is returned as a
tuple computed by function r:

repmin :: Tree→ Tree
repmin t
= t′

where (t′, tmin) = r t tmin
r (Tree Leaf i) m = (Tree Leaf m , i)
r (Tree Bin lt rt) m = (Tree Bin lt′ rt′, lmin ‘min‘ rmin)

where (lt′, lmin) = r lt m
(rt′, rmin) = r rt m

We can use this function in some setting, for example:
tr = Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 4) (Tree Leaf 5))
tr′ = repmin tr

This program produces the following output:
Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 3) (Tree Leaf 3))

The computation of the new tree requires the minimum. This minimum is passed as a
parameter m to r at the root of the tree by extracting it from the result of r. The result
tuple of the invocation r t tmin depends on itself via the minimum tmin so it would seem
we have a cyclic definition. However, the real dependency is not on the tupled result of r
but on its elements because it is the element tmin of the result tuple which is passed back
and not the tuple itself. The elements are not cyclically dependent so Haskell’s laziness
prevents a too eager computation of the elements of the tuple which might otherwise have
caused an infinite loop during execution. Note that we have two more or less independent
computations that both follow the tree structure, and a weak interaction, when passing the
tmin value back in the tree.

2.3 Repmin a la AG

The structure of repmin is similar to the structure required by a compiler. A compiler per-
forms several computations over an abstract syntax tree (AST), for example for computing
its type and generating code. This corresponds to the Tree structure used by repmin and
the tupled results. In the context of attribute grammars the elements of this tuple are called

14

2.3. Repmin a la AG

attributes. Occasionaly the word aspect is used as well, but an aspect may also refer to a
group of attributes associated with one particular feature of the AST, language or problem
at hand.
Result elements are called synthesized attributes. On the other hand, a compiler may also
require information from higher nodes in an AST to be available at lower nodes in an AST.
The m parameter passed to r in repmin is an example of this situation. In the context of
attribute grammars this is called an inherited attribute.
Using AG notation we first define the AST corresponding to our problem (for which the
complete solution is given in Fig. 2.1):

data Tree
| Leaf int : {Int }
| Bin lt : Tree

rt : Tree

The data keyword is used to introduce the equivalent of Haskell’s data type. An AG data
declaration introduces a node (or nonterminal) of an AST. Its alternatives, enumerated one
by one after the vertical bar |, are called variants or productions. The term constructor
is occasionally used to stress the similarity with Haskell’s data types. Each variant has
members, called children if they refer to other nodes of the AST and fields otherwise. Each
child and field has a name (before the colon) and a type (after the colon). The type may be
either another data node (if a child) or a monomorphic Haskell type (if a field), delimited
by curly braces. The curly braces may be omitted if the Haskell type is a single identifier.
For example, the data definition for the repmin problem introduces a node (nonterminal)
Tree, with variants (productions) Leaf and Bin. A Bin has children lt and rt of type Tree.
A Leaf has no children but contains only a field int holding a Haskell Int value.
The keyword attr is used to declare an attribute for a node, for instance the synthesized
attribute min:

attr Tree [|| min : Int]
sem Tree
| Leaf lhs.min = @int
| Bin lhs.min = @lt.min ‘min‘ @rt.min

A synthesized attribute is declared for the node after attr. Multiple declarations of the
same attribute for different nonterminals can be grouped on one line by enumerating the
nonterminals after the attr keyword, separated by whitespace. The attribute declaration
is placed inside the square brackets at one or more of three different possible places. All
attributes before the first vertical bar | are inherited, after the last bar synthesized, and in
between both inherited and synthesized. For example, attribute min is a result and therefore
positioned as a synthesized attribute, after the last bar.
Rules relating an attribute to its value are introduced using the keyword sem. For each
production we distinguish a set of input attributes, consisting of the synthesized attributes
of the children referred to by @〈child〉.〈attr〉 and the inherited attributes of the parent

15

2. Attribute Grammar (AG) system tutorial

data Tree
| Leaf int : {Int }
| Bin lt : Tree

rt : Tree
attr Tree [|| min : Int]
sem Tree
| Leaf lhs . min = @int
| Bin lhs . min = @lt.min ‘min‘ @rt.min

attr Tree [rmin : Int ||]
-- The next SEM may be generated automatically

sem Tree
| Bin lt . rmin = @lhs.rmin

rt . rmin = @lhs.rmin
data Root
| Root tree : Tree

sem Root
| Root tree. rmin = @tree.min

attr Root Tree [|| tree : Tree]
sem Tree
| Leaf lhs . tree = Tree Leaf @lhs.rmin
| Bin lhs . tree = Tree Bin @lt.tree @rt.tree

-- The next SEM may be generated automatically
sem Root
| Root lhs . tree = @tree.tree

deriving Tree : Show
{

tr = Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 4) (Tree Leaf 5))
tr′ = sem Root (Root Root tr)
}

{

main :: IO ()
main = print tr′

}

Figure 2.1.: Full AG specification of repmin

16

2.3. Repmin a la AG

referred to by @lhs.〈attr〉. For each output attribute we need a rule that expresses its
value in terms of input attributes and fields.
The computation of a synthesized attribute for a node has to be defined for each variant
individually as it usually will differ between variants. Each rule is of the form

| 〈variant〉 〈node〉.〈attr〉 = 〈Haskell expr〉

If multiple rules are declared for a 〈variant〉 of a node, they may all be listed under the
same 〈variant〉. The same holds for multiple rules for a child (or lhs) of a 〈variant〉, the
child (or lhs) may then be shared.
The text representing the computation for an attribute has to be a Haskell expression and
will end up almost unmodified in the generated program, without any form of checking.
Only attribute and field references, starting with a @, have meaning to the AG system.
The text, possibly stretching over multiple lines, has to be indented at least as far as its first
line. Otherwise it should be delimited by curly braces.
The basic form of an attribute reference is @〈node〉.〈attr〉 referring to a synthesized at-
tribute 〈attr〉 of child node 〈node〉. For example, @lt.min refers to the synthesized attribute
min of child lt of the Bin variant of node Tree.
The “〈node〉.” part of @〈node〉.〈attr〉 may be omitted. For example, min for the Leaf
alternative is defined in terms of @int. In that case @〈attr〉 refers to a locally (to a variant
for a node) declared attribute, or to the field with the same name as defined in the data
definition for that variant. This is the case for the Leaf variant’s int. We postpone the
discussion of locally declared attributes.
The minimum value of repmin passed as a parameter corresponds to an inherited attribute
rmin:

attr Tree [rmin : Int ||]

The value of rmin is straightforwardly copied to its children. This “simply copy” behavior
occurs so often that we may omit its specification. The AG system uses so called copy
rules to automically generate code for copying if the value of an attribute is not specified
explicitly. This is to prevent program clutter and thus allows the programmer to focus on
programming the exception instead of the rule. We will come back to this later; for now it
suffices to mention that all the rules for rmin might as well have been omitted.
The original repmin function passed the minimum value coming out r back into r itself.
This happened at the top of the tree; In AG we define a Root node sitting on top of a Tree:

data Root
| Root tree : Tree

At the root the min attribute is passed back into the tree via attribute rmin:
sem Root
| Root tree.rmin = @tree.min

The value of rmin is used to construct a new tree:

17

2. Attribute Grammar (AG) system tutorial

attr Root Tree [|| tree : Tree]
sem Tree
| Leaf lhs.tree = Tree Leaf @lhs.rmin
| Bin lhs.tree = Tree Bin @lt.tree @rt.tree

sem Root
| Root lhs.tree = @tree.tree

For each data the AG compiler generates a corresponding Haskell data type declaration.
For each node 〈node〉 a data type with the same name 〈node〉 is generated. Since Haskell
requires all constructors to be unique, each constructor of the data type gets a name of the
form 〈node〉 〈variant〉.
In our example the constructed tree is returned as the one and only attribute of Root. It can
be shown if we tell the AG compiler to make the generated data type an instance of the
Show class:

deriving Tree : Show

Similarly to the Haskell version of repmin we can now show the result of the attribute
computation as a plain Haskell value by using the function sem Root generated by the AG
compiler:

{

tr = Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 4) (Tree Leaf 5))
tr′ = sem Root (Root Root tr)
}

Because this part is Haskell code, it has to be delimited by curly braces, indicating that the
AG compiler should copy it unchanged into the generated Haskell program.
In order to understand what is happening here, we take a look at the generated Haskell
code. For the above example the following code will be generated (edited to remove clut-
ter):

data Root = Root_Root Tree

-- semantic domain

type T_Root = Tree

-- cata

sem_Root :: Root -> T_Root

sem_Root (Root_Root _tree)

= (sem_Root_Root (sem_Tree _tree))

sem_Root_Root :: T_Tree -> T_Root

sem_Root_Root tree_ =

let (_treeImin,_treeItree) = (tree_ _treeOrmin)

_treeOrmin = _treeImin

_lhsOtree = _treeItree

in _lhsOtree

18

2.3. Repmin a la AG

data Tree = Tree_Bin Tree Tree

| Tree_Leaf Int

deriving Show

-- semantic domain

type T_Tree = Int -> (Int,Tree)

-- cata

sem_Tree :: Tree -> T_Tree

sem_Tree (Tree_Bin _lt _rt)

= (sem_Tree_Bin (sem_Tree _lt) (sem_Tree _rt))

sem_Tree (Tree_Leaf _int) = (sem_Tree_Leaf _int)

sem_Tree_Bin :: T_Tree -> T_Tree -> T_Tree

sem_Tree_Bin lt_ rt_ =

\ _lhsIrmin ->

let (_ltImin,_ltItree) = (lt_ _ltOrmin)

(_rtImin,_rtItree) = (rt_ _rtOrmin)

_lhsOmin = _ltImin ‘min‘ _rtImin

_rtOrmin = _lhsIrmin

_ltOrmin = _lhsIrmin

_lhsOtree = Tree_Bin _ltItree _rtItree

in (_lhsOmin,_lhsOtree)

sem_Tree_Leaf :: Int -> T_Tree

sem_Tree_Leaf int_ =

\ _lhsIrmin ->

let _lhsOmin = int_

_lhsOtree = Tree_Leaf _lhsIrmin

in (_lhsOmin,_lhsOtree)

In general, generated code is not the most pleasant1 of prose to look at, but we will have to
use the generated functions in order to access the AG computations of attributes from the
Haskell world. The following observations should be kept in mind when doing so:

• For node 〈node〉 also a type T 〈node〉 is generated, describing the function type that
maps inherited to synthesized attributes. This type corresponds one-to-one to the at-
tributes defined for 〈node〉: inherited attributes to parameters, synthesized attributes
to elements of the result tuple (or single type if exactly one synthesized attribute is
defined).

• Computation of attribute values is done by semantic functions with a name of the
form sem 〈node〉 〈variant〉. These functions have exactly the same type as their
constructor counterpart of the generated data type. The only difference lies in the
parameters which are of the same type as their constructor counterpart, but prefixed
with T . For example, data constructor Tree Bin :: Tree→ Tree→ Tree corresponds
to the semantic function sem Tree Bin :: (T Tree)→ (T Tree)→ (T Tree).

1In addition, because generated code can be generated differently, one cannot count on it being generated in a
specific way. Such is the case here too, this part of the AG implementation may well change in the future.

19

2. Attribute Grammar (AG) system tutorial

• A mapping from the Haskell data type to the corresponding semantic function is
available with the name sem 〈node〉.

In the Haskell world one now can follow different routes to compute the attributes:

• First construct a Haskell value of type 〈node〉, then apply sem 〈node〉 to this value
and the additionally required inherited attributes values. The given function main
from AG variant of repmin takes this approach.

• Circumvent the construction of Haskell values of type 〈node〉 by using the semantic
functions sem 〈node〉 〈variant〉 directly when building the AST instead of the data
constructor 〈node〉 〈variant〉 (This technique is called deforestation [115].).

In both cases a tuple holding all synthesized attributes is returned. Elements in the tuple are
sorted lexicographically on attribute name, but it is still awkward to extract an attribute via
pattern matching because the size of the tuple and position of elements changes with adding
and renaming attributes. For now, this is not a problem as sem Root will only return one
value, a Tree. Later we will see the use of wrapper functions to pass inherited attributes
and extract synthesized attributes via additional wrapper data types holding attributes in
labeled fields.

2.4 Parsing directly to semantic functions

The given main function uses the first approach: construct a Tree, wrap it inside a Root, and
apply sem Root to it. The following example takes the second approach; it parses some
input text describing the structure of a tree and directly invokes the semantic functions:

instance Symbol Char
pRepmin :: IsParser p Char ⇒ p T Root
pRepmin = pRoot

where pRoot = sem Root Root 〈$〉 pTree
pTree = sem Tree Leaf 〈$〉 pInt

〈|〉 sem Tree Bin 〈$ pSym ’B’ 〈∗〉 pTree 〈∗〉 pTree
pInt = (λc→ ord c − ord ’0’) 〈$〉 ’0’ 〈..〉 ’9’

The parser recognises the letter ’B’ as a Bin alternative and a single digit as a Leaf . ap-
pendix C.1 gives an overview of the parser combinators which are used [101]. The parser
is invoked from an alternative implementation of main:

main :: IO ()
main = do tr ← parseIOMessage show pRepmin "B3B45"

print tr

20

2.5. More features and typical usage: a pocket calculator

We will not discuss this alternative further nor will we discuss this particular variant of
parser combinators. However, this approach is taken in the rest of this thesis wherever
parsing is required.

2.5 More features and typical usage: a pocket calculator

We will continue with looking at a more complex example, a pocket calculator which ac-
cepts expressions. The calculator prints a pretty printed version of the entered expression,
its computed value and some statistics (the number of additions performed). An interactive
terminal session of the pocket calculator looks as follows:

$ build/bin/expr

Enter expression: 3+4

Expr=’3+4’, val=7, add count thus far=1

Enter expression: [a=3+4:a+a]

Expr=’[a=3+4:a+a]’, val=14, add count thus far=3

Enter expression: ˆCexpr: interrupted

$

This rudimentary calculator allows integer values, their addition and binding to identifiers.
Parsing is character based, no scanner is used to transform raw text into tokens. No whites-
pace is allowed and a let expression is syntactically denoted by [<nm>=<expr>:<expr>].
The example will allow us to discuss more AG features as well as typical usage of AG. We
start with integer constants, addition, followed by an attribute computation for the pretty
printing:

data AGItf
| AGItf expr : Expr

data Expr
| IConst int : {Int }
| Add e1 : Expr

e2 : Expr
set AllNT = AGItf Expr

The root of the tree is now called AGItf to indicate (as a naming convention) that this is
the place where interfacing between the Haskell world and the AG world takes place.
The definition demonstrates the use of the set keyword which allows the naming of a group
of nodes. This name can later be used to declare attributes for all the named group of nodes
at once.
The computation of a pretty printed representation follows the same pattern as the compu-
tation of min and tree in the repmin example, because of its compositional and bottom-up

21

2. Attribute Grammar (AG) system tutorial

nature. The synthesized attribute pp is synthesized from the values of the pp attribute of
the children of a node:

attr AllNT [|| pp : PP Doc]
sem Expr
| IConst lhs.pp = pp @int
| Add lhs.pp = @e1.pp >‖< "+" >‖< @e2.pp

The pretty printing uses a pretty printing library with combinators for values of type
PP Doc representing pretty printed documents. The library is not further discussed here;
an overview of some of the available combinators can be found in appendix C.2.
As a next step we add let expressions and use of identifiers in expressions. This demon-
strates an important feature of the AG system: we may introduce new alternatives for a
〈node〉 as well as may introduce new attribute computations in a separate piece of program
text. We first add new AST alternatives for Expr:

data Expr
| Let nm : {String}

val : Expr
body : Expr

| Var nm : {String}

One should keep in mind that the extensibility offered is simplistic of nature, but surpris-
ingly flexible at the same time. Node variants, attribute declarations and attribute rules for
node variants can all occur textually separated. The AG compiler gathers all definitions,
combines, performs several checks (e.g. are attribute rules missing), and generates the cor-
responding Haskell code. All kinds of declarations can be distributed over several text files
to be included with a include directive (not discussed any further).
Any addition of new node variants also requires corresponding definitions of already in-
troduced attributes:

sem Expr
| Let lhs.pp = "[" >‖< @nm >‖< "=" >‖< @val.pp >‖<

":" >‖< @body.pp >‖< "]"
| Var lhs.pp = pp @nm

The use of variables in the pocket calculator requires us to keep an administration of values
bound to variables. An association list is used to provide this environmental and scoped
information:

attr Expr [env : {[(String, Int)]} ||]
sem Expr
| Let body.env = (@nm, @val.val) : @lhs.env

sem AGItf
| AGItf expr .env = []

22

2.5. More features and typical usage: a pocket calculator

The scope is enforced by extending the inherited attribute env top-down in the AST. Note
that there is no need to specify a value for @val.env because of the copy rules discussed
later. In the Let variant the inherited environment, which is used for evaluating the right
hand side of the bound expression, is extended with the new binding, before being used as
the inherited env attribute of the body. The environment env is queried when the value of
an expression is to be computed:

attr AllNT [|| val : Int]
sem Expr
| Var lhs.val = maybe 0 id (lookup @nm @lhs.env)
| Add lhs.val = @e1.val + @e2.val
| Let lhs.val = @body.val
| IConst lhs.val = @int

The attribute val holds this computed value. Because its value is needed in the ‘outside’
Haskell world it is passed through AGItf (as part of set AllNT) as a synthesized attribute.
This is also the case for the previously introduced pp attribute as well as the following
count attribute used to keep track of the number of additions performed. However, the
count attribute is also passed as an inherited attribute. Being both inherited and synthesized
it is defined between the two vertical bars in the attr declaration for count:

attr AllNT [| count : Int |]
sem Expr
| Add lhs.count = @e2.count + 1

The attribute count is said to be threaded through the AST, the AG solution to a global
variable or the use of state monad. This is a result of the attribute being inherited as well
as synthesized and the copy rules. Its effect is an automatic copying of the attribute in
a preorder traversal of the AST. The children nodes of the Add variant update the count
value; the Add variant increments this value and passes the result to the parent node.
Copy rules are attribute rules inserted by the AG system if a rule for an attribute 〈attr〉 in a
production of 〈node〉 is missing. AG tries to insert a rule that copies the value of another
attribute with the same name, searching in the following order:

1. Local attributes.

2. The synthesized attribute of the children to the left of the child for which an inher-
ited 〈attr〉 definition is missing, with priority given to the nearest child fulfilling the
condition. A synthesized 〈attr〉 of a parent is considered to be at the right of any
child’s 〈attr′〉.

3. Inherited attributes (of the parent).

In our example the effect is that for the Let variant of Expr

• (inherited) @lhs.count is copied to (inherited) @val.count,

23

2. Attribute Grammar (AG) system tutorial

• (synthesized) @val.count is copied to (inherited) @body.count,

• (synthesized) @body.count is copied to (synthesized) @lhs.count.

Similar copy rules are inserted for the other variants. Only for variant Add of Expr a
different rule for @lhs.count is explicitly specified, since here we have a non-trivial piece
of semantics: we actually want to count something.
Automatic copy rule insertion can be both a blessing and curse. A blessing because it takes
away a lot of tedious work and minimises clutter in the AG source text. On the other hand,
it can be a curse, because a programmer may have forgotten an otherwise required rule. If
a copy rule can be inserted the AG compiler will silently do so, and the programmer will
not be warned.
As with our previous example we can let a parser map input text to the invocations of
semantic functions. For completeness this source text has been included in Fig. 2.2. The
result of parsing combined with the invocation of semantic functions will be a function
taking inherited attributes to a tuple holding all synthesized attributes. Even though the
order of the attributes in the result tuple is specified, position based extraction via pattern
matching should be avoided. The AG system can be instructed to create a wrapper function
which knows how to extract the attributes out of the result tuple:

wrapper AGItf

The attribute values are stored in a data type with labeled fields for each attribute. The
attributes can be accessed with labels of the form 〈attr〉 Syn 〈node〉. The name of the
wrapper is of the form wrap 〈node〉; the wrapper function is passed the result of the se-
mantic function and a data type holding inherited attributes:

run :: Int → IO ()
run count
= do hPutStr stdout "Enter expression: "

hFlush stdout
l← getLine
r ← parseIOMessage show pAGItf l
let r′ = wrap AGItf r (Inh AGItf {count Inh AGItf = count })
putStrLn ("Expr=’" ++ disp (pp Syn AGItf r′) 40 "" ++

"’, val=" ++ show (val Syn AGItf r′) ++

", add count thus far=" ++ show (count Syn AGItf r′)
)

run (count Syn AGItf r′)
main :: IO ()
main = run 0

We face a similar (that is, position based) problem with the passing of inherited attributes
to the semantic function. Hence inherited attributes are passed to the wrapper function via
a data type with name Inh 〈node〉 and a constructor with the same name, with fields having

24

2.5. More features and typical usage: a pocket calculator

labels of the form 〈attr〉 Inh 〈node〉. The count attribute is an example of an attribute which
must be passed as an inherited attribute as well as extracted as a synthesized attribute.
This concludes our introduction to the AG system. Some topics have either not been men-
tioned at all or only shortly touched upon. We provide a list of those topics together with
a reference to their first use. All the following topics should be read within the context of
their referred use.

• Type synonyms (for lists) (Context and example at page 29): The AG notation
allows type synomyms for one special case, AG’s equivalent of a list (e.g Decls in
Fig. 3.2). It is an often occurring idiom to encode a list of nodes, say data L with
elements 〈node〉 as:

data L
| Cons hd : 〈node〉

tl : L
| Nil

AG allows the following notation as a shorthand:
type L = [〈node〉]

• Left hand side patterns (Context and example at page 46): The simplest way to
define a value for an attribute is to define one value for one attribute at a time. How-
ever, if this value is a tuple, its fields are to be extracted and assigned to individual
attributes (as in valGamLookupTy). AG allows a pattern notation of the form(s) to
make the notation for this situation more concise:

| 〈variant〉 〈node〉.(〈attr1〉 , 〈attr2〉 , ...) =
| 〈variant〉 (〈node1〉.〈attr1〉, 〈node1〉.〈attr2〉, ...) =

• Set notation for variants (Context and example at page 52): The rule for (e.g.)
attribute fo is specified for IConst and CConst together. Instead of specifying only
one variant a whitespace separated list of variant names may be specified after the
vertical bar ’|’. It is also allowed to specify this list relative to all declared vari-
ants by specifying for which variants the rule should not be declared. For example:
∗ − IConst CConst if the rule was to be defined for all variants except IConst and
CConst.

• Local attributes (Context and example at page 43): Attribute fo and ty are declared
locally. In this context ‘local’ means that the scope is limited to the variant of a node.
For example, fo (explained further below) also holds a (possibly empty) list of errors
used by other attribute equations. fo is only available for attribute equations for
variant IConst of Expr.

• Attribute together with use (Context and example at page 53): A synthesized
attribute 〈attr〉may be declared together with use{〈op〉}{〈zero〉}. The 〈op〉 and 〈zero〉

25

2. Attribute Grammar (AG) system tutorial

instance Symbol Char
pAGItf :: IsParser p Char ⇒ p T AGItf
pAGItf = pRoot

where pRoot = sem AGItf AGItf 〈$〉 pExpr
pExpr = pChainr (sem Expr Add 〈$ pSym ’+’) pExprBase
pExprBase = (sem Expr IConst.foldl (λl r → l ∗ 10 + r) 0)

〈$〉 pList1 ((λc→ ord c − ord ’0’) 〈$〉 ’0’ 〈..〉 ’9’)
〈|〉 sem Expr Let
〈$ pSym ’[’ 〈∗〉 pNm 〈∗ pSym ’=’ 〈∗〉 pExpr
〈∗ pSym ’:’ 〈∗〉 pExpr
〈∗ pSym ’]’

〈|〉 sem Expr Var 〈$〉 pNm
pNm = (:"") 〈$〉 ’a’ 〈..〉 ’z’

Figure 2.2.: Parser for calculator example

allow the insertion of copy rules which behave similar to Haskell’s foldr. The first
piece of text 〈op〉 is used to combine the attribute values of two children by textually
placing this text as an operator between references to the attributes of the children.
If no child has an 〈attr〉, the second piece of text 〈zero〉 is used as a default value for
〈attr〉. For example, use{‘gamAddGam‘}{emptyGam} gathers bottom-up the type
signature bindings.

• Attribute of type self (Context and example at page 60): The use of the keyword
self in:

attr〈node〉[|| a : self]
is equivalent to

attr〈node〉[|| a : 〈node′〉]
where:

– The type 〈node′〉 of synthesized attribute a stands for the generated Haskell
data type generated for 〈node〉.

– For each 〈node〉 variant a local attribute a is inserted, defined to be a replica of
the 〈node〉 variant in terms of 〈node′〉.

– Copy rules automatically propagate the local a to the parent, unless an explicit
definition for the parent’s a is given.

For example, via attribute repl a copy of the type is built which only differs (or, may
differ) in the original in the value for the type variable.

• Rule redefinition viaB.

• Cycle detection and other (experimental) features, commandline invocation, etc.

26

3 EH 1: T λ-

In this chapter we build the first version of our series of compilers: the typed λ-calculus,
packaged in Haskell syntax, in which all values need to explicitly be given a type. The
compiler checks if the specified types are in agreement with actual value definitions. For
example

let i :: Int
i = 5

in i

is accepted, whereas
let i :: Char

i = 5
in i

produces a pretty printed version of the erroneous program, annotated with errors. Type
errors are reported in terms of a failed ’fit’ (<=) which is our mechanism for matching, or
fitting (because of the asymmetry in later EH versions), two types:

let i :: Char

i = 5

{- ***ERROR(S):

In ‘5’:

Type clash:

failed to fit: Int <= Char

problem with : Int <= Char -}

{- [i:Char] -}

in i

Type signatures have to be specified for identifiers bound in a let expression. A let ex-
pression allows mutually recursive definitions. For λ-expressions the type of the parameter
can be extracted from these type signatures, unless a λ-expression occurs at the position
of an applied function. In that case a type signature for the λ-expression is required in the

27

3. EH 1: Typed λ-calculus

expression itself. This program will not typecheck because a Char → Char function is
applied to an Int.

let v :: (Int,Char)
v = ((λf → (f 3, f ’x’))

:: (Char → Char)→ (Int,Char)
) (λx→ x)

in v

The implementation of a type system will be the main focus of this and following sections.
As a consequence the full environment/framework needed to build a compiler will not be
discussed. This means that error reporting, generation of a pretty printed annotated output,
parsing, and the commandline invocation of the compiler are not described.
We start with the definition of the AST and how it relates to concrete syntax, followed by
the introduction of several attributes required for the implementation of the type system.

3.1 Concrete and abstract syntax

The concrete syntax of a (programming) language describes the structure of acceptable
sentences for that language, or more down to earth, it describes what a compiler for that
language accepts with respect to the textual structure (see Fig. 3.1 for the term and type ex-
pression language). On the other hand, abstract syntax describes the structure used by the
compiler itself for analysis and code generation. Translation from the more user friendly
concrete syntax to the machine friendly abstract syntax is done by a parser; translation
from the abstract to the concrete representation is done by a pretty printer.
Let us focus our attention first on the abstract syntax for EH1, in particular the part defining
the structure for expressions (the remaining abstract syntax can be found in Fig. 3.2):

data Expr
| IConst int : {Int }
| CConst char : {Char }
| Con nm : {HsName}
| Var nm : {HsName}
| App func : Expr

arg : Expr
| Let decls : Decls

body : Expr
| Lam arg : PatExpr

body : Expr
| AppTop expr : Expr
| Parens expr : Expr
| TypeAs tyExpr : TyExpr

28

3.1. Concrete and abstract syntax

Values (expressions, terms):
eF int | char literals
| i program variable
| e e application
| let d in e local definitions
| λp→ e abstraction
| e :: t type annotated expression

Declarations of bindings:
dF i :: t value type signature
| p = e value binding

Pattern expressions:
pF int | char literals
| i pattern variable
| i @p pattern variable, with subpattern
| (p, ..., p) tuple pattern

Identifiers:
ιF i lowercase: (type) variables
| I uppercase: (type) constructors

Type expressions:
tF Int | Char type constants
| t → t function type
| (t, ..., t) tuple type

Figure 3.1.: EH1 terms

expr : Expr

Integer constants are represented by IConst, lowercase (uppercase) identifier occurrences
by Var (Con), an App represents the application of a function to its argument, Lam and Let
represent lambda expressions and let expressions. The Con, Paren, and AppTop alternatives
do not have a direct counterpart in EH1’s term language: Con is used for constructors (for
now only tuples), Paren is used to encode parenthesis (for pretty printing), and AppTop
encodes the top of an application (App) spine; we will later come back to the use of these
additional alternatives. The abstract syntax for value expressions, pattern expressions,
and type expressions also are similar in their structure for constants, constructors (Con),
variables (Var), and application (App). The term language not always directly reflects this
structure; we will also come back to this.

29

3. EH 1: Typed λ-calculus

The following EH fragment (which is incorrect for this version of because type signatures
are missing):

let ic @(i, c) = (5, ’x’)
id = λx→ x

in id i

is represented by the following piece of abstract syntax tree:

AGItf_AGItf

Expr_Let

Decls_Cons

Decl_Val

PatExpr_VarAs "ic"

PatExpr_AppTop

PatExpr_App

PatExpr_App

PatExpr_Con ",2"

PatExpr_Var "i"

PatExpr_Var "c"

Expr_AppTop

Expr_App

Expr_App

Expr_Con ",2"

Expr_IConst 5

Expr_CConst ’x’

Decls_Cons

Decl_Val

PatExpr_Var "id"

Expr_Lam

PatExpr_Var "x"

Expr_Var "x"

Decls_Nil

Expr_AppTop

Expr_App

Expr_Var "id"

Expr_Var "i"

The example also demonstrates the use of patterns, which is the same as in Haskell, except
for a simplifying restriction which does not allow a type signature for the elements of a
tuple.
Looking at this example and the rest of the abstract syntax in Fig. 3.2 we can make several
observations of what one is allowed to write in EH and what can be expected from the
implementation:

30

3.1. Concrete and abstract syntax

data AGItf
| AGItf expr : Expr

data Decl
| TySig nm : {HsName}

tyExpr : TyExpr
| Val patExpr : PatExpr

expr : Expr
type Decls = [Decl]
set AllDecl = Decl Decls
data PatExpr
| IConst int : {Int }
| CConst char : {Char }
| Con nm : {HsName}
| Var nm : {HsName}
| VarAs nm : {HsName}

patExpr : PatExpr
| App func : PatExpr

arg : PatExpr
| AppTop patExpr : PatExpr
| Parens patExpr : PatExpr

set AllPatExpr = PatExpr
data TyExpr
| Con nm : {HsName}
| App func : TyExpr

arg : TyExpr
| AppTop tyExpr : TyExpr
| Parens tyExpr : TyExpr

set AllTyExpr = TyExpr
set AllExpr = Expr
set AllNT = AllTyExpr AllDecl AllPatExpr AllExpr

Figure 3.2.: Abstract syntax for EH (without Expr)

• There is a striking similarity between the structure of expressions Expr and patterns
PatExpr (and as we will see later type expressions TyExpr): they all contain App
and Con variants. This similarity will sometimes be exploited to factor out common
code, and, if factoring out cannot be done, leads to similarities between pieces of
code. This is the case for the construction of application-like structures (by the
parser and the type checker) and pretty printing (not included in this thesis).

• Type signatures (Decl TySig) and value definitions (Decl Val) may be freely mixed.

31

3. EH 1: Typed λ-calculus

Declarations may be mutually recursive. However, type signatures and value defini-
tions for the same identifier are still related.

• Because of the textual decoupling of value definitions and type signatures, a type
signature may specify the type for an identifier occurring inside a pattern; for sim-
plicity, we forbid this, for example:

let a :: Int
(a, b) = (3, 4)

in ...
Additional analysis would be required to allow this. However, the following is al-
lowed, because we allow type signatures for top-level identifiers:

let ab :: (Int, Int)
ab @(a, b) = (3, 4)

in ...
The specified type for ab corresponds to the top of a pattern of a value definition.

• In EH, composite values are created by tupling, denoted by (. . , . .). The same nota-
tion is also used for patterns (for unpacking a composite value) and types (describing
the structure of the composite). In all these cases the corresponding AST consists of
a Con applied to the elements of the tuple. For example, the value (2, 3) corresponds
to (see the next item for the explanation of ",2"):

Expr App (Expr App (Expr Con ",2") (Expr IConst 2)) (Expr IConst 3)

• For now there is only one value constructor: for tuples. The EH constructor for
tuples also is the one which needs special treatment because it actually stands for an
infinite family of constructors. This can be seen in the encoding of the name of the
constructor which is composed of a "," together with the arity of the constructor.
For example, the expression (3, 4) is encoded as an application App of Con ",2"
to the two Int arguments: (,2 3 4). In our examples we will follow the Haskell
convention, in which we write (,) instead of ‘,2’. By using this encoding we also get
the unit type (), as it is encoded by the name ",0".

• The naming convention for tuples and other naming conventions are available through
the following abstraction of Haskell names HsName (we remind the reader that a ref-
erence in the margin refers to additional, but not inlined, code).

data HsName = HNm String
deriving (Eq,Ord)

instance Show HsName where
show (HNm s) = s

hsnArrow, hsnUnknown, hsnInt, hsnChar, hsnWild
:: HsName

hsnProd :: Int → HsName
hsnProdArity :: HsName→ Int

32

3.2. Types

• Each application is wrapped on top with an AppTop. This has no meaning in itself
but it simplifies the pretty printing of expressions. We need AppTop for patterns and
later EH versions, but for the rest it can be ignored.

• The location of parentheses around an expression is remembered by a Parens alter-
native. We need this for the reconstruction of the parentheses in the input.

• AGItf is the top of a complete abstract syntax tree. As noted in the AG tutorial this
is the place where interfacing with the ‘outside’ Haskell world takes place. It is a
convention in this thesis to give all nonterminals in the abstract syntax a name with
AGItf in it, if it plays a similar role.

3.2 Types

We will now turn our attention to the way the type system is incorporated into EH1. We
focus on the pragmatics of the implementation and less on the corresponding type theory.

3.2.1 What is a type

Compiler builders consider a type to be a description of the interpretation of a value
whereas a value is to be understood as a bitpattern. This means that machine operations,
such as integer addition, are only applied to patterns that are to be interpreted as integers.
More generally, we want to prevent unintended interpretations of bitpatterns, which might
likely lead to the crash of a program.
The flow of values must be such that “well-typed programs cannot go wrong”. A compiler
uses a type system to analyse this flow, and to make sure that built-in functions are only
applied to patterns that they are intended to work on. If a compiler cannot find an erroneous
flow of values, with the notion of erroneous defined by the type system, the program is
guaranteed not to crash because of unintended use of bitpatterns.
In this section we start by introducing a type language in a more formal setting as well as a
more practical setting. The formal setting uses typing rules to specify the static semantics
of EH, whereas in the practical setting the AG system is used, providing an implementa-
tion. In the following section we discuss the typing rules, the mechanism for enforcing the
equality of types (called fitting) and the checking itself. Types will be introduced infor-
mally, instead of taking a more formal approach [106, 111, 91, 7].
Types are described by a type language. The type language for EH1 allows some basic
types and two forms of composite types, functions and tuples, and is described by the
following grammar:
σF Int | Char
| (σ, ..., σ)
| σ→ σ

33

3. EH 1: Typed λ-calculus

However, the following definition is closer to the one used in our implementation:
σF Int | Char | → | , | , , | ...
| σ σ

The latter definition also introduces the possibility of describing types like Int Int. We nev-
ertheless use this one since it is used in the implementation of later versions of EH where it
will prove useful in expressing the application of type constructors to types. Here we just
have to make sure no types like Int Int will be created; in a (omitted) later version of EH
we perform kind inferencing/checking to prevent the creation of such types from showing
up. We use several convenience functions for the construction of types, but postpone their
discussion until they are needed.
We explicitly distinguish between type expressions and type signatures. A type expression
is a term t (Fig. 3.1) specified by the EH programmer, whereas a type signature σ (or type
for short) is used internally by the type rules (and their implementation). Only when the
difference is significant we distinguish between type expressions and signatures, otherwise
we just use the word ‘type’.
The corresponding encoding (for types) using AG notation differs in the presence of an
Any type, also denoted by �. In Section 3.3 we will say more about this. It is used to
smoothen the type checking by (e.g.) limiting the propagation of erroneous types:

data TyAGItf
| AGItf ty : Ty

data Ty
| Con nm : {HsName}
| App func : Ty

arg : Ty
| Any

The formal system and implementation of this system use different symbols to refer to the
same concept. For example, Any in the implementation is the same as � in the typing rules.
Such a similarity is not always pointed out explicitly but instead a notation name1∥name2
is used to simultaneously refer to both symbols name1 and name2, for example Any∥�.
The notation also implies that the identifiers and symbols separated by ’∥’ are referring to
the same concept.
The definition of Ty will be used in both the Haskell world and the AG world. In Haskell
we use the corresponding data type generated by the AG compiler, for example in the
derived type TyL:

type TyL = [Ty]

The data type is used to construct type representations. In the AG world we define compu-
tations over the type structure in terms of attributes. The corresponding semantic functions
generated by the AG system can then be applied to Haskell values.

34

3.3. Checking types

3.3 Checking types

The type system of a programming language is described by typing rules. A typing rule

• Relates language constructs to types.

• Constrains the types of these language constructs.

3.3.1 Type rules

We start with a simplified set of equational type rules (Fig. 3.3). The full algorithmic ver-
sion (Fig. 3.5) of this chapter differs in the explicit handling of known type information,
the use of patterns, and uncoupling of type signatures and corresponding value declara-
tions. We discuss type expressions, used in rule ., later in this chapter (Section 3.3.6,
page 54).
For example, the following is the typing rule (taken from Fig. 3.3) for function application:

Γ `e e2 : σa

Γ `e e1 : σa → σ

Γ `e e1 e2 : σ
.E

It states that an application of e1 to e2 has type σ provided that the argument has type σa

and the function has a type σa → σ.
All rules we will use are of the form

prerequisite1
prerequisite2

...

consequence
.view

with the meaning that if all prerequisitei can be proven we may conclude the consequence.
By convention rule names are typeset in   font, and have the form .
where  refers to the language element about which the rule states something (here ex-
pressions: ). The suffix view, typeset in italic, indicates the view on the rule (here the
equational view: E). We omit the view when referring to a rule.
A prerequisite can take the form of any logical predicate or has a more structured form,
usually called a judgement:

context
judgetype
` construct : property{ more results

35

3. EH 1: Typed λ-calculus

Γ `e e : σ

Γ `e int : Int
.E

Γ `e char : Char
.E

ι 7→ σ ∈ Γ

Γ `e ι : σ
.E

Γ `e e2 : σa

Γ `e e1 : σa → σ

Γ `e e1 e2 : σ
.E

Γ `e e1 : σ1
Γ `e e2 : σ2

Γ `e (e1, e2) : (σ1, σ2)
.E

(i 7→ σi),Γ `e e : σe

Γ `e λi→ e : σi → σe
.E

`t t : σ
Γ `e e : σ
Γ `e (e :: t) : σ

.E

Γt,Γ `
d d : Γt

Γt,Γ `
e b : σ

Γ `e let d in b : σ
.E

Within environment Γ, expression e has type σ.

e : Expression
σ : Type of expression
Γ : Environment ι 7→ σ for value identifiers

Figure 3.3.: Expression type rules (E)

Γ `d d : Γt

Γ `e ei : σi

Γi ≡ [i 7→ σi]
Γ `d (i :: σi; i = ei) : Γi

..E

Within environment Γ, declaration d has type signature bindings Γt.

d : Declaration
Γt : Environment with type signature bindings
Γ : Environment with known bindings

Figure 3.4.: Declaration type rules (E)

36

3.3. Checking types

The part “{ more results” does not have to be present if there are no more results for a
judgement. The division between “property” and “more results” is somewhat arbitrary as
both are results and properties. However, we consider “property” to be the most important
result; for example, the type in the context of type checking. The notation reads as

In the interpretation judgetype the construct has property property assuming
context and with optional additional more results.

If the context or more results itself consists of multiple parts, these parts are separated by a
semicolon ’;’. An underscore ’ ’ has a similar role as in Haskell to indicate that a property
is not relevant for a type rule (for example see rule ., Fig. 3.5)
Although a rule formally is to be interpreted purely equational, it may help to realise that
from an implementors point of view this (more or less) corresponds to an implementation
template, either in the form of a function judgetype:

judgetype = λconstruct →
λcontext → ...(property,more results)

or a piece of AG:
attr judgetype [context : ... ||

property : ...more results : ...]
sem judgetype
| construct

lhs.(property,more results) = ... @lhs.context ...

Typing rules and implementation templates differ in that the latter prescribes the order in
which the computation of a property takes place, whereas the former simply postulates
relationships between parts of a rule. In general, typing rules presented throughout this
thesis will be rather explicit in the flow of information and thus be close to the actual
implementation. In Chapter 11 we will exploit the similarity between type rules and their
AG counterpart further when discussing the Ruler system used for describing the type rules
in this thesis.
Finally, we include a (compact) description and a legenda in each set of type rules (like
Fig. 3.3) of which its type scheme is introduced or is changed. The description explains
how the type scheme for the type rules should be interpreted. The legenda describes the
meaning and use of the meta-variables in the type scheme.

3.3.2 Environment

The rules in Fig. 3.3 refer to Γ, which is often called assumptions, environment or context
because it provides information about what may be assumed about identifiers. Identifiers
ι are distinguished on the case of the first character, capitalized I’s starting with an upper-
case, uncapitalized i’s otherwise:

37

3. EH 1: Typed λ-calculus

ι = i | I

For type constants we will use capitalized identifiers I, whereas for identifiers bound to an
expression in a let-expression we will use lower case identifiers like i.
An environment Γ is a vector of bindings, a partial finite map from identifiers to types (or
any other kind of information):
Γ = ι 7→ σ

Concatenation of such collections as well as scrutinizing a collection is denoted with a
comma ’,’. For example, ‘i 7→ σ,Γ’ represents a concatenation as well as a pattern match.
For rules this does not make a difference, for the implementation there is a direction in-
volved as we either construct from smaller parts or deconstruct (pattern match) into smaller
parts.
If shadowing is involved, that is duplicate entries are added, left/first (w.r.t. to the comma
’,’) entries shadow right/later entries. When we locate some variable in an environment Γ
the first occurrence will be taken.
If convenient, we will also use a list notation:
Γ = [ι 7→ σ]

This will be done if specific properties of a list are used or if we borrow from Haskell’s
repertoire of list functions. For simplicity we also use (assocation) lists in our implemen-
tation of an environment Γ, or more precisely, a stack of lists. A list structure suffices to
encode the presence of an identifier in an environment Γ, but it cannot be used to detect
multiple occurrences caused by duplicate introductions. Thus in our implementation we
use a stack of lists instead. We will use the stack-like behavior by adding newly declared
identifiers in the top list of the stack, which then can be treated separate from the rest of
the stack:

type AssocL k v = [(k, v)]
newtype Gam k v = Gam [AssocL k v] deriving Show
emptyGam :: Gam k v
gamUnit :: k → v → Gam k v
gamLookup :: Ord k ⇒ k → Gam k v→ Maybe v
gamToAssocL :: Gam k v → AssocL k v
gamPushNew :: Gam k v → Gam k v
gamPushGam :: Ord k ⇒ Gam k v → Gam k v→ Gam k v
gamPop :: Gam k v → (Gam k v,Gam k v)
gamAddGam :: Ord k ⇒ Gam k v → Gam k v→ Gam k v
gamAdd :: Ord k ⇒ k → v → Gam k v→ Gam k v

Entering and leaving a scope is implemented by means of pushing and popping an en-
vironment Γ: gamPushGam pushes a Γ onto another, gamAddGam adds a Γ to another,
gamPushNew pushes an empty Γ. Extending an environment Γ will take place on the top
of the stack only. Left operands are added to right operands, possibly overwriting or hid-

38

3.3. Checking types

ing entries in the right operand. For example gamAddGam g1 g2 adds g1’s entries to g2,
possibly hiding (overwriting) entries of g2 unless they appear in an outer level.
A specialization ValGam of Gam is used to store and lookup the type of value identifiers.

data ValGamInfo = ValGamInfo{vgiTy :: Ty} deriving Show
type ValGam = Gam HsName ValGamInfo

The type is wrapped in a ValGamInfo. Later versions of EH can add additional fields to
this data type.

valGamLookup :: HsName→ ValGam→ Maybe ValGamInfo
valGamLookup = gamLookup
valGamLookupTy :: HsName→ ValGam→ (Ty,ErrL)
valGamLookupTy n g
= case valGamLookup n g of

Nothing→ (Ty Any, [Err NamesNotIntrod [n]])
Just vgi → (vgiTy vgi, [])

Later (in Chapter 6) the variant valGamLookup will do additional work, but for now it does
not differ from gamLookup except for the return of an error in case no entry is found in
the ValGam. The additional variant valGamLookupTy is specialized further to produce an
error message in case the identifier is missing from the environment. Later, we will discuss
errors (like constructor Err NamesNotIntrod). Here, we only note that the definition and
pretty-printing of errors is done by using AG.

3.3.3 Checking expressions (Expr)

The rules in Fig. 3.3 do not provide much information about how the type σ in the con-
sequence of a rule is to be computed; it is just stated that it should relate in some way
to other types. However, type information can be made available to parts of the abstract
syntax tree, either because the programmer has supplied it somewhere or because the com-
piler can reconstruct it. For types given by a programmer the compiler has to check if such
a type correctly describes the value of an expression for which the type is given. This is
called type checking. If no type information has been given for a value, the compiler needs
to reconstruct or infer this type based on the structure of the abstract syntax tree and the
semantics of the language as defined by the typing rules. This is called type inferencing.
In EH1 we exclusively deal with type checking.
We can now tailor the type rules in Fig. 3.3 towards an implementation which performs
type checking, in Fig. 3.5. Fig. 3.5 differs from Fig. 3.3 in the following aspects:

• We use an expected, or known type σk. Known type information is forwarded from
the place it becomes known to where it is needed. Here it traverses from the top
to the bottom of the AST. In a type rule it traverses from the consequence to the

39

3. EH 1: Typed λ-calculus

Γ;σk `e e : σ

`6 Int 6 σk : σ
Γ;σk `e int : σ

.K
`6 Char 6 σk : σ
Γ;σk `e char : σ

.K

ι 7→ σg ∈ Γ

`6 σg 6 σ
k : σ

Γ;σk `e ι : σ
.K

Γ;�→ σk `e e1 : σa → σ
Γ;σa `

e e2 :
Γ;σk `e e1 e2 : σ

.K

Γ;σk
1 `

e e1 : σ1
Γ;σk

2 `
e e2 : σ2

Γ; (σk
1, σ

k
2) `e (e1, e2) : (σ1, σ2)

.K

`6 �→ � 6 σk : σp → σr

[];σp `
p p : Γp

Γp,Γ;σr `
e e : σe

Γ;σk `e λp→ e : σp → σe
.K

∆ `t t : σa

Γ;σa `
e e : σe

`6 σa 6 σ
k :

Γ;σk `e (e :: t) : σe
.K

Γt;Γt,Γ;Γp `
d d : Γt;Γp

Γp;σk `e b : σ
Γ;σk `e let d in b : σ

.K

Within environment Γ, expecting the type of expression e to be σk, e has type σ.

e : Expression
σk : Expected/known type of expression
σ : Type of expression
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γ : Environment ι 7→ σ for value identifiers

Figure 3.5.: Expression type rules (K)

prerequisites. For this reason it is (by convention) placed at the left side of the
turnstyle ‘`’.

• We uncouple type signatures from their corresponding value declarations. The single
joint declaration for signature and value is split into two separate ones. Additional
Γ’s are required to make the type signature available at the value declaration. This
complicates the type rules but it facilitates extension with different kinds of declara-
tions in later EH versions.

• Patterns may be used in let and λ expressions instead of single identifiers.

40

3.3. Checking types

Γk
t ;Γk

p;Γ `d d : Γt;Γp

∆ `t t : σi

Γi ≡ [i 7→ σi]
;Γp; `d (i :: t) : Γi;Γp

.K

p 7→ σs ∈ Γ
k
t

Γ;σs `
e e :

Γk
p;σs `

p p : Γp

Γk
t ;Γk

p;Γ `d (p = e) : [];Γp
.K

Declaration d has explicit type bindings Γt, within explicit bindings Γk
t and im-

plicit type bindings Γk
p, and type checks within Γ, yielding additional bindings

Γp.

d : Declaration
Γt : Environment with new type signature bindings
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γk

t : Collected Γt, used by patterns to extract bindings for pattern variables
Γ : Environment with known bindings
Γk

p : Known/gathered pattern variable bindings
Γp : Γk

p+ new bindings

Figure 3.6.: Declaration type rules (K)

• The int in rule . represents all possible denotations for integers of type Int, that is
{minint, ...,−1, 0, 1, 2, ...,maxint }. Similarly, char in rule . represents all char-
acter denotations. We assume ASCII encoding (no unicode).

• The type annotation requires an environment for the type expression, denoted by
∆. Although this environment is provided by the conclusion of rule . it is not
shown, as ∆ is a global constant for this EH version.
We could have shown ∆ as part of the type scheme for expressions, but this would
have caused clutter. This is a typical example of the trade-off required between
completeness and focus on the essentials of the description.

• The caption of both figures (holding the type rules for expressions and declarations)
incorporates between parentheses the view on the type rules. Here we discuss view
’K’, for type checking with known types.

We emphasize this difference by the use of colors: in the electronic version of this thesis
we use blue for changes relative to the previous set of rules, grey for the unchanged part.
This (of course) is better seen through media which support color, and worse in black and
white print. The printed version of this thesis therefore does not use colors and typesets

41

3. EH 1: Typed λ-calculus

`6 σl 6 σr : σ

`� σl � σr : σ
`6 σl 6 σr : σ

K

6 delegates to �.

σl : Type to fit in σr

σr : Type in which σl must fit
σ : Result type, (in general) equals σr, but differs slightly in later versions

Figure 3.7.: Fitting of types (K)

(and prints) in black.
We also start with the discussion of the corresponding AG implementation. The rules now
take an additional context, the expected (or known) type σk (attribute knTy, simultaneously
referred to by σk∥knTy) as specified by the programmer, defined in terms of AG as follows:

attr AllExpr [knTy : Ty ||]

The basic idea underlying this implementation for type checking, as well as in later ver-
sions of EH also for type inferencing, is that

• A known (or expected) type σk∥knTy is passed top-down through the syntax tree of
an expression, representing the maximal type (in terms of 6, see Fig. 3.7, Fig. 3.8
and discussion below) the type of an expression can be.

• A result type σ∥ty is computed bottom-up for each expression, representing the
minimal type (in terms of 6) the expression can have.

• At each node in the abstract syntax tree it is checked whether σ 6 σk holds. The
result of lhs 6 rhs is rhs which is subsequently used by the type checker, for example
to simply return or use in constructing another, usually composite, type.

• In general, for lhs 6 rhs the rhs is an expected type whereas lhs is the bottom-up
computed result type.

An additional judgement type named fit (Fig. 3.7) is needed to check an actual type against
an expected (known) type. The judgement specifies the matching σ1 6 σ2 of two types σ1
and σ2. The meaning of 6 is that the left hand side (lhs) type σ1 of 6 can be used where
the right hand side (rhs) type σ2 is expected. Expressed differently, 6 checks whether a
value of type σ1 can flow (that is, be stored) into a memory location of type σ2.
The relation 6 is asymmetric because “a value flowing into a location” does not imply that

42

3.3. Checking types

`� σl � σr : σ

I1 ≡ I2

`� I1 � I2 : I2
.K

`� σa
2 � σ

a
1 : σa

`� σr
1 � σ

r
2 : σr

`� σa
1 → σ

r
1 � σ

a
2 → σ

r
2 : σa → σr

.K

`� σl
1 � σ

l
2 : σl

`� σr
1 � σ

r
2 : σr

`� (σl
1, σ

r
1) � (σl

2, σ
r
2) : (σl, σr)

.K
`� � � σ : σ

..K

`� σ � � : σ
..K

σl matches σr, σ ≡ σr with � eliminated from σ

σl : Type to match
σr : Type to match
σ : Result type

Figure 3.8.: Type matching (K)

it can flow the other way, so 6 conceptually has a direction, even though the current version
of 6 is symmetric. To emphasize this, the rule for 6 (in Fig. 3.7) delegates to the rules in
Fig. 3.8. The rules in Fig. 3.8 test the equality of two types by matching their structure.
Matching is denoted by �.
The rules for 6 also specify a result type. Strictly this result is not required for the fit
judgement to hold, but in the implementation it is convenient to have of 6 (and its imple-
mentation fitsIn) return the smallest type σ for which of σ1 6 σ and σ2 6 σ hold. This is
useful in relation to the use of � in rule .. and rule ..; we will come back to this
later.
For example, 6 is used in rule .which checks that its actual Int type matches the known
type σk. The implementation of rule . performs this check and returns the type σ in
attribute ty:

attr AllExpr [|| ty : Ty]
sem Expr
| IConst loc.fo = tyInt 6 @lhs.knTy

.ty = foTy @fo

The implementation for rule . is defined similarly. The constant tyInt represents the
Int type constant.

43

3. EH 1: Typed λ-calculus

The function fitsIn (printing as 6 in infix notation) returns a FIOut (fitsIn output) data
structure in attribute fo . FIOut consists of a record containing amongst other things field
foTy:

data FIOut = FIOut{foTy :: Ty , foErrL :: ErrL}
emptyFO = FIOut{foTy = Ty Any, foErrL = [] }

foHasErrs :: FIOut → Bool
foHasErrs = not.null.foErrL

Ty Any∥Any∥� plays a special role. This type appears at two places in the implementation
of the type system as a solution to the following problems:

• Invariant to our implementation is the top-down passing of an expected type. How-
ever, this type is not always fully known in a top-down order. For example, in
rule . (Fig. 3.5) the argument of the expected function type � → σk is not
known because this information is only available from the environment Γ which is
used further down in the AST via rule .. In this use of � it represents a “don’t
know” of the type system implementation. As such � has the role of a type variable
(as introduced for type inferencing in Section 4).

• An error occurs at a place where the implementation of the type system needs a type
to continue (type checking) with. In that case � is used to prevent further errors
from occurring. In this use of � it represents a “don’t care” of the type system
implementation. As such � will be replaced by a more specific type as soon as it
matches (via 6) such a type.

In both cases � is a type exclusively used by the implementation to smoothen type check-
ing. The rules for 6 for � in Fig. 3.8 state that � is equal to any type. The effect is that the
result of 6 is a more specific type. This suits our “don’t know” and “don’t care” use. Later,
when discussing the AG implementation for these rules, this issue reappears. In later EH
versions we will split the use of � into the proper use of a type lattice, and it will thus
disappear.
The role of � may appear to be similar to > and ⊥ known from type theory. However, � is
used only as a mechanism for the type system implementation. It is not offered as a feature
to the user (i.e. the EH programmer) of the type system. A type expression t (Fig. 3.1)
does not allow �, but a type (signature) σ does.
Ty Any∥Any∥� is also used at the top level where the actual expected type of the expres-
sion neither is specified nor matters because it is not used:

sem AGItf
| AGItf expr.knTy = Ty Any

The rule . in Fig. 3.8 for comparing function types compares the types for argu-
ments in the opposite direction. Only in Chapter 6 when 6 really behaves asymmetrically
we will discuss this aspect of the rules which is named contravariance. In the rules in

44

3.3. Checking types

Fig. 3.8 the direction makes no difference; the correct use of the direction for now only
anticipates issues yet to come.
The Haskell counterpart of `6 σl 6 σr : σ is implemented by fitsIn:

fitsIn :: Ty→ Ty→ FIOut
fitsIn ty1 ty2
= f ty1 ty2

where
res t = emptyFO{foTy = t }
f Ty Any t2 = res t2 -- m.any.l
f t1 Ty Any = res t1 -- m.any.r
f t1 @(Ty Con s1) -- m.con

t2 @(Ty Con s2)
| s1 == s2 = res t2

f t1 @(Ty App (Ty App (Ty Con c1) ta1) tr1) -- m.arrow
t2 @(Ty App (Ty App (Ty Con c2) ta2) tr2)
| hsnIsArrow c1 ∧ c1 == c2
= comp ta2 tr1 ta1 tr2 (λa r → [a] ‘mkArrow‘ r)

f t1 @(Ty App tf1 ta1) -- m.prod
t2 @(Ty App tf2 ta2)
= comp tf1 ta1 tf2 ta2 Ty App

f t1 t2 = err [Err UnifyClash ty1 ty2 t1 t2]
err e = emptyFO{foErrL = e}
comp tf1 ta1 tf2 ta2 mkComp
= foldr1 (λfo1 fo2→ if foHasErrs fo1 then fo1 else fo2)

[ffo, afo, res rt]
where ffo = f tf1 tf2

afo = f ta1 ta2
rt = mkComp (foTy ffo) (foTy afo)

The function fitsIn checks whether the Ty App structure and all type constants Ty Con
are equal. If not, a non-empty list of errors is returned as well as type Ty Any∥Any∥�.
Matching a composite type is split in two cases for Ty App, one for function types (the
first case), and one for the remaining type applications (the second case). For the current
EH version the second case only concerns tuple types. Both matches for composite types
use comp wich performs multiple 6’s and combines the results. The difference lies in the
treatment of contravariant behavior as discussed earlier.
In case an error is detected in both the type components in comp, only the leftmost are
returned: comp is left-biased with respect to error reporting. This choice prevents too
many errors, assuming leftmost errors are more informative; this is somewhat arbitrary.
The type rules leave open how to handle a situation when a required constraint is invalid.
For a compiler this is not good enough, which is the reason why fitsIn gives a “will-do”
type Ty Any back together with an error for later processing. Errors themselves are also

45

3. EH 1: Typed λ-calculus

described via AG:
data Err
| UnifyClash ty1 : {Ty}

ty2 : {Ty}
ty1detail : {Ty}
ty2detail : {Ty}

data Err
| NamesNotIntrod nmL : {[HsName]}

type ErrL = [Err]

The Err datatype is available as a datatype in the same way Ty is.

Variable occurrences Var The error datatype is also used for signalling undeclared
identifiers when a type for an identifier is retrieved from the environment Γ∥valGam:

sem Expr
| Var (loc.ty g , loc.nmErrs)

= valGamLookupTy @nm @lhs.valGam
loc.fo = @ty g 6 @lhs.knTy
.ty = foTy @fo

Again, the error condition is signalled by a non empty list of errors if a lookup in Γ∥valGam
fails. These errors are gathered so they can be incorporated into an annotated pretty printed
version of the program (this has been omitted).
Typing rule . uses the environment Γ∥valGam to retrieve the type of an identifier. This
environment for types of identifiers is declared as an inherited attribute, initialized at the
top of the abstract syntax tree. It is only extended with new bindings for identifiers at a
declaration of an identifier.

attr AllDecl AllExpr [valGam : ValGam ||]
sem AGItf
| AGItf expr.valGam = emptyGam

Function application App Type checking for rule . constructs � → σk as the ex-
pected type for the function to be applied. The resulting type func.ty is decomposed into
argument and result type, of which the argument type is used as the known type for the
argument child of the App node:

sem Expr
| App func.knTy = [Ty Any] ‘mkArrow‘ @lhs.knTy

(loc.ty a , loc.ty)
= tyArrowArgRes @func.ty

arg .knTy = @ty a
loc .ty = @ty

46

3.3. Checking types

This further clarifies the need for �. To see why, assume we do not use �. Then, in the
following example, what would be the knTy against which 3 will be checked?

let id :: Int → Int
id = λx→ x

in id 3

The value for knTy can only be determined from the type of the function, which is a value
traveling bottom-to-top through the AST. The idea here is to encode the partially known
function type as � → σk (passed to func.knTy) and let fitsIn fill in the missing details,
that is to find a type for �. This is the place where it is convenient to have fitsIn return
a type in which �∥Ty Any’s are replaced by a more concrete type. From that result the
known/expected type of the argument can be extracted.
Note that we are already performing a little bit of type inferencing. This is however only
done locally to App as the � in �→ σk is guaranteed to have disappeared in the result type
of fitsIn. If this is not the case, the EH program contains an error. Enforcing a type to have
a certain structure via fitsIn is a mechanism we repeatedly use, so we summarize it here:

• Generally, the semantics of the language requires a type σ to be of a specific form.
Here σ equals the type of the function (not known at the App location in the AST)
which should have the form �→ σk.

• The specific form may contain types about which we know nothing, here encoded
by �, in later EH versions by type variables.

• fitsIn∥ 6 is used to enforce σ to have the right form. Here this is done by pushing the
form as σk down the AST for the function (attribute func.knTy). The check σ 6 σk

is then performed in the Var variant of Expr.

• Enforcing may or may not succeed. In the latter case error messages are generated
and the result of enforcing is �. Dissection functions like tyArrowArgRes must be
able to cope with �.

The type construction and inspection done in the App variant of Expr requires some addi-
tional type construction functions, for example mkArrow used in App. The function is part
of the class SemApp defining (semantic) functions related to building application App like
structures:

class SemApp a where
semApp :: a→ a→ a
semAppTop :: a→ a
semCon :: HsName→ a
semParens :: a→ a
mkApp :: [a]→ a
mkConApp :: HsName→ [a]→ a
mkProdApp :: [a]→ a
mk1Arrow :: a→ a→ a

47

3. EH 1: Typed λ-calculus

mkArrow :: [a]→ a→ a

The instance for SemApp Ty is defined by:
instance SemApp Ty where

semApp = Ty App
semAppTop = id
semCon = Ty Con
semParens = id

Class SemApp defines four functions (semApp, ...), for constructing a value similar to App,
AppTop, Con and Parens respectively. These functions are used by mkApp to build an
App like structure and by mkArrow to build function like structures. The code for (e.g.)
parsers also uses these functions parameterized with the proper four semantics functions as
generated by the AG system. So this additional layer of abstraction improves code reuse.
Similarly, function mkProdApp constructs a tuple type out of types for the elements.
The functions used for scrutinizing a type are given names in which (by convention) the
following is encoded:

• What is scrutinized.

• What is the result of scrutinizing.

For example, tyArrowArgRes dissects a function type into its argument and result type. If
the scrutinized type is not a function, “will do” values are returned:

tyArrowArgRes :: Ty→ (Ty,Ty)
tyArrowArgRes t
= case t of

Ty App (Ty App (Ty Con nm) a) r
| hsnIsArrow nm→ (a, r)

→ (Ty Any, t)

Similarly tyProdArgs is defined to return the types of the elements of a tuple type. The
code for this and other similar functions have been omitted for brevity.

Constructor Con, tuples Apart from constructing function types only tupling allows
us to build composite types. The rule . for tupling has no immediate counterpart in
the implementation because a tuple (a, b) is encoded as the application (,) a b. We need a
rule . (replacing rule .) to produce a type for (,):

σp ≡ [σ1, ..., σn], (σ1, ..., σn) ≡ σr

Γ; ...→ σr `
e (,) : σp → σr

.K

The expected type σr of the complete tuple can be constructed from knTy∥σk, which by
definition has the form � → � → (a, b) (for this example). The result type of this func-

48

3.3. Checking types

tion type is taken apart and used to produce the desired type a → b → (a, b). The Con
alternative implements this:

sem Expr
| Con loc.ty = tyProdArgs @ty r ‘mkArrow‘ @ty r

.ty r = tyArrowRes @lhs.knTy

Note that, despite the cartesian product constructors being essentially polymorphic, we do
not have to do any kind of unification here, since they either appear in the right hand side
of a declaration where the type is given by an explicit type declaration, or they occur at
an argument position where the type has been implicitly specified by the function type.
Therefore we indeed can use the a and b from type � → � → (a, b) to construct the type
a→ b→ (a, b) for the constructor (,).

λ-expression Lam For rule . the check whether knTy has the form σ1 → σ2 is done
by letting fitsIn match the knTy with � → �. The result (forced to be a function type) is
split up by tyArrowArgRes into argument and result type.

sem Expr
| Lam loc .fo fitF = ([Ty Any] ‘mkArrow‘ Ty Any) 6 @lhs.knTy

(loc.ty p , loc.ty r)
= tyArrowArgRes (foTy @fo fitF)

arg .valGam = emptyGam
.knTy = @ty p

body.knTy = @ty r
.valGam = gamAddGam @arg.valGam @lhs.valGam

loc .ty = [@ty p] ‘mkArrow‘ @body.ty

Type annotations (for λ-expression) In order to make λ-expressions typecheck cor-
rectly it is the responsibility of the EH programmer to supply the correct type signature.
The TypeAs variant of Expr (for rule .) takes care of this by simply passing the type
signature as the expected type and checking whether the type signature matches the ex-
pected type of the annotation:

sem Expr
| TypeAs expr.knTy = @tyExpr.ty

loc .fo = @tyExpr.ty 6 @lhs.knTy

The obligation for the EH programmer to specify a type is dropped in later versions of EH.

3.3.4 Checking pattern expressions

Before we can look into more detail at the way new identifiers are introduced in let- and
λ-expressions we take a look at patterns. The rules in Fig. 3.9 demonstrate the basic idea:

49

3. EH 1: Typed λ-calculus

Γk;σk `p p : Γ

`6 σk 6 Int :
Γ;σk `p int : Γ

.K
`6 σk 6 Char :
Γ;σk `p char : Γ

.K
Γi ≡ [i 7→ σk]
Γ;σk `p i : Γi,Γ

.K

Γi ≡ [i 7→ σk]
Γ;σk `p p : Γp

Γ;σk `p i @p : Γi,Γp
.K

Γ;σk `p p : Γp

σ ≡ [σ1, ..., σn], (σ1, ..., σn) ≡ σk

| σ | ≡ n
Γ;σk `p p : Γp

.K

σf , σa ≡ (σ1, ..., σn−1), σn, (σ1, ..., σn−1, σn) ≡ σk

Γ;σf `
p p1 : Γf

Γf ;σa `
p p2 : Γa

Γ;σk `p p1 p2 : Γa
.K

Knowing the type of pattern p to be σk, yielding additional bindings Γ (for iden-
tifiers introduced by p)

σk : Known type of pattern
Γk : Already gathered bindings (for this EH version initially [])
Γ : Γk+ new bindings

Figure 3.9.: Pattern expression type rules (K)

gather bindings for identifiers given an expected type of the pattern. For example, the
following fragment specifies the type of p whereas we also need to know the types of a and
b:

let p :: (Int, Int)
p @(a, b) = (3, 4)

in a

The expected type of a pattern is distributed over the pattern by dissecting it into its con-
stituents. Patterns do not return a type, but instead return type bindings for the identifiers
inside a pattern. The new bindings are subsequently used in let- and λ-expression bodies.
The typing for a tuple pattern is expressed as a combination of rule . and rule .
(Fig. 3.9). A tuple pattern is encoded in the same way as tuple expressions; that is, pattern
(a, b) is encoded as an application (,) a b with an AppTop on top of it. This facilitates
the “one at a time” treatment of tuple elements, but complicates the treatment of overall
aspects. We use the following strategy:

50

3.3. Checking types

• We dissect the known type of a tuple into its elements at the top (AppTop) of a
pattern, that is, the fully saturated pattern (see rule .). Here we also check
whether the arity of the pattern and the arity of its expected type match.

• The known type dissection is distributed over the AST elements of the pattern (see
rule .), for use by pattern elements.

• At the leaves of a pattern we either bind its known type to an identifier (e.g. rule .)
or we check the known type fits into the type of a constant (e.g. rule .).

The AG implementation dissects the known type of a tuple into its element types at AppTop
using function tyProdArgs. For this version of EH we only have tuple patterns. Instead
of manipulating the expected tuple type over the App spine of the pattern, we directly
decompose the tuple type into a list knTyL of constituent types. We also require the arity
of the pattern in order to check (at AppTop) if the pattern is fully saturated:

attr AllPatExpr [knTy : Ty ||]
attr PatExpr [knTyL : TyL ||]
sem PatExpr
| AppTop loc .tys = tyProdArgs @lhs.knTy

.arityErrs = if length @tys == @patExpr.arity
then []
else [Err PatArity @lhs.knTy @patExpr.arity]

patExpr.knTyL = reverse @tys
sem PatExpr
| App (loc.ty a , loc.tyi l)

= tyLHdAndTl @lhs.knTyL
func.knTyL = @tyi l
.knTy = Ty Any

arg .knTy = @ty a

The list of tuple elements is passed through attribute knTyL to all App’s of the pattern. At
each App one element of this list is taken as the known type knTy∥σk of the element AST.
In case the arities of pattern and its expected type do not match, an error is produced and
the tuple components are given � as their expected type (by tyLHdAndTl).
Finally, for the distribution of the known type throughout a pattern we need to properly
initialize knTyL. Because a pattern occurs in other contexts, that is as a child of other AST
nodes, other than an AppTop, we need to specify a default value.

sem Decl
| Val patExpr.knTyL = []

sem Expr
| Lam arg .knTyL = []

The arity of the patterns is needed as well:
attr PatExpr [|| arity : Int]

51

3. EH 1: Typed λ-calculus

sem PatExpr
| App lhs.arity = @func.arity + 1
| Con Var AppTop IConst CConst

lhs.arity = 0

As a result of this unpacking, at a Var alternative attribute knTy holds the type of the
variable name introduced. The type is added to attribute valGam that is threaded through
the pattern for gathering all introduced bindings:

attr AllPatExpr [| valGam : ValGam |]
sem PatExpr
| Var loc.valGam i = if @lhs.inclVarBind ∧ @nm . hsnWild

then gamUnit @nm (ValGamInfo @lhs.knTy)
else emptyGam

lhs.valGam = gamAddGam @valGam i @lhs.valGam

A new entry is added if the variable name is not equal to an underscore ’ ’ and has not
been added previously via a type signature for the variable name, signalled by attribute
inclVarBind. Because our check on duplicate introductions is based on duplicate entries in
valGam, we inhibit addition if an entry has already been added via a type signature. This
condition is indicated by inclVarBind.

3.3.5 Checking declarations

In a let-expression type signatures, patterns and expressions meet. The algorithmic version
of rule . in Fig. 3.5 is more complex than the equational version in Fig. 3.3 because
of the presence of mutual recursive definitions and the uncoupling of type signatures and
their corresponding value definition:

• Mutually recursive value definitions.
let f :: ...

f = λx→ ...g ...
g :: ...
g = λx→ ...f ...

in ...
In the body of f the type g must be known and vice-versa. There is no ordering of
what can be defined and checked first. In Haskell f and g together would be in the
same binding group.

• Textually separated signatures and value definitions.
let f :: ...
...
f = λx→ ...

in ...

52

3.3. Checking types

Syntactically the signature and value definition for an identifier need not be defined
adjacently or in any specific order.

In Haskell dependency analysis determines that f and g form a so-called binding group,
which contains declarations that have to be subjected to type analysis together. However,
due to the obligatory presence of type signatures in this version of EH it is possible to
first gather all signatures and only then type check the value definitions. Therefore, for
this version of EH mutual recursive definitions are less of an issue as we always require
a signature to be defined. For later versions of EH it actually will become an issue, so
for simplicity all bindings in a let-expression are analysed together as a single (binding)
group.
Our AG implementation follows the strategy of rule . (Fig. 3.5), rule . and
rule . (Fig. 3.6):

• First extract all type signatures in:
attr AllDecl [|| gathTySigGam use{‘gamAddGam‘}{emptyGam} : ValGam]

• Then distribute these gathered signatures in:
attr AllDecl [tySigGam : ValGam ||]

This attribute and gathTySigGam correspond to Γt in the type rules.

• Use the signature as the known type of a pattern in order to extract bindings inside a
pattern in:

attr AllDecl [| patValGam : ValGam |]

This attribute corresponds to Γp in the type rules.

• Finally distribute all previously gathered information (for use by identifier occur-
rences in expressions) in:

attr AllDecl AllExpr [valGam : ValGam ||]
sem AGItf
| AGItf expr.valGam = emptyGam

This attribute corresponds to Γ in the type rules.

This flow of information is described by the following AG fragment:
sem Expr
| Let decls.patValGam = gamPushGam @decls.gathTySigGam @lhs.valGam

.tySigGam = @decls.gathTySigGam

.valGam = @decls.patValGam
body .valGam = @decls.patValGam

Attribute gathTySigGam is populated with bindings in a type signature TySig:
sem Decl
| TySig lhs.patValGam = @lhs.patValGam

53

3. EH 1: Typed λ-calculus

.gathTySigGam = gamUnit @nm (ValGamInfo @tyExpr.ty)

Bindings from patterns are gathered in a value declaration Val. The type signature for the
topmost variable of the pattern is used as the expected type (knTy) of the pattern. tySigGam
has to be queried for the type signature:

sem Decl
| Val (loc.ty sig , loc.nmErrs) = let e = [Err MissingSig @patExpr.pp]

l n = gamLookup n @lhs.tySigGam
in case@patExpr.mbTopNm of

Nothing→ (Ty Any, e)
Just nm→ case l nm of

Nothing→ (Ty Any, e)
Just vgi→ (vgiTy vgi, [])

expr .knTy = @ty sig
.valGam = @lhs.valGam

patExpr.valGam = @lhs.patValGam
.knTy = @ty sig

lhs .patValGam = @patExpr.valGam
.gathTySigGam = emptyGam

The actual bindings are added inside a patterns at variable occurrences.
We allow patterns of the form ‘ab @(a, b)’ to have a type signature associated with ab. No
type signatures are allowed for ‘(a, b)’ without the ‘ab @’ alias (because there is no way
to refer to the anonymous tuple) nor is it allowed to specify type signature for the fields of
the tuple (because of simplicity, additional plumbing would be required).
Extracting the top of the stack patValGam gives all the locally introduced bindings in
lValGam. An additional error message is produced if any duplicate bindings are present.

3.3.6 Checking type expressions

All that is left to do now is to use the type expressions to extract type signatures (type rules
for type expressions are in Fig. 3.10). This is straightforward as type expressions (abstract
syntax for what the programmer specified) and types (as internally used by the compiler)
have almost the same structure (Section 3.2, page 31:

attr TyExpr [|| ty : Ty]
sem TyExpr
| Con (loc.tgi , loc.nmErrs)

= case tyGamLookup @nm @lhs.tyGam of
Nothing→ (TyGamInfo Ty Any, [Err NamesNotIntrod [@nm]])
Just @tgi → (@tgi , [])

loc.ty = tgiTy @tgi
sem TyExpr

54

3.3. Checking types

∆ `t t : σ

I 7→ σ ∈ ∆
∆ `t I : σ

.K

∆ `t t2 : σa

∆ `t t1 : σf

∆ `t t1 t2 : σfσa
.K

Within environment ∆, type expression t has a (replica) type signature σ.

t : Type expression
σ : Type signature
∆ : Environment ι 7→ σ for type identifiers

Figure 3.10.: Type expression type rules (K)

| App loc.ty = Ty App @func.ty @arg.ty

Actually, we need to do more because we also have to check whether a type is defined. A
variant of Gam is used to hold type constants:

data TyGamInfo = TyGamInfo{tgiTy :: Ty} deriving Show
type TyGam = Gam HsName TyGamInfo
tyGamLookup :: HsName→ TyGam→ Maybe TyGamInfo
tyGamLookup nm g
= case gamLookup nm g of

Nothing | hsnIsProd nm→ Just (TyGamInfo (Ty Con nm))
Just tgi → Just tgi

→ Nothing

This environment, denoted by ∆, is passed to a TyExpr:
attr AllTyExpr [tyGam : TyGam ||]

At the root of the AST tyGam is initialized with the fixed set of types available in this
version of the compiler. Because ∆ is fixed, and can be seen as a global constant, we have
omitted ∆ from all type rules, except those describing type expressions.

sem AGItf
| AGItf loc.tyGam = assocLToGam

[(hsnArrow,TyGamInfo (Ty Con hsnArrow))
, (hsnInt, TyGamInfo tyInt)
, (hsnChar, TyGamInfo tyChar)
]

Finally, at the Con alternative of TyExpr we need to check if a type is defined:

55

3. EH 1: Typed λ-calculus

sem TyExpr
| Con (loc.tgi , loc.nmErrs)

= case tyGamLookup @nm @lhs.tyGam of
Nothing→ (TyGamInfo Ty Any, [Err NamesNotIntrod [@nm]])
Just @tgi → (@tgi , [])

loc.ty = tgiTy @tgi

3.4 Conclusion and remarks

In this chapter we have described the first version of EH, that is, λ-calculus (plus tuples)
packaged in Haskell notation. Types are simple (no polymorphism), explicit, and checked.
The next version adds non-polymorphic type inference.
This EH version provides the basis for later EH versions, but is also influenced by the need
of later versions. For example, a let expression is expressed in terms of declarations and a
single expression in which the bindings introduced by declarations are used. This has the
following consequences:

• The separation into let expressions and declarations allows flexible extension with
new kinds of declarations without the need to introduce new kinds of let expressions.

• Common aspects of declarations can be factored out and be dealt with in the let
expression.

• On the other hand, some kinds of declarations are related, and information con-
structed in one kind of declaration (for example, a type signature declaration) must
be made available in the related declaration (a value declaration). Additional envi-
ronments are required to pass the relevant information around; this is the price we
pay for this flexibility.

We emphasize that the AG system allows us to independently specify these aspects. We
consider this a strong point of the AG system (see also Chapter 12). By using a slightly
more general approach we are able to anticipate later modifications. However, this raises
the question of what “the right” approach is; we will discuss our choice (and related choices
concerning our partitioning into steps) in the conclusion (Chapter 12).

56

4 EH 2: M 


The next version of EH drops the requirement that all value definitions need to be accom-
panied by an explicit type signature. For example, the example from the introduction:

let i = 5
in i

is accepted by this version of EH. From now on, and when relevant, we will also give the
output as produced by the corresponding EH compiler, because additional type information
is inferred:

let i = 5

{- [i:Int] -}

in i

The idea is that the type system implementation has an internal representation for “knowing
a type is some type, but not yet which one” which can be replaced by a more specific type
if that becomes known. The internal representation for a yet unknown type is called a type
variable.
The implementation attempts to gather as much information as possible from a program
to reconstruct (or infer) types for type variables. However, the types it can reconstruct
are limited to those allowed by the used type language, that is, basic types, tuples, and
functions. All types are assumed to be monomorphic, that is, polymorphism is not yet
allowed. The next version of EH deals with polymorphism.
So

let id = λx→ x
in let v = id 3

in id

will give

let id = \x -> x

{- [id:Int -> Int] -}

57

4. EH 2: Monomorphic type inferencing

in let v = id 3

{- [v:Int] -}

in id

If the use of id to define v would be omitted, less information (namely the argument of id is
an int) to infer a type for id is available. Because no more specific type information for the
argument (and result) of id could be retrieved the representation for “not knowing which
type”, that is, a type variable, is shown:

let id = \x -> x

{- [id:v_3_0 -> v_3_0] -}

in id

On the other hand, if contradictory information in case of a monomorphic id applied to
values of different type, we will obtain the following error:

let id = \x -> x

{- [id:Int -> Int] -}

in let v = (id 3,id ’x’)

{- ***ERROR(S):

In ‘(id 3,id ’x’)’:

... In ‘’x’’:

Type clash:

failed to fit: Char <= Int

problem with : Char <= Int -}

{- [v:(Int,Int)] -}

in v

The next version of EH dealing with Haskell style polymorphism (Chapter 5) accepts this
program. This version of EH also allows partial type signatures; we will discuss this feature
in Chapter 10.

4.1 Type variables

In order to be able to represent yet unknown types the type language needs type variables
to represent this, and therefore we extend our set of types as follows:
σF Int | Char
| (σ, ..., σ) | σ→ σ
| v

58

4.2. Constraints

The corresponding type structure Ty needs to be extended with an alternative for a variable.
Note that the AG system allows us to define this additional type variant independent of the
previous definition, thus allowing an isolated explanation:

data Ty
| Var tv : {TyVarId }

A type variable is identified by a unique identifier, a UID:
newtype UID = UID [Int] deriving (Eq,Ord)
type TyVarId = UID

We thread a counter as global variable through the AST, incrementing it whenever a new
unique value is required. The implementation used throughout all EH compiler versions is
more complex because a UID actually is a hierarchy of counters, each level counting within
the context of an outer level. This structure allows the outer level to be threaded, while
avoiding this for an inner level when passed to a function, thus avoiding the introduction
of possible cycles. This is not discussed any further; we will ignore this aspect and just
assume a unique UID can be obtained. Its use is visible whenever we need a so called fresh
type variable in a type rule.

4.2 Constraints

Although the typing rules in Fig. 3.5, page 40 still hold we need to look at the meaning of
6 (or fitsIn) in the presence of type variables. The idea here is that what is unknown may
be replaced by that which is known. For example, when the check v 6 σ is encountered,
the easiest way to make v 6 σ true is to state that the (previously) unknown type v equals
σ. An alternative way to look at this is that v 6 σ is true under the constraint that v equals
σ. Alternatively, we say that v binds to σ.

4.2.1 Remembering and applying constraints

As soon as we have determined that a type variable v equals a type σ, we must remember
this and propagate it to wherever v is used. We use constraints, denoted by C, to remember
such a binding of a type variable to a type:
C = [v 7→ σ]

A set of constraints C (appearing in its non pretty printed form as Cnstr in the source text)
is a set of bindings for type variables, represented as an association list:

newtype C = C (AssocL TyVarId Ty) deriving Show
emptyCnstr :: C
emptyCnstr = C []

59

4. EH 2: Monomorphic type inferencing

cnstrTyUnit :: TyVarId → Ty→ C
cnstrTyUnit tv t = C [(tv, t)]

If cnstrTyUnit is used as an infix operator it is printed as 7→ in the same way as used in
type rules.
Different strategies can be used to cope with constraints [94, 35, 80]. Here constraints C are
used to replace all other references to v by σ, for this reason often named a substitution. In
this version of EH the replacement of type variables with types is done immediately after
constraints are obtained, to avoid finding a new and probably conflicting constraint for a
type variable. Applying constraints means substituting type variables with the bindings in
the constraints, hence the class Substitutable for those structures which have references to
type variables inside and can replace, or substitute those type variables:

infixr 6 ⊕
class Substitutable s where

(⊕) :: C → s→ s
ftv :: s→ TyVarIdL

The operator ⊕ applies constraints C to a Substitutable. Function ftv extracts the free type
variable references as a set (implemented as a list) of TVarId’s.
A C can be applied to a type:

instance Substitutable Ty where
(⊕) = tyAppCnstr
ftv = tyFtv

This is another place where we use the AG notation and the automatic propagation of
values as attributes throughout the type representation to make the description of the ap-
plication of a C to a Ty easier. The functions tyAppCnstr and tyFtv are defined in terms of
the following AG:

attr TyAGItf AllTy [cnstr : C ||]
attr AllTyAndFlds [|| repl : self]
attr TyAGItf [|| repl : Ty]
sem Ty
| Var lhs.repl = maybe @repl id (cnstrTyLookup @tv @lhs.cnstr)

attr TyAGItf AllTy [|| tvs use{∪}{[]} : TyVarIdL]
sem Ty
| Var lhs.tvs = [@tv]

The application of a C is straightforwardly lifted to lists:
instance Substitutable a⇒ Substitutable [a] where

s ⊕ l = map (s⊕) l
ftv l = unions.map ftv $ l

A C can also be applied to another C:

60

4.2. Constraints

instance Substitutable C where
s1 @(C sl1) ⊕ s2 @(C sl2)
= C (sl1 ++ map (λ(v, t)→ (v, s1 ⊕ t)) sl2′)

where sl2′ = deleteFirstsBy (λ(v1,) (v2,)→ v1 == v2) sl2 sl1
ftv (C sl)
= ftv.map snd $ sl

Substituting a substitution is non-commutative as constraints s1 in s1 ⊕ s2 take precedence
over s2. To make this even clearer all constraints for type variables in s1 are removed from
s2, even though for a list implementation this would not be required.

4.2.2 Computing constraints

The only source of constraints is the check fitsIn which determines whether one type flows
into another one. The previous version of EH could only do one thing in case a type did
not fit in another: report an error. Now, if one of the types is unknown, this means that it
is a type variable, and we have the additional possibility of returning a constraint on that
type variable. The implementation fitsIn of 6 additionaly has to return constraints:

data FIOut = FIOut{foTy :: Ty , foErrL :: ErrL, foCnstr :: C }

emptyFO = FIOut{foTy = Ty Any, foErrL = [] , foCnstr = emptyCnstr }

Computation and proper combination of constraints necessitates fitsIn to be rewritten in
order to deal with type variables and constraints. The rules describing the desired behavior
are shown in Fig. 4.1 and Fig. 4.2. We show the changed part of the full implementation
for this version. The function comp deals with the proper combination of constraints for
composite types:

fitsIn :: Ty→ Ty→ FIOut
fitsIn ty1 ty2
= f ty1 ty2

where
res t = emptyFO{foTy = t }
bind tv t = (res t){foCnstr = tv 7→ t }
occurBind v t | v ∈ ftv t = err [Err UnifyOccurs ty1 ty2 v t]

| otherwise = bind v t
comp tf1 ta1 tf2 ta2 mkComp
= foldr1 (λfo1 fo2→ if foHasErrs fo1 then fo1 else fo2)

[ffo, afo, rfo]
where ffo = f tf1 tf2

fs = foCnstr ffo
afo = f (fs ⊕ ta1) (fs ⊕ ta2)
as = foCnstr afo
rt = mkComp (as ⊕ foTy ffo) (foTy afo)

61

4. EH 2: Monomorphic type inferencing

`� σl � σr : σ{ C

`� � � σ : σ{ []
..C

`� σ � � : σ{ []
..C

I1 ≡ I2

`� I1 � I2 : I2 { []
.C

ν1 ≡ ν2
`� ν1 � ν2 : ν2 { []

.C

C ≡ [v 7→ σ]
`� v � σ : σ{ C

..1C
C ≡ [v 7→ σ]
`� σ � v : σ{ C

..1C

`� σa
2 � σ

a
1 : σa { Ca

`� Caσ
r
1 � Caσ

r
2 : σr { Cr

`� σa
1 → σ

r
1 � σ

a
2 → σ

r
2 : Crσa → σr { CrCa

.C

`� σl
1 � σ

l
2 : σl { Cl

`� Clσ
r
1 � Clσ

r
2 : σr { Cr

`� (σl
1, σ

r
1) � (σl

2, σ
r
2) : (Crσl, σr){ CrCl

.C

σl matches σr under constraints C, σ ≡ C σr

C : Additional constraints under which matching succeeds
σl : Type to match
σr : Type to match
σ : Result type

Figure 4.1.: Type matching rules (C)

rfo = emptyFO{foTy = rt, foCnstr = as ⊕ fs}
f t1 @(Ty Var v1) (Ty Var v2)

| v1 == v2 = res t1
f t1 @(Ty Var v1) t2 = occurBind v1 t2
f t1 t2 @(Ty Var v2) = occurBind v2 t1

Although this version of the implementation of fitsIn resembles the previous one it differs
in the following aspects:

• The datatype FIOut returned by fitsIn has an additional field foCnstr holding found
constraints. This requires constraints to be combined for composite types like the
App variant of Ty. The constraints returned by fitsIn further participate in type infer-

62

4.3. Type inference for expressions (Expr)

`6 σl 6 σr : σ{ C

`� σl � σr : σ{ C
`6 σl 6 σr : σ{ C

C

6 delegates to �.

σl : Type to fit in σr

σr : Type in which σl must fit
σ : σ ≡ C σr

Figure 4.2.: Fitting of types (C)

encing.

• The function bind creates a binding for a type variable to a type. The use of bind
is shielded by occurBind which checks if the type variable for which a binding is
created does not occur free in the bound type too. This is to prevent (e.g.) a 6 a→ a
to succeed. This is because it is not clear if a 7→ a → a should be the resulting
constraint or a 7→ (a → a) → (a → a) or one of infinitely many other possible
solutions. A so called infinite type like this is inhibited by the so called occurs
check.

• An application App recursively fits its components with components of another App.
The constraints from the first fit ffo are applied immediately to the following com-
ponent before fitting that one. This is to prevent a → a 6 Int → Char from finding
two conflicting constraints [a 7→ Int, a 7→ Char] instead of properly reporting an
error.

4.3 Type inference for expressions (Expr)

Constraints are used to make knowledge found about previously unknown types explicit.
The typing rules in Fig. 3.5 and Fig. 3.6 in principle do not need to be changed. The only
reason to adapt some of the rules to the variant in Fig. 4.3 is to clarify the way constraints
are used.
The type rules in Fig. 4.3 enforce an order in which checking and inferring types has to be
done. Constraints are threaded through the type rules. The flow of these constraints defines
the computation order. In AG the threading of constraints is expressed by the following
declaration of tyCnstr:

63

4. EH 2: Monomorphic type inferencing

Γ;Ck;σk `e e : σ{ C

`6 Int 6 Ckσk : σ{ C
Γ;Ck;σk `e int : σ{ C Ck .C

`6 Char 6 Ckσk : σ{ C
Γ;Ck;σk `e char : σ{ C Ck .C

ι 7→ σg ∈ Γ

`6 Ckσg 6 C
kσk : σ{ C

Γ;Ck;σk `e ι : σ{ C Ck .C

v fresh, | I |≡| v |
σp ≡ (σ1, ..., σn), [σ1, ..., σn] ≡ v
`6 (v→ σp) 6 Ckσk : σ{ C
Γ;Ck;σk `e I : σ{ C Ck .C

v fresh
Γ;Ck; v→ σk `e e1 : σa → σ{ Cf

Γ;Cf ;σa `
e e2 : { Ca

Γ;Ck;σk `e e1 e2 : Caσ{ Ca
.C

v1, v2 fresh
`6 v1 → v2 6 C

kσk : { CF

CFC
k; []; v1 `

p p : σp;Γp { Cp;
Γp,Γ;Cp; v2 `

e e : σe { Ce

Γ;Ck;σk `e λp→ e : Ceσp → σe { Ce
.C

∆ `t t : σa

`6 σa 6 C
kσk : { CF

Γ;CFC
k;σa `

e e : σe { Ce

Γ;Ck;σk `e (e :: t) : σe { Ce
.C

Γt;Γt,Γ;Γp;Ck;Cp `
d d : Γt;Γp { Cp;Cd

Γp;Cd;σk `e b : σ{ Ce

Γ;Ck;σk `e let d in b : σ{ Ce
.C

Within environment Γ, expecting the type of expression e to be Ckσk, e has type
σ, under constraints C.

e : Expression
σk : Expected/known type of expression
σ : Type of expression
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γ : Environment ι 7→ σ for value identifiers
Ck : Already known constraints
C : Ck+ new constraints

Figure 4.3.: Expression type rules (C)64

4.3. Type inference for expressions (Expr)

Γk
t ;Γk

p;Γ;Ck
p;Ck `d d : Γt;Γp { Cp;C

∆ `t t : σi

Γi ≡ [i 7→ σi]
;Γp; ;Ck

p;Ck `d (i :: t) : Γi;Γp { C
k
p;Ck .C

v fresh
p 7→ σs ∈ Γ

k
t

σk
p ≡ σs ∧ σ

k
e ≡ σs ∨ σ

k
p ≡ v ∧ σk

e ≡ σp

Ck
p;Γk

p;σk
p `

p p : σp;Γp { Cp;
Γ;Ck;σk

e `
e e : { Ce

Γk
t ;Γk

p;Γ;Ck
p;Ck `d (p = e) : [];Γp { Cp;Ce

.C

Declaration d has explicit type bindings Γt, within explicit bindings Γk
t and im-

plicit type bindings Ck
pΓ

k
p, and type checks within CkΓ, yielding additional bind-

ings Γp, under constraints Cp (for Γp) and C (for Γ).

d : Declaration
Γt : Environment with new type signature bindings
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γk

t : Collected Γt, used by patterns to extract bindings for pattern variables
Γ : Environment with known bindings
Ck

p : Known/gathered constraints during type inference of patterns (i. e. use
of type signatures and pattern structure)

Cp : Ck
p+ new constraints

Γk
p : Known/gathered pattern variable bindings
Γp : Γk

p+ new bindings
Ck : Known/gathered constraints during type inference of expressions bound

to patterns
C : Ck+ new constraints

Figure 4.4.: Declaration type rules (C)

attr AllExpr [| tyCnstr : C |]

For a type rule the (already) known constraints Ck correspond to the use of lhs.tyCnstr and
the result constraints (like Ca for rule .) are assigned to lhs.tyCnstr. For rule . this
translates to the following implementation:

65

4. EH 2: Monomorphic type inferencing

sem Expr
| App (func.gUniq, loc.uniq1)

= mkNewLevUID @lhs.gUniq
func.knTy = [mkTyVar @uniq1] ‘mkArrow‘ @lhs.knTy
(loc.ty a , loc.ty)

= tyArrowArgRes @func.ty
arg .knTy = @ty a
loc .ty = @arg.tyCnstr ⊕ @ty

The freshness of a type variable is guaranteed by threading a seed gUniq for unique values
(UID’s) through the AST:

attr AllNT [| gUniq : UID |]

When a unique value is needed we use gUniq’s current value as the ‘fresh’ UID, and pass
the adapted seed onwards to the first child which requires unique values as well.
Our type rules and their corresponding AG description preserve the following invariant:

• The resulting type ty has all known constraints applied to it.

This invariant is not preserved for knTy and valGam, which also can contain type variables.
The application of constraints to these attributes is postponed until the following places (in
the AST or other code):

• Such an attribute is used in a setting which may yield new constraints, that is, it is
used by 6 ∥fitsIn.

• Such an attribute is used to return a type of an expression, for example in rule ..
We apply known constraints to the type extracted from Γ∥valGam.

Variable occurrences Var The abovementioned invariant and non-invariant are illus-
trated by the AG code for rule ., in which lhs.tyCnstr is applied to both the expected
type knTy and the type ty g extracted from valGam:

sem Expr
| Var (loc.ty g , loc.nmErrs)

= valGamLookupTy @nm @lhs.valGam
loc.fo = fitsIn (@lhs.tyCnstr ⊕ @ty g)

(@lhs.tyCnstr ⊕ @lhs.knTy)
lhs.tyCnstr = foCnstr @fo ⊕ @lhs.tyCnstr
loc.ty = foTy @fo

Newly found constraints (from 6 ∥fitsIn) are combined with the already known constraints
(lhs.tyCnstr).

66

4.3. Type inference for expressions (Expr)

Tuples The construction of tuples is handled by the combination of rule . and
rule .. It is now the responsibility of rule . to return the proper function type
for constructing a tuple. In the previous version we could use the expected type, which
was guaranteed to be available in knTy. This information is no longer available, so we
use the arity n encoded in the name ‘, n’ of the constructor to compute the constructor
function type. This function is polymorphic, this is the only place where we need to deal
with polymorphism for this version of EH. We compute the function type using fresh type
variables:

sem Expr
| Con (lhs.gUniq, loc.uniq1)

= mkNewLevUID @lhs.gUniq
loc.tvars = map mkTyVar (mkNewUIDL (hsnProdArity @nm) @uniq1)
.fo = fitsIn (@tvars ‘mkArrow‘ mkProdApp @tvars)

(@lhs.tyCnstr ⊕ @lhs.knTy)
lhs.tyCnstr = foCnstr @fo ⊕ @lhs.tyCnstr
loc.ty = foTy @fo

The remaining rules follow the same strategy of applying constraints to types, matching
types and propagating the resulting constraints. We omit their implementation, except for
rule . which we discuss later in this chapter.
Some observations are in place:

• The main difference with the previous implementation is the use of type variables to
represent unknown knowledge. Previously �was used for that purpose, for example,
the rule -2 and its implementation show that fresh type variables vi in ν1 → ν2
are used instead of � → � to enforce a . . → . . structure. If � still would be used,
for example in:

let id = λx→ x
in id 3

the conclusion would be drawn that id :: � → �: the absence of the (type variable)
identity of x’s type has as a consequence that we do not infer id :: Int → Int from
the application id 3. So, � represents “unknown knowledge”, a type variable v
represents “not yet known knowledge” to which the inferencing process later has to
refer to make it “known knowledge”.

• Type variables are introduced under the condition that they are “fresh”. For a typ-
ing rule this means that these type variables are not in use elsewhere, often more
concretely specified with a condition v < ftv (Γ).

67

4. EH 2: Monomorphic type inferencing

4.4 Type inference for pattern expressions (PatExpr)

In the previous version of EH we were only interested in bindings for identifiers in a pat-
tern. The type of a pattern was already known via a corresponding type signature. For
this version this is no longer the case. We now have to use the occurrence of an identifier
in a pattern or expression to infer type information about the identifier. The structure of
a pattern reveals already some type structure. Hence we compute types for patterns too,
and use this type as the known type if no type signature is available (Fig. 4.5). Again, con-
straints are threaded through the pattern to accumulate information about type variables.
For example, rule . enforces the known type to be an Int:

`6 Ckσk 6 Int : { Cf

Ck;Γ;σk `p int : Int;Γ{ CfC
k;�
.C

The use of 6 in patterns is opposite compared to the use in expressions. Patterns are used
to dissect values as opposed to expressions, which construct values. Hence values flow
into the pattern, simulated by fitting the known type into the pattern type.
The final new ingredient is the use of pattern function type σp f , the type which encodes
the structure of the dissection occurring in a composite pattern. A composite pattern takes
a value and extracts its components. We encode this by a function type σp f , which takes
this value and returns a tuple holding the components. The rules are organized in such a
way that this type is computed in rule .; by doing so, we already prepare for data types
where the data constructor determines how a value should be dissected. However, for this
version we only have tuple constructors, hence σp f is the identity function on tuples of
size equal to the arity of the pattern. In rule . (Fig. 4.5) we use the structure of the
identifier to determine the arity and compute σp f .
The remainder of the computation of the type of a pattern is similar to and yet more
straightforward than for expressions. The rule . (Fig. 4.5) binds the identifier to the
known type and if no such known type is available it invents a fresh one, by means of
tyEnsureNonAny:

sem PatExpr
| Var (lhs.gUniq, loc.uniq1)

= mkNewLevUID @lhs.gUniq
loc.ty p = tyEnsureNonAny @uniq1 @lhs.knTy
.valGam i = if @lhs.inclVarBind ∧ @nm . hsnWild

then gamUnit @nm (ValGamInfo @ty p)
else emptyGam

lhs.valGam = gamAddGam @valGam i @lhs.valGam
.patFunTy = Ty Any

loc.ty = @ty p

68

4.4. Type inference for pattern expressions (PatExpr)

Ck;Γk;σk `p p : σ;Γ{ C;σpf

`6 Ckσk 6 Int : { Cf

Ck;Γ;σk `p int : Int;Γ{ CfC
k;�
.C

v fresh, | I |≡| v |
σp ≡ (σ1, ..., σn), [σ1, ..., σn] ≡ v
Ck;Γ;σk `p I : �;Γ{ Ck;σp → σp

.C

σp ≡ σ
k, σp . �

Γi ≡ [i 7→ σp]
Ck;Γ;σk `p i : σp;Γi,Γ{ C

k;�
.C

σp ≡ σ
k, σp . �

Γi ≡ [i 7→ σp]
Ck;Γ;σp `

p p : ;Γp { Cp;
Ck;Γ;σk `p i @p : Cpσp;Γi,Γp { Cp;�

.C

`6 Ckσk 6 σa : σ{ Cf

CfC
k;Γ;σk `p p : σ;Γp { C;σa → σr

σ ≡ [σ1, ..., σn], (σ1, ..., σn) ≡ σr

| σ | ≡ n
Ck;Γ;σk `p p : C σ;Γp { C;�

.C

σf , σa ≡ (σ1, ..., σn−1), σn, (σ1, ..., σn−1, σn) ≡ σk

Ck;Γ;σf `
p p1 : σ;Γf { Cf ;σpf

Cf ;Γf ;σa `
p p2 : σ;Γa { Ca;

Ck;Γ;σk `p p1 p2 : σ;Γa { Ca;σpf
.C

Knowing the type of pattern p to be Ckσk, p has type σ and bindings Γ (for
identifiers introduced by p), under constraints C

σk : Known type of pattern
σpf : The type which encodes the value dissection as a function type, from

value to tuple (holding the constituents of the value)
σ : Type of pattern p
Ck : Already known constraints
C : Ck+ new constraints
Γk : Already gathered bindings (for this EH version initially [])
Γ : Γk+ new bindings

Figure 4.5.: Pattern expression type rules (C)
69

4. EH 2: Monomorphic type inferencing

The dissection occurring in a pattern is represented by the pattern function σp f of the form
σ→ (σ1, ...). Conceptually this function takes the value (of type σ) to be dissected by the
pattern into its constituents. For now, because we have only tuples to dissect, the function
returned by the Con alternative is just the identity on tuples of the correct size:

sem PatExpr
| Con (lhs.gUniq, loc.uniq1)

= mkNewLevUID @lhs.gUniq
loc.tvars = map mkTyVar (mkNewUIDL (hsnProdArity @nm) @uniq1)
.ty p = mkProdApp @tvars

lhs.patFunTy = [@ty p] ‘mkArrow‘ @ty p
loc.ty = Ty Any

At the top of a pattern, in rule ., this function σp f∥patFunTy is dissected into the
argument σa∥ty a and result σr∥ty r :

sem PatExpr
| AppTop loc .fo fitR = fitsIn (@lhs.tyCnstr ⊕ @lhs.knTy)

@ty a
patExpr.tyCnstr = foCnstr @fo fitR ⊕ @lhs.tyCnstr
(loc.ty a , loc.ty r) = tyArrowArgRes @patExpr.patFunTy
loc .tys = tyProdArgs @ty r

.arityErrs = if length @tys == @patExpr.arity
then []
else [Err PatArity @lhs.knTy @patExpr.arity]

patExpr.knTyL = reverse @tys
lhs .patFunTy = Ty Any
loc .ty = @patExpr.tyCnstr ⊕ foTy @fo fitR

The argument σa, representing the value “going in the pattern”, is matched with the ex-
pected type of the pattern; the result σr is dissected in rule . as in the previous EH
version:

sem PatExpr
| App (loc.ty a , loc.tyi l)

= tyLHdAndTl @lhs.knTyL
func.knTyL = @tyi l
.knTy = Ty Any

arg .knTy = @ty a
lhs .patFunTy = @func.patFunTy
loc .ty = @func.ty

The pattern function type σp f∥patFunTy is constructed from fresh type variables. Each
occurrence of a tuple pattern deals with different unknown types; hence fresh type variables
are needed. The availability of polymorphism in later versions of EH allows us to describe
this in a more general way.

70

4.5. Declarations (Let, Decl)

4.5 Declarations (Let, Decl)

Again, at the level of declarations all is tied together (Fig. 4.3 and Fig. 4.4). We can
no longer assume that type signatures are specified for all value expressions. The basic
strategy for declarations (see Section 3.3.5, page 53) must be changed as follows:

• Parallel to patValGam and valGam we need to gather information about introduced
type variables. Cp∥patTyCnstr gathers information about the types of type variables
for identifiers introduced as part of pattern expressions; C∥tyCnstr gathers informa-
tion from the use of those identifiers in expressions.

• If a type signature is defined for the toplevel identifier of a pattern in a value declara-
tion (rule .) we use that type as the known type for both pattern and expression.
Otherwise, a fresh type variable is used for the pattern and the pattern type for the
value expression.

• The pattern constraints patTyCnstr is threaded independently through all declara-
tions, only to be used as the starting point for tyCnstr in rule ..

Here we omit the corresponding AG code: it follows the type rules faithfully.

4.6 Conclusion

In this chapter we have described the second version of EH, that is, monomorphic type
inference. Types are still simple (no polymorphism), but may be omitted. Type inference
uses the full program to reconstruct types. The next version adds polymorphic, that is
Hindley-Milner, type inference.

71

4. EH 2: Monomorphic type inferencing

72

5 EH 3: P  

The third version of EH adds polymorphism, in particular so-called parametric polymor-
phism which allows functions to be used on arguments of differing types. For example

let id :: a→ a
id = λx→ x
v = (id 3, id ’x’)

in v

gives:

let id :: a -> a

id = \x -> x

v = (id 3,id ’x’)

{- [v:(Int,Char), id:forall a . a -> a] -}

in v

The polymorphic identity function id accepts a value of any type a, and returns a value
of the same type a. Type variables in the type signature are used to specify polymorphic
types. Polymorphism of a type variable in a type is made explicit in the type by the use of
a universal quantifier forall, pretty-printed as ∀. The meaning of this quantifier is that a
value with a universally quantified type can be used with different types for the quantified
type variables.
The type signature may be omitted, and in that case the same type will still be inferred.
However, the reconstruction of the type of a value for which the type signature is omit-
ted has its limitations, the same as for Haskell98 [84]. Haskell98 restricts what can be
described by type signatures by allowing a quantifier only at the beginning of a type sig-
nature. In this version of EH we also disallow the explicit use of a quantifier in a type
expression (for a type signature); the quantifier is inserted by the implementation.
Polymorphism is allowed for identifiers bound by a let-expression, not for identifiers bound
by another mechanism such as parameters of a lambda expression. The following variant
of the previous example is therefore not correct:

73

5. EH 3: Polymorphic type inferencing

let f :: (a→ a)→ Int
f = λi→ i 3
id :: a→ a
id = λx→ x

in f id

It will give the following output:

let f :: (a -> a) -> Int

f = \i -> i 3

{- ***ERROR(S):

In ‘\i -> i 3’:

... In ‘i’:

Type clash:

failed to fit: c_3_0 -> c_3_0 <= v_9_0 -> Int

problem with : c_3_0 <= Int -}

id :: a -> a

id = \x -> x

{- [f:forall a . (a -> a) -> Int, id:forall a . a -> a] -}

in f id

The problem here is that the polymorphism of f in a means that the caller of f can freely
choose what this a is for a particular call. However, from the viewpoint of the body of f
this limits the choice of a to no choice at all. If the caller has all the freedom to make the
choice, the callee has none. In our implementation this is encoded as a type constant c_
chosen for a during type checking the body of f . By definition this type constant is a type
a programmer can never define nor denote. The consequence is that an attempt to use i in
the body of f , which has type c_..→c_.. cannot be used with an Int. The use of type
constants will be explained later.
Another example of the limitations of polymorphism in this version of EH is the following
variation:

let f = λi→ i 3
id :: a→ a

in let v = f id
in f

for which the compiler will infer the following types:

let f = \i -> i 3

id :: a -> a

{- [f:forall a . (Int -> a) -> a, id:forall a . a -> a] -}

in let v = f id

{- [v:Int] -}

in f

74

5.1. Type language

EH version 3 allows parametric polymorphism but not yet polymorphic parameters. The
parameter i has a monomorphic type, which is made even more clear when we make an
attempt to use this i polymorphically in:

let f = λi→ (i 3, i ’x’)
id = λx→ x

in let v = f id
in v

The following error is produced:

let f = \i -> (i 3,i ’x’)

{- ***ERROR(S):

In ‘\i -> (i 3,i ’x’)’:

... In ‘’x’’:

Type clash:

failed to fit: Char <= Int

problem with : Char <= Int -}

id = \x -> x

{- [id:forall a . a -> a, f:forall a . (Int -> a) -> (a,a)] -}

in let v = f id

{- [v:(Int,Int)] -}

in v

Because i is not allowed to be polymorphic it can either be used on Int or Char, but not
both.
These problems can be overcome by allowing higher ranked polymorphism in type sig-
natures. Later versions of EH deal with this problem (Chapter 6). This version of EH
resembles Haskell98 in these restrictions.
The reason not to allow explicit types to be of assistance to the type inferencer is that
Haskell98 and this version of EH have as a design principle that all explicitly specified
types in a program are redundant. That is, after removal of explicit type signatures, the
type inferencer can still reconstruct all types. It is guaranteed that all reconstructed types
are the same as the removed signatures or more general, that is, a special case of the
inferred types. This guarantee is called the principal type property [17, 76, 38]. However,
type inferencing also has its limits. In fact, the richer a type system becomes, the more
difficult it is for a type inferencing algorithm to make the right choice for a type without
the programmer specifying additional type information.

5.1 Type language

The type language for this version of EH adds quantification by means of the universal
quantifier ∀:

75

5. EH 3: Polymorphic type inferencing

σF Int | Char
| (σ, ..., σ) | σ→ σ
| v | f
| ∀v.σ

An f stands for a fixed type variable, a type variable which may not be constrained but still
stands for an unknown type. A f is used for fresh type constants, and corresponds to a so
called skolemized type variable, a type variable which we want to restrict its scope for and
inhibit its binding. We do not restrict its scope as we guarantee freshness: two fresh f ’s by
definition do not match.
A v stands for a plain type variable as used in the previous EH version. A series of consec-
utive quantifiers in ∀α1.∀α2. ... σ is abbreviated to ∀α.σ.
The type language suggests that a quantifier may occur anywhere in a type. This is not the
case, quantifiers may only be on the top of a type; this version of EH takes care to ensure
this. A second restriction is that quantified types are present only in an environment Γ
whereas no ∀’s are present in types used when type inferencing expressions and patterns.
This is to guarantee the principal type property. We do not reflect this in the type language,
as we drop this restriction in subsequent EH versions.
The corresponding abstract syntax for a type needs additional alternatives to represent a
quantified type. For a type variable we also have to remember to which category it belongs,
either plain or fixed:

data Ty
| Var tv : {TyVarId }

categ : TyVarCateg
data TyVarCateg
| Plain
| Fixed

data Ty
| Quant tv : {TyVarId }

ty : Ty

We will postpone the discussion of type variable categories until Section 5.2.1.
The syntax of this version of EH only allows type variables to be specified as part of a
type signature. The quantifier ∀ cannot be explicitly denoted. We only need to extend the
abstract syntax for types with an alternative for type variables:

data TyExpr
| Var nm : {HsName}

76

5.2. Type inferencing

Γ;Ck;σk `e e : σ{ C

ι 7→ σg ∈ Γ

σi ≡ Ciσ
′, ∀v.σ′ ≡ σg, Ci ≡ [v 7→ vi], vi fresh
`6 Ckσi 6 C

kσk : σ{ C
Γ;Ck;σk `e ι : σ{ C Ck .HM

∆ `t t : σa { ∆t; vt

σq ≡ ∀(ftv (σa)\(vt)).σa

σi ≡ Ciσ
′, ∀v.σ′ ≡ σq, Ci ≡ [v 7→ f], f fresh
`6 σi 6 C

kσk : { CF

Γ;CFC
k;σi `

e e : σe { Ce

Γ;Ck;σk `e (e :: t) : σa { Ce
.HM

Γt;Γt,Γ;Γp;Ck;Cp `
d d : Γt;Γp { Cp;Cd

Γl,Γg ≡ Γp

Γq ≡ [i 7→ ∀α.σ | (i 7→ σ)← CdΓl, α ≡ ftv (σ) − ftv (CdΓg)]
Γq,Γg;Cd;σk `e b : σ{ Ce

Γ;Ck;σk `e let d in b : σ{ Ce
.HM

Figure 5.1.: Expression type rules (HM)

5.2 Type inferencing

Compared to the previous version the type inferencing process does not change much.
Because types used throughout the type inferencing of expressions and patterns do not
contain ∀ quantifiers, nothing has to be changed there.
Changes have to be made to the handling of declarations and identifiers though. This is
because polymorphism is tied up with the way identifiers for values are introduced and
used.
A quantified type, also often named type scheme, is introduced in rule . and instantiated
in rule . (see Fig. 5.1). We will first look at the instantiation.
We note that rule . (Fig. 5.1) has become more complex than the versions appearing
in standard treatments of HM type inference. This is a consequence of the combination of
the following factors:

• Explicit type annotations are allowed, and have to be propagated to identifiers in

77

5. EH 3: Polymorphic type inferencing

Γk
t ;Γk

p;Γ;Ck
p;Ck `d d : Γt;Γp { Cp;C

∆ `t t : σi { ; vt

σq ≡ ∀(ftv (σi)\(vt)).σi

Γi ≡ [i 7→ σq]
;Γp; ;Ck

p;Ck `d (i :: t) : Γi;Γp { C
k
p;Ck .HM

v fresh
p 7→ σs ∈ Γ

k
t

σi ≡ Ciσ
′, ∀v.σ′ ≡ σs, Ci ≡ [v 7→ f], f fresh

σk
p ≡ σi ∧ σ

k
e ≡ σi ∨ σ

k
p ≡ v ∧ σk

e ≡ σp

Ck
p;Γk

p;σk
p `

p p : σp;Γp { Cp;
Γ;Ck;σk

e `
e e : { Ce

Γk
t ;Γk

p;Γ;Ck
p;Ck `d (p = e) : [];Γp { Cp;Ce

.HM

Figure 5.2.: Declaration type rules (HM)

patterns.

• The let expression allows mutual recursive definitions, necessitating the introduction
of bindings for value identifiers to placeholders (type variables) before normal type
inference can proceed.

• Although data types are not included in this EH version, the required infrastructure
is already available by exposing patterns to the global value environment (which will
contain type bindings for data constructors)1.

5.2.1 Instantiation

A quantified type is introduced in the type inferencing process whenever a value identifier
having that type occurs in an expression (rule ., Fig. 5.1). We may freely decide
what type the quantified type variables may have as long as each type variable stands for a
monomorphic type. However, at this point it is not known which type a type variable stands
for, so fresh type variables are used instead. This is called instantiation, or specialization.
The resulting instantiated type partakes in the inference process as usual, possibly finding
more information about the type variables. Rule . shows how the type bound to an
identifier is instantiated by replacing its quantified type variables with fresh ones. It is
assumed that quantifiers occur only at the top of a type.

1In future EH versions, this part will be moved to the EH version dealing with data types.

78

5.2. Type inferencing

5.2.2 Quantification

The other way around, quantifying a type, happens when a type is bound to a value identi-
fier and added to an environment Γ. The way this is done varies with the presence of a type
signature. Rule . (Fig. 5.1), rule ., and rule . (Fig. 5.2) specify the respective
variations:

• A type signature (for an identifier) is specified explicitly, in rule . (partial
type signatures are supported, but discussed in Chapter 10). The (quantified) type
signature is made available via rule . to rule . where it must be instantiated
as the expected type of both pattern and expression.

• A type (for an identifier) is inferred. Rule . has no type signature to use as
the expected type; a type variable is used instead. At the boundary of its scope, in
rule ., we generalise over those type variables in the type which do not occur
outside the scope.

A type signature itself is specified without explicit use of quantifiers. These need to be
added for all introduced type variables in the type expression for the signature. Rule .
shows how a quantified type is computed by wrapping the type in the quantifier ∀∥Ty Quant.
In the implementation we wrap the type in Ty Quant, one for each free type variable.
We now run into a problem which will be solved more elegantly in the next version of EH.
In a declaration of a value (rule .) the type signature acts as a known type against which
checking of the value expression takes place. Which type do we use for that purpose, the
quantified or the unquantified type signature?

• Suppose the unquantified signature a → a is used in the following fragment. Then,
for the erroneous

let id :: a → a
id = λx→ 3

in ...
we end up with fitting v1 → Int 6 a → a. This can be accomplished via constraints
[v1 7→ Int, a 7→ Int]. However, a may only be chosen by the caller of id. Instead it
now is constrained by the body of id to be an Int. We must inhibit the binding of a
as part of the known type of the body of id.

• Alternatively, quantified signature ∀a.a→ a may be used. However, the inferencing
process and the fitting done by fitsIn cannot (yet) handle types with quantifiers.

For now, this can be solved by replacing all quantified type variables of a known type with
type constants, encoded by a type variable with category TyVarCateg Fixed. Rule .
instantiates the type signature, which will be used as the expected type for both the pattern
and value expression, with fixed type variables f . If no type signature is defined for the
value declaration, a fresh type variable is used for the pattern and the pattern type is used
for the expression; the implementation specifies this precisely.

79

5. EH 3: Polymorphic type inferencing

A fixed type variable is like a plain type variable but may not be constrained, that is, bound
to another type. This means that fitsIn has to be adapted to prevent this from happening.
The difference with the previous version only lies in the handling of type variables. Type
variables now may be bound if not fixed, and are equal only if their categories also match.
For brevity the new version of fitsIn is omitted.

5.2.3 Generalisation/quantification of inferred types

How do we determine if a type for some expression bound to an identifier in a value dec-
laration is polymorphic? If a type signature is given, the signature itself describes the
polymorphism explicitly by means of type variables. However, if for a value definition a
corresponding type signature is missing, the value definition itself gives us all the informa-
tion we need. We make use of the observation that a binding for a value identifier acts as a
kind of boundary for that expression.

let id = λx→ x
in e

In expression e the value bound to id will only be used via id. So, if the inferred type
v1 → v1 for the expression λx → x has free type variables (here: v1) and these type
variables are not used in the types of other bindings, in particular those in the global Γ, we
know that the expression λx→ x nor any other type will constrain those free type variables.
The type for such a type variable can apparently be freely chosen by the expression using
id, which is exactly the meaning of the universal quantifier. These free type variables are
the candidate type variables over which quantification can take place, as described by the
typing rules for let-expressions in Fig. 5.1 and its implementation.
The condition that quantification only may be done for type variables not occurring in the
global Γ is a necessary one. For example:

let h :: a→ a→ a
f = λx→ let g = λy→ (h x y, y)

in g 3
in f ’x’

If the type g :: a→ (a, a) would be concluded, g can be used with y an Int parameter, as in
the example. Function f can then be used with x a Char parameter. This would go wrong
because h assumes the types of its parameters x and y are equal. So, this justifies the error
given by the compiler for this version of EH:

let h :: a -> a -> a

f = \x -> let g = \y -> (h x y,y)

{- [g:Int -> (Int,Int)] -}

in g 3

{- [f:Int -> (Int,Int), h:forall a . a -> a -> a] -}

in f ’x’

80

5.2. Type inferencing

{- ***ERROR(S):

In ‘f ’x’’:

... In ‘’x’’:

Type clash:

failed to fit: Char <= Int

problem with : Char <= Int -}

All declarations in a let-expression together form what in Haskell is called a binding group.
Inference for these declarations is done together and all the types of all identifiers are quan-
tified together. The consequence is that a declaration that on its own would be polymor-
phic, may not be so in conjunction with an additional declaration which uses the previous
declaration:

let id1 = λx→ x
id2 = λx→ x
v1 = id1 3

in let v2 = id2 3
in v2

The types of the function id1 and value v1 are inferred in the same binding group. However,
in this binding group the type for id1 is v1 → v1 for some type variable v1, without any
quantifier around the type. The application id1 3 therefore infers an additional constraint
v1 7→ Int, resulting in type Int → Int for id1

let id1 = \x -> x

id2 = \x -> x

v1 = id1 3

{- [v1:Int, id2:forall a . a -> a, id1:Int -> Int] -}

in let v2 = id2 3

{- [v2:Int] -}

in v2

On the other hand, id2 is used after quantification, outside the binding group, with type
∀a.a→ a. The application id2 3 will not constrain id2.
In Haskell binding group analysis will find the smallest groups of mutually dependent def-
initions, each of these called a binding group. These groups are then ordered according
to “define before use” order. Here, for EH, all declarations in a let-expression automati-
cally form a binding group, the ordering of two binding groups d1 and d2 has to be done
explicitly using sequences of let expressions: let d1 in let d2 in....
Being together in a binding group can create a problem for inferencing mutually recursive
definitions, for example:

let f1 = λx→ g1 x

81

5. EH 3: Polymorphic type inferencing

g1 = λy→ f1 y
f2 :: a→ a
f2 = λx→ g2 x
g2 = λy→ f2 y

in 3

This results in

let f1 = \x -> g1 x

g1 = \y -> f1 y

f2 :: a -> a

f2 = \x -> g2 x

g2 = \y -> f2 y

{- [g2:forall a . a -> a, g1:forall a . forall b . a -> b

, f1:forall a . forall b . a -> b, f2:forall a . a -> a] -}

in 3

For f1 it is only known that its type is v1 → v2. Similarly g1 has a type v3 → v4. More type
information cannot be constructed unless more information is given as is done for f2. Then
also for g2 may the type ∀a.a→ a be reconstructed.

5.3 Conclusion

In this chapter we have described the third version of EH, that is, classic Hindley-Milner
polymorphic type inference. The main difference with the previous version is the gener-
alisation for types bound to value identifiers in let-expressions, and their instantiation for
each use of those value identifiers.
Type expression can specify polymorphic types, but the specification of universal quanti-
fiers at arbitrary positions in a type is dealt with in the next EH version.

Hindley-Milner type inference HM type inference has been introduced [17, 76], used
[84, 77], and described before [89, 48]. Our implementation uses the same traditional
technique of substitutions and their eager application to types and environments. This has
the following advantages:

• We can focus more on the description.

• We can experiment with language extensions without the complication of alternate
inference techniques.

However, both of these advantages also are disadvantages:

82

5.3. Conclusion

• For later EH versions the application of substitutions becomes more intricate, and
thus less understandable.

• Recent language extensions require constraint solving not to be eager but to be de-
layed (e.g. GADT’s [88, 93]).

In recent years, constraint based approaches [94, 80] are becoming more popular, and seem
to more elegantly implement HM type inference and the type checking of more advanced
language extensions. The approach is to first gather constraints and later solve these gath-
ered constraints. This allows greater expressiveness, but moves the complexity into the
constraint solver: constraint resolution is no longer syntax-directed.
It is (yet) unclear how a shift towards a constraint based approach influences the under-
standability of EH implementations, although we expect that for a first encounter with
type inference the classical approach will benefit understanding the most. However, we
also expect that constraint based approaches allow greater flexibility, extensibility, and
improved error handling [35].

83

5. EH 3: Polymorphic type inferencing

84

6 EH 4: L  

In the fourth EH version we deal, in the most general form possible, with the presence
of quantifiers in types: we allow quantifiers, both universal (∀) and existential (∃), every-
where in a type signature. This offers great flexibility and richness when specifying type
signatures, but we can no longer rely on type inferencing to find these type signatures for
us. In general, it is impossible to infer types with universal quantifiers at arbitrary positions
in a type; type inference for rank-2 is possible, but complex [40, 53, 54, 55].
In this thesis we therefore tackle this problem not by a clever inferencing algorithm, but
by focussing on the propagation of explicit, programmer supplied type information to the
places in a program where this information is relevant. We thus rely on the programmer
to specify ‘difficult’ type signatures. Our implementation exploits these type signatures
to type check and infer types for those parts for which no type signature has been given,
similar to other approaches [110, 92].
We describe our solution in three parts:

• In this chapter we start with motivating examples. We then describe how we prop-
agate type information, in particular the information related to the ∀ quantifier, ‘lo-
cally’ through the AST, where ‘locally’ means neighbouring (parent and children)
nodes in the AST.

• In Chapter 7 we propagate type information ‘globally’ through the AST, where
‘globally’ means that we relax on the previous ‘neighbouring’ condition1.

• In Chapter 8 we add existential quantification.

We also use a notational convention that allows the omission of explicit introduction of
quantifiers in type expressions. We will discuss this in Chapter 10.

1It has been implemented as a separate branch from EH4 of the sequence of EH compilers. It is not yet part of
the full sequence of compilers.

85

6. EH 4: Local quantifier propagation

6.1 Motivating examples

The following is an example for demonstrating the usefulness of a universal quantifier at a
higher-ranked position.

let f :: (∀ a.a→ a)→ (Int,Char)
f = λi→ (i 3, i ’x’)
id :: ∀ a.a→ a
id = λx→ x
v = f id

in v

The rank position of an argument is defined to be one higher than the function type in
which the argument occurs, with rank 1 as the base case: The ∀ quantifier in this example
thus is in a rank-2 position. The rank of a type is the maximum of the rank positions of
quantifiers in a type. The advantage of a higher-ranked type is that inside f ’s body the
argument-bound function i can be used polymorphically; in the same way as the let-bound
function id can be used polymorphically.
Rank-2 polymorphism allows argument-bound and let-bound functions to be treated in the
same way: both may be polymorphic. This is not the case for pure Hindley-Milner type
inference, which excludes higher-ranked polymorphism. The advantage of this restriction
is that removal of explicitly specified type signatures from a program still yields the same
(or more general) typing of values (principal type property). However, this advantage
turns into a hindrance when a programmer needs higher-ranked types, and is also willing
to specify these types.
Shan [99] presents an overview of Haskell examples gathered from literature which exploit
higher-ranked polymorphism. The examples either implement generic behavior or encap-
sulation. We repeat examples of both, but do not discuss the examples any further in detail;
they are included to illustrate that higher-ranked types indeed are useful.

Generic use of higher-ranked polymorphism Generic traversals can be implemented
by a function with the following interface [62]:

gmapT :: (∀a.Term a⇒ a→ a)→ (∀b.Term b⇒ b→ b)
The idea is that, given a transformation function for any type belonging to the class Term,
another transformation can be constructed. The parameter of this function is a universally
quantified function; hence gmapT is a higher-ranked (rank-2) function.
Another example of the use of rank-n types is their use in the translation of type-indexed
functions with kind-indexed types used in generic programming [71].

Higher ranked polymorphism used for encapsulation The previous use of higher-
ranked types deals with polymorphic functions; encapsulation deals with polymorphic val-

86

6.2. Design overview

ues. For example, runST [64] runs a state thread, where s represents the state thread being
run:

runST :: ∀a.(∀s.ST s a)→ a

The implementation of runST cannot do anything with type s, since it cannot assume any-
thing about it. As far as runST’s implementation is concerned s is hidden, or encapsulated.
Haskell (confusingly) uses the ∀ quantifier for existential quantification.
This use of a higher-ranked value corresponds to existential quantification ∃. We allow the
use of ∃ as a language construct in its own right (Chapter 8).

6.2 Design overview

The previous version of EH uses two mechanisms for the propagation of type information:

• Expected types are passed top-to-bottom through the AST, whereas result (or in-
ferred) types travel bottom-to-top.

• Unknown types are encoded by type variables. Additional type information about
these type variables is encoded in sets of constraints which travel through the com-
plete AST.

In this version of EH we do not change this strategy. We extend the type language with
universally quantified types and allow these types to participate in the type inference pro-
cess. As a consequence, type variables can bind to quantified types; allowing this is called
impredicativity. Throughout this and subsequent chapters describing EH4, we will further
discuss impredicativity and its propagation, called quantifier propagation.

Type language The type language used in this chapter is the same as the type language
used by the previous EH version. We repeat its definition:
σF Int | Char
| (σ, ..., σ) | σ→ σ
| v | f
| ∀v.σ

Participation of ∀ types in the type inference process Standard HM type inference
assumes a separation between type schemes and (monomorphic) types. A type scheme is a
(possibly) quantified type, with the quantifier at the outer level of the type; a monomorphic
type is completely quantifier free. In let expressions, type schemes are stored in environ-
ments Γ, whereas monomorphic types participate in the type inference process.
In this version of EH, we drop this restriction:

87

6. EH 4: Local quantifier propagation

Values (expressions, terms):
eF int | char literals
| i program variable
| e e application
| let d in e local definitions
| λp→ e abstraction

Declarations of bindings:
dF i :: t value type signature
| p = e value binding

Pattern expressions:
pF int | char literals
| i pattern variable
| i @p pattern variable, with subpattern
| (p, ..., p) tuple pattern

Type expressions:
tF Int | Char type constants
| t → t function type
| (t, ..., t) tuple type
| i type variable
| ∀i.t universal quantification

Identifiers:
ιF i lowercase: (type) variables
| I uppercase: (type) constructors

Figure 6.1.: EH terms

• Types with or without quantifiers may live in environments Γ, and they may partici-
pate in the type inference process.

• Types retrieved from an environment Γ are no longer instantiated immediately after
retrieval, because we want to retain quantifier information as long as possible.

Types are quantified either because a programmer has specified a type signature with a
quantifier, or because the type inferencer has decided that a monomorphic type may be
universally quantified over its (non-global) type variables. These quantified types may
now enter the type inferencing process when extracted from an environment Γ or when
passed top-to-bottom through the AST as the expected type of an expression.

88

6.2. Design overview

This has the following consequences:

• Equating two types (by means of fitting) must take into account the presence of
quantifiers.

• Instantiation of types is postponed until the latest moment possible, that is, until an
uninstantiated type is to be matched with another type. Hence fitting must deal with
instantiation as well.

• Type variables can also be bound to quantified types (called impredicativity). Here
non-determinism arises because we can interchange binding and instantiation. We
may first instantiate a type and then bind it to a type variable, or bind it directly to a
type variable and delay its instantiation. Both are allowed to happen.

• Because our strategy is to propagate polymorphism instead of reconstructing it, our
encoding of polymorphism places quantifiers at a position which guarantees that
their instantiation happens as late as possible. We will come back to this in Chap-
ter 10.

• If a type signature is passed top-down into an expression as the expected type, the
type of expression has to match this type: this is type checking. If no such type is
available, we resort to type inferencing. In both cases type matching fills in the gaps
represented by type variables.

Let us look at some examples to see how this works out in different contexts. We repeat
our initial example:

Example 6.1
let f :: (∀ a.a→ a)→ (Int,Char)

f = λi→ (i 3, i ’x’)
id :: ∀ a.a→ a
id = λx→ x
v = f id

in v

Checking against specified type signature For id we have specified type signature
∀a.a → a, which will be the expected type of λx → x in the value declaration for id.
Before proceeding with type inference for λx → x we need to match a fresh type v1 → v2
(representing the required type structure of the λ-expression) with the expected type, in
order to decompose the expected type into argument and result (for further use lower in the
AST):

v1 → v2 6 ∀a.a→ a

Because the signature for id states that we cannot choose the quantified type variable a
freely in the lambda expression λx → x we need to instantiate “∀a.a → a” with a fixed
type variable f3 for a:

89

6. EH 4: Local quantifier propagation

v1 → v2 6 f3 → f3

Use of polymorphic function as a function In f ’s body, function i will be retrieved
from the environment Γ for use in application “i 3”. At the occurrence of i in “i 3”, we
know that i’s expected type is a function type, but we do not (yet) know what its argument
and result type are: “v4 → v5”. i’s type (from the environment) must match the expected
type “v4 → v5”:
∀a.a→ a 6 v4 → v5

Type “∀a.a → a” fits in “v4 → v5” if we instantiate “∀a.a → a” with the fresh type
variable v6:

v6 → v6 6 v4 → v5

HM type inference instantiates a type immediately after retrieval from the environment Γ,
our approach postpones instantiation until it can no longer be avoided.

Use of polymorphic value as an argument when the expected argument type is
known Function f gets passed id as its argument; id’s type must fit in f ’s argument type:
∀a.a→ a 6 ∀a.a→ a

This is treated as a combination of the previous two matches.

Use of polymorphic value as an argument when the expected argument type is
being inferred The real tricky point arises when the type of f ’s argument is not known,
for example if no type signature is specified for f :

let f = λi→ (i 3, i ’x’)
id :: ∀ a.a→ a
v = f id

in v

The argument type of f then still is a type variable v:
∀a.a→ a 6 v

Is v to be bound to “∀a.a → a” (being impredicative) or to the instantiated “v1 → v1”?
There is no way to tell. Only the context in which the matching takes place can specify
how to bind: before or after instantiation.
As a general rule we bind impredicatively (that is, without instantiation). However, for a
function application we instantiate the type of the argument before binding because (as a
design choice) we want to mimic Haskell’s type inferencing behavior. As a consequence
of binding non-impredicatively we cannot infer a type for f (from our example), because
i (f ’s argument) is used monomorphically in the body of f . Function i can not be applied

90

6.2. Design overview

polymorphically. This, of course, can be remedied by putting back the type signature for f
as in Example 6.1.
In Chapter 7 we will investigate how we can exploit the presence of quantified types even
more.

Soundness and completeness Although we make no (formally proven) claims about
the type system(s) described in this thesis, we intend our type systems to be sound and
complete in the sense described by the remainder of this section. We present our intent by
means of the following definition and theorems.

Definition 6.2 HM typing types an expression e according to Hindley-Milner type infer-
ence. If an expression types according to HM rules, we denote this by the following typing
judgement, which types e in context Γ with type σ:

Γ `HM e : σ

Similarly, System F typing and EH typing respectively type an expression e according to
System F with type annotations for all expressions and the EH4 type inference algorithm
described in this (and following chapters).

Γ `F e : σ
Γ `EH e : σ{ ϑ;ϑa

ϑa represents the translation of e with System F type annotations; ϑ represents the trans-
lation of e without additional System F type annotations.

The annotated translation ϑa requires additional abstract syntax, but otherwise its compu-
tation only consists of moving types to argument positions of function applications. For
this EH version e and ϑ are syntactically equal.
These judgement forms are exclusively used to relate EH’s type system to the HM and
system F type system. We intend EH’s type system to be a conservative extension with
respect to HM:

Theorem 6.3 (Completeness with respect to HM, or, conservative extension) All expres-
sions e which type according to HM typing also type according to EH typing:

Γ `HM e : σ ⇒ Γ `EH e : σ{ ϑ;ϑa

The other way around, when restricting EH expressions to those types HM can deal with,
we claim:

Theorem 6.4 (Soundness with respect to HM) If the expression e types according to EH
typing, σ and all types participating in type inference are rank-1 types, then its translation
ϑ types according to HM typing:

Γ `EH e : σ{ ϑ;ϑa ⇒ Γ `HM ϑ : σ

91

6. EH 4: Local quantifier propagation

For EH without restrictions we claim:

Theorem 6.5 (Soundness with respect to System F) If the expression e types according to
EH typing then its translation ϑa (type annotated e) types according to System F typing:

Γ `EH e : σ{ ϑ;ϑa ⇒ Γ `F ϑa : σ

These theorems express the following:

• When no type signatures are specified, or only rank-1 type signatures are specified,
EH’s type inference is as clever as HM type inference. We do not invent higher-
ranked polymorphism.

• When type signatures are specified for all value definitions and anonymous λ-
expressions, EH is equivalent to System F.

6.3 It all boils down to fitting

Fitting (6) is the place where all these issues come together. Type matching has to deal
with ∀ quantifiers, and allows for some control of its behavior by the context in which 6 is
used. We first look at options we will provide as context to 6, next we look at their use in
previous and new typing rules. In the implementation of 6 (fitsIn) this corresponds to an
additional parameter.
Fig. 6.3 shows, relative to the previous EH version, an additional o as context for fitsIn∥ 6.
In the implementation this will be represented by a value of type FIOpts (fitsIn options), a
set of boolean flags. A FIOpts∥o uses the flags from Fig. 6.4 for obtaining the previously
discussed desired behavior. These options are used in specific combinations throughout
the type rules (see Fig. 6.5 for an overview). True and False values are denoted by an
additional + or − respectively, for example for fir−bind with fi+r−bind and fi−r−bind respectively.
We use the named combinations of these flags during type inferencing (Fig. 6.6). The
name of a combination also suggests a (intuitive) meaning. For example, ostr stands for a
strong context where the expected type is fully known. The actual flags associated with
ostr are used in the rules for matching (Fig. 6.2).
The rules for type matching differ from their previous version in the following additions
and modifications:

• Rule .. instantiates with fresh type variables, for further binding during
type matching and type inference. Rule .. instantiates with fresh fixed type
variables, for further use in type checking. The fixed type variables, once again,
simulate unknown types chosen by the user of the value with the quantified type.

92

6.3. It all boils down to fitting

o `� σl � σr : σ{ C

I1 ≡ I2

o `� I1 � I2 : I2 { []
.I1

ν1 ≡ ν2
o `� ν1 � ν2 : ν2 { []

.I1

C ≡ [v 7→ σ]
fi+l−bind ∈ o

o `� v � σ : σ{ C
..1I1

C ≡ [v 7→ σ]
fi+r−bind ∈ o

o `� σ � v : σ{ C
..1I1

σi ≡ Cασ1, Cα ≡ α 7→ v, v fresh
o `6 σi 6 σ2 : σ{ C

o `6 ∀α.σ1 6 σ2 : σ{ C
..I1

σi ≡ Cασ2, Cα ≡ α 7→ f , f fresh
o `6 σ1 6 σi : σ{ C

o `6 σ1 6 ∀α.σ2 : C (∀α.σ2){ C
..I1

C ≡ [v 7→ σ]
fi−l−bind ∈ o

o `� v � σ : σ{ C
..2I1

C ≡ [v 7→ σ]
fi−r−bind ∈ o

o `� σ � v : σ{ C
..2I1

fi+r−bind, fi
+
l−bind, o `

� σa
2 � σ

a
1 : σa { Ca

o `� Caσ
r
1 � Caσ

r
2 : σr { Cr

o `� σa
1 → σ

r
1 � σ

a
2 → σ

r
2 : Crσa → σr { CrCa

.I1

o `� σl
1 � σ

l
2 : σl { Cl

o `� Clσ
r
1 � Clσ

r
2 : σr { Cr

o `� (σl
1, σ

r
1) � (σl

2, σ
r
2) : (Crσl, σr){ CrCl

.I1

σl matches σr under constraints C, σ ≡ C σr

C : Additional constraints under which matching succeeds
o : Options to steer �, encodes matching variants as well
σl : Type to match
σr : Type to match
σ : Result type

Figure 6.2.: Type matching (related to ∀) (I1)

93

6. EH 4: Local quantifier propagation

o `6 σl 6 σr : σ{ C

o `� σl � σr : σ{ C
o `6 σl 6 σr : σ{ C

I1

6 delegates to �.

o : Options to �
σl : Type to fit in σr

σr : Type in which σl must fit
σ : σ ≡ C σr

Figure 6.3.: Fitting of types (I1)

Option meaning default
fir−bind prefer binding of a rhs tvar over instantiating fi+r−bind
fil−bind prefer binding of a lhs tvar over instantiating fi+l−bind

Figure 6.4.: Options to fitsIn∥ 6

• The rules for binding type variables are split into two groups to emphasize the order
in which the rules are to be used: rule ..1 and rule ..1, textually precede
the rules for quantified types; Rule ..2 and rule ..2 are positioned after
the rules for quantified types. These rules only differ in the value of fir−bind. The
order in which the rules are textually ordered now is important because they overlap.
The idea is that fi+r−bind (in rule ..1) triggers binding before instantiation (in the
quantifier related rules), and fi−r−bind the other way around.

• Rule . for function types matches the argument types with the binding flags
set to True. In this way higher-ranked type information will be propagated. The
binding flags thus only influence rank-1 quantifiers. Only when a higher-ranked
type is referred to by means of an identifier (in an expression) with that type, it will
be treated (by means of further matching) as a rank-1 type.

• Co- and contravariance now matters. For
σa

1 → σ
r
1 6 σ

a
2 → σ

r
2

we match the result types σr
1 and σr

2 in the same direction: σr
1 6 σ

r
2. The result type

of a function type is called co-variant because matching of the complete type and its
result part are matched in the same direction. On the other hand, the argument types

94

6.4. Type inference

Combination options (relative to the default) context
ostr strong
oinst−lr fi−l−bind, fi

−
r−bind left and right instantiating

Figure 6.5.: Option combinations

are matched in the opposite direction: σa
2 6 σ

a
1. This is called contra-variance. For

the argument part of a function type this translates to the intuition that σa
1 → σ

r
1

can be used where σa
2 → σ

r
2 is expected, provided that a use of σa

2 → σ
r
2 passes

an argument σa
2 that can be used where a σa

1 is expected. Here, this means that a
polymorphic type σa

2 can be instantiated to the expected type σa
1.

6.4 Type inference

Flags are passed to 6 at a limited number of locations in the type rules for expressions
(Fig. 6.6, Fig. 6.7). Rule . specifies that all expressions use ostr to do matching, for
example in rule .. The exception is located in rule .. For the argument of a function
instantiating takes precedence over binding. Hence oinst−lr is passed to the argument in
rule ..
No further changes are required for type inference for expressions. There is no need to
adapt inference for pattern expressions: identifiers are bound to the types extracted from
the expected types that are passed to pattern expressions.

Option tweaking It is possible to deviate from Haskell at a function application by
passing different flags to the argument:

Pass fi+r−bind (instead of fi−r−bind) The effect of this modification can best be observed
from the following example:

let g :: (∀ a.a→ a)→ Int
id = λx→ x
f = λh→ let y = g h

x1 = h 3
x2 = h ’x’

in x1
in f id

First assume that we are still using fi−r−bind. Then we can infer from the call ‘g h’:
h :: f → f

95

6. EH 4: Local quantifier propagation

o;Γ;Ck;σk `e e : σ{ C

ι 7→ σg ∈ Γ

o `6 Ckσg 6 C
kσk : σ{ C

o;Γ;Ck;σk `e ι : σ{ C Ck .I1

v fresh
ostr;Γ;Ck; v→ σk `e e1 : → σ{ Cf

oinst−lr;Γ;Cf ; v `e e2 : { Ca

o;Γ;Ck;σk `e e1 e2 : Caσ{ Ca
.I1

v1, v2 fresh
fi+r−bind, o `

6 v1 → v2 6 C
kσk : { CF

o; [],Γ;CFC
k; v1 `

p p : σp;Γp { Cp;
o;Γp;Cp; v2 `

e e : σe { Ce

o;Γ;Ck;σk `e λp→ e : Ceσp → σe { Ce
.I1

Within environment Γ and context o, expecting the type of expression e to be
Ckσk, e has type σ, under constraints C.

e : Expression
o : fitsIn options, additional contextual information for 6
σk : Expected/known type of expression
σ : Type of expression
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γ : Environment ι 7→ σ for value identifiers
Ck : Already known constraints
C : Ck+ new constraints

Figure 6.6.: Expression type rules (I1)

This will lead to errors at the applications ‘h 3’ and ‘h ’x’’. These errors could have been
avoided by concluding at ‘g h’ that:

h :: ∀a.a→ a

This is accomplished by using fi+r−bind instead of fi−r−bind. This is the desirable behavior
because h needs to have this type anyway to be accepted by g. However, we run into
problems when we swap the declaration of ’y = g h’ with the remaining declarations,

96

6.4. Type inference

Γk
t ;Γk

p;Γ;Ck
p;Ck `d d : Γt;Γp { Cp;C

∆ `t t : σi { ; vt

v∆ ≡ ftv (∆)
σq ≡ ∀(ftv (σi)\(vt, v∆)).σi

Γi ≡ [i 7→ σq]
;Γp; ;Ck

p;Ck `d (i :: t) : Γi;Γp { C
k
p;Ck .I1

v fresh
p 7→ σs ∈ Γ

k
t

σk
p ≡ σs ∧ σ

k
e ≡ σs ∨ σ

k
p ≡ v ∧ σk

e ≡ σp

ostr;Γk
p;Ck

p;σk
p `

p p : σp;Γp { Cp;
ostr;Γ;Ck;σk

e `
e e : { Ce

Γk
t ;Γk

p;Γ;Ck
p;Ck `d (p = e) : [];Γp { Cp;Ce

.I1

Figure 6.7.: Declaration type rules (I1)

because we infer types in a specific (left to right) order. We then conclude at the application
‘h 3’:

h :: Int → v

This leads to an error at the application ‘h ’x’’; an error that could have been avoided if
we would have known the inferencing results from ‘g h’.
We conclude that the order in which we infer (unfortunately) matters. In Chapter 7 we will
investigate an approach in which we infer twice: first to extract impredicativeness, and
subsequently to do normal type inference.

Pass fi+l−bind (instead of fi−l−bind) The effect of this modification can best be observed
from the following example:

let choose :: ∀ a.a→ a→ a
id :: ∀ a.a→ a
v1 = choose id

in v1

Again, first assume that we are still using fi−l−bind. At the application ‘choose id’, first id
will be instantiated to v1 → v1, and subsequently this type is bound to the instantiated type
variable a from choose’s type:

choose id :: (v1 → v1)→ (v1 → v1)

97

6. EH 4: Local quantifier propagation

for which, after generalization, we obtain:
v1 :: ∀a.(a→ a)→ (a→ a)

Alternatively, we might have concluded:
v1 :: (∀a.a→ a)→ (∀b.b→ b)

This effect can be achieved by using fi+l−bind instead of fi−l−bind. We then propagate the
uninstantiated type. This mechanism can be offered as a mechanism to the programmer.
We denote this by a tilde ‘∼’ in front of an argument to indicate System F like propagation
of the type of the argument, that is, impredicatively, without instantiation. The use of
this notation is restricted to applications where the type of both function and argument are
known.
The following rule .. describes this; the difference with rule . lies in the passing
of ostr:

v fresh
ostr;Γ;Ck; v→ σk `e e1 : → σ{ Cf

ostr;Γ;Cf ; v `e e2 : { Ca

o;Γ;Ck;σk `e e1 e2 : Caσ{ Ca
..I1

For example, the following program uses both variants:
let choose :: a→ a→ a

id :: a→ a
v1 = choose id
v2 = choose ∼id

in v1

This leads to the following bindings:
v1 :: ∀a.(a→ a)→ (a→ a)
v2 :: (∀a.a→ a)→ (∀b.b→ b)

Alternatively, we could have provided an explicit type instead, but this is more verbose:
let v3 = (choose :: (∀ a.a→ a)→ (∀ b.b→ b)→ (∀ c.c→ c)) id

v4 :: (∀ a.a→ a)→ (∀ b.b→ b)
v4 = choose id

...

Both v3 and v4 have the same type as v2.

6.5 Conclusion

In this chapter we have described part of the fourth version of EH, that is, the use of
type annotations for higher-ranked types. Our approach is to pass these type annotations

98

6.5. Conclusion

downwards through the AST of an expression. Others have also exploited type annotation
in a similar way, but we postpone the discussion of related work to Section 7.
In the next chapter we exploit type annotations even further by allowing type information
to propagate more globally throughout the AST.

99

6. EH 4: Local quantifier propagation

100

7 EH 4: G  

In Chapter 6 we added higher-ranked types to EH. If a programmer specifies a type signa-
ture, then the system uses this signature for type checking. The idea was to check against
a known type signature by distributing such a signature over the AST. We call this local
quantifier propagation because locally available quantifier related information is used: the
expected type is provided by the parent node in the AST. Occasionally we call quanti-
fier propagation impredicativity inference, because we allow type variables to be bound to
quantified types (called impredicativity), and we allow quantified types to participate in the
type inference process.
However, we can exploit the presence of type signatures even further by considering func-
tion applications as well. The idea is that from the use of a value as an argument for a
particular function we can derive type information for that argument based on the (argu-
ment) type of the function. Thus we can infer type information, which can be used else-
where, non-locally, in the AST. The local quantifier propagation from the previous chapter
then becomes a special case of what we call global quantifier propagation. The following
example illustrates this idea:

Example 7.1
let g :: (∀ a.a→ a)→ Int

id = λx→ x
f = λh→ let x1 = h 3

x2 = h ’x’
y = g h

in x1
in f id

From the application ‘g h’ we can conclude that h certainly must have the following type:
h :: ∀a.a→ a

A less general type would not be accepted by g. At h’s call sites we now can use this
inferred type for h to correctly type the applications ‘h 3’ and ‘h ’x’’, and to infer the
higher-ranked type for f . The basic idea behind this approach in this chapter is:

101

7. EH 4: Global quantifier propagation

If a type for an identifier ι has been “touched by”, either directly or indirectly,
polymorphic type information, then this type information can be used at use
sites of ι.

More precisely, “touched by” translates to:

• An identifier occurs in a position where a polymorphic type is expected (direct touch-
ing). In particular, argument positions in function applications are used to detect this.

• An identifier has a type which comes from another touched identifier (indirect touch-
ing).

So, in our example, h is touched by type “∀a.a → a”. If the application ‘g h’ would be
removed, no touching would take place and both applications ‘h 3’ and ‘h ’x’’ would
result in an error: the idea is to propagate polymorphic type information, not invent it.

Choosing the most general type For the following example the same type for h is
inferred. It differs from the previous example in that h is expected to be used in two
different ways (instead of one), because it is passed to both g1 and g2.

Example 7.2
let g1 :: (∀ a.a→ a)→ Int

g2 :: (Int → Int)→ Int
id :: ∀ a.a→ a
f = λh→ let x1 = g1 h

x2 = g2 h
in x2

in f id

Function h is expected to be used as “∀a.a → a” and “Int → Int”. The most general of
these types, that is “∀a.a → a”, is bound to h. The relation “more general” is defined in
terms of 6: “σ1 is more general than σ2” is equivalent to σ1 6 σ2.
Generality is even further exploited in the following (somewhat contrived) example. It
differs from the previous example in that h is not chosen from the set of available expected
types, but is the greatest common instance [90] (or least general anti-unification, defined
later in this chapter as the meet of two types).

let g1 :: (∀ a.(Int, a)→ (Int, a))→ Int
g2 :: (∀ b.(b, Int)→ (b, Int))→ Int
id = λx→ x
f = λh→ let y1 = g1 h

y2 = g2 h
in y2

in f id

102

7.1. Design overview

Here h is expected to be used as “∀a.(Int, a) → (Int, a)” and “∀b.(b, Int) → (b, Int)”. We
choose the type of h (and consequently f) to be:

h :: ∀a.∀b.(a, b)→ (a, b)
f :: (∀a.∀b.(a, b)→ (a, b))→ Int

Contravariance Contravariance, that is, the reversal of 6 for the arguments of a function
type, implies that the “more general” means “less general” for arguments. The following
example demonstrates this:

Example 7.3
let g1 :: ((∀ a.a→ a)→ Int)→ Int

g2 :: ((Int → Int)→ Int)→ Int
id :: ∀ a.a→ a
f = λh→ let x1 = g1 h

x2 = g2 h
h1 = h id

in h1
v = f (λi→ i 3)

in v

Function h now is expected to be used as “(∀a.a → a) → Int” but also as “(Int → Int) →
Int”. This means that h is passed a “∀a.a → a” in g1’s context, so it can use the passed
function polymorphically as far as the context is concerned. In g2’s context a “Int → Int”
is passed; g2 expects this function to be used on values of type Int only. Hence we have
to choose the least general for the type of the function passed by g1 and g2, that is, the
argument of h:

h :: (Int → Int)→ Int
f :: ((Int → Int)→ Int)→ Int

Because of the contra-variance of function arguments, the least general type for the func-
tion passed by g1 and g2 coincides with the most general type for f ’s argument h.

7.1 Design overview

The design of our solution for the propagation of quantifier related type information is a
combination of the following:

• Quantifier propagation, described in this chapter, is the first stage of a two stage
process. The second stage consists of the previously described type inference, which
exploits expected type information, and determines bindings for type variables. The

103

7. EH 4: Global quantifier propagation

stage described in this chapter extracts as much as possible quantifier related type
information for type variables, to be used as expected type information by the next
stage. Fresh type variables are created once, in the first stage, and retained for use in
the following stage, so type variables act as placeholders for inferred types.

• For type variables which represent possibly polymorphic types, we gather all bind-
ings to the types they are expected to have. This is encoded by means of a type
holding type alternatives and constraint variants. These types and constraints are
computed by a variation of normal HM type inference. Type alternatives resemble
intersection types [11]. However, our type alternatives are used only internally and
are not available to a programmer as a (type) language construct.

• For each introduced identifier we compute the most (or least, depending on con-
travariance) general type based on its type alternatives. This results in constraints
(for type variables) which are subsequently used by type inference as discussed in
earlier versions of EH. For this to work, it is essential that all possible type alterna-
tives are grouped together, including the type information extracted from explicitly
specified type signatures.

• The computation of most/least general types is based on the lattice induced by 6.
Fig. 7.1 shows an example of such a lattice for the examples presented so far. We
propagate the result of this computation if the type alternatives used to compute
the most/least general type contains a type with a quantifier. Otherwise there is no
quantifier related information to propagate. Although we do not discuss existential
types in this chapter yet, existential types are included for reasons of symmetry in
Fig. 7.1.

We call the resulting strategy global quantifier propagation.

7.2 Finding possible quantifiers

The first step in our strategy for global quantifier propagation is to find for a type variable
not just one type, but all types it can be matched with. Remember that the reason for this
chapter’s problem is a too early binding of a type variable to a type. We need to delay
that decision by gathering all possible bindings, and extract a polymorphic type from it, if
any. Actually, we also need to find out if polymorphism needs to be inhibited. This is a
consequence of the contravariance of function arguments.
For instance, in Example 7.2, page 102 we conclude:

h :: ∀a.a→ a

This is based on the following type matches:
h :: v1
v1 6 ∀a.a→ a

104

7.2. Finding possible quantifiers

(∀a.a→ a)→ Int

(((((((((

������

XXXXXX
�����

PPPPP

hhhhhhhhh

J
J

J
J

J
J

l
l

l
l

l
l

l
l

l

(((((((((

hhhhhhhhh

,
,

,
,

,
,

,
,

,
∀a b.(a, b)→ (a, b)

∀a.(Int, a)→ (Int, a)

(Int, Int)→ (Int, Int)

∀a.(a, Int)→ (a, Int)

∃a.a

∀a.a

Int

∀a.a→ a

Int → Int

∃a.(a, a→ Int)

(Int, Int → Int)

(Int → Int)→ Int

Figure 7.1.: Type lattice (∃ is discussed in Chapter 8)

v1 6 Int → Int

Our previous approach was to bind v1 to one of the righthand sides of 6. Here we delay
this binding by binding the type variable v1 to both v1 and its binding alternatives. We use
a type alternatives to represent this (see Fig. 7.3 and Fig. 7.2):

σF ...
| � type alternatives

�F v [ϕ] type alternatives
We denote types σ which contain type alternatives by �. Types � only participate in quan-
tifier propagation.
Each type alternative ϕ corresponds to an alternative type σ, together with additional in-
formation about the context in which this type is used. We need to know this context when
type alternatives are reduced to a most/least general type. First, we need to know at which
side of 6 a type occurred. For example, in Example 7.3, page 103 we conclude:

h :: (Int → Int)→ Int

This is based on the following type matches:
h :: v2 → Int
∀a.a→ a 6 v2
Int → Int 6 v2

Here two types have to fit in v2. In the previous example, a type variable v1 had to fit
the other way around, in two types. We call this fitting direction the type alternative need,
denoted byN. The direction of the current example is marked as a type alternative offering,

105

7. EH 4: Global quantifier propagation

Notation Meaning
� σ for quantifier propagation
σQ σ with a quantifier
σ¬Q σ without a quantifier
C C for quantifier propagation
M meet of two types
O join of two types
� 6, M or O
H type alternative hardness (hard or soft)
Hh hard type alternative
Hs soft type alternative
N type alternative need/context (offered or required)
No offered type alternative
Nr required type alternative
ϕ type alternative

Figure 7.2.: Notation for quantifier propagation

denoted byNo, because the two types are offered to be fit in the type variable. The direction
of the previous example is marked as a type alternative requirement, denoted by Nr. We
encode this information in a type alternative:

ϕF σ :: H / N type alternative
NF No ‘offered’ context
| Nr ‘required’ context

HF Hh ‘hard’ constraint
| Hs ‘soft’ constraint

A type alternative also has to remember the type alternative hardness, denoted byH. Hard-
ness may be hard, denoted by Hh, or soft, denoted by Hs. By default every type alternative
is soft. Hh is used internally by our quantifier propagation algorithm to mark types without
a quantifier to be propagated; this is necessary to inhibit propagation of quantified types.
For example, for Example 7.3 we have to conclude the constraint “v2 7→ Int → Int” on v2,
the least general type, and inhibit the propagtion of “∀a.a → a” as a possible binding for
v2.
For our respective examples we find the following constraints (on v1 from Example 7.2, v2
from Example 7.3):

v1 7→ v1 [∀a.a→ a :: Hs / Nr, Int → Int :: Hs / Nr]
v2 7→ v2 [∀a.a→ a :: Hs / No, Int → Int :: Hs / No]

Collecting these constraints is relatively straightforward: if a type variable is to be bound
to a type during type matching, we bind it to a type alternative. This behavior is enabled

106

7.3. Computing actual quantifiers

Types:
σF Int | Char literals
| v variable
| σ→ σ abstraction
| σ σ type application
| ∀v.σ universally quantified type
| f (fresh) type constant (a.k.a. fixed type variable)

Types for quantifier propagation:
σF ...
| � type alternatives

�F v [ϕ] type alternatives

Types for computing meet/join:
σF ...
| vPσ both
| � absence of type information

Type alternative:
ϕF σ :: H / N type alternative
NF No ‘offered’ context
| Nr ‘required’ context

HF Hh ‘hard’ constraint
| Hs ‘soft’ constraint

Figure 7.3.: Type language

by an additional flag fialt to type matching (see Fig. 7.4 and Fig. 7.5). For example, binding
to a type alternative is disabled in rule ..1 (Fig. 7.6, used previously), and enabled in
rule ..3 (a new rule). New bindings for type alternatives are combined, for example
in rule . and rule ..1.
This mechanism is used by quantifier propagation, preceding normal type inference. We
next discuss the computation of most/least general types, and postpone the use of these
mechanisms (in Fig. 7.15 and Fig. 7.16) until later.

7.3 Computing actual quantifiers

After the gathering of type alternatives, we compute most/least general types based on
these type alternatives. The result of this computation are constraints on type variables.

107

7. EH 4: Global quantifier propagation

Option meaning default
fir−bind prefer binding of a rhs tvar over instantiating fi+r−bind
fil−bind prefer binding of a lhs tvar over instantiating fi+l−bind
fialt bind as type alternative fi−alt
fi6 fit fi+6
fiM meet fi−M
fiO join fi−O

Figure 7.4.: Options to fit

Combination options (relative to the default) context
ostr strong
oinst−l fi−r−bind left instantiating
oinst−lr fi−l−bind, fi

−
r−bind left and right instantiating

oim fi+alt impredicative inference
omeet fi+M meet
o join fi+O join

Figure 7.5.: Option combinations

We compute either a most general (polymorphic) type or a least general (usually non-
polymorphic) type. These constraints are used by type checking and inferencing, repre-
senting additional assumptions for some types.
We need the combination of the following mechanisms:

• The computation of type meet’s and type join’s for types, using the ordering on types
defined by 6 and its induced lattice (Fig. 7.1) [18].

• The elimination of type alternatives in a type, and the simultaneous extraction of
bindings for type variables to quantified types.

These mechanisms are mutually recursive, because type alternative elimination uses meet/join
computation to find (and combine) quantifier information, and meet/join computation may
combine (deeper nested) type alternatives.

Meet and join of types The type meet, denoted by M, and type join, denoted by O, of
two types σ1 and σ2 are defined by [18]:
σ1 M σ2 ≡ max{σ | σ 6 σ1 ∧ σ 6 σ2 }

σ1 O σ2 ≡ min {σ | σ1 6 σ ∧ σ2 6 σ }

108

7.3. Computing actual quantifiers

o `� σl � σr : σ{ C

C ≡ [v 7→ σ]
fi−alt, fi

+
l−bind ∈ o

o `� v � σ : σ{ C
..1I2

σ ≡ v1[σ2 :: Hs / Nr]
C ≡ [v1 7→ σ]
σ2 . []

fi+alt, fi
+
l−bind ∈ o

o `� v1 � σ2 : σ{ C
..3I2

C ≡ [v 7→ σ]
fi−alt, fi

+
r−bind ∈ o

o `� σ � v : σ{ C
..1I2

σ ≡ v2[σ1 :: Hs / No]
C ≡ [v2 7→ σ]
σ1 . []

fi+alt, fi
+
r−bind ∈ o

o `� σ1 � v2 : σ{ C
..3I2

σ ≡ v2[ϕ1, ϕ2]
C ≡ [v1 7→ σ, v2 7→ σ]

o `6 v1[ϕ1] 6 v2[ϕ2] : σ{ C
.I2

σ ≡ v1[σ2 :: Hs / Nr, ϕ1]
C ≡ [v1 7→ σ]

o `6 v1[ϕ1] 6 σ2 : σ{ C
..1I2

σ ≡ v2[σ1 :: Hs / No, ϕ2]
C ≡ [v2 7→ σ]

o `6 σ1 6 v2[ϕ2] : σ{ C
..1I2

Figure 7.6.: Type alternative related matching (finding possible quantified types) (I2)

The relation 6 on types is assymetrical due to the presence of a universal quantifier ∀ in a
type. We have ∀v.σ1 6 σ2 if we can instantiate v to some type for which σ1 6 σ2. In case
of absence of a quantifier in σ1 6 σ2, both types must match: σ1 � σ2. Therefore σ1 M σ2
represents the type which can be instantiated to both σ1 and σ2; σ1 O σ2 represents the
type which is an instantiation of both σ1 and σ2.
The following use of meet and join constitutes a key part of our algorithm. The type meet
M is used to extract “∀a.a→ a” from the following example constraint:

v1 7→ v1 [∀a.a→ a :: Hs / Nr, Int → Int :: Hs / Nr]

The type variable v1 represents a type which must fit (because tagged by Nr) into both
“∀a.a → a” and “Int → Int”. The type for v1 (from Example 7.2, page 102) must be the
most general of these two types so it can be instantiated to both the required types. This
type for v1 is defined as follows:
∀a.a→ a ≡ ∀a.a→ a M Int → Int

109

7. EH 4: Global quantifier propagation

o `6 σl 6 σr : σ{ C

fi+6, o `
� σl � σr : σ{ C

o `6 σl 6 σr : σ{ C
I2

Figure 7.7.: Fitting of types (I2)

o `M σl M σr : σ{ C

fi+M, o `
� σl � σr : σ{ C

o `M σl M σr : σ{ C
I2

M delegates to �.

σl : Type to meet
σr : Type to meet
σ : Result type: σ 6 σl ∧ σ 6 σr

Figure 7.8.: Join of types (I2)

On the other hand, for v2 (from Example 7.3, page 103) we know it represents a type of a
value in which both a value with type “∀a.a→ a” and “Int → Int” will flow.

v2 7→ v2 [∀a.a→ a :: Hs / No, Int → Int :: Hs / No]

The type for v2 must be the least general of these two types so both contexts can coerce
their value to a value of type v2:

Int → Int ≡ ∀a.a→ a O Int → Int

The implementation of fit 6, meet M, and join O are much alike, so we define their imple-
mentation as variations on type matching �. The rules in Fig. 7.7, Fig. 7.8, and Fig. 7.9
dispatch to �, and pass the variant by means of additional (mutually exclusive) flags: fi+6,
fi+M, and fi+O. When the rules for � are meant to be used only by a particular variant we either
require the presence of the corresponding flag or we use the corresponding denotation (6,
M, or O) in the rules, as is done in the rules dealing with the meet and join of ∀ quantified
types in Fig. 7.12.

110

7.3. Computing actual quantifiers

o `O σl O σr : σ{ C

fi+O, o `
� σl � σr : σ{ C

o `O σl O σr : σ{ C
I2

O delegates to �.

σl : Type to join
σr : Type to join
σ : Result type: σl 6 σ ∧ σr 6 σ

Figure 7.9.: Join of types (I2)

Type alternative elimination The computation of the most/least general type from type
alternatives, presented in Fig. 7.10, may look overwhelming at first, but basically selects
specific subsets from a set of type alternatives and combines their types by meeting or
joining, where the choice between meet and join depends on the (contra)variance. The
computation is described by rule ..; the remaining rules deal with default cases.
In rule .. we slightly stretch the notation for matching (�) by allowing a vector of
types to be matched: σ � σr. This means “foldr (�) σr σ”.
Rule .. starts with extracting type alternatives: type alternatives with a quantifier
(σQ), without a quantifier (σHs), and those marked as hard (σHh). These sets are further
restricted by their need N, selecting Nr in a meet context (flag fi+M), selecting No otherwise.
Only when quantified or hard types are present we first compute their meet (or join), so we
obtain all quantifier related information. Then we combine the result with the remaining
types. The result may still contain type alternatives, because we only eliminate the top
level type alternatives. We recursively eliminate these nested type alternatives and finally
bind the result to the type variable for this set of type alternatives.
We walk through our initial example (Example 7.1), which we repeat here:

let g :: (∀ a.a→ a)→ Int
id = λx→ x
f = λh→ let x1 = h 3

x2 = h ’x’
y = g h

in x1
in f id

Our implementation finds the following information for h (the fragments are edited bits of
internal administration):

111

7. EH 4: Global quantifier propagation

o;Ck; vg
ϕ elim
` � : σ{ C

N ≡ if fi+M ∈ o then Nr else No

v [ϕ] ≡ �
σQ ≡ [σQ | (σQ :: Hs / N)← ϕ]
σHh ≡ [σ | (σ :: Hh / N)← ϕ]
o `� (σHh , σQ) � � : �Hh { Ch

σHs ≡ [σ¬Q | (σ¬Q :: Hs / N)← ϕ]
o `� ChσHs � �Hh : �Hs {

o;Ck; vg
ϕ elim
` �Hs : σ{ Ce

C ≡ [v 7→ σ]
| σHh , σQ | >0

v < vg

o;Ck; vg
ϕ elim
` � : σ{ C Ce

..I2

v [] ≡ �
v < vg

o;Ck; vg
ϕ elim
` � : v{ []

..I2
o;Ck; vg

ϕ elim
` σ : σ{ []

..I2

oa ≡ toggle fi+M and fi+O in o

oa;Ck; vg
ϕ elim
` �a : σa { Ca

o;Ck; vg
ϕ elim
` �r : σr { Cr

o;Ck; vg
ϕ elim
` �a → �r : σa → σr { CaCr

..I2

Within a meet/ join context (indicated by o), known constraints Ck for �, σ equals
� in which all type alternatives (except for global type variables vg) are elimi-
nated, under C constraining the type alternative variables to their type alternive
eliminated type.

o : Options to matching, in particular indicating meet/ join
� : Type with type alternatives ϕ
C : New constraints, constraining the type alternative variables to their type

alternive eliminated type
σ : Result type, without type alternatives ϕ (for non global type variables)
Ck : Known constraints for type variables in �
vg : Global variables (which are not eliminated)

Figure 7.10.: Type alternative elimination (I2)

112

7.3. Computing actual quantifiers

o;Ck; vg
Γ ϕ elim
` Γ : C

o;Ck; vg
ϕ elim
` Ck� : { Ca

o;Ck; vg
Γ ϕ elim
` CaΓ : Cg

o;Ck; vg
Γ ϕ elim
` (7→ �,Γ) : CgCa

..I2

Within a meet/ join context (indicated by o), known constraints Ck for types in
Γ, all type alternatives (except for global type variables vg) are eliminated, under
constraints C.

Figure 7.11.: Type alternative elimination (for a Γ) (I2)

h :: v 23 0
v 23 0 7→ v 23 0 [∀a.a → a :: Hs / Nr

, (v 38 0 [Int :: Hs / No]) → v 35 0 :: Hs / Nr

, (v 47 0 [Char :: Hs / No])→ v 44 0 :: Hs / Nr

]

Function h is used in three different contexts, of which one requires h to be a polymorphic
type, and the remaining two require h to be a function which can accept an Int and a
Char argument respectively. Because h must be the most general type we eliminate type
alternatives in a fi+M context. Rule .. then extracts type alternative subsets:
σQ ≡ [∀a.a → a]
σ¬Q ≡ [(v 38 0 [Int :: Hs / No]) → v 35 0

, (v 47 0 [Char :: Hs / No])→ v 44 0
]

σHh ≡ []

The solution ∀a.a → a does not contain nested type alternatives, so we end with the
constraint:

v 23 0 7→ ∀a.a→ a

In the remainder of the type inference process we can now use h polymorphically.

Meet/join computation The computation of the meet M and join O of two types is sim-
ilar to the introduction and elimination of type alternatives:

• Quantified type variables are instantiated with type variables v which remember both

113

7. EH 4: Global quantifier propagation

o `� σl � σr : σ{ C

vP
Pelim
` σm : σ{ ;Ce

σi ≡ Cασ1, Cα ≡ α 7→ (vPP�), vP fresh
o `M σi M σ2 : σm { Cm

o `M ∀α.σ1 M σ2 : ∀vP.σ{ CeCm
..2I2

vP
Pelim
` σm : σ{ ;Ce

σi ≡ Cασ1, Cα ≡ α 7→ (vPP�), vP fresh
o `O σi O σ2 : σm { Cm

o `O ∀α.σ1 O σ2 : ∀vP.Ceσ{ CeCm
..3I2

σ ≡ v1[σ2 :: Hh / Nr, ϕ1]
C ≡ [v1 7→ σ]

o `M v1[ϕ1] M σ2 : σ{ C
..2I2

σ ≡ v1[σ2 :: Hh / No, ϕ1]
C ≡ [v1 7→ σ]

o `O v1[ϕ1] O σ2 : σ{ C
..3I2

Figure 7.12.: Type meet/join (I2)

the type variable and the type σ (if any) bound (by matching) to the type variable:
σF ...
| vPσ both
| � absence of type information

The instantiation with these types is (for example) done as part of Rule ..2
(Fig. 7.12).

• After instantation and further matching (Fig. 7.13) we end with a type which encodes
both a type variable and its binding. We then either forget or use these bindings,
depending on the context (meet or join).

For example, in rule ..2 (Fig. 7.12) the meet of
∀a.a→ a
Int → Int

gives σm:
aPInt → aPInt

The rules in Fig. 7.14 then split this type into a type with type variables, and constraints
for those type variables:

114

7.4. Impredicativity inference

o `� σl � σr : σ{ C

o `MO σ1 MO σ2 : σ{ Cm

C ≡ [v1, v2 7→ v2Pσ]
o `MO v1Pσ1 MO v2Pσ2 : v2Pσ{ C Cm

.I2

C ≡ [v 7→ vPσ]
o `MO vP� MO σ : vPσ{ C

..1I2

o `MO σ1 MO σ2 : σ{ Cm

C ≡ [v 7→ vPσ]
o `MO vPσ1 MO σ2 : vPσ{ C Cm

..2I2

Figure 7.13.: Type matching (� on P) (I2)

σ ≡ a→ a
Ce ≡ a 7→ Int

In case of a meet M the constraints Ce are forgotten for the result type. The constraints Ce

are still propagated, because other type variables may still be further constrained as a ‘side
effect’ of the meet M. For a join O (rule ..3) the constraints are not forgotten but
applied to σm.
Finally, rule ..2 and rule ..3 (Fig. 7.12) add a type computed by a meet or join
as a hard Hh type to type alternatives. For types with quantifiers this does not make a dif-
ference, but for types without (like Int → Int) it does. Being marked as hard Hh, we ensure
the triggering of type alternative elimination (rule ..) and subsequent propagation
of the resulting type. If a type variable is bound by this process to a (non-polymorphic)
type we effectively inhibit its further binding to a polymorphic type.

7.4 Impredicativity inference

Impredicativity inference uses type alternatives and their elimination to respectively gather
and extract polymorphism, to be used by subsequent normal type inference. The algorithm
(Fig. 7.15, Fig. 7.16, and Fig. 7.17) uses two constraint threads. The first constraint thread,
denoted by C, gathers type alternatives, and the second, denoted by C, participates in
normal type inference. Both inference stages return a type. The type returned by quantifier
propagation may contain type alternatives and is therefore denoted by �; the type returned

115

7. EH 4: Global quantifier propagation

bv
Pelim
` σP : σ{ σe;C

v ∈ bv

bv
Pelim
` vP� : v{ v; []

..I2

v ∈ bv

bv
Pelim
` σb : σ{ ve;C

bv
Pelim
` vPσb : v{ v; [ve 7→ v] C

..I2

v ∈ bv

bv
Pelim
` σb : σ{ σe;C

bv
Pelim
` vPσb : v{ σe; [v 7→ σe] C

..I2

Split σP holding P types into σ holding type variables (of P types) and C holding
constraints on those type variables.

bv : Already bound variables for which no elimination takes place
σ : Result type, P types replaced by their original type variable
C : Constraints for P type variables, mapping to their P type
σe : Type where P types are replaced by their P type (if not �), only used

internally
σP : Type to be P type eliminated

Figure 7.14.: Type ‘both’ elimination (I2)

by normal inference is denoted byσ. We focus on quantifier propagation and its integration
with normal type inference (and postpone the discussion of the judgements for constraints
superscripted with ex required for existential types):

• The complete inference process is split in two stages: quantifier propagation and
(normal) type inference.

• Bindings for value identifiers are gathered and propagated via environments. Each
binding binds to a type variable, a placeholder for type information, about which
specific type information is stored in constraints C. We separate placeholders and
actual type information because the two inference stages infer different types for a
type variable.

• Constraints for the first stage are denoted by C, for the second stage by C.

• Only the result of type alternative elimination is propagated to the second stage.

116

7.4. Impredicativity inference

Impredicativity inference in isolation follows a similar strategy as type inference for pre-
vious versions of EH, in that we gather and match type information, partially bottom-up,
partially top-down:

• Expected types are still used, but their matching now is done at those places in the
AST where we expect the need for type alternatives: rule . and rule ..

• At some places in the AST we ’fix’ type alternatives by extracting polymorphism;
we use the elimination of type alternatives.

For example, in rule . we match the impredicative function type � f with v→ σk, with
the flag fi+alt passed to 6. Any known information about the function’s argument is thus
bound as a type alternative to v. The argument type is matched similarly, so we end up
with all information about the argument bound to v as a set of type alternatives.
Fixating type information is done at two places: at the introduction of identifiers in let-
bindings and λ-bindings. Similar to the generalisation of HM type inference, these places
limit the scope of an identifier. If a type variable is not accessed outside this boundary,
we can close the reasoning about such a type by eliminating type alternatives (or quantify,
in the case of HM type inference). The restriction on eliminating type alternatives for a
pattern, to be used as the known type for the pattern, arises from our combination of type
inference and type checking. We hope to remove this restriction in a future version of our
algorithm as it complicates rule .; we will come back to this later with some examples.
The intricacy of rule . is caused by the combination of the following:

• Type variables act as placeholders for (future) type information. Hence we must take
care to avoid inconsistencies between constraints. Inconsistencies arise as the result
of double instantiation (during each inference stage), and instantiated type variables
are not constrained to be equal when the semantics require this.

• We assume that all known type information is available during the first inference
stage, so we can include this information into type alternatives.

• For patterns, only a single ‘pass’ is used to extract type information. As a conse-
quence we require its types and constraints, used in the first stage, to remain consis-
tent with results from the second stage.

Rule . first extracts possibly polymorphic information from the known type σk, which
may contain type alternatives (introduced as part of rule .). The resulting type σk

e is
used to extract the possible polymorphic (higher ranked) type of the argument. We need
this type to ensure the invariant that all available known type information is used as part of
the first stage, and becomes bound in a type alternative. After being combined with pattern
constraints and being threaded through the body, emerging as Ce, the set of constraints is
used to eliminate type alternatives for each introduced identifier.
The tricky part is the combination with the next stage. We need to match with the known
type a second time as we may have found new polymorphic types for arguments. However,

117

7. EH 4: Global quantifier propagation

o;Γ;Ck;Ck;σk `e e : �;σ{ C;C

o `6 Int 6 Ckσk : σ{ C
o;Γ;Ck;Ck;σk `e int : Int;σ{ Ck;C Ck .I2

ι 7→ σg ∈ Γ

o `6 Ckσg 6 C
kσk : σ{ C

o;Γ;Ck;Ck;σk `e ι : Ckσg;σ{ Ck;C Ck .I2

v fresh
ostr;Γ;Ck;Ck; v→ σk `e e1 : �f ; → σ{ Cf ;Cf

oim `
6 �f 6 Cf (v→ σk) : { CF

oinst−lr;Γ;CFCf ;Cf ; v `e e2 : �a; { Ca;Ca

fi+alt, oinst−l `
6 �a 6 Cav : { CA

C1 ≡ CACa

o;Γ;Ck;Ck;σk `e e1 e2 : C1σ
k;Caσ{ C1;Ca

.I2

Within environment Γ and context o, expecting the types of expression e to be
Ckσk (and Ckσk), e has type � (and σ), under constraints C (and C).

e : Expression
o : fitsIn options, additional contextual information for 6
� : Type (with type alternatives ϕ) of expression (for quantifier propaga-

tion)
σk : Expected/known type of expression
σ : Type of expression
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γ : Environment ι 7→ σ for value identifiers
Ck : Already known constraints (for quantifier propagation)
C : Ck+ new constraints (for quantifier propagation)
Ck : Already known constraints
C : Ck+ new constraints

Figure 7.15.: Expression type rules, part I (I2)

118

7.4. Impredicativity inference

o;Γ;Ck;Ck;σk `e e : �;σ{ C;C

v1, v2 fresh
vg ≡ ftv (Γ)

omeet;Ck; vg
ϕ elim
` σk : σk

e {
fi+r−bind, o `

6 v1 → v2 6 σ
k
e : { CF

o; [],Γ; [];CFv1 `
p p : σp;Γp { Cp;

Γl, ≡ Γp

fi+r−bind, fi
−
l,r, o `

6 Ck(v1 → v2) 6 Ckσk : { CF

C2 ≡ CF\ftv (Ck(v1 → v2))
o;Γp;CpCFC

k;C3; v2 `
e e : �e;σe { Ce;Ce

omeet;Ce; vg
Γ ϕ elim
` Γl : CΓ

C3 ≡ CΓCpC2(Ck = CF) Ck

C1 ≡ CΓCe

o;Γ;Ck;Ck;σk `e λp→ e : C1σp → CΓ�e;Ceσp → σe { C1;Ce
.I2

vg ≡ ftv (Γ)

o join;Cd; vg
Γ ϕ elim
` Γl : CΓ

CtΓt;Γt,Γ;Γp; [];Cex
t Ct;CpC

k;CΓCpC
k `d d : Γt;Γp { Ct;Cp;Cd;Cd

Cex
t ≡ [vg 7→ C σ | (i 7→ vg)← Γt,∃v.σ ≡ Ctvg,C ≡ v 7→ f , f fresh]

Γl,Γg ≡ Γp

Cq ≡ [vg 7→ ∀α.σ | (i 7→ vg)← Γl, σ ≡ Cdvg, α ≡ ftv (σ)\ftv (CdΓg)]
Cex

l ≡ [vg 7→ C σ | (i 7→ vg)← Γl,∃v.σ ≡ CqCdvg,C ≡ v 7→ f , f fresh]
o;Γp;CΓCd;Cex

l CqCd;σk `e b : �;σ{ Ce;Ce

o;Γ;Ck;Ck;σk `e let d in b : �;σ{ Ce;Ce
.I2

Figure 7.16.: Expression type rules, part II (I2)

this match may result in fresh instantiated type variables or fixed type variables. Constraint
C3 requires some careful constraint manipulation. New constraints for v1 (and v2) are
avoided; old bindings for v1 (and v2) are updated with new constraints.
In a let-expression type alternatives are eliminated for locally introduced bindings. Rule .
shows how this is done. Although the propagation of Γ’s and constraints specified by
rule . is complete it also has become complex. This is mainly the consequence of the
use of multiple Γ’s and constraints being threaded through all declarations, and being tied
together at rule .. Fig. 7.18 therefore provides a graphical summary.

119

7. EH 4: Global quantifier propagation

Γk
t ;Γk

p;Γ;Ck
t ;Ck

p;Ck;Ck `d d : Γt;Γp { Ct;Cp;C;C

∆ `t t : σi { ; vt

v∆ ≡ ftv (∆)
σq ≡ ∀(ftv (σi)\(vt, v∆)).σi

σv ≡ vv ∧ Cv ≡ [vv 7→ σq] ∧ vv fresh
Γi ≡ [i 7→ σv]

;Γp; ;Ck
t ;Ck

p;Ck;Ck `d (i :: t) : Γi;Γp { CvC
k
t ;Ck

p;Ck;Ck .I2

v fresh
p 7→ σs ∈ Γ

k
t

σk
p ≡ σs ∧ σ

k
e ≡ σs ∨ σ

k
p ≡ v ∧ σk

e ≡ σp

ostr;Γk
p;Ck

p;σk
p `

p p : σp;Γp { Cp;
ostr;Γ;Ck;Ck;σk

e `
e e : �e; { Ce;Ce

oim `
6 �e 6 Ceσp : { CE

Γk
t ;Γk

p;Γ;Ck
t ;Ck

p;Ck;Ck `d (p = e) : [];Γp { C
k
t ;Cp;CECe;Ce

.I2

Declaration d has explicit type bindings Γt, within explicit bindings Γk
t and im-

plicit type bindings Ck
pΓ

k
p, and type checks within CkΓ, yielding additional bind-

ings Γp, under constraints Cp (for Γp) and C (for Γ).

d : Declaration
Γt : Environment with new type signature bindings
∆ : Environment ι 7→ σ for type identifiers, cannot be modified (hence

treated as a global constant in rule .)
Γk

t : Collected Γt, used by patterns to extract bindings for pattern variables
Γ : Environment with known bindings
Ck : Known/gathered constraints during quantifier propagation
C : Ck+ new constraints
Ck

p : Known/gathered constraints during type inference of patterns (i. e. use
of type signatures and pattern structure)

Cp : Ck
p+ new constraints

Γk
p : Known/gathered pattern variable bindings
Γp : Γk

p+ new bindings
Ck : Known/gathered constraints during type inference of expressions bound

to patterns
C : Ck+ new constraints
Ck

t : Type signature information represented as constraint for binding to type
variable in Γt

Ct : Ck
t+ new constraints

Figure 7.17.: Declaration type rules (I2)
120

7.5. Related work, discussion

Ck

S
S
S
S

Γp Γt

CtCp
Γk

t Γ
k
p

Γ

Γ

CkCk
C C

Ck

Ck

quantify

Γ

Ck
p

elim ϕ

let p1 ::

=

t1

tnpn

e1

en

in e

Ck

Figure 7.18.: Constraint flow for let expression

Additional complexity arises from the presence of existential types, which we will discuss
in Chapter 8. Existential types are part of this version of EH.
Fig. 7.18 shows how rule . first gathers bindings for value identifiers, in parallel with
constraints for type variables bound to identifiers. Type signatures are gathered in Γt,
bindings from patterns are gathered in Γp. The corresponding constraints (Ct, and Cp) are
propagated to the quantifier propagation constraint thread C. Similar to rule . these
constraints are used to eliminate type alternatives. The result of elimination is propagated
to normal type inference.

7.5 Related work, discussion

Literature Higher-ranked types have received a fair amount of attention. Type inference
for higher-ranked types in general is undecidable [116]; type inference for rank-2 types
is possible, but complex [53]. The combination of intersection types [11] and higher-
rankedness [54, 52] appears to be implementable [56].
In practice, requiring a programmer to provide type annotations for higher-ranked types
for use by a compiler turns out to be a feasible approach [79] with many practical ap-
plications [99, 64, 45]. Some form of distribution of known type information is usually

121

7. EH 4: Global quantifier propagation

employed [92, 81, 87]. Our implementation distributes type information in a top-down
manner (Chapter 6), and, additionally, distributes type information non-locally (in this
chapter).

Quantifier propagation Our approach is to rely on explicitly provided type annota-
tions, and the propagation of this type information. Internally, our implementation uses
type alternatives, similar to intersection types. We rely on ‘classical’ style type inference,
with types which can incorporate constraints, and are applied as greedily as possible.
The quantifier propagation described in this chapter is algorithmic of nature. Recent work
by Pottier and Rémy [93, 95] takes a similar approach (although in a constraint based
setting), calling the propagations process elaboration. Theirs and our approach share the
two-pass nature in which the first pass infers missing type annotations. Although we make
no claims about the correctness of our algorithm, quantifier propagation only propagates
that which is already available in the first place, thus being true to our conservative “don’t
invent polymorphism” design starting point. We are confident that this approach does not
‘break’ normal type inference and checking.
Constraint-based approaches provide an alternative point of view where the ‘difficult’ part
of a type is encoded as a constraint, treated separately from type inference [80]. Botlan’s
extension to ML [15] uses (explicitly specified) constraints to allow polymorphic type
information to be propagated impredicatively. Both approaches also allow the integration
of qualified types [103, 65].
Whatever the approach taken, the availability of higher-ranked types in a programming
language complicates the implementation; this is the price to pay for a bit of System F
functionality. Our approach provides such an implementation and, additionally, stretches
the exploitation of type annotations even further by propagating impredicativity globally
throughout and expression.
For this thesis we have chosen the ‘classical’ approach as a starting point to keep mat-
ters (relatively) simple. Only recently new extensions are expressed using a constraint
approach. We expect to use a constraint based approach, because of this and the prospect
of better error message [35].
Finally, this chapter reflects an experiment which has not (yet) been integrated into the final
of our series of compilers. The combination with a class system (Chapter 9) and partial
type signatures (Chapter 10) requires further investigation.

122

8 EH 4: E 

In Chapter 6 universal quantification of types was introduced. A universally quantified
type expresses that a value of such a type can be used with any type subsituted for the uni-
versally quantified part. In this chapter we extend EH with its counterpart: the existentially
quantified type, (or existential type) [78, 63]. First, we look at examples, then we look at
the implementation issues.
The difference between a universally and existentially quantified type can be characterized
by the following observation:

• The use of a value with a ∀ quantified type determines the type to choose for the
instantiation of the quantified type variable. For example, the caller of the identity
function “id :: ∀a.a → a” determines the type to choose for the type variable a for
this particular application of id. For the function application “id 3” this type equals
Int.

• The creation of a value with a ∃ quantified type determines, and hides, the type of
the quantified type variable. For example, a creator of a “∃a.(a, a→ Int)” may have
constructed a value of that type from “(3, λx→ x)”; another creator has constructed a
value with the same type from “(’x’, λx→ ord x)”. From a users point of view both
values have the same type and are thus interchangeable. The value has a specific type
chosen for type variable a, but we do not know which type, so this information can
no longer be exploited. This value specific type information has been ‘forgotten’;
we only know it exists.

Existential types are available in Haskell [75], be it in a slightly disguised form. If type
variables occur in a constructor of a data type, but not in the type itself, they are assumed
to be existentially quantified. The keyword forall (confusingly) is used to specify this
explicitly:

data Hide = ∀a.Hide a

In EH we prefer to denote this as ∃a.a. We do not restrict the occurrences of ∃ quantifiers
to data declarations.

123

8. EH 4: Existential types

As pointed out in Section 6.1 the univeral quantifier is also used in Haskell for encapsula-
tion, we repeat the example:

runST :: ∀a.(∀s.ST s a)→ a

This is also slightly confusing because a universal quantifier has a useful meaning when
used for functions. A function can be passed and return values without knowing their type.
For “∀s.ST s a”, the body of runST can choose s, but this is a rather useless choice because
no value can be created by the caller of runST that still allows the body of runST to choose
the type s. The effect therefore is that the type of s is hidden. In EH we would encode this
directly:

runST :: ∀a.(∃s.ST s a)→ a

We summarize the use of quantifiers in EH:

• A universal quantifier ∀ is used for functions which (polymorphically) accept an
unknown type and return a value of this same unknown type.

• An existential quantifier ∃ is used for values for which type information has been
forgotten.

In Chapter 10 we will exploit this use further.

8.1 Motivating examples

Existential types are a necessary ingredient for encapsulation, abstract data types, and
modules, because existential types allow us to hide type information. The following ex-
ample uses a minimal abstract data type “∃a.(a, a→ Int)”: a value tupled with an observer
function for that value. Note that for all practical purposes this type is isomorphic to Int.

Example 8.1
let id :: ∀ a.a→ a

xy :: ∃ a.(a, a→ Int)
xy = (3, id)
ixy :: (∃ a.(a, a→ Int))→ Int
ixy = λ(v, f)→ f v
xy′ = ixy xy
pq :: ∃ a.(a, a→ Int)
pq = (’x’, id) -- ERROR

in xy′

Value xy holds an “∃a.(a, a → Int)”. An “(Int, Int → Int)” has been bound to in xy, but
the signature for xy only reflects that the value and function argument have the same type,

124

8.1. Motivating examples

so we can apply this function to the value (via ixy). Value pq is similarly typed, but the
assignment of a value is erroneous.

Opening an existential type When we create a value by an existential type, we forget
(part of) its type and represent this with an existentially quantified type variable. We call
this the closing of a type, as opposed to the opening of an existential type. The use of an
existential type requires a concrete type instead of a (existentially quantified) type variable.
The creation of such a concrete type is called opening. Ideally, opening would give us back
the original type, but this requires some form of dependent types. In EH, we merely create
a fresh type constant. For example, the type of xy from Example 8.1 is the following
(instead of ∃a.(a, a→ Int)):

xy :: (C 0 2 0,C 0 2 0→ Int)

The opening of an existential type is often tied up to special syntax, usually a variation of
a let-expression. In EH, the opening is associated with the binding of a type to a value
identifier. This (design decision) follows the intuition that a value is a concrete object with
a concrete type.
Opening an existential type by binding also means that the following example does not
type check1:

let ord :: Char → Int
id :: ∀ a.a→ a
f :: Int → ∃ a.(a, a→ Int)
f = λx→ case x of

2→ (x , id)
3→ (’a’, ord)

((xx, fx), (yy, fy)) = (f 2, f 3)
x = fx yy

in x

Function f returns (2, id) when passed 2 and (’a’, ord) otherwise. EH creates the following
bindings; the creation of type constants guarantees that fx cannot be applied to yy:

fy :: C 35 1 0→ Int
yy :: C 35 1 0
fx :: C 31 1 0→ Int
xx :: C 31 1 0

The opening of an existential for a value binding is only done for a top-level existential
quantifier. If an existential quantifier is nested inside a composite type, then the opening is
not done:

let v1 :: (∃ a.a,∃ b.b)
v1 = (2, ’x’)

1Case expressions are introduced together with data types, not included in this thesis.

125

8. EH 4: Existential types

v2 = v1
(a, b) = v1
(c, d) = v1

in v2

The opening is delayed until the binding of v1’s components:
v1 :: (∃ a.a,∃ b.b)
v2 :: (∃ a.a,∃ b.b)
a :: C 1 2 0
b :: C 1 3 0
c :: C 1 4 0
d :: C 1 5 0

These types are pessimistic. We know (for example) that a and c refer to the same value.
EH is also pessimistic when an value with an existential type is passed through a function.
For example, the following extends our simplistic abstract data type with an additional
observer function:

let chr :: Int → Char
f :: (∃ a.(a, a→ Int))→ ∃ a.(a, a→ Int, a→ Char)
f = λ(v, i)→ (v, i, λx→ chr (i x))
x = (3, λx→ x)
y = f x

in y

We do not preserve type equality through f ; additional information about f ’s implementa-
tion would be required to say something about this.

8.2 Design overview

Relative to the type language for the previous EH version, the type language has to be
extended with existential quantification, which is similar to universal quantification, and
type constants c:
σF Int | Char | c
| (σ, ..., σ) | σ→ σ
| v | f
| Q v.σ,Q ∈ {∀,∃}

Universal and existential types are each at their end of an extreme: A ∀a.a can be instanti-
ated to any desired type, whereas a ∃a.a can be obtained from any type by forgetting (its
type). In terms of the type lattice (Fig. 7.1, page 105) induced by 6, ∀a.a represents the
bottom ⊥, and ∃a.a represents the top >.

126

8.3. Type matching

o `� σl � σr : σ{ C

σi ≡ Cασ1, Cα ≡ α 7→ c, c fresh
o `6 σi 6 σ2 : σ{ C

o `6 ∃α.σ1 6 σ2 : σ{ C
..I1

σi ≡ Cασ2, Cα ≡ α 7→ v, v fresh
o `6 σ1 6 σi : σ{ Cf

C ≡ Cf \
dom
v

o `6 σ1 6 ∃α.σ2 : C (∃α.σ2){ C
..I1

Figure 8.1.: Type matching (related to ∃) (I1)

8.3 Type matching

Universal and existential types are dual when used in type matching. For
∀a.a 6 σ
σ 6 ∃a.a

we can freely choose a, whereas for
σ 6 ∀a.a
∃a.a 6 σ

we can not: in case of universal type, a is chosen by the context, whereas a is chosen by the
creator of the existential type. a is chosen by the context of the expected universal type. In
both case we emulate this “choice from outside” by instantiating a to a fixed type variable
during type matching (Fig. 6.2, page 93).
The type matching rules (Fig. 8.1) for existential types therefore resemble the rules for
universal types; they differ in the instantiation with (fixed) type variables.
Type matching required for quantifier propagation requires additional rules for the meet
and join of two types. The forgetting, respectively propagation, of found constraints is
swapped (Section 8.2); this is a consequence of the dualistic relationship between universal
and existential types (and meet and join).
The effect of this duality can be seen in the example type lattice (Fig. 7.1, page 105), and
in the following example:

let g1 :: (∃ a.(a, a→ Int))→ Int
g2 :: (Int, Int → Int)→ Int
f = λh→ let x1 = g1 h

127

8. EH 4: Existential types

o `� σl � σr : σ{ C

vP
Pelim
` σm : σ{ ;Ce

σi ≡ Cασ1, Cα ≡ α 7→ (vPP�), vP fresh
o `M σi M σ2 : σm { Cm

o `M ∃α.σ1 M σ2 : ∃vP.Ceσ{ CeCm
..2I2

vP
Pelim
` σm : σ{ ;Ce

σi ≡ Cασ1, Cα ≡ α 7→ (vPP�), vP fresh
o `O σi O σ2 : σm { Cm

o `O ∃α.σ1 O σ2 : ∃vP.σ{ CeCm
..3I2

Figure 8.2.: Type meet/join (∃ specific) (I2)

x2 = g2 h
in 3

in 3

h is expected to be used as “∃a.(a, a → Int)” and as “(Int, Int → Int)”. The most general
of these two is “(Int, Int → Int)”, reflected by the following signature for f :

f :: (Int, Int → Int)→ Int

During quantifier propagation we find for h the following type alternatives:
h :: v 13 0
v 13 0 7→ v 13 0 [∃ a.(a, a→ Int) :: Hs / Nr, (Int, Int → Int) :: Hs / Nr]

From this, we compute “v 13 0 7→ (Int, Int → Int)”.
Again, a contravariant position requires us to compute the least general type (instead of the
most general):

let g1 :: ((∃ a.(a, a→ Int))→ Int)→ Int
g2 :: ((Int, Int → Int)→ Int)→ Int
id :: a→ a
ci :: Char → Int
f = λh→ let x1 = g1 h

x2 = g2 h
h1 = (3, id)
h2 = (’x’, ci)
y1 = h h1

128

8.4. Impredicativity inference and type inference

o;Γk;Ck;σk `p p : σ;Γ{ C;σpf

σv ≡ σ
k, σv . �

σp ≡ Ciσ
′, ∃v.σ′ ≡ σv, Ci ≡ [v 7→ fi], fi fresh

Γi ≡ [i 7→ σp]
o;Γ;Ck;σk `p i : σp;Γi,Γ{ C

k;�
.I1

σv ≡ σ
k, σv . �

σp ≡ Ciσ
′, ∃v.σ′ ≡ σv, Ci ≡ [v 7→ fi], fi fresh

Γi ≡ [i 7→ σp]
o;Γ;Ck;σp `

p p : ;Γp { Cp;
o;Γ;Ck;σk `p i @p : Cpσp;Γi,Γp { Cp;�

.I1

Figure 8.3.: Pattern expression type rules (I1)

y2 = h h2
in 3

in 3

Functions g1 and g2 provide the context in which h will be used, that is, g1 only knows
h’s argument will be an existential, g2 knows h’s argument is “(Int, Int → Int)”. h can
only make the least of the assumptions both g1 and g2 offer, so the following signature is
inferred for f :

f :: ((∃a.(a, a→ Int))→ Int)→ Int

8.4 Impredicativity inference and type inference

Type matching takes care of most of the implementation of existential types. We only need
to ensure the opening of an existential type when bound to an identifier:

• Inside patterns, when an expected type is bound to an identifier (Fig. 8.3).

• In a let expression, for explicitly introduced type signatures, and for inferred type
signatures (Fig. 7.16, page 119).

129

8. EH 4: Existential types

8.5 Related work, discussion

By opening an existential type when bound to a value, we deviate from most treatments
of existential types [73, 78, 63], which leave existential types closed, to be opened by
special language constructs when the need arises. We can see the following benefits and
drawbacks of both approaches, in which the scope of the identity of the hidden type plays
a crucial role:

• Opening an existential type by need creates a problem with the following example,
using some fantasy syntax for opening:

let v :: ∃a.(a, a→ Int)
fst :: ∀a.∀b.(a, b)→ a
v1 = open v′ = v in fst v′

v2 = open v′ = v in fst v′

in ...
The field access to v opens v twice. The consequence is that v1 and v2 have different
types, because each opening introduces a new type.
A solution to this problem is to treat field access (usually denoted by a dot notation)
in a special way by using the same type for the opening of the same value. Laufer
(et.al.) [63] observe that existential types, in practical settings, have to be opened for
a large scope, losing some of the benefits of abstraction.
By opening an existential type once when bound to a value identifier, we partially
solve this problem. We achieve encapsulation, avoid the clutter of opening, but
only do so for toplevel existential quantification. Existentials which are nested in
a composite type only will be opened when bound to an identifier, so in order to
preserve type identity across multiple nested selections, we would have to open all
fields of a composite value in this way.

• In our solution we open a type by creating fresh type constants for the existentially
quantified type variables. We allow these constants to escape to a larger scope. This
is not a problem because only functions accepting such a constant can do something
with it that is particular to the type constant. However, as freshness of a type constant
is guaranteed by means of uniqueness, we must also ensure uniqueness in the context
of separatedly compiled modules; as we do not discuss modules in this thesis we
merely point this out.

• If the need arises to (again) forget a type constant, this can be done by an explicit
type annotation.

Existential types are a necessary ingredient for abstract data types [78]. However, using
existential types to construct a module mechanism requires additional mechanisms for
preserving the type identity of modules [66, 67, 70], easily leading to forms of dependent
typing [73].

130

9 M   

Note to the reader: this chapter is a slightly adapted version of a paper. It can
be read independently of previous chapters, but also is not yet updated to use
Ruler. The original version did include partial type signatures; this has been
moved to Chapter 10.

In almost all languages all arguments to functions have to be given explicitly. The Haskell
class system however is an exception: functions can have class predicates as part of their
type signature, and dictionaries are implicitly constructed and implicitly passed for such
predicates, thus relieving the programmer from a lot of clerical work and removing clutter
from the program text. Unfortunately Haskell maintains a very strict boundary between
the implicit and the explicit world; if the implicit mechanisms fail to construct the hidden
dictionaries there is no way the programmer can provide help, nor is it possible to override
the choices made by the implicit mechanisms. In this paper we describe, in the context of
Haskell, a mechanism that allows a programmer to explicitly construct implicit arguments.
This extension blends well with existing resolution mechanisms, since it only overrides
the default behavior. Finally we show how the system can easily be extended to deal with
higher-order predicates, thus enabling the elegant formulation of some forms of generic
programming.

9.1 Introduction

The Haskell class system, originally introduced by both Wadler and Blott [114] and Kaes
[50], offers a powerful abstraction mechanism for dealing with overloading (ad-hoc poly-
morphism). The basic idea is to restrict the polymorphism of a parameter by specifying
that some predicates have to be satisfied when the function is called:

f :: Eq a⇒ a→ a→ Int
f = λ x y→ if x == y then 3 else 4

131

9. Making implicit parameters explicit

In this example the type signature for f specifies that values of any type a can be passed
as arguments, as long as the predicate Eq a is satisfied. Such predicates are introduced by
class declarations, as in the following version of Haskell’s Eq class declaration:

class Eq a where
(==) :: a→ a→ Bool

The presence of such a class predicate in a type requires the availability of a collection
of functions and values which can only be used on a type a for which the class predi-
cate holds. For brevity, the given definition for class Eq omits the declaration for /=. A
class declaration alone is not sufficient: instance declarations specify for which types the
predicate actually can be satisfied, simultaneously providing an implementation for the
functions and values as a witness for this:

instance Eq Int where
x == y = primEqInt x y

instance Eq Char where
x == y = primEqChar x y

Here the equality functions for Int and Char are implemented by the primitives primEqInt
and primEqChar. The compiler turns such instance declarations into records (dictionaries)
containing the functions as fields, and thus an explicit version of this internal machinery
reads:

data EqD a = EqD {eqEqD :: a→ a→ Bool} -- class Eq
eqDInt = EqD primEqInt -- Eq Int
eqDChar = EqD primEqChar -- Eq Char

Inside a function the elements of the predicate’s dictionaries are available, as if they were
defined as top-level variables. This is accomplished by implicitly passing a dictionary for
each predicate occurring in the type of the function. So the actual implementation of f
(apart from all kind of optimisations) is:

f :: EqD a→ a→ a→ Int
f = λ dEq x y→ if (eqEqD dEq) x y then 3 else 4

At the call site of the function f the dictionary that corresponds to the actual type of the
polymorphic argument must be passed. Thus the expression f 3 4 can be seen as an
abbreviation for the semantically more complete f eqDInt 3 4.

Motivating examples The translation from f 3 4 to f eqDInt 3 4 is done implicitly; a
programmer has little or no control over the passing of dictionaries. This becomes prob-
lematic as soon as a programmer desires to express something which the language defini-
tion cannot infer automatically. For example, we may we want to call f with an alternate
instance for Eq Int, which implements a different equality on integers:

instance Eq Int where
x == y = primEqInt (x ‘mod‘ 2) (y ‘mod‘ 2)

132

9.1. Introduction

Unfortunately this extra instance declaration would introduce an ambiguity, and is thus
forbidden by the language definition; the instances are said to overlap. However, a pro-
grammer could resolve the issue if he was only able to explicitly specify which of these
two possible instances should be passed to f .
As a second example we briefly discuss the use Kiselyov and Chan [57] make of the type
class system to configure programs. In their modular arithmetic example integer arithmetic
is configured by a modulus: all integer arithmetic is done modulo this modulus. The
modulus is implemented by a class function modulus:

class Modular s a | s→ a where modulus :: s→ a
newtype M s a = M a
normalize :: (Modular s a, Integral a)⇒ a→ M s a
normalize a :: M s a = M (mod a (modulus (⊥ :: s)))
instance (Modular s a, Integral a)⇒ Num (M s a) where

M a +M b = normalize (a + b)
... -- remaining definitions omitted

The problem now is to create for a value m of type a an instance of Modular s a for which
modulus returns this m. Some ingenious type hackery is involved where phantom type s
(evidenced by ⊥’s) uniquely represents the value m, and as such is used as an index into
the available instances for Modular s a. This is packaged in the following function which
constructs both the type s and the corresponding dictionary (for which modulus returns m)
for use by k:

withModulus :: a→ (∀s.Modular s a⇒ s→ w)→ w
withModulus m k = ...

They point out that this could have been done more directly if local type class instances
would have been available:

data Label
withModulus :: a→ (∀s.Modular s a⇒ s→ w)→ w
withModulus m k
= let instance Modular Label a where modulus = m

in k (⊥ :: Label)

The use of explicit parameter passing for an implicit argument proposed by us in this
chapter would have even further simplified the example, as we can avoid the phantom type
Label and related type hackery altogether and instead create and pass the instance directly.
As we may infer from the above the Haskell class system, which was originally only intro-
duced to describe simple overloading, has become almost a programming language of its
own, used (and abused as some may claim) for unforeseen purposes.

Haskell’s point of view Haskell’s class system has turned out to be theoretically sound
and complete [44], although some language constructs prevent Haskell from having prin-

133

9. Making implicit parameters explicit

cipal types [27]. The class system is flexible enough to incorporate many useful extensions
[43, 47]. Its role in Haskell has been described in terms of an implementation [46] as well
as its semantics [33, 26]. Many language constructs do their work automatically and im-
plicitly, to the point of excluding the programmer from exercising influence. Here we feel
there is room for improvement, in particular in dealing with implicit parameters.
The compiler is fully in control of which dictionary to pass for a predicate, determined as
part of the resolution of overloading. This behavior is the result of the combination of the
following list of design choices:

• A class definition introduces a record type (for the dictionary) associated with a
predicate over type variables.

• Instance definitions describe how to construct a value for the record type for the
class predicate specialized for a specific type (or combination of types in the case of
multiparameter type classes).

• The type of a function specifies the predicates for which dictionaries have to be
passed at the call site of the function.

• Which dictionary is to be passed at the call site of a function is determined by:

– required dictionaries at the call site of a function; this is determined by the
predicates in the instantiated type of the called function.

– the available dictionaries introduced by instance definitions.

Internally the compiler uses a predicate proving machinery and heuristics [48, 85,
26] to compute the proper dictionaries.

• Which dictionaries are to be passed is fully fixed by the language definition.

• The language definition uses a statically determined set of dictionaries introduced
by instance definitions and a fixed algorithm for determining which dictionaries are
to be passed.

The result of this is both a blessing and a curse. A blessing because it silently solves a
problem (i.e. overloading), a curse because as a programmer we cannot easily override
the choices made in the design of the language (i.e. via Haskell’s default mechanism),
and worse, we can in no way assist the compiler if no unique solution according to the
language semantics exists. For example, overlapping instances occur when more than one
choice for a dictionary can be made. Smarter, more elaborate versions of the decision
making algorithms can and do help [36], but in the end it is only the programmer who can
fully express his intentions. The system at best can only make a guess.
The issue central to this paper is that Haskell demands from a program that all choices
about which dictionaries to pass can be made automatically and uniquely, whereas we
also want to be able to specify this ourselves explicitly. If the choice made (by Haskell)
does not correspond to the intention of the programmer, the only solution is to convert

134

9.1. Introduction

all involved implicit arguments into explicit ones, thus necessitating changes all over the
program. Especially for (shared) libraries this may not always be feasible.

Our contribution Our approach takes explicitness as a design starting point, as opposed
to the described implicitness featured by the Haskell language definition. To make the
distinction between our and Haskell’s approach clear in the remainder of this chapter, we
call our explicit language and its implementation Explicit Haskell (EH) whereas we refer
to Haskell language and its implementations by just Haskell.

• In principle, all aspects of an EH program can be explicitly specified, in particular
the types of functions, types of other values, and the manipulation of dictionaries,
without making use of or referring to the class system.

• The programmer is allowed to omit explicit specification of some program aspects;
EH then does its best to infer the missing information.

Our approach allows the programmer and the EH system to jointly construct the completely
explicit version of a program, whereas an implicit approach inhibits all explicit programs
which the type inferencer cannot infer but would otherwise be valid. If the type inferencer
cannot infer what a programmer expects it to infer, then the programmer can provide the
required information. In this sense we get the best of two worlds: the simplicity of systems
like system F [30, 96] and Haskell’s ease of programming.
In this chapter explicitness takes the following form:

• Dictionaries introduced by instance definitions can be named; the dictionary can be
accessed by name as a record value.

• The set of class instances and associated dictionaries to be used by the proof ma-
chinery can be used as normal values, and normal (record) values can be used as
dictionaries for predicates as well.

• The automatic choice for a dictionary at the call site of a function can be overruled.

• Types can be composed of the usual base types, predicates and quantifiers (both
universal and existential) in arbitrary combinations.

We will focus on all but the last items of the above list: the explicit passing of values
for implicit parameters. Although explicit typing forms the foundation on which we build
[22], we discuss it only as much as is required.
Related to programming languages in general, our contribution, though inspired by and
executed in the context of Haskell, offers language designers a mechanism for more so-
phisticated control over parameter passing, by allowing a mixture of explicit and implicit
parameter passing.

135

9. Making implicit parameters explicit

Outline of this chapter In this chapter we focus on the exploration of explicitly speci-
fied implicit parameters, to be presented in the context of EH, a Haskell variant [19, 21, 22]
in which all features described in this chapter have been implemented. In Section 9.2 we
start with preliminaries required for understanding the remainder of this chapter. In Sec-
tion 9.3 we present examples of what we can express in EH. The use of partial type signa-
tures and their interaction with predicates is demonstrated in Chapter 10. In Section 9.4 we
give some insight in our implementation, highlighting the distinguishing aspects as com-
pared to traditional implementations. In Section 9.5 we discuss some remaining design
issues and related work. We conclude in Section 9.6.

Limitations of this chapter Our work is made possible by using some of the features
already available in EH, for example higher ranked types and the combination of type
checking and inferencing. We feel that our realistic setting contributes to a discussion sur-
rounding the issues of combining explicitly specified and inferred program aspects [110]
as it offers a starting point for practical experience. For reasons of space we have made the
following choices:

• We present examples and part of our implementation, so the reader gets an impres-
sion of what can be done and how it ties in with other parts of the implementation
[19].

• We do not present all the context required to make our examples work. This context
can be found elsewhere [22, 21].

• We focus on prototypical implementation before considering formally proving prop-
erties of EH.

• We do not prove properties like soundness, completeness and principality. In Sec-
tion 9.5 we will address the reasons why we have chosen not to deal with those
issues here.

• Our type rules therefore describe an algorithm which has been implemented using an
attribute grammer system [41, 9]. An attribute grammar provides better separation
of implementation aspects whereas type rules are more concise in their presentation;
we therefore have chosen to incorporate typing rules in this chapter. We describe the
similarities between typing rules and their attribute grammar counterpart in Chap-
ter 11.

9.2 Preliminaries

Intended as a platform for both education and research, EH offers advanced features like
higher ranked types, existential types, partial type signatures and records. Syntactic sugar
has been kept to a minimum in order to ease experimentation with and understanding of

136

9.2. Preliminaries

Values (expressions, terms):
eF int | char literals
| i program variable
| e e application
| let d in e local definitions
| λi→ e abstraction
| (l = e, ...) record
| (e | l B e, ...) record update
| e.l record selection
| e (!ef π!) explicit implicit application
| λ(!if π!)→ e explicit implicit abstraction

Declarations of bindings:
dF i :: σ value type signature
| i = e value binding
| data σ = I σ data type
| class π⇒ π where d class
| instance π⇒ π where d introduced instance
| instance if π⇒ π where d named introduced instance
| instance i :: π⇒ π where d named instance
| instance ef π value introduced instance

Identifiers:
ιF i lowercase: (type) variables
| I uppercase: (type) constructors
| l field labels

Figure 9.1.: EH terms (emphasized ones explained throughout the text)

the implementation; other mechanisms like syntax macro’s [10] provide the means for
including additional syntax into the language without having to change the compiler.
Fig. 9.1 and Fig. 9.2 show the terms and types featured in EH. Throughout this chapter all
language constructs will be gradually introduced and explained. In general, we designed
EH to be as upwards compatible as possible with Haskell. We point out some aspects
required for understanding the discussion in the next section:

• An EH program is single stand alone term. All types required in subsequent ex-
amples are either silently assumed to be similar to Haskell or will be introduced
explicitly.

137

9. Making implicit parameters explicit

Types:
σF Int | Char literals
| v variable
| σ→ σ abstraction
| σ σ type application
| ∀v.σ universally quantified type
| π⇒ σ implicit abstraction
| (l :: σ, ...) record

Types for quantifier propagation:
σF ...
| � type alternatives

�F v [ϕ] type alternatives

Figure 9.2.: EH types

• All bindings in a let expression are analysed together; in Haskell this constitutes a
binding group.

• We represent dictionaries by records. Records are denoted as parenthesized comma
separated sequences of field definitions. Extensions and updates to a record e are
denoted as (e | ...), with e in front of the vertical bar ‘|’. The notation and semantics
is based on existing work on extensible records [29, 49]. Record extension and
updates are useful for re-using values from a record.

The language of types as used in this chapter is shown in Fig. 9.2. A programmer can
specify types using the same syntax. We mention this because often types are categorized
based on the presence of (universal) quantifiers and predicates [38, 87]. We however allow
quantifiers at higher ranked positions in our types and predicates as well. For example, the
following is a valid type expression in EH:

(∀a.a→ a)→ (∀b.b→ b)

Existential types are part of EH, but are omitted here because we will not use them in
this chapter. Quantification has lower priority than the other composite types, so in a type
expression without parentheses the scope of the quantifier extends to the far right of the
type expression.
We make no attempt to infer higher ranked types [53, 54, 40]; instead we propagate ex-
plicitly specified types as good as possible to wherever this information is needed. Our
strategies here are elaborated in earlier chapters of this thesis.

138

9.3. Implicit parameters

9.3 Implicit parameters

In this section we give EH example programs, demonstrating most of the features related
to implicit parameters. After pointing out these features we continue with exploring the
finer details.

Basic explicit implicit parameters Our first demonstration EH program contains the
definition of the standard Haskell function nub which removes duplicate elements from a
list. A definition for List has been included; definitions for Bool, filter and not are omitted.
In this example the class Eq also contains ne which we will omit in later examples. Notice
that a separate nubBy, which is in the Haskell libraries enabling the parameterisation of
nub with an equality test, is no longer needed:

let data List a = Nil | Cons a (List a)
class Eq a where

eq :: a→ a→ Bool
ne :: a→ a→ Bool

instance dEqIntf Eq Int where -- (1)
eq = primEqInt
ne = λx y→ not (eq x y)

nub :: ∀ a.Eq a⇒ List a→ List a
nub = λxx→ case xx of

Nil → Nil
Cons x xs→ Cons x (nub (filter (ne x) xs))

eqMod2 :: Int → Int → Bool
eqMod2 = λx y→ eq (mod x 2) (mod y 2)
n1 = nub (!dEqIntf Eq Int!) -- (2)

(Cons 3 (Cons 3 (Cons 4 Nil)))
n2 = nub (!(eq = eqMod2 -- (2)

, ne = λx y→ not (eqMod2 x y)
)f Eq Int

!)
(Cons 3 (Cons 3 (Cons 4 Nil)))

in ...

This example demonstrates the use of the two basic ingredients required for being explicit
in the use of implicit parameters (the list items correspond to the commented number in
the example):

1. The notationf binds an identifier, here dEqInt, to the dictionary representing the
instance. The record dEqInt from now on is available as a normal value.

2. Explicitly passing a parameter is syntactically denoted by an expression between (!
and !). The predicate after the f explicitly states the predicate for which the ex-

139

9. Making implicit parameters explicit

pression is an instance dictionary (or evidence). The dictionary expression for n1 is
formed by using dEqInt, for n2 a new record is created: a dictionary can also be cre-
ated by updating an already existing one like dEqInt; in our discussion (Section 9.5)
we will come back to this.

This example demonstrates our view on implicit parameters:

• Program values live in two, possibly overlapping, worlds, explicit and implicit.

• Parameters are either passed explicitly, by the juxtapositioning of explicit function
and argument expressions, or passed implicitly (invisible in the program text) to an
explicit function value. In the implicit case the language definition determines which
value to take from the implicit world.

• Switching between the explicit and implicit world is accomplished by means of ad-
ditional notation. We go from implicit to explicit by instance definitions with the
naming extension, and in the reverse direction by means of the (! !) construct.

The Modular motivating example now can be simplified to (merging our notation into
Haskell):

class Modular a where modulus :: a
newtype M a = M a
normalize :: (Modular a, Integral a)⇒ a→ M a
normalize a = M (mod a modulus)
instance (Modular a, Integral a)⇒ Num (M a) where

M a +M b = normalize (a + b)
... -- remaining definitions omitted

withModulus :: a→ (Modular a⇒ w)→ w
withModulus (m :: a) k
= k (!(modulus = m)f Modular a!)

Higher order predicates We also allow the use of higher order predicates. Higher
order predicates are already available in the form of instance declarations. For example,
the following program fragment defines the instance for Eq (List a) (the code for the body
of eq has been omitted):

instance dEqListf Eq a⇒ Eq (List a) where
eq = λx y→ ...

The important observation is that in order to be able to construct the dictionary for
Eq (List a) we need a dictionary for Eq a. This corresponds to interpreting Eq a ⇒
Eq (List a) as stating that Eq (List a) can be proven from Eq a. The implementation for
this instance is a function taking the dictionary for Eq a and constructing the dictionary for
Eq (List a). Such a function is called a dictionary transformer.

140

9.3. Implicit parameters

We allow higher order predicates to be passed as implicit arguments, provided the need
for this is specified explicitly. For example, in f we can abstract from the dictionary trans-
former for Eq (List a), which can then be passed either implicitly or explicitly:

f :: (∀ a.Eq a⇒ Eq (List a))⇒ Int → List Int → Bool
f = λp q→ eq (Cons p Nil) q

The effect is that the dictionary for Eq (List Int) will be computed inside f as part of its
body, using the passed dictionary transformer and a more globally available dictionary for
Eq Int. Without the use of this construct the dictionary would be computed only once
globally by:

let dEqListInt = dEqList dEqInt

The need for higher order predicates really becomes apparent when genericity is imple-
mented using the class system. The following example is taken from Hinze [39]:

let data Bit = Zero | One
data GRose f a = GBranch a (f (GRose f a))

in let class Binary a where
showBin :: a→ List Bit

instance dBI f Binary Int where
showBin = ...

instance dBLf Binary a⇒ Binary (List a) where
showBin = ...

instance dBGf (Binary a, (∀ b.Binary b⇒ Binary (f b)))
⇒ Binary (GRose f a) where

showBin = λ(GBranch x ts)
→ showBin x ++ showBin ts

in let v1 = showBin (GBranch 3 Nil)
in v1

The explicit variant of the computation for v1 using the explicit parameter passing mecha-
nism reads:

v1 = showBin (!dBG dBI dBLf Binary (GRose List Int)!)
(GBranch 3 Nil)

The value for dBG is defined by the following translation to an explicit variant using
records; the identifier showBin has been replaced by sb, List by L and Bit by B in order to
keep the programfragment compact:

sb = λd → d.sb
dBG :: (sb :: a→ L B)

→ (∀ b.(sb :: b→ L B)→ (sb :: f b→ L B))
→ (sb :: GRose f a→ L B)

dBG = λdBa dBf → d
where d = (sb = λ(GBranch x ts)

141

9. Making implicit parameters explicit

→ sb dBa x ++ sb (dBf d) ts
)

Hinze’s solution essentially relies on the use of the higher order predicate Binary b ⇒
Binary (f b) in the context of Binary (GRose f a). The rationale for this particular code
fragment falls outside the scope of this chapter, but the essence of its necessity lies in the
definition of the GRose data type which uses a type constructor f to construct the type
(f (GRose f a)) of the second member of GBranch. When constructing an instance for
Binary (GRose f a) an instance for this type is required. Type (variable) f is not fixed, so
we cannot provide an instance for Binary (f (GRose f a)) in the context of the instance.
However, given dictionary transformer dBf f Binary b ⇒ Binary (f b) and the instance
d f Binary (GRose f a) under construction, we can construct the required instance:
dBf d. The type of v1 in the example instantiates to GRose List Int; the required dictionary
for the instance Binary (GRose List Int) can be computed from dBI and dBL.

The finer details For our discussion we take the following fragment as our starting
point:

let f = λp q r s→ (eq p q, eq r s)
in f 3 4 5 6

Haskell infers the following type for f :
f :: ∀ a b.(Eq b,Eq a)⇒ a→ a→ b→ b→ (Bool,Bool)

On the other hand, EH infers:
f :: ∀ a.Eq a⇒ a→ a→ ∀ b.Eq b⇒ b→ b→ (Bool,Bool)

EH not only inserts quantifiers as close as possible to the place where the quantified type
variables occur, but does this for the placement of predicates in a type as well. The idea
is to instantiate a quantified type variable or pass an implicit parameter corresponding to
a predicate as late as possible, where later is defined as the order in which arguments are
passed.
The position of a predicate in a type determines the position in a function application (of
a function with that type) where a value for the corresponding implicit parameter may be
passed explicitly. For example, for f in the following fragment first we may pass a dictio-
nary for Eq a, then we must pass two normal arguments, then we may pass a dictionary,
and finally we must pass two normal arguments:

let f :: ∀a.Eq a⇒ a→ a→ ∀b.Eq b⇒ b→ b→ (Bool,Bool)
f = λp q r s→ (eq p q, eq r s)

in f 3 4
(!(eq = eqMod2)f Eq Int!) 5 6

The value for the first implicit parameter (Eq a) is computed automatically, the value
(an explicitly constructed dictionary record) for the second (Eq b) is explicitly passed by

142

9.3. Implicit parameters

means of (! !). Inside these delimiters we specify both value and the predicate for which
it is a witness. The notation (!e f p!) suggests a combination of “is of type” and “is
evidence for”. Here “is of type” means that the dictionary e must be of the record type
introduced by the class declaration for the predicate p. The phrase “is evidence for” means
that the dictionary e is used as the proof of the existence of the implicit argument to the
function f .
Explicitly passing a value for an implicit parameter is optional. However, if we explicitly
pass a value, all preceding implicit parameters in a consecutive sequence of implicit pa-
rameters must be passed as well. In a type expression, a consecutive sequence of implicit
parameters corresponds to sequence of predicate arguments delimited by other arguments.
For example, if we were to pass a value to f for Eq b with the following type, we need to
pass a value for Eq a as well:

f :: ∀ a b.(Eq a,Eq b)⇒ a→ a→ b→ b→ (Bool,Bool)

We can avoid this by swapping the predicates, as in:
f :: ∀ a b.(Eq b,Eq a)⇒ a→ a→ b→ b→ (Bool,Bool)

For this type we can pass a value explicitly for Eq b. We may omit a parameter for Eq a
because dictionaries for the remaining predicates (if any) are automatically passed, just
like Haskell.
The above types for f have to be specified explicitly. All types signatures for f are isomor-
phic, so we always can write wrapper functions for the different varieties.

Overlapping instances By explicitly providing a dictionary the default decision mak-
ing by EH is overruled. This is useful in situations where no unique choice is possible, for
example in the presence of overlapping instances:

let instance dEqInt1f Eq Int where
eq = primEqInt

instance dEqInt2f Eq Int where
eq = eqMod2

f = ...
in f (!dEqInt1f Eq Int!) 3 4

(!dEqInt2f Eq Int!) 5 6

The two instances for Eq Int overlap, but we still can refer to each associated dictionary
individually, because of the names dEqInt1 and dEqInt2 that were given to the dictionar-
ies. Thus overlapping instances can be avoided by letting the programmer decide which
dictionaries to pass to the call f 3 4 5 6.
Overlapping instances can also be avoided by not introducing them in the first place. How-
ever, this conflicts with our goal of allowing the programmer to use different instances
at different places in a program. This problem can be overcome by excluding instances
participating in the predicate proving machinery by:

143

9. Making implicit parameters explicit

instance dEqInt2 :: Eq Int where
eq = λ → False

The naming of a dictionary by means off actually does two things. It binds the name to
the dictionary and it specifies to use this dictionary as the default instance for Eq Int for
use in its proof process. The notation :: only binds the name but does not introduce it into
proving predicates. If one at a later point wants to introduce the dictionary nevertheless,
possibly overriding an earlier choice, this may done by specifying:

instance dEqInt2f Eq Int

Local instances We allow instances to be declared locally, within the scope of other
program variables. A local instance declaration shadows an instance declaration intro-
duced at an outer level:

• If their names are equal, the innermost shadows the outermost.

• In case of having overlapping instances available during the proof of predicates aris-
ing inside the let expression, the innermost instance takes precedence over the out-
ermost.

This mechanism allows the programmer to fully specify which instances are active at any
point in the program text:

let instance dEqInt1f Eq Int where ...
instance dEqInt2 :: Eq Int where ...
g = λx y→ eq x y

in let v1 = g 3 4
v2 = let instance dEqInt2f Eq Int

in g 3 4
in ...

The value for v1 is computed with dEqInt1 as evidence for Eq Int, whereas v2 is computed
with dEqInt2 as evidence.
In our discussion we will come back to local instances.

Higher order predicates revisited As we mentioned earlier, the declaration of an in-
stance with a context actually introduces a function taking dictionaries as arguments:

let instance dEqIntf Eq Int where
eq = primEqInt

instance dEqListf Eq a⇒ Eq (List a) where
eq = ...

f :: ∀ a.Eq a⇒ a→ List a→ Bool
f = λp q→ eq (Cons p Nil) q

in f 3 (Cons 4 Nil)

144

9.4. Implementation

In terms of predicates the instance declaration states that given a proof for the context Eq a,
the predicate Eq (List a) can be proven. In terms of values this translates to a function
which takes the evidence of the proof of Eq a, a dictionary record (eq :: a → a → Bool),
to evidence for the proof of Eq (List a) [44]:

dEqInt :: (eq :: Int → Int → Bool)
dEqList :: ∀ a.(eq :: a→ a→ Bool)

→ (eq :: List a→ List a→ Bool)
eq = λdEq x y→ dEq.eq x y

With these values, the body of f is mapped to:
f = λdEq a p q→ eq (dEqList dEq a) (Cons p Nil) q

This translation can now be expressed explicitly as well; a dictionary for Eq (List a) is
explicitly constructed and passed to eq:

f :: ∀ a.Eq a⇒ a→ List a→ Bool
f = λ(!dEq af Eq a!)

→ λp q→ eq (!dEqList dEq af Eq (List a)!)
(Cons p Nil) q

The type variable a is introduced as a lexically scoped type variable [86], available for
further use in the body of f .
The notation Eq a⇒ Eq (List a) in the instance declaration for Eq (List a) introduces both
a predicate transformation for a predicate (from Eq a to Eq (List a)), to be used for proving
predicates, as well as a corresponding dictionary transformer function. Such transformers
can also be made explicit in the following variant:

f :: (∀a.Eq a⇒ Eq (List a))⇒ Int → List Int → Bool
f = λ(!dEq Laf ∀a.Eq a⇒ Eq (List a)!)

→ λp q→ eq (!dEq La dEqIntf Eq (List Int)!)
(Cons p Nil) q

Instead of using dEqList by default, an explicitly specified implicit predicate transformer,
bound to dEq La is used in the body of f to supply eq with a dictionary for Eq (List Int).
This dictionary is explicitly constructed and passed to eq; both the construction and binding
to dEq La may be omitted. We must either pass a dictionary for Eq a ⇒ Eq (List a) to f
ourselves explicitly or let it happen automatically; here in both cases dEqList is the only
choice possible.

9.4 Implementation

We focus on the distinguishing characteristics of our implementation in the EH compiler
[19, 21, 22].

145

9. Making implicit parameters explicit

The type system is given in Fig. 9.3 which describes the relationship between types in
the type language in Fig. 9.2. Our σ types allow for the specification of the usual base
types (Int,Char) and type variables (v) as well aggregrate types like normal abstraction
(σ → σ), implicit abstraction (π ⇒ σ), (higher ranked) universal quantification (∀α.σ),
predicates (π) and their transformations (π ⇒ π). Translations ϑ represent code resulting
from the transformation from implicit parameter passing to explicit parameter passing. An
environment Γ binds value identifiers to types (ι 7→ σ). Instance declarations result in
bindings of predicates to translations (dictionary evidence) paired with their type (π
ϑ : σ) whereas class declarations bind a predicate to its dictionary type (π σ):

bind = ι 7→ σ | π ϑ : σ | π σ
Γ = bind

We use vector notation for any ordered collection, denoted with a horizontal bar on top.
Concatenation of vectors and pattern matching on a vector is denoted by a comma ’,’.

Basic typing rules Type rules in Fig. 9.3 read like this: given contextual information Γ
it can be proven (`) that term e has (:) type σ and some additional ({) results, which in our
case is the code ϑ in which passing of all parameters has been made explicit. Later type
rules will incorporate more properties; all separated by a semicolon ’;’. If some property
does not matter or is not used, an underscore ’ ’ is used to indicate this. Rules are labeled
with names of the form x − variantversion in which x is a single character indicating the
syntactic element, variant its variant and version a particular version of the type rule which
also corresponds to a compiler version in the implementation. In this chapter only versions
Ev, EvK and I are used, respectively addressing evidence translation, use of expected types
and the handling of implicit parameters. We have only included the most relevant type rules
and have omitted those dealing with the introduction of classes and instances; these are all
standard [26].
The conciseness of the rules suggests that its implementation should not pose much of a
problem, but the opposite is true. Unfortunately, in their current form the rules do not
fully specify how to combine them in order to build a complete proof tree, and hence are
not algorithmic [91]. This is especially true for the last rule -, since its use is not
associated with a syntactic construct of the source language. Algorithmic variants of the
rules have two pleasant properties:

• The syntax tree determines how to combine the rules.

• By distributing data over a larger set of variables a computation order becomes ap-
parent.

The first property is taken care of by the parser, and based on the second property we can
implement rules straightforwardly using an attribute grammar, mapping variables in rules
to attributes. Our situation is complicated due to a combination of several factors:

146

9.4. Implementation

Γ
expr
` e : σ{ ϑ

Γ
expr
` int : Int{ int

-Ev

(ι 7→ σι) ∈ Γ

Γ
expr
` ι:{ ι

-Ev

Γ
expr
` e2 : σa { ϑ2

Γ
expr
` e1 : σa → σ{ ϑ1

Γ
expr
` e1 e2 : σ{ ϑ1 ϑ2

-Ev

i 7→ σi,Γ
expr
` e : σe { ϑe

Γ
expr
` λi→ e : σi → σe { λi→ ϑe

-Ev

i 7→ σi,Γ
expr
` e : σ{ ϑe

i 7→ σi,Γ
expr
` ei : σi { ϑi

Γ
expr
` let i :: σi; i = ei in e : σ{ let i = ϑi in ϑe

--Ev

Γ
pred
` π{ ϑπ : σπ

Γ
expr
` e : π⇒ σ{ ϑe

Γ
expr
` e : σ{ ϑeϑπ

-Ev

Figure 9.3.: Type rules for expressions

• The structure of the source language cannot be used to determine where rule -
should be applied: the term e in the premise and the conclusion are the same. Fur-
thermore, the predicate π is not mentioned in the conclusion so discovering whether
this rule should be applied depends completely on the typing rule. Thus the necessity
to pass an implicit parameter may spontaneously pop up in any expression.

147

9. Making implicit parameters explicit

• In the presence of type inferencing nothing may be known yet about e at all, let
alone which implicit parameters it may take. This information usually only becomes
available after the generalization of the inferred types.

• These problems are usually circumvented by limiting the type language for types
that are used during inferencing to predicate-free types. By effectively stripping a
type from both its predicates and quantifiers standard Hindley-Milner (HM) type
inferencing becomes possible. However, we allow predicated as well as quantified
types to participate in type inferencing. As a consequence, predicates as well as
quantifiers can be present in any type encountered during type inferencing.

Implicitness made explicit So, the bad news is that we do not know where implicit
parameters need to be passed; the good news is that if we represent this lack of knowledge
explicitly we can still figure out if and where implicit parameters need to be passed. This
is not a new idea, because type variables are usually used to refer to a particular type about
which nothing is yet known. The general strategy is to represent an indirection in time by
the introduction of a free variable. In a later stage of a type inferencing algorithm such type
variables are then replaced by more accurate knowledge, if any. Throughout the remainder
of this section we work towards algorithmic versions of the type rules in which the solution
to equations between types are computed by means of

• the use of variables representing unkown information

• the use of constraints on type variables representing found information

In our approach we also employ the notion of variables for sets of predicates, called pred-
icate wildcard variables, representing a yet unknown collection of implicit parameters, or,
more accurately their corresponding predicates. These predicate wildcard variables are
used in a type inferencing/checking algorithm which explicitly deals with expected (or
known) types σk, as well as extra inferred type information.
Fig. 9.5 provides a summary of the judgement forms we use. The presence of properties in
judgements varies with the version of typing rules. Both the most complex and its simpler
versions are included.
These key aspects are expressed in the adapted rule for predicates shown in Fig. 9.6. This
rule makes two things explicit:

• The context provides the expected (or known) type σk of e. Jointly operating, all our
rules maintain the invariant that e will get assigned a type σwhich is a subtype of σk,
denoted by σ 6 σk (σ is said to be subsumed by σk), enforced by a fit judgement
(see Fig. 9.5 for the form of the more complex variant used later in this chapter).
The fit judgement also yields a type σ, the result of the subsumption. This type is
required because the known type σk may only be partially known, and additional
type information is to be found in σ.

148

9.4. Implementation

Notation Meaning
σ type
σk expected/known type
� any type
v type variable
ι identifier
i value identifier
I (type) constructor identifier, type constant
Γ assumptions, environment, context
C constraints, substitution
Ck..l constraint composition of Ck... Cl

6 subsumption, “fits in” relation
ϑ translated code
π predicate
$ predicate wildcard (collection of predicates)

Figure 9.4.: Legenda of type related notation

• An implicit parameter can be passed anywhere; this is made explicit by stating that
the known type of e may start with a sequence of implicit parameters. This is ex-
pressed by letting the expected type in the premise be $ → σk. In this way we
require the type of e to have the form $→ σk and also assign an identifier $ to the
implicit part.

A predicate wildcard variable makes explicit that we can expect a (possibly empty) se-
quence of implicit parameters and at the same time gives an identity to this sequence.
The type language for predicates thus is extended with a predicate wildcard variable $,
corresponding to the dots ‘...’ in the source language for predicates:
πF I σ
| π⇒ π
| $

In algorithmic terms, the expected type σk travels top-to-bottom in the abstract syntax tree
and is used for type checking, whereas σ travels bottom-to-top and holds the inferred type.
If a fully specified expected type σk is passed downwards, σ will turn out to be equal to
this type. If a partially specified type is passed downwards the unspecified parts may be
filled in by the type inferencer.
The adapted typing rule - in Fig. 9.6 still is not of much a help in deciding when it
should be applied. However, as we only have to deal with a limited number of language
constructs, we can use case analysis on the source language constructs. In this chapter
we only deal with function application, for which the relevant rules are shown in their

149

9. Making implicit parameters explicit

Version Judgement Read as

I Γ;σk expr
` e : σ{ C;ϑ With environment Γ, expected type σk,

expression e has type σ and translation ϑ
(with dictionary passing made explicit),
requiring additional constraints C.

EvK Γ;σk expr
` e : σ{ ϑ version for evidence + expected type

only

Ev Γ
expr
` e : σ{ ϑ version for evidence only

I Γ
fit
` σl 6 σr : σ{ C; δ σl is subsumed by σr, requiring addi-

tional constraints C. C is applied to σr

returned as σ. Proving predicates (using
Γ) may be required resulting in coercion
δ.

EvK
fit
` σl 6 σr : σ version for evidence + expected type

only

I Γ
pred
` π{ ϑ : σ Prove π, yielding evidence ϑ and evi-

dence type σ.

I σk pat
` p : σ;Γp { C Pattern has type σ and variable bindings

Γp.

Figure 9.5.: Legenda of judgement forms for each version

full glory in Fig. 9.8 and will be explained soon. The rules in Fig. 9.8 look complex.
The reader should realize that the implementation is described using an attribute grammar
system [21, 9] which allows the independent specification of all aspects which now appear
together in a condensed form in Fig. 9.8. The tradeoff is between compact but complex
type rules and more lengthy but more understandable attribute grammar notation.

Notation The typing rules in Fig. 9.7 and Fig. 9.8 are directed towards an implementa-
tion; additional information flows through the rules to provide extra contextual informa-
tion. Also, the rule is more explicit in its handling of constraints computed by the rule
labeled fit for the subsumption 6; a standard substitution mechanism constraining the dif-
ferent variable variants is used for this purpose:

bindv = v 7→ σ | $ 7→ π,$ | $ 7→ ∅
C = bindv

The mapping from type variables to types v 7→ σ constitutes the usual substitution for

150

9.4. Implementation

Γ;σk expr
` e : σ{ ϑ

fit
` σι 6 σ

k : σ
(ι 7→ σι) ∈ Γ

Γ;σk expr
` ι : σ{ ι

-EvK

Γ
pred
` π{ ϑπ : σπ

Γ;$⇒ σk expr
` e : π⇒ σ{ ϑe

Γ;σk expr
` e : σ{ ϑeϑπ

-EvK

Figure 9.6.: Implicit parameter passing with expected type

type variables. The remaining alternatives map a predicate wildcard variable to a possibly
empty list of predicates.
Not all judgement forms used in Fig. 9.7 and Fig. 9.8 are included in this chapter; in
the introduction we indicated we focus here on that part of the implementation in which
explicit parameter passing makes a difference relative to the standard [26, 91, 44]. Fig. 9.5
provides a summary of the judgement forms we use.
The judgement pred (Fig. 9.5) for proving predicates is standard with respect to context
reduction and the discharge of predicates [26, 44, 48], except for the scoping mechanism
introduced. We only note that the proof machinery must now take the scoped availability
of instances into account and can no longer assume their global existence.

Explicit parameter passing The rules in Fig. 9.7 specify the typing for the explicit
parameter passing where an implicit parameter is expected. The rules are similar to those
for normal parameter passing; the difference lies in the use of the predicate. For example,
when reading through the premises of rule -, the function e1 is typed in a context
where it is expected to have type π2 → σ

k. We then require a class definition for the actual
predicate πa of the function type to exist, which we allow to be instantiated using the fit
judgement which matches the class predicate πd with πa and returns the dictionary type in
σa. This dictionary type σa is the expected type of the argument.
Because we are explicit in the predicate for which we provide a dictionary value, we need
not use any proving machinery. We only need the predicate to be defined so we can use its
corresponding dictionary type for further type checking.

151

9. Making implicit parameters explicit

Γ;σk expr
` e : σ{ C;ϑ

Γ;σa
expr
` e2 : { C2;ϑ2

fit
` πd ⇒ σd 6 πa ⇒ v : ⇒ σa { ;

πd σd ∈ Γ

Γ; π2 ⇒ σ
k expr
` e1 : πa ⇒ σ{ C1;ϑ1

v fresh

Γ;σk expr
` e1 (!e2 f π2!) : C2σ{ C2..1;ϑ1 ϑ2

-I

[πa p : σa],Γp,Γ;σr
expr
` e : σe { C3;ϑe

σa
pat
` p : ;Γp { C2

fit
` πd ⇒ σd 6 πa ⇒ v2 : ⇒ σa { ;

πd σd ∈ Γ

Γ
fit
` π⇒ v1 6 σ

k : πa ⇒ σr { C1;
v1, v2 fresh

Γ;σk expr
` λ(!pf π!)→ e : C3..2πa ⇒ σe { C3..1; λp→ ϑe

-I

Figure 9.7.: Type rules for explicit implicit parameters

The rule - for λ-abstractions follows a similar strategy. The type of the λ-expression
is required to have the form of a function taking an implicit parameter. This fit judgement
states this, yielding a predicate πa which via the corresponding class definition gives the
dictionary type σa. The pattern is expected to have this type σa. Furthermore, the body e
of the λ-expression may use the dictionary (as an instance) for proving other predicates so
the environment Γ for e is extended with a binding for the predicate and its dictionary p.

Implicit parameter passing: application From bottom to top, rule - in Fig. 9.8
reads as follows (to keep matters simple we do not mention the handling of constraints
C). The result of the application is expected to be of type σk, which in general will have
the structure $k ⇒ vk. This structure is enforced and checked by the subsumption check
described by the rule fit; the rule binds $k and vk to the matching parts of σk similar
to pattern matching. We will not look into the fit rules for 6; for this discussion it is
only relevant to know that if a $ cannot be matched to a predicate it will be constrained
to $ 7→ ∅. In other words, we start with assuming that implicit parameters may occur

152

9.4. Implementation

Γ;σk expr
` e : σ{ C;ϑ

πk
i ϑ

k
i ,Γ

pred
` C3πa { ϑa :

πk
i ϑ

k
i ,Γ;σa

expr
` e2 : { C3;ϑ2

πk
i ϑ

k
i ,Γ;$⇒ v→ σk

r
expr
` e1 : πa ⇒ σa → σ{ C2;ϑ1

πk
i ϑ

k
i ≡ instπ(πk

a)

Γ
fit
` $k ⇒ vk 6 σk : πk

a ⇒ σ
k
r { C1;

$,$k, vk, v fresh

Γ;σk expr
` e1 e2 : C3σ{ C3..1; λϑk

i → ϑ1 ϑa ϑ2

-I

π
p
i ϑ

p
i ,Γp,Γ;σr

expr
` e : σe { C3;ϑe

π
p
i ϑ

p
i ≡ instπ(πa)

σp
pat
` p : ;Γp { C2

Γ
fit
` $⇒ v1 → v2 6 σ

k : πa ⇒ σp → σr { C1;
$, vi fresh

Γ;σk expr
` λp→ e : C3..2πa ⇒ C3σp → σe { C3; λϑp

i → λp→ ϑe

-I

Figure 9.8.: Implicit parameter type rules

everywhere and subsequently we try to prove the contrary. The subsumption check 6 gives
a possible empty sequence of predicates πk

a and the result type σk
r . The result type is used to

construct the expected type$⇒ v→ σk
r for e1. The application e1 e2 is expected to return

a function which can be passed evidence for πk
a. We create fresh identifiers ϑk

i and bind
them to these predicates. Function instπ provides these names bound to the instantiated
variants πk

i of πk
a. The names ϑk

i are used in the translation, which is a lambda expression

accepting πk
a. The binding πk

i ϑ
k
i is used to extend the type checking environment Γ for

e1 and e2 which both are allowed to use these predicates in any predicate proving taking
place in these expressions. The judgement for e1 will give us a type πa ⇒ σa → σ,
of which σa is used as the expected type for e2. The predicates πa need to be proven
and evidence to be computed; the top judgement pred takes care of this. Finally, all the
translations together with the computed evidence forming the actual implicit parameters πa

are used to compute a translation for the application, which accepts the implicit parameters
it is supposed to accept. The body ϑ1ϑaϑ2 of this lambda expression contains the actual

153

9. Making implicit parameters explicit

application itself, with the implicit parameters are passed before the argument.
Even though the rule for implicitly passing an implicit parameter already provides a fair
amount of detail, some issues remain hidden. For example, the typing judgement for e1
gives a set of predicates πa for which the corresponding evidence is passed by implicit
arguments. The rule suggests that this information is readily available in an actual imple-
mentation of the rule. However, assuming e1 is a let bound function for which the type
is currently being inferred, this information will only become available when the bindings
in a let expression are generalized [46], higher in the corresponding abstract syntax tree.
Only then the presence and positioning of predicates in the type of e1 can be determined.
This complicates the implementation because this information has to be redistributed over
the abstract syntax tree.

Implicit parameter passing: λ-abstraction Rule - for lambda expressions from
Fig. 9.8 follows a similar strategy. At the bottom of the list of premises we start with an
expected type σk which by definition has to accept a normal parameter and a sequence of
implicit parameters. This is enforced by the judgement fit which gives us back predicates
πa used in a similar fashion as in rule -.

9.5 Discussion and related work

Soundness, completeness and principal types EH allows type expressions where
quantifiers and predicates may be positioned anywhere in a type, and all terms can be
explicitly typed with a type annotation. Thus we obtain the same expressiveness as System
F (Theorem 6.5, page 92). What remains are the following questions:

• For a completely explicitly typed program, is our algorithm and implementation
sound and complete? Evidence translation replaces predicates by dictionaries, of
which the type is fully known. Thus we are confident that Theorem 6.5 (page 92)
still holds.

• For a partially explicitly typed program, what is the characterisation of the types that
can be inferred for the terms for which no type has been given? If we impose the
additional restriction that predicates are absent from all types, we are confident that
Theorem 6.4 (page 91) holds.

We have not investigated these questions in the sense of proving their truth or falsehood.
However, we repeat our design starting point from Chapter 6:

• Stick to HM type inferencing, except for the following:

• Combine type checking and inferencing. In order to be able to do this, impredicative
types are allowed to participate in HM type inferencing.

154

9.5. Discussion and related work

By design we avoid ‘breaking’ HM type inferencing. However, Faxen [27] demonstrates
the lack of principal types for Haskell due to a combination of language features. EH’s
quantified class constraints solve one of the problems mentioned by Faxen.
Our choice to allow quantifiers and predicates at any position in a type expression provides
the programmer with the means to specify the type signature that is needed, but also breaks
principality because the type inferencer will infer only a specific one (with quantifiers and
predicates as much as possible to the right) of a set of isomorphic types. We have not
investigated this further.
In general it also is an open question what can be said about principal types and other de-
sirable properties when multiple language features are combined into a complete language.
In this light we take a pragmatic approach and design starting point: if the system guesses
wrong, the programmer can repair it by adding extra (type) information.

Local instances Haskell only allows global instances because the presence of local
instances results in the loss of principal types for HM type inference [114]:

let class Eq a where eq :: a→ a→ Bool
instance Eq Int where
instance Eq Char where

in eq

With HM the problem arises because eq is instantiated without being applied to an ar-
gument, hence no choice can be made at which type Eq a (arising from eq) should be
instantiated at. In EH, we circumvent this problem by delaying the instantiation of eq’s
type until it is necessary, for example when the value is used as part of an application to an
argument [22].
Coherence is not a problem either because we do not allow overlapping instances. Al-
though local instances may overlap with global instances, their use in the proving ma-
chinerey is dictated by their nesting structure, which is static: local instances take priority
over global instances.

How much explicitness is needed Being explicit by means of the (! ... !) language
construct very soon becomes cumbersome because our current implementation requires
full specification of all predicates involved inside (! ... !). Can we do with less?

• Rule - from Fig. 9.7 uses the predicate π2 in (!e2 f π2!) directly, that is,
without any predicate proving, to obtain πd and its corresponding dictionary type
σd. Alternatively we could interpret (!e2 f π2!) as an addition of π2 to the set
of predicates used by the predicate proving machinery for finding a predicate whose
dictionary matches the type of e2. However, if insufficient type information is known
about e2 more than one solution may be found. Even if the type of e2 would be fully
known, its type could be coerced in dropping record fields so as to match different
dictionary types.

155

9. Making implicit parameters explicit

• We could drop the requirement to specify a predicate and write just (!e2!) instead
of (!e2 f π2!). In this case we need a mechanism to find a predicate for the type
of the evidence provided by e2. This is most likely to succeed in the case of a class
system as the functions introduced by a class need to have globally unique names.
For other types of predicates like those for dynamically scoped values this is less
clear. By dropping the predicate in (!e2!) we also loose our advocated advantage of
explicitness because we can no longer specify type related information.

• The syntax rule - requires a predicate π in its implicit argument (!p f π!). It
is sufficient to either specify a predicate for this form of a lambda expression or to
specify a predicate in a corresponding type annotation.

Whichever of these routes leads to the most useful solution for the programmer, if the need
arises our solution always gives the programmer the full power of being explicit in what is
required.

Binding time of instances One other topic deserves attention, especially since it devi-
ates from the standard semantics of Haskell. We allow the re-use of dictionaries by means
of record extension. Is the other way around allowed as well: can previously defined func-
tions of a dictionary use newly added values? In a variation of the example for nub, the
following invocation of nub is parameterized with an updated record; a new definition for
eq is provided:

nub (!(dEqInt | eq B eqMod2)f Eq Int!)
(Cons 3 (Cons 3 (Cons 4 Nil)))

In our implementation Eq’s function ne invokes eq, the one provided by means of the
explicit parameterization, thus allowing open recursion. This corresponds to a late binding,
much in the style employed by object oriented languages. This is a choice out of (at least)
three equally expressive alternatives:

• Our current solution, late binding as described. The consequence is that all class
functions now take an additional (implicit) parameter, namely the dictionary where
this dictionary function has been retrieved from.

• Haskell’s solution, where we bind all functions at instance creation time. In our nub
example this means that ne still uses dEqInt’s eq instead of the eq provided in the
updated (dEqInt | eq B ...).

• A combination of these solutions, such as using late binding for default definitions,
and Haskell’s binding for instances.

Again, whichever of the solutions is preferred as the default case, especially in the light of
the absence of open recursion in Haskell, we notice that the programmer has all the means
available to express his differing intentions.

156

9.5. Discussion and related work

Dynamically scoped variables GHC [75] enables the passing of plain values as dy-
namically scoped variables (also known as implicit parameters). It is possible to model
this effect [42, 69, 75] with the concepts described thus far. For example, the following
program uses dynamically scoped variable ?x:

let f :: (?x :: Int)⇒ ...
f = λ ...→ ... ? x + 2 ...
? x = 3

in f ...

The signature of f specifies a predicate ?x :: Int, meaning that f can refer to the dynamically
scoped variable x with type Int. Its value is introduced as a binding in a let expression and
is used in the body of f by means of ?x. This can be encoded using the class system:

let class Has x a where
value x :: a

f :: (Has x Int)⇒ ...
f = λ ...→ ...value x + 2 ...
instance Has x Int where

value x = 3
in f ...

We only mention briefly some issues with this approach:

• The type for which an instance without context is defined usually is specified explic-
itly. This is no longer the case for ‘?’ predicates if an explicit type signature for e.g.
let ? x = 3 is omitted.

• GHC [75] forbids dynamically scoped variable predicates in the context of instance
declarations because it is unclear which scoped variable instance is to be taken.
Scoping for instances as available in EHC may well obviate this restriction.

• Use of records for dictionaries can be optimized away because each class contains a
single field only.

Our approach has the additional benefit that we are not obliged to rely on the proving
machinery by providing a dictionary directly:

let class Has x a ...
f :: (Has x Int)⇒ ...
f = λ ...→ ...value x + 2 ...

in f (!(value x = 3)f Has x Int!) ...

Named instances Scheffczyk has explored named instances as well [51, 98]. Our work
differs in several aspects:

• Scheffczyk partitions predicates in a type signature into ordered and unordered ones.
For ordered predicates one needs to pass an explicit dictionary, unordered ones are

157

9. Making implicit parameters explicit

those participating in the normal predicate proving by the system. Instances are split
likewise into named and unnamed instances. Named instances are used for explicit
passing and do not participate in the predicate proving. For unnamed instances this is
the other way around. Our approach allows a programmer to make this partitioning
explicitly, by stating which instances should participate in the proof process. In other
words, the policy of how to use the implicit parameter passing mechanism is made
by the programmer.

• Named instances and modules populate the same name space, separate from the
name space occupied by normal values. This is used to implement functors as avail-
able in ML [66, 67] and as described by Jones [45] for Haskell. Our approach is
solely based on normal values already available.

• Our syntax is less concise than the syntax used by Scheffczyk. This is probably
difficult to repair because of the additional notation required to lift normal values to
the evidence domain.

Implementation The type inferencing/checking algorithm employed in this chapter is
described in greater detail in [21, 22] and its implementation is publicly available [19],
where it is part of a work in progress. Similar strategies for coping with the combination
of inferencing and checking are described by Pierce [92] and Peyton Jones [87].

9.6 Conclusion

Allowing explicit parameterization for implicit parameters gives the programmer an ad-
ditional mechanism for reusing existing functions. It also makes explicit what otherwise
remains hidden inside the bowels of a compiler. We feel that this a ’good thing’: it should
be possible to override automatically made decisions.
We have implemented all features described in this chapter in the context of a compiler for
EH [22, 21]; in this paper we have presented the relevant part concerning explicit implicit
parameters in an as compact form as possible. To our knowledge our implementation is
the first combining language features like higher ranked types, existentials, class system,
explicit implicit parameters and extensible records into one package together with a de-
scription of the implementation.

158

10 P  

Specifying a type signature becomes cumbersome as soon as the specified type becomes
complex. This is a reason why a type inferencer is so useful. However, if a type inferencer
fails to infer the (intended) signature, we have to specify the signature ourselves. Thus far
we have been required to specify the full signature, instead of only that part that cannot be
inferred by the type inferencer.
In this chapter we investigate two techniques for relieving a programmer from the limita-
tions of this “all or nothing” approach. Both techniques support a joint specification of a
type by programmer and system:

• Partial type signatures. Often a complex type has only (relatively) small parts which
are too complex to be inferred. With partial type signatures we allow the specifica-
tion of those parts, leaving the remainder to be inferred by a type inferencer.

• Quantifier location inference. Thus far type variables in a type signature are to be
explicitly quantified. Often ∀ is used for type variables relating function argument
and result, and ∃ is used for type variables of a tuple (or other product) type. For
these kind of uses, we may omit the quantifier, which subsequently is inferred by
quantifier location inference.

We first examine some examples, followed by a discussion of the typing rules affected by
these features. Both features are relatively independent of other language features, which is
the reason why they are discussed separately. Examples are based on the EH4 (Chapter 6)
and EH9 (Chapter 9). We only discuss the type rules within the context of EH4.

Partial type signatures Partial type signatures are specified by type expressions where
three dots “...”, called a type wildcard, denote unspecified parts. For example, in the fol-
lowing expression the identity function id is declared:

let id :: ... → ...
id = λx → x

in id 3

159

10. Partial type signatures

The type signature for id specifies that id should be a function, but does not state anything
about its argument and result. The argument and result type remain unknown until the type
inferencer can infer the argument and result type.
A type wildcard is similar to a type variable, because both represent unknown type infor-
mation. However, type variables in a type signature represent quantified type variables,
whereas type wildcards represent yet to be inferred types. If we want to refer to a type
wildcard, we prefix a normal type variable with ‘%’. This is called a named type wildcard.
The previous declaration of id can now be rewritten to:

let id :: % a→ % b
id = λx → x

in id 3

Omission of ‘%’ yields a type expression “a → b”, which is interpreted (by “Quantifier
location inference”) as “(∃a.a)→ ∀b.b”.
Named type wildcards allow the specification of additional constraints for use by the type
inferencer. In the following, argument and result type are specified to be equal, and inferred
to be of type Int. This results in an inferred signature “ii :: Int → Int” for:

let ii :: % a→ % a
ii = λx → 3

in ii 3

Used in this way, partial type signatures are similar to lexically scoped type variables [86].
Lexically scoped type variables allow scoped references to the types of parameters:

let ii = λ(x :: a)→ (3 :: a)
in ii 3

Partial type signatures are most useful in specifying only those parts which the type infer-
encer cannot infer, in particular higher-ranked type information:

let id :: ∀ a.a→ a
id = λx→ x
f :: (∀ a.a→ a)→ ...
f = λi→ (i 3, i ’x’)

in f id

For f we only need to specify its rank-2 typed argument; the rest is inferred.

Partial type signatures for implicit parameters Class predicates can be omitted as
well. Within the context of the examples from Chapter 9 we start with the following
function:

f = λp q r s→ (eq p q, eq r s)

If f ’s type signature is omitted, we infer the following type:
f :: ∀ a.Eq a⇒ a→ a→ ∀ b.Eq b⇒ b→ b→ (Bool,Bool)

160

Variation 1: Now, if we want to make clear that the dictionary for b should be passed
before any of the a’s we write:

f :: ∀ b.(Eq b, ...)⇒ ...→ ...→ b→ b→ ...
-- INFERRED:

f :: ∀ a b.(Eq b,Eq a)⇒ a → a → b→ b→ (Bool,Bool)

The parts indicated by ‘...’ are inferred.
Variation 2: The dots ‘...’ in the type signature specify parts of the signature to be filled
by the type inferencer. The inferred type may be polymorphic if no restrictions on its type
are found by the type inferencer, or it may be monomorphic as for r :: Int in:

f :: ∀ a.(Eq a, ...)⇒ a→ a→ ...
f = λ p q r s → (eq p q, eq r 3)

-- INFERRED:
f :: ∀ a. Eq a ⇒ a→ a→ Int → ∀ b.b→ (Bool ,Bool)

If ‘...’ occurs in a type position, we call it a type wildcard. If ‘...’ occurs in a in predicate
position, we call it a predicate wildcard.
Although the given examples suggest that a wildcard may be used anywhere in a type,
there are some restrictions:

• A named wildcard %a cannot be used as a predicate wildcard, because %a then
would refer to a set of predicates; it does not make much sense to pass this set twice.

• A type wildcard can occur at an argument or result position of a function type. A
type wildcard itself may bind to a polymorphic type with predicates. In other words,
impredicativeness is allowed. This is particularly convenient for type wildcards on
a function’s result position. For example, the type wildcard %b in

f :: ∀ a.Eq a⇒ a→ a→ %b
is bound to
∀ b.Eq b⇒ b→ b→ (Bool,Bool)

after further type inferencing.

• For the non wildcard part of a type signature all occurrences of a type variable in
the final type must be given. This is necessary because the type signature will be
quantified over explicitly introduced type variables.

• A sequence of explicit predicates may end with a predicate wildcard, standing for
an optional collection of additional predicates. Multiple occurrences of a predicate
wildcard or between explicit predicates would defeat the purpose of being partially
explicit. For example, for the type signature (Eq b, ...,Eq c) ⇒ ... the argument
position of Eq c’s dictionary cannot be predicted by the programmer.

• The absence of a predicate wildcard in front of a type means no predicates are al-
lowed. The only exception to this rule is a single type variable or a type wildcard,
since these may be bound to a type which itself contains predicates.

161

10. Partial type signatures

We need to impose these restrictions because the partially specified type represents the
shape of a type: a combination of fixed and yet to be inferred parts. The fixed part corre-
sponds to the universally quantified part of the partial type. The shape is then passed to an
expression as its known type.

Quantifier location inference Quantifiers for a type signature are specified explicitly
in its type expression, but may be omitted if their location in the type expression is where
we expect them to be. Here, the notion of what we expect is based on the following
observations:

• The universal quantifier ∀ is used to express the propagation of type information
between argument and result type of a function type.

• The existential quantifier ∃ is used to express encapsulation of a type which repre-
sents data about which we want to hide type information.

For example, the type signature of the identity function id can be specified by the following
type expression:

id :: a→ a

The expected location for ∀ is in front of the type signature. Similarly, the following type
signature also specifies “a→ a”, but on a rank-2 position:

f :: (a→ a)→ Int

Because type variable a is not referred to outside the rank-2 position, the expected location
of ∀ is in front of “a → a” at rank-2, not in front of the full type signature on a rank-1
position, which is Haskell’s default.
For tuple types we put an existential quantifier in front. For example for:

v :: (a, a→ Int)
f :: (a, a→ Int)→ Int

A tuple type represents data composition. A type variable indicates lack of knowledge
about the type of (part of) the data, hence is interpreted as ‘to be forgotten’ type informa-
tion, or an existential type:

v :: ∃a.(a, a→ Int)
f :: (∃a.(a, a→ Int))→ Int

Informally, a quantifier for a type variable is placed in front of a type fragment if the type
variable does not occur outside the type fragment. If that position is a function type, ∀
is used, if it is a product type, an ∃ is used. This algorithm is applied irrespective of the
position of the type fragment, so the following type expressions:

f :: Int → (a→ a)
g :: Int → (a, a→ Int)

162

10.1. Partial type signatures

yield the following type signatures:
f :: Int → ∀a.a→ a
g :: Int → ∃a.(a, a→ Int)

For f , this resulting type is isomorphic to the placement of ∀ in front of the type: “f ::
∀a.Int → a → a”. However, for g, the type has a different meaning if the quantifier ∃ is
placed in front:

g :: ∃a.Int → (a, a→ Int)

The first signature of g allows two different invocations of g to return two different types
for the encapsulated type variable a. The second type signature is opened when bound to
g, with a fresh type constant for type variable a:

g :: Int → (C 1,C 1→ Int)

Two different invocations now are required to return the same, but hidden, type.
A single type variable takes a somewhat special place, since there is no corresponding
‘→’ or ‘(,)’ type constructur to determine which quantifier should be chosen. What is the
interpretation of the following types?

v :: a
f :: a→ b

We interpret these types as follows:
v :: ∀a.a
f :: (∃a.a)→ ∀b.b

v corresponds to Haskell’s undefined, whereas f ’s type corresponds (by means of logi-
cal equivalence via the Curry-Howard isomorphism [102, 111, 112, 113]) with Haskell’s
interpretation:

f :: ∀a.∀b.a→ b

Finally, we note that the automatic placement of quantifiers always can be overridden by
means of an explicit specification of the quantifier.

10.1 Partial type signatures

Partial type signatures are already meaningful in early versions of EH. EH version 2 (Chap-
ter 4) allows type variables; type wildcards are just type variables as far as the implemen-
tation is concerned. Rule . (Fig. 10.1) shows how a type variable is created. The type
variable remains unbound, that is, we cannot refer to this type variable.
The next version of EH, version 3 (Chapter 5), allows references to type variables, via
program identifiers. The process of collecting bindings for identifiers to type variables is
similar to the collecting of bindings for value identifiers. We thread an extra environment ∆

163

10. Partial type signatures

∆ `t t : σ

v fresh
∆ `t ... : v

.C

Figure 10.1.: Type expression type rules (C)

∆k `t t : σ{ ∆; vw

I 7→ σ ∈ ∆k

∆k `t I : σ{ ∆k; []
.HM

∆k `t t1 : σf { ∆f ; vf

∆f `
t t2 : σa { ∆a; va

∆k `t t1 t2 : σfσa { ∆a; va, vf
.HM

i 7→ σ ∈ ∆k ∨ ∆i ≡ (i 7→ v) ∧ σ ≡ v ∧ v fresh
∆k `t i : σ{ ∆i,∆

k; []
.HM

i 7→ σ ∈ ∆k ∨ ∆i ≡ (i 7→ v) ∧ σ ≡ v ∧ v fresh
∆k `t %i : σ{ ∆i,∆

k; [v]
..HM

Within environment ∆k, type expression t has a (replica) type signature σ, yield-
ing additional bindings ∆ and wild type variables vw.

t : Type expression
σ : Type signature
vw : Type variables which occur as wildcard
∆k : Environment ι 7→ σ with known bindings for type identifiers
∆ : Environment with ∆k+ new bindings

Figure 10.2.: Type expression type rules (HM)

through the type expression. At rule . and its wildcard variation rule .. (Fig. 10.2)
a binding is added to ∆.
The type expression is used in a declaration of a type signature for a value identifier. In
rule . (Fig. 5.2, page 78) the type signature of this type expression is quantified over
its free type variables, except those which are introduced as a type wildcard: these are
still free to be bound by type inference. Generalisation is done a second time after type

164

10.2. Quantifier location inference

Notation Meaning
V co-, contravariant context
V+ covariant context
V− contravariant context

Figure 10.3.: Notation for co- and contravariant context

inference.

10.2 Quantifier location inference

Our algorithm to place quantifiers is based on the rules which are specified in Fig. 10.4:

• If a type variable occurs in two components of a composite type, and the type vari-
able does not occur outside the composite type, the composite type is the quantifier
location for the type variable (rule .., rule ..).

• If a quantifier location is in front of a product type, an ∃ is used (rule ..), if
in front of a function type, a ∀ is used (rule ..).

• For a standalone type variable (does not occur elsewhere in the type), a ∀ is used in
a co-variant context, ∃ otherwise.

For the co- or contravariance context we use some additional notation (Fig. 10.3).

165

10. Partial type signatures

vg;V `Q σ : σq { vf

v < vg

Q ≡ if V ≡ V+ then ∀ else ∃
vg;V `Q v : Q v.v{ [v]

..I1

v, vg;V+ `Q σa : σq
a { vf

a

v, vg;V− `Q σr : σq
r { vf

r

v ∈ (vf
a ∩ vf

r)\vg

vg; `Q σa → σr : ∀v.σq
a → σ

q
r { vf

a ∪ vf
r

..I1

v, vg;V+ `Q σl : σq
l { vf

l

v, vg;V+ `Q σr : σq
r { vf

r

v ∈ (vf
l ∩ vf

r)\vg

vg; `Q (σl, σr) : ∃v.(σq
l , σ

q
r){ vf

l ∪ vf
r

..I1

v, vg;V `Q σ : σq { vf

v < vg

vg;V `Q Q v.σ : Q v.σq { vf \[v]
..I1

Type σq equals σ, with quantifiers for type variables in σq not in vg

V : Co/contravariance context, used internally
σ : Type to be quantified
vf : Free type variables of σ, used internally
vg : Global type variables, are not quantified
σq : Quantified type

Figure 10.4.: Type quantification rules (I1)

166

11 R:   

Note to the reader: this chapter is a slightly adapted version of a submitted
paper. It can be read independently of previous chapters. The original pa-
per includes a short introduction to the AG system; this has been omitted as
Chapter 2 can be read instead.

Some type systems are first described formally, to be sometimes followed by an implemen-
tation. Other type systems are first implemented as a language extension, to be sometimes
retrofitted into a formal description. In neither case it is an easy task to keep both artefacts
consistent. In this chapter we present Ruler, a domain specific language for type rules. Our
prototype compiler for Ruler both generates (1) a visual LATEX rendering, suitable for use
in the presentation of formal aspects, and (2) an attribute grammar based implementation.
Combining these two aspects in Ruler contributes to bridging the gap between theory and
practice: mutually consistent representations can be generated for use in both theoretical
and practical settings.

11.1 Introduction

Theory and practice of type systems often seem to be miles apart. For example, for the
programming language Haskell the following artefacts exist:

• A language definition for the Haskell98 standard [84], which defines Haskell’s syn-
tax and its meaning in informal terms. Part of this is specified in the form of a
translation to a subset of Haskell.

• A formal description of the static semantics of most of Haskell98 [26].

• Several implementations, of which we mention GHC [75] and Hugs [2].

• Experimental language features of which some have been formally described in
isolation, some of them found their way into Haskell, or are available as non-
standard features. As an example we mention Haskell’s class system [44], and
multi-parameter type classes [85, 25] present in extensions [75, 2] to Haskell98.

167

11. Ruler: programming type rules

• A Haskell description of type inferencing for Haskell98 [48], serving at the same
time as a description and an implementation.

We can ask ourselves the following questions:

• What is the relationship between all the descriptions (i.e language definition and
static semantics) of Haskell and available implementations?

• What is the effect of a change or extension which is first implemented and subse-
quently described?

• What is the effect of a change or extension which is first described and subsequently
implemented?

For example, if we were to extend Haskell with a new feature, we may start by exploring
the feature in isolation from its context by creating a minimal type system for the feature,
an algorithmic variant of such a type system, a proof of the usual properties (soundness,
completeness), or perhaps a prototype. Upto this point the extension process is fairly stan-
dard; however when we start to integrate the feature into a working implementation this
process and the preservation of proven properties becomes less clear. Whatever route we
take, that is, first extend the implementation then give a formal description or the other
way around, there is no guarantee that the formal description and the implementation are
mutually consistent. Even worse, we cannot be sure that an extension preserves the possi-
bility to prove desirable properties. As a example, it has already been shown that Haskell
does not have principal types, due to a combination of language features and seemingly
innocent extensions [27].
Based on these observations we can identify the following problems:

Problem 1. It is difficult, if not impossible, to keep separate (formal) descriptions and
implementations of a complex modern programming language consistent.

Our approach to this problem is to maintain a single description of the static semantics of
a programming language. From this description we generate both the material required for
a formal treatment as well as the implementation.

Problem 2. The extension of a language with a new feature means that the interaction be-
tween the new and all old features needs to be examined with respect to the preser-
vation of desirable properties, where a property may be formal (e.g. soundness) or
practical (e.g. sound implementation).

The Ruler language that we introduce in this paper aims to make it easy to describe lan-
guage features in relative isolation. The separate descriptions for these features however
can be combined into a description of the complete language. Note that traditional pro-
gramming language solutions, like the use of modules and abstract data types, are not

168

11.1. Introduction

Γ `e e : τ

Γ `e int : Int
.E

i 7→ σ ∈ Γ
τ = inst (σ)
Γ `e i : τ

.E

Γ `e a : τa

Γ `e f : τa → τ

Γ `e f a : τ
.E

(i 7→ τi),Γ `e b : τb

Γ `e λi→ b : τi → τb
.E

(i 7→ σe),Γ `e b : τb

Γ `e e : τe

σe = ∀v.τe, v < ftv (Γ)
Γ `e let i = e in b : τb

.E

Figure 11.1.: Expression type rules (E)

sufficient: a language extension often requires the extension of the data types representing
the abstract syntax and the required implementation may require changes across multiple
modules.
Our approach is similar to, but also different from literate programming. We emphasize
that Ruler provides a solution for the abovementioned problems; in the conclusion (Sec-
tion 11.7) we will further discuss additional desirable features of the Ruler system.

How our approach contributes to solving the problems We explore these problems
and our solution by looking at the final products that are generated by the Ruler system as
described in this chapter, and which are presented in figures 11.1 through 11.3. We em-
phasize at this point that a full understanding of these figures is not required nor intended.
The focus of this chapter is on the construction of the figures, not on their meaning. Our
aim is to look at these figures from a metalevel, to see how type rules can be specified
and how their content can be generated using our Ruler system. Nevertheless, we have
chosen a realistic running example: the Hindley-Milner (HM) type system. Fig. 11.1 gives
the equational rules, Fig. 11.2 the algorithmic variant and Fig. 11.3 part of the generated
implementation. In later sections we will come back to the technical part of these figures.
For now we only use their content to discuss the general idea of our approach.
The need for a system producing these artefacts arose in the context of the Essential Haskell
(EH) project [21, 19]. The design goal of EH is to construct a compiler for an extended
version of Haskell, and to build (simultaneously) an explanation of its implementation, in
which we try to keep both versions consistent by generating corresponding parts from a
single source. This approach resembles the one taken by Pierce [91] who explains both
non-algorithmic and algorithmic variants of type systems. The EH project starts with the
description of a very simple language, and extends it in a sequence of steps, leading to full

169

11. Ruler: programming type rules

Ck;Γ `e e : τ{ C

Ck;Γ `e int : Int{ Ck .A

i 7→ σ ∈ Γ
τ = inst (σ)

Ck;Γ `e i : τ{ Ck .A

Ck;Γ `e f : τf { Cf

Cf ;Γ `e a : τa { Ca

v fresh
τa → v � Caτf { C

Ck;Γ `e f a : C Cav{ C Ca
.A

v fresh
Ck; (i 7→ v),Γ `e b : τb { Cb

Ck;Γ `e λi→ b : Cbv→ τb { Cb
.A

v fresh
Ck; (i 7→ v),Γ `e e : τe { Ce

σe = ∀ (ftv (τe)\ftv (CeΓ)).τe

Ce; (i 7→ σe),Γ `e b : τb { Cb

Ck;Γ `e let i = e in b : τb { Cb
.A

Figure 11.2.: Expression type rules (A)

data Expr
| App f : Expr

a : Expr
attr Expr [g : Gam | c : C | ty : Ty]
sem Expr
| App (f .uniq, loc.uniq1)

= rulerMk1Uniq @lhs.uniq
loc.tv = Ty Var @uniq1
(loc.c , loc.mtErrs)

= (@a.ty ‘Ty Arr‘ @tv) � (@a.c ⊕ @f .ty)
lhs.c = @c ⊕ @a.c
.ty = @c ⊕ @a.c ⊕ @tv

Figure 11.3.: Part of the generated implementation

170

11.1. Introduction

Haskell with extensions (including higher ranked polymorphism, mechanisms for explic-
itly passing implicit parameters [20, 23], extensible records [29, 49], higher order kinds).
Each step introduces new features and describes the corresponding compiler.
Both type rules and fragments of corresponding source code are used in the explanation
of the compiler. For example, rule . from Fig. 11.2 and the corresponding attribute
grammar (AG) implementation from Fig. 11.3 are jointly explained, each strengthening
the understanding of the other. However, later versions of EH introduce more features,
resulting in the following problems:

• Type rules and AG source code both become quite complex and increasingly difficult
to understand.

• A proper understanding may require explanation of a feature both in isolation as
well as in its context. These are contradictory requirements.

• With increasing complexity comes increasing likeliness of inconsistencies between
type rules and AG source code.

Part of our solution to these problems is the use of the concept of views on both the type
rules and AG source code. Views are ordered in the sense that later views are built on top
of earlier views. Each view is defined in terms of its differences with its ancestor view; the
resulting view on the artefact is the accumulation of all these incremental definitions.
This, of course, is not a new idea: version managment systems use similar mechanisms,
and object-oriented systems use the notion of inheritance. However, the difference lies
in our focus on a whole sequence of versions as well as the changes between versions:
in the context of version management only the latest version is of interest, whereas for a
class hierarchy we aim for encapsulation of changes. We need simultaneous access to all
versions, which we call views, in order to build both the explanation and the sequence of
compilers. A version management systems uses versions as a mechanism for evolution,
whereas we use views as a mechanism for explaining and maintaining EH’s sequence of
compilers.
For example, Fig. 11.1 displays view E (equational), and Fig. 11.2 displays view A (al-
gorithmic) on the set of type rules. View A is built on top of view E by specifying the
differences with view E. In the electronic version of this thesis, the incremental definition
of these views is exploited by using a color scheme to visualise the differences. The part
which has been changed with respect to a previous view is displayed in blue (or black
when printed); the unchanged part is displayed in grey (we will come back to this in our
discussion). In the paper version of this thesis all rules are typeset (and printed) in black.
In this way we address “Problem 2”.
Independently from the view concept we exploit the similarity between type rules and AG
based implementations. To our knowledge this similarity has never been exploited. We use
this similarity by specifying type rules using a single notation, but which contains enough
information to generate both the sets of type rules (in Fig. 11.1 and Fig. 11.2) as well as part

171

11. Ruler: programming type rules

of the AG implementation (in Fig. 11.3). Fig. 11.3 shows the generated implementation
for rule .. In this way we address “Problem 1”.
Our Ruler system allows the definition of type rules, views on those rules, and the spec-
ification of information directing the generation of a partial implementation. In addition,
Ruler allows the specification of the structure of type rules: the type of a type rule. This
“type of a type rule” is used by Ruler to check whether concrete type rules follow the
correct pattern.
In the course of the EH project the Ruler system has become indispensable for us:

• Ruler is a useful tool for describing type rules and keeping type rules consistent with
their implementation. In subsequent sections we will see how this is accomplished.

• It is relatively easy to incorporate the generation of output to be used as input for
other targets (besides LATEX and AG). This makes Ruler suitable for other goals
while at the same time maintaining a single source for type rules.

• We also feel that it may be a starting point for a discussion about how to deal with the
complexities of modern programming languages, and both their formal and practical
aspects. In this light, this chapter also is an invitation to the readers to improve on
these aspects. In our conclusion (Section 11.7) we will discuss some developments
we foresee and directions of further research.

We summarize Ruler’s strong points, such that we can refer to these points from the tech-
nical part of this chapter:

Single source. Type rules are described by a single notation, all required type rule related
artefacts are generated from this.

Consistency. Consistency between the various type rule related artefacts is guaranteed
automatically as a consequence of being generated from a single source.

Incrementality. It is easy to incrementally describe type rules.

The remainder of this chapter is organised as follows: in Section 11.2 we present an
overview of the Ruler system. This overview gives the reader an intuition of what Ruler
can do and how it interacts with other tools. Preliminaries for the example language and
type systems are given in Section 11.3. In Section 11.4 we specify the contents of Fig. 11.1,
in Section 11.5 we extend this specification for the contents of Fig. 11.2. In Section 11.6
we extend the example Ruler specification so that Ruler can generate AG code. Finally we
discuss and conclude in Section 11.7.

172

11.2. Ruler overview

executable

x ba

: derived

: derives b from a using x

: source

�
�

�

@
@
@

����

PPPPP

HHHHH

lhs2TeX

latex

printable

latex

HS

AG

latex main

Ruler

ag compiler

hs compiler

ruler ruler

AG main

HS main

lhs2TeX

Figure 11.4.: Ruler overview

scheme X =
view A =

holes ...
judgespec ...

view B =
holes ...
judgespec ...

ruleset x scheme X =
rule r =

view A =
judge ... -- premises
...
−

judge ... -- conclusion
view B = ...

rule s =
view A = ...
view B = ...

Figure 11.5.: High level structure of Ruler source

173

11. Ruler: programming type rules

11.2 Ruler overview

Infrastructure around Ruler Although the Ruler system allows us to generate part
of an implementation, it is by no means the only tool we use in the construction of our
compilers. Fig. 11.4 gives an overview of the tools used to construct the example compiler
for the type rules presented in this chapter. In the left branch we generate an executable
compiler using the following sources:

• Ruler code (in box ‘Ruler’) for type rules, out of which attribute grammar AG code
is generated by Ruler.

• AG code (in box ‘AG main’) for the specification of a pretty printed representation
of the input and error handling. The AG compiler generates Haskell.

• Haskell code (in box ‘HS main’) for the specification of a parser, interaction with
the outside world and remaining functionality.

In the right branch we generate LATEX commands for Ruler type rules which can be used in
a LATEX document (in box ‘latex main’). The major part of generating LATEX is delegated
to lhs2TeX [72].
The use of tools for the EH compilers is slightly more complicated because we need to
specify different views on AG and Haskell code as well. A separate fragment management
tool, called shuffle (part of the EH project [19]), is used to generate AG and Haskell code
from code fragments describing the view inheritance chains for AG and Haskell code.
Because we do not discuss this any further, this part has been omitted (from Fig. 11.4).

The design of Ruler In the remainder of this section we discuss the concepts used in
Ruler by inspecting elements of figures 11.1, 11.2 and 11.3.
The design of Ruler is driven by the need to check the following properties of type rules:

• All judgements match an explicitly specified structure for the judgement. For exam-
ple, in Fig. 11.1 all judgements for an expression should match the structure of an
expression judgement in the box at the top of the same figure.

• If an identifier is used for the generation of an implementation, it must be defined
before it can be used (the meaning of this will be explained later).

Other properties can be added to this list, but we limit ourselves to this list and the require-
ment of output generation for different targets.
In the remainder of this section we give a high-level overview of the concepts manipulated
by Ruler. Fig. 11.5 gives a schematic Ruler specification, showing how these concepts
relate syntactically.

174

11.2. Ruler overview

The structure of a judgement is described by a scheme. On each scheme multiple views
exist. A view on a scheme consists of named holes and a set of templates referring to these
holes. Such templates, called judgeshapes, come in two varieties:

• A judgespec, used to specify the template by which judgements, which together form
a rule, are specified.

• A judgeuse, used to specify the template which is used to specify how to display a
judgement for an output target.

A rule consists of a set of judgements (syntactically called a judge) for the premises and a
judgement for the conclusion. On each rule multiple views exists. The above judgements
are defined for each view. Each of these judgements is of a specified scheme, and its defi-
nition must comply with the structure defined by the corresponding view on the scheme. A
judgement is defined by bindings of hole names to Ruler expressions. These bindings are
either specified by the use of a template (introduced by a judgespec) or specified for each
hole individually.
Rules are grouped into rulesets. A ruleset corresponds to a figure like Fig. 11.1, so it con-
sists of a set of rules, the scheme for which the rules specify a conclusion, and additional
information like the text for the caption of the figure.
Views are ordered by a view hierarchy. A view hierarchy specifies which view inherits
from which other (ancestor) view. A view on a scheme inherits the holes and judgeshapes.
A view on a rule inherits the hole bindings.
Fig. 11.5 presents a schematic, high-level Ruler specification. The syntactic structure of a
Ruler specification reflects the relationships between the aforementioned concepts. The in-
cremental definition of views on a rule is supported by two different variants of specifying
a judgement (using the above mechanisms):

• A judgement in a (view on a) rule can be specified by using a judgespec as a macro
where the values of the holes are defined by filling in the corresponding positions in
the judgespec. This variant is useful for the first view in a viewhierarchy, because
all holes need to be bound to a Ruler expression.

• A judgement in a (view on a) rule can be specified by individually specifying values
for each hole. This variant is useful for views which are built on top of other views,
because only holes for which the value differs relative to the ancestor view need to
be given a new value.

The incremental definition of views on a scheme is supported in a similar way: only the
holes not present in an ancestor view require a definition.
The Ruler system is open-ended in the sense that some judgements can be expressed in
a less structured form, for which its implementation is defined externally. For example,
the premises of rule . consist of arbitrary conditions. These arbitrary (i.e. as far as
Ruler is concerned unstructured) conditions are treated like regular judgements, but their

175

11. Ruler: programming type rules

Values (expressions, terms):
eF int literals
| i program variable
| e e application
| λi→ e abstraction
| let i = e in e local definitions

Figure 11.6.: Terms

Types:
τF Int literals
| v variable
| τ→ τ abstraction

σF ∀v.τ universally quantified type, v possibly empty

Figure 11.7.: Types

implementation has to be specified explicitly. We call the scheme of such a judgement
variant a relation.

11.3 Preliminaries

In this section we introduce notation used by our running example, that is, the set of type
rules to be specified by Ruler. There should be no surprises here as we use a standard
term language based on the λ-calculus (see Fig. 11.6). A short overview of the type re-
lated notation is included in Fig. 11.8. Our example language contains e.g. the following
program:

let id = λx→ x
in let v1 = id 3

in let v2 = id id
in v2 v1

The type language for our example term language is given in Fig. 11.7. Types are either
monomorphic types τ, called monotypes, or universally quantified types σ, called polymor-
phic types or polytypes. A monotype either is a type constant Int, a function type τ→ τ, or
an unknown type represented as a type variable v. We discuss the use of these types when
we introduce the typing rules for our term language in the following sections.

176

11.4. Describing typing rules using Ruler notation

Notation Meaning
σ type (possibly polymorphic)
τ type (monomorphic)
x sequence of x (possibly empty)
v type variable
Γ i 7→ σ, assumptions, environment, context
C v 7→ τ, constraints, substitution
� type matching relation, unification

Figure 11.8.: Legenda of type related notation

The typing rules use an environment Γ, holding bindings for program identifiers with their
typings:
ΓF i 7→ σ

During HM type inferencing, type variables will be bound to monotypes:
CF v 7→ τ

A C represents constraints on type variables, usually called a substitution. Its application
to a type, denoted by juxtapositioning, has the usual meaning; it replaces type variables
with types.

11.4 Describing typing rules using Ruler notation

In this section we make the use of Ruler more precise. We start by describing how to
specify the content of Fig. 11.1 using Ruler notation. The full Ruler syntax is given in
Fig. 11.9 and Fig. 11.10. The rules in Fig. 11.1 specify the non-algorithmic version of
the typing rules for our term language. The transition (instantiation) from polytypes to
monotypes is performed by inst, whereas the transition (generalisation) from monotypes
to polytypes is happens in rule ..
Because the rules implicitly state that certain equalities between types (of terms) should
hold, we call this the equational view; the subscript E is used throughout this chapter to
identify equational views.
The use of an equational version of typing rules usually serves to explain a type system
and to prove properties about the type system. An algorithmic version subsequently is
introduced to specify an implementation for such a type system. In this chapter we follow
the same pattern, but use it to show how Ruler can be used to describe both type systems in
such a way that its type rule representation can be included in the documentation (read here:
this chapter) and its partial implementation can be integrated into a full implementation.

177

11. Ruler: programming type rules

The basics: judgement schemes A typing rule consists of judgements describing
the conclusion and premises of the rule. A judgement has a structure of its own, described
by a scheme. A scheme plays the same role in rules as a type does for an expression in
our example term language. In our example, we want to specify a judgement for terms
(expressions), so we start a new scheme declaration by:

scheme expr =

which is immediately followed by the views on this scheme. Each view defines empty slots
(holes), the judgement shape (judgeshape) by which concrete judgements will be specified
(judgespec) and judgement shapes that will be used for output generation (judgeuse).
Holes act like parameters to a judgement shape. The view E on scheme expr is defined by:

view E =
holes [| e : Expr, gam : Gam, ty : Ty |]
judgespec gam ` e : ty
judgeuse tex gam ` .."e" e : ty

Here we specify for view E, that is the equational view, three empty slots (e, gam, ty), or
holes, denoted by names (alphanumerical identifiers), which are to be filled in by judge-
ments based on this scheme. Each hole has an associated hole type, so ty has type Ty;
we postpone the discussion of hole types until Section 11.6. Holes can be filled in two
different ways:

• A judgespec can be used as a macro by passing arguments at the hole positions.

• Holes are individually assigned a value by referring to their name.

Judgeshapes are introduced by the keyword judgespec or judgeuse. A judgespec judge-
ment shape introduces the template which is to be used to specify a concrete judgement.
A judgeuse judgement shape introduces the template which is used for the generation of
output. A judgeuse specifies the kind of output, called a target, as well. The target tex
indicates that the shape is to be used to generate LATEX; later we will use the target ag to
indicate that the shape is to be used for AG generation. We will refer to these three shapes
as the spec, tex and ag judgement shapes.
A Ruler expression (rexpr), is used to specify the shape of a judgespec. The text for a
Ruler expression already appears in pretty printed form throughout this chapter, but in the
original source code the spec judgement shape appears as:

judgespec gam :- e : ty

A Ruler expression consists of a distfix operator with simple expressions as its operands.
A distfix operator consists of operator symbols, which are denoted by combinations of
operator like characters such as ‘:’ and ‘-’. A simple expression may be the (possibly
empty) juxtapositioning of a mixture of identifiers, parenthesized expressions or one of the
other 〈rexpr base〉 alternatives in Fig. 11.10.

178

11.4. Describing typing rules using Ruler notation

The identifiers of a judgeshape should refer to the introduced hole names. When using
a judgespec, the expression is matched against its associated judgespec, thus binding the
hole identifiers occurring in the judgespec.
The dot character ‘.’ has a special role in Ruler expressions and names for the tex target
output generation. It is used to specify subscripts, superscripts and stacking on top of each
other. For example, x.1.2.3 pretty prints as:

3

x2
1

The part after the first dot is used as a subscript, the part after the second dot is used as a
superscript, and the part after the third dot is stacked on top. In this context the underscore
character ‘ ’ denotes a horizontal line for use in vector like notations, so v..._ pretty
prints as v. Additional dots are ignored.
Names, rexpr’s and operators all may be immediately followed by this dot notation. For
names however, the dots and their related information form part of the name.
Since the judgespec and an associated judgeuse tex are usually quite similar, we have
decided to make the latter default to the first. For this reason we allow the dot notatation
to be used in the judgespec too, although it only will play a role in the defaulted use.

The basics: rulesets Rules are grouped in rulesets to be displayed together in a figure.
So the description of Fig. 11.1 starts with:

ruleset expr.base scheme expr "Expression type rules" =

specifying the name expr.base of the ruleset, the scheme expr for which it defines rules,
and text to be displayed as part of the caption of the figure. The judgespec of (a view
on) the scheme is used to provide the boxed scheme representation in Fig. 11.1. LATEX
commands are generated for all the individual rules as well as for the figure for the full
ruleset, for all defined views. The ruleset name expr.base is used to uniquely label the
names of these LATEX commands. We do not discuss this further; we only note that part of
the LATEX formatting (e.g. for a single rule) is delegated to external LATEX commands.
The ruleset heading is immediately followed by a list of rules, of which only one is shown
here (e.int is pretty printed in small caps as .):

rule e.int =
view E =
−

judge R : expr = gam ` int : Ty Int

Before discussing its components, we repeat its LATEX rendering from Fig. 11.1 to empha-
size the similarities between the rule specification and its visual appearance:

Γ `e int : Int
.E

179

11. Ruler: programming type rules

〈ruler prog〉 F (〈scheme def 〉 | 〈format def 〉 | 〈rewrite def 〉
| 〈rules def 〉 | 〈viewhierarchy def 〉
| 〈external def 〉

) ∗
〈scheme def 〉 F (scheme | relation)〈nm〉[〈ag nm〉]

’=’〈scm view def 〉 ∗
〈scm view def 〉F view〈vw nm〉’=’〈hole def 〉〈shape def 〉 ∗
〈hole def 〉 F hole ’[’〈hole defs〉

’|’〈hole defs〉
’|’〈hole defs〉
’]’

〈shape def 〉 F judgeuse [〈target〉]〈rexpr〉
| judgespec〈rexpr〉

〈target〉 F tex | ag | ...
〈hole defs〉 F [thread]〈hole nm〉’:’〈hole type〉
〈hole type〉 F 〈nm〉
〈rules def 〉 F rules〈nm〉scheme〈scm nm〉"info"

’=’〈rule def 〉 ∗
〈rule def 〉 F rule〈nm〉[〈ag nm〉] = 〈rl view def 〉 ∗
〈rl view def 〉 F view〈vw nm〉

’=’〈judge rexpr〉 ∗
’-’

〈judge rexpr〉

Figure 11.9.: Syntax of ruler notation (part I)

All views of a rule are jointly defined, although we present the various views separately
throughout this chapter. We will come back to this in our discussion.
Each view for a rule specifies premises and a conclusion, separated by a ‘-’. The rule .
for integer constants only has a single judgement for the conclusion. The judgement has
name R, is of scheme expr, and is specified using the spec judgement shape for this view.
The name of the judgement is used to refer to the judgement from later views, either to
overwrite it completely or to adapt the values of the holes individually. In the latter case
the hole values of the previous view which are not adapted are kept. Later, when we
introduce subsequent views we will see examples of this.
The rule for integer constants refers to Ty Int. This is an identifier which is not introduced
as part of the rule. and its occurrence generates an error message unless we specify it to be
external:

external Ty Int

Additionally we also have to specify the way Ty Int will be typeset as Ruler does not make
any assumptions here. Ruler outputs identifiers as they are and delegates formatting to

180

11.4. Describing typing rules using Ruler notation

〈judge rexpr〉 F judge [〈nm〉’:’]〈scm nm〉
(’=’〈rexpr〉
| (’|’〈hole nm〉’=’〈rexpr〉) ∗

)
〈rexpr〉 F 〈rexpr app〉〈op〉〈rexpr〉 | 〈rexpr app〉
〈rexpr app〉 F 〈rexpr app〉〈rexpr base〉 | 〈rexpr base〉 | ε
〈rexpr base〉 F 〈nm〉 | 〈rexpr parens〉 | unique

| ‘=‘ | ‘|‘ | ‘.‘ | ‘−‘
| int | "string"

〈rexpr parens〉F ’(’ (〈rexpr〉
| 〈rexpr〉’|’〈hole type〉
| node int = 〈rexpr〉
| text "string"
| (’|’ | ’.’ | ’=’ | ’-’ | 〈keyword〉) ∗
)

’)’ (’.’〈rexpr base〉) ∗
〈op〉 F 〈op base〉(’.’〈rexpr base〉) ∗
〈op base〉 F (’!#$%&*+/<=>?@\ˆ|-:;,[]{}˜’) ∗

− (’|’ | ’.’ | ’=’ | ’-’)
〈viewhierarchy def 〉

F viewhierarchy〈vw nm〉(’<’〈vw nm〉) ∗
〈format def 〉 F format [〈target〉]

〈nm〉’=’〈rexpr〉
〈rewrite def 〉 F rewrite [〈target〉] [def | use]

〈rexpr〉’=’〈rexpr〉
〈ag nm〉, 〈scm nm〉, 〈vw nm〉, 〈hole nm〉

F 〈nm〉
〈nm〉 F 〈nm base〉(’.’ (〈nm base〉 | int)) ∗
〈nm base〉 F ’a-zA-Z_’ ’a-zA-Z_0-9’ ∗
〈keyword〉 F (scheme | ...) − (unique)
〈external def 〉 F external〈nm > ∗

Figure 11.10.: Syntax of ruler notation (part II)

lhs2TeX [72]. A simple renaming facility however is available as some renaming may be
necessary, depending on the kind of output generated. Formatting declarations introduce
such renamings:

format tex Ty Int = Int

Here the keyword tex specifies that this renaming is only used when LATEX (i.e. the tex
target) is generated. The formatting for the names gam and ty are treated similarly.
The rule . for the application of a function to an argument is defined similarly to

181

11. Ruler: programming type rules

rule .. Premises now relate the type of the function and its argument:
rule e.app =

view E =
judge A : expr = gam ` a : ty.a
judge F : expr = gam ` f : (ty.a→ ty)
−

judge R : expr = gam ` (f a) : ty

which results in (from Fig. 11.1):

Γ `e a : τa

Γ `e f : τa → τ

Γ `e f a : τ
.E

The dot notation allows us to treat ty.a as a single identifier, which is at the same time
rendered as the subscripted representation τa. Also note that we parenthesize (ty.a → ty)
such that Ruler treats it as a single expression. The outermost layer of parentheses are
stripped when an expression is matched against a judgement shape.

Relations: external schemes The rule . for variables is less straightforward as it
requires premises which do not follow an introduced scheme:

i 7→ σ ∈ Γ
τ = inst (σ)
Γ `e i : τ

.E

This rule requires a binding of the variable i with type σ to be present in Γ; the instantiation
τ of σ then is the type of the occurrence of i. These premises are specified by judgements
G and I respectively:

rule e.var =
view E =

judge G : gamLookupIdTy = i 7→ pty ∈ gam
judge I : tyInst = ty ‘=‘ inst (pty)
−

judge R : expr = gam ` i : ty

Judgements G and I use a variation of a scheme, called a relation. For example, the
judgement G must match the template for relation gamLookupIdTy representing the truth
of the existence of an identifier i with type ty in a gam:

relation gamLookupIdTy =
view E =

182

11.5. Extending to an algorithm

holes [| nm : Nm, gam : Gam, ty : Ty |]
judgespec nm 7→ ty ∈ gam

A relation differs only from a scheme in that we will not define rules for it. It acts as the
boundary of our type rule specification. As such it has the same role as the foreign func-
tion interface in Haskell (or any other programming language interfacing with an outside
world). As a consequence we have to specify an implementation for it elsewhere. The
relation tyInst is defined similarly:

relation tyInst =
view E =

holes [| ty : Ty, ty.i : Ty |]
judgespec ty.i ‘=‘ inst (ty)

11.5 Extending to an algorithm

In this section we demonstrate the usefulness of views and incremental extension by adapt-
ing the equational rules from Fig. 11.1 to the algorithmic variant in Fig. 11.2. We call this
the A view. We only need to specify the differences between two views. This minimises
our specification work; Ruler emphasises the differences using color. The resulting type
rules are shown in Fig. 11.2.
Fig. 11.2 not only shows the adapted rules but also shows the differences with the previous
view by using colors. In the electronic version of this thesis the unchanged parts of the
previous view (E) are shown in grey, whereas the changed parts are shown in black (blue,
if seen in color). The paper version typesets the rules in black for better readability. In our
opinion, clearly indicating differences while still maintaining an overview of the complete
picture, contributes to the understandability of the type rules when the complexity of the
rules increases.
For this to work, we specify which view is built on top of which other view:

viewhierarchy = E〈A〈AG

The view hierarchy declaration defines the A view to be built on top of view E, and AG
again on top of A. We can also specify branches, for example E〈X specifies X to be built
on top of E, independently of other views; because we do not use this feature, will will
not discuss it further. A view inherits the hole structure and the judgement shapes from
its predecessor. Similarly, for each rule the bindings of hole names to their values are
preserved as well. As a consequence we only have to define the differences.
In order to turn the equational specification into an algorithmic one based on HM type
inference, we need to:

• Specify the direction in which values in the holes flow through a rule. This specifies
the computation order.

183

11. Ruler: programming type rules

• Represent yet unknown types by type variables and knowledge about those type
variables by constraints.

Both modifications deserve some attention, because they are both instances of a more
general phenomenon which occurs when we shift from the equational to the algorithmic
realm: we need to specify a computation order.

From relationships to functions In an equational view we simply relate two values.
In an algorithmic view this relation is replaced by a function mapping input values to
output values. For example, rule . from Fig. 11.1 specifies that the type of a and the
argument part of the type of f must be equal. The use of the same identifier τa expresses
this equality. To compute τa however we either need to:

• compute information about a’s type first and use it to construct f ’s type,

• compute information about f ’s type first and use it to deconstruct and extract a’s
type,

• compute information about both and then try to find out whether they are equal (or
remember they should be equal).

The last approach is taken for hole ty, because it allows us to compute types composition-
ally in terms of the types of the children of an Expr.

Using yet unknown information In an equational view we simply use values without
bothering about how they are to be computed. However, computation order and reference
to a value may conflict if we to refer to a value before its value is computed. For example,
rule . allows reference to the type of i (in e) before its type has been computed. In
rule . the type of i is available only after HM’s generalisation of the type of a let-
bound variable. The standard solution to this problem is to introduce an extra indirection
by letting the type of i be a placeholder, called a type variable. Later, if and when we
find more information about this type variable, we gather this information in the form of
constraints, which is the information then used to replace the content of the placeholder.

Adding direction to holes In Ruler notation, we specify the direction of computation
order as follows for view A on scheme expr:

view A =
holes [e : Expr, gam : Gam | thread cnstr : C | ty : Ty]
judgespec cnstr.inh; gam ` .."e" e : ty{ cnstr.syn
judgeuse − tex

The holes for expr are split into three groups, separated by vertical bars ‘|’. Holes in the
first group are called inherited, holes in the third group are called synthesized and the

184

11.5. Extending to an algorithm

holes in the middle group are both. The type rules now translate to a syntax directed
computation over an abstract syntax tree (AST). Values for inherited holes are computed
in the direction from the root to the leaves of the AST providing contextual information;
values for synthesized holes are computed in the reverse order providing a result. We will
come back to this in following sections.
In our A view on scheme expr both e and gam are inherited, whereas ty is the result.
This, by convention, corresponds to the standard visualisation of a judgement in which
contextual information is positioned at the left of the turnstyle ‘`’ and results are placed
after a colon ‘:’. As we will see, the hole e plays a special role because it corresponds to
the AST.
Besides being declared as both an inherited and a synthesized hole, cnstr is also declared
to be threaded, indicated by the keyword thread. For a threaded hole its computation
proceeds in a specific order over the AST, thus simulating a global variable. For now it
suffices to know that for a threaded hole h two other holes are introduced instead: h.inh
for the inherited value, h.syn for the synthesized value. Because cnstr is declared threaded,
cnstr.inh refers to the already gathered information about type variables, whereas this and
newly gathered information is returned in cnstr.syn. For example, view A on rule . fills
cnstr.syn with cnstr.inh.

view A =
−

judge R : expr
| cnstr.syn = cnstr.inh
| cnstr.inh = cnstr.inh

Although a definition for cnstr.inh is included, we may omit the hole binding for cnstr.inh,
that is cnstr.inh = cnstr.inh (we will do this in the remainder of this chapter). If a binding
for a new hole is omitted, the hole name itself is used as its value.
Instead of using a shape to specify the rule, we may bind individual hole names to their
values. In this way we only need to define the holes which are new or need a different
value. The Ruler system also uses this to highlight the new or changed parts and grey out
the unchanged parts. This can be seen from the corresponding rule from Fig. 11.2 (value
cnstr.inh shows as Ck by means of additional formatting information):

Ck;Γ `e int : Int{ Ck .A

For rule . both the handling of the type (hole ty) and the constraints need to be adapted.
The type ty.a of the argument is used to construct ty.a → tv which is matched against the
type ty.f of the function. Constraints are threaded through the rules. For example con-
straints cnstr.f constructed by the judgement for the function f are given to the judgement
a in the following fragment (which follows view E of rule . in the Ruler source text):

view A =

185

11. Ruler: programming type rules

judge V : tvFresh = tv
judge M : match = (ty.a→ tv) � (cnstr.a ty.f)

{ cnstr
judge F : expr
| ty = ty.f
| cnstr.syn = cnstr.f

judge A : expr
| cnstr.inh = cnstr.f
| cnstr.syn = cnstr.a

−

judge R : expr
| ty = cnstr cnstr.a tv
| cnstr.syn = cnstr cnstr.a

The rule . also requires two additional judgements: a tvFresh relation stating that tv
should be a fresh type variable and a match relation performing unification of two types,
resulting in additional constraints under which the two types are equal. The resulting rule
(from Fig. 11.2) thus becomes:

Ck;Γ `e f : τf { Cf

Cf ;Γ `e a : τa { Ca

v fresh
τa → v � Caτf { C

Ck;Γ `e f a : C Cav{ C Ca
.A

The way this rule is displayed also demonstrates the use of the inherited or synthesized di-
rection associated with a hole for ordering judgements. The value of a hole in a judgement
is either in a position where the identifiers of the value are introduced for use elsewhere or
in a position where the identifiers of a value are used:

• A synthesized hole corresponds to a result of a judgement. Its value specifies how
this value can be used; it specifies the pattern it must match. This may be a sin-
gle identifier or a more complex expression describing the decomposition into the
identifiers of the hole value. For example, cnstr.f in the premise judgement F for
function f is in a so called defining position because it serves as the value of a hole
which is defined as synthesized.

• For an inherited hole the reverse holds: the hole corresponds to the context of, or
parameters for, a judgement. Its value describes the composition in terms of other
identifiers introduced by values at defining positions. For example, cnstr.f in the
judgement A for argument a is in a so called use position because its hole is inherited.

• For the concluding judgement the reverse of the previous two bullets hold. For
example, cnstr.inh of the conclusion judgement R, implicitly defined as cnstr.inh =

186

11.6. Extensions for AG code generation

cnstr.inh, is on a defining position although its hole is inherited. This is because it is
given by the context of the type rule itself, for use in premise judgements.

Ruler uses this information to order the premise judgements from top to bottom such that
values in holes are defined before used. Because judgements may be mutually dependent
this is done in the same way as the binding group mechanism of Haskell: the order in a
group of mutually dependent judgements cannot be determined and therefore is arbitrary.
Relation match represents the unification of two types; it is standard. Relation tvFresh
simply states the existence of a fresh type variable; we discuss its implementation in Sec-
tion 11.6.

11.6 Extensions for AG code generation

In this section we discuss the modifications to our type rule specification required for
the generation of a partial implementation, and the additional infrastructure required for
a working compiler. The end result of this section is a translation of type rules to AG
code. For example, the following is generated for rule .; the required additional Ruler
specification and supporting code is discussed in this section:

attr Expr [g : Gam | c : C | ty : Ty]
sem Expr
| App (f .uniq, loc.uniq1)

= rulerMk1Uniq @lhs.uniq
loc.tv = Ty Var @uniq1
(loc.c , loc.mtErrs)

= (@a.ty ‘Ty Arr‘ @tv) � (@a.c ⊕ @f .ty)
lhs.c = @c ⊕ @a.c
.ty = @c ⊕ @a.c ⊕ @tv

We need to deal with the following issues:

• Type rules need to be translated to AG code that describes the computation of hole
values. We exploit the similarity between type rules and attribute grammars to do
this.

• Fresh type variables require a mechanism for generating unique values.

• Type rules are positive specifications, but do not specify what needs to be done in
case of errors.

• Of course we also need to specify parsing to an AST as well as output generation,
but we won’t treat this here.

187

11. Ruler: programming type rules

Type rule structure and AST structure The structure of type rules and an abstract
syntax tree are often very similar. This should come as no surprise, because type rules are
usually syntax directed in their algorithmic form so the choice which type rule to apply
can be made deterministically. We need to tell Ruler:

• Which hole of a scheme acts as a node from the AST, the primary hole.

• Which values in this primary hole in the conclusion of a rule are children in the AST.

• To which AG data a scheme maps, and for each rule to which alternative.

The AST is defined externally relative to Ruler (this may change in future versions of
Ruler). For example, the part of the AST for expression application is defined as:

data Expr
| App f : Expr

a : Expr

The keyword node is used to mark the primary hole that corresponds to the AST node for
scheme expr in the AST:

view AG =
holes [node e : Expr ||]

For each rule with children we mark the children and simultaneously specify the order of
the children as they appear in the AST. For example, for rule . we mark f to be the first
and a to be the second child (the ordering is required for AG code generation taking into
account AG’s copy rules):

view AG =
−

judge R : expr
| e = ((node 1 = f) (node 2 = a))

The scheme expr is mapped to the AST node type Expr by adapting the scheme definition
to:

scheme expr "Expr" =

Similarly we adapt the header for rule . to include the name App as the name of the
alternative in the AST:

rule e.app "App" =

Ruler expressions and AG expressions Expressions in judgements are defined using
a notation to which Ruler attaches no meaning. In principle, the Ruler expression defined
for a hole is straightforwardly copied to the generated AG code. For example, for rule .
the expression ty.a → tv would be copied, including the arrow →. Because AG attribute
definitions are expressed in Haskell, the resulting program would be incorrect without any
further measures taken.

188

11.6. Extensions for AG code generation

Ruler uses rewrite rules to rewrite ruler expressions to Haskell expressions. For example,
ty.a→ tv must be rewritten to a Haskell expression representing the meaning of the Ruler
expression. We define additional Haskell datatypes and functions to support the intended
meaning; unique identifiers UID are explained later:

type TvId = UID
data Ty = Ty Any | Ty Int | Ty Var TvId

| Ty Arr Ty Ty
| Ty All [TvId] Ty

deriving (Eq,Ord)

A Ty All represents universal quantification ∀, Ty Arr represents the function type →,
Ty Var represents a type variable and Ty Any is used internally after an error has been
found (we come back to this later). We define a rewrite rule to rewrite ty.a → tv to
ty.a ‘Ty Arr‘ tv:

rewrite ag def a→ r = (a) ‘Ty Arr‘ (r)

A rewrite declaration specifies a pattern (here: a → r) for an expression containing vari-
ables which are bound to the actual values of the matching expression. These bindings are
used to construct the replacement expression (here: (a) ‘Ty Arr‘ (r)). The target ag limits
the use of the rewrite rule to code generation for AG. The flag def limits the use of the
rule to defining positions, where a defining position is defined as a position in a value for
an inherited hole in a premise judgement or a synthesized hole in a conclusion judgement.
This is a position where we construct a value opposed to a position where we deconstruct
a value into its constituents. Although no example of deconstructing a value is included
in this chapter, we mention that in such a situation a different rewrite rule expressing the
required pattern matching (using AG language constructs) is required. The flag use is used
to mark those rewrite rules.
The rewrite rule used for rewriting ty.a → tv actually is limited further by specifying the
required type of the value for both pattern and the type of the replacement pattern:

rewrite ag def (a | Ty)→ (r | Ty) = ((a) ‘Ty Arr‘ (r) | Ty)

The notion of a type for values in Ruler is simple: a type is just a name. The type of
an expression is deduced from the types specified for a hole or the result expression of a
rewrite rule. This admittedly crude mechanism for checking consistency appears to work
quite well in practice.
Limiting rewrite rules based on Ruler type information is useful in situations where we
encounter overloading of a notation; this allows the use of juxtapositioning of expressions
to keep the resulting expression compact. We can then specify different rewrite rules based
on the types of the arguments. The meaning of such an expression usually is evident
from its context or the choice of identifiers. For example, cnstr cnstr.a tv (rule .,
Fig. 11.2) means the application of constraints cnstr and cnstr.a as a substitution to type
tv. Constraints can be applied to constraints as well, similar to Haskell’s overloading.
To allow for this flexibility a pattern of a rewrite rule may use (Ruler) type variables to

189

11. Ruler: programming type rules

propagate an actual type. For example, the rewrite rule required to rewrite cnstr cnstr.a tv
is defined as:

rewrite ag def (c1 | C) (c2 | C) (v | a)
= (c1 ⊕ c2 ⊕ (v) | a)

Rewrite rules are only applied to saturated juxtapositionings or applications of operators.
Rewrite rules are non-recursively applied in a bottom-up strategy.
The rule assumes the definition of additional Haskell types and class instances defined
elsewhere:

type C = [(TvId,Ty)]
class Substitutable a where

(⊕) :: C → a→ a
ftv :: a→ [TvId]

instance Substitutable Ty where
s ⊕ t @(Ty Var v) = maybe t id (lookup v s)
s ⊕ Ty Arr t1 t2 = Ty Arr (s ⊕ t1) (s ⊕ t2)
⊕ t = t

ftv (Ty Var v) = [v]
ftv (Ty Arr t1 t2) = ftv t1 ∪ ftv t2
ftv = []

Unique values Our implementation of “freshness”, required for fresh type variables, is
to simulate a global seed for unique values. The global seed is implemented by a threaded
attribute uniq; we have omitted its declaration and initialisation. Ruler assumes that such
an implementation is provided externally. From within Ruler we use the keyword unique
to obtain a unique value. For example, the relation tvFresh has a ag judgement shape for
the generation of AG which contains a reference to unique:

relation tvFresh =
view A =

holes [|| tv : Ty]
judgespec tv
judgeuse tex tv (text "fresh")
judgeuse ag tv ‘=‘ Ty Var unique

AG code generation inlines the judgement using the ag judgement shape:
sem Expr
| App (f .uniq, loc.uniq1)

= rulerMk1Uniq @lhs.uniq
loc.tv = Ty Var @uniq1
(loc.c , loc.mtErrs)

= (@a.ty ‘Ty Arr‘ @tv) � (@a.c ⊕ @f .ty)

190

11.6. Extensions for AG code generation

lhs.c = @c ⊕ @a.c
.ty = @c ⊕ @a.c ⊕ @tv

The presence of unique in a judgement for a rule triggers the insertion of additional AG
code to create an unique value and to update the unique seed value. Ruler automatically
translates the reference to unique to uniq1 and inserts a call to rulerMk1Uniq. The function
rulerMk1Uniq is assumed to be defined externally. It must have the following type:

rulerMk1Uniq :: 〈X〉 → (〈X〉, 〈Y〉)
rulerMk1Uniq = ...

For 〈X〉 and 〈Y〉 any suitable type may be chosen, where 〈X〉 is restricted to match the
type of the seed for unique values, and 〈Y〉 matches the type of the unique value. Our
default implementation is a nested counter which allows a unique value itself to also act as
a seed for an unlimited series of unique values. This is required for the instantiation of a
quantified type where the number of fresh type variables depends on the type (we do not
discuss this further):

newtype UID = UID [Int] deriving (Eq,Ord)
uidStart = UID [0]
rulerMk1Uniq :: UID→ (UID,UID)
rulerMk1Uniq u @(UID ls) = (uidNext u,UID (0 : ls))
uidNext :: UID→ UID
uidNext (UID (l : ls)) = UID (l + 1 : ls)

When a rule contains multiple occurrences of unique, Ruler assumes the presence of
rulerMk〈n〉Uniq which returns 〈n〉 unique values; 〈n〉 is the number of unique occurrences.
The Ruler code for relation tvFresh also demonstrates how the ag judgement shape for
tvFresh is inlined as an attribute definition. The ag shape for a relation must have the form
〈attrs〉 ‘=‘〈expr〉.

Handling errors The generated code for rule . also shows how the implementation
deals with errors. This aspect of an implementation usually is omitted from type rules, but
it cannot be avoided when building an implementation for those type rules. Our approach
is to ignore the details related to error handling in the LATEX rendering of the type rules, but
to let the generated AG code return two values at locations where an error may occur:

• The value as defined by the type rules. If an error occurs, this is a “does not harm”
value. For example, for types this is Ty Any, for lists this is an empty list.

• A list of errors. If no error occurs, this list is empty.

For example, the AG code for relation match as it is inlined in the translation for rule .
is defined as:

relation match =

191

11. Ruler: programming type rules

view A =
holes [ty.l : Ty, ty.r : Ty || cnstr : C]
judgespec ty.l � ty.r{ cnstr
judgeuse ag (cnstr,mtErrs) ‘=‘(ty.l) � (ty.r)

The operator � implementing the matching returns constraints as well as errors. The errors
are bound to a local attribute which is used by additional AG code for error reporting.

11.7 Discussion, related work, conclusion

Experiences with Ruler Ruler solves the problem of maintaining consistency and man-
aging type rules; it is a relief to avoid writing LATEX for type rules by hand and to know
that the formatted rules correspond directly to their implementation.
Ruler enforces all views on a type rule to be specified together. This is a consequence of
our design paradigm in which we both isolate parts of the type rules specification (by using
views), and need to know the context of these isolated parts (by rendering parts together
with their context). As a developer of a specification all views can best be developed
together, to allow for a understandable partitioning into different views while at the same
time keeping an overview.

Literate programming Literate programming [6, 59] is a style of programming where
the program source text and its documentation are combined into one document. So called
tangling and weaving tools extract the program source and documentation. Our Ruler
system is different:

• Within a literate programming document program source and documentation are
recognizable and identifiable artefacts. In Ruler there is no such distinction.

• Ruler does not generate documentation; instead it generates fragments for use in
documentation.

We think Ruler is mature enough to be used by others, and we are sure such use will be
a source of new requirements. Since Ruler itself has been produced using the AG system
new extensions can be relatively easily incorporated.

Emphasizing differences We use colors to emphasize differences in type rules. For
black-and-white print this is hardly a good way to convey information to the reader. We
believe however that in order understand more complex material, more technical means
(like colors, hypertext, collapsable/expandable text) must be used to express and explain
the complexity.

192

11.7. Discussion, related work, conclusion

Future research We foresee the following directions of further research and develop-
ment of Ruler(see Chapter 12 for a further elaboration):

• The additional specification required to shift from equational to algorithmic type
rules is currently done by hand. However, our algorithmic version of the type rules
uses a heuristic for dealing with yet unknown information and finding this unknown
information. We expect that this (and other) heuristics can be applied to similar
problems as an automated strategy.

• Ruler currently generates output for two targets: LATEX and AG. We expect the Ruler
to be useful in many different situations, requiring different kinds of output, such as
material for use in theorem provers.

Related work TinkerType [68], used for Pierce’s book [91], comes closest to Ruler.
Type system features can be combined into type systems. The system provides checks for
valid combinations, and allows the specification of (implementing) code fragments. How-
ever, no automatic code generation is supported, nor checks on the structure of judgements.
The theorem proving environment Twelf [100] is used to describe and proof properties for
programming languages [34], thus answering the POPLmark challenge [8]. Although we
intend to generate descriptions for use in such theorem proving tools, we emphasize that
Ruler is meant as a lightweight tool for the construction of compilers.
Various AST based compiler construction tools exist [1, 4, 109, 31], among which our AG
system. Such tools have in common that they only allow programming on the level of
AST’s, whereas Ruler allows a higher level programming. Furthermore, in our experience,
stepwise AG descriptions became too complex (hence the use of Ruler), and we expect
this the case for similar formalisms as well.
Finally, we also mention the Programmatica project, which provides mechanisms and tools
for proving properties of Haskell programs.

193

11. Ruler: programming type rules

194

12 C   

In the introduction (Section 1.1, page 2) we listed the following research goals:

• EH, explanation and presentation: A compiler for Haskell, plus extensions, fully
described for use in education and research.

• EH, use of explicit and implicit type information: A better cooperation between
(type) information specified by a (EH) programmer and (type) information inferred
by the system.

• Partitioning and complexity: A stepwise approach to explaining a compiler (or
similar large programs).

• Consistency: An organisation of material which guarantees consistency by con-
struction (a priori), instead of by comparison (a posteriori).

We discuss these goals in the following sections. Although not listed as a goal, we also
look into the following list of topics, as these constitute a large part of this thesis, or are
related otherwise:

• EH, formal properties: EH (formal) properties.

• EH, relation to Haskell: EH and Haskell.

• AG experience: Our experience with the AG system.

A high level conclusion is that the key to an understandable and maintainable description
of a working compiler lies in the use of domain specific languages for dealing with the
complexity of such a compiler. Although traditionally many compilers are built without
the use of tools like the AG system, we feel that traditional techniques have reached their
limit, especially in dealing with mature implementations (like GHC (Glasgow Haskell
Compiler)) of complex languages such as Haskell. In the following sections we detail
this conclusion to more specific aspects.

195

12. Conclusion and future work

12.1 EH, explanation and presentation

Discussion Our approach to the explanation of EH shares the focus on implementa-
tion with the approach taken by Jones [48], and shares the focus on the combination of
formalities and implementation with Pierce [91].
However, there are also differences:

• Our focus is on the implementation, which is described by means of various for-
malisms like type rules and Attribute Grammar notation.

• Our compilers are complete, in the sense that all aspects of a compiler are imple-
mented. For example, parsing, error reporting and code generation (in later EH
versions) are included.

• We use type rules as a specification language for the implementation of a compiler;
type rules directly specify the implementation.

Conciseness suffers when features are combined, because a short, to the point, presentation
of an issue can only be constructed thanks to a simplification of that issue, and the reduction
to its bare essentials. On the other hand, a treatment of feature interaction usually suffers,
because of the simplifications required to understand a feature.
The problem is that the understanding of a language feature requires simplicity and isola-
tion, whereas the practical application of that feature requires its co-existence with other
features: these are contradictory constraints. This is a problem that will never be resolved,
because language features are to be used as a solution to a real programmer’s need (that is,
a wider context); a need that can only be understood if stripped of unrelated issues (that is,
a restricted context).
Although the problem of understanding language features, both in isolation and context,
cannot be resolved, we can make it more manageable:

• Specify and explain in terms of differences. This is the approach taken by this the-
sis. The AG system allows separation into attributes, the Ruler system and frag-
ment manipulation tool Shuffle specify in terms of views. All tools provide a simple
mechanism to combine the separated parts: redefinition of values associated with an
attribute (or a similar identification mechanism).

• If separated parts influence each other in combination, then we specify their com-
bination. This is the place where an ordering of separate parts becomes important.
Our tools can be parameterized with an ordering (of views). If separate parts do not
influence each other, they can co-exist as (conceptually) separate computations.

• Emphasize differences in their context. Visual clues as to what has changed and
what remained the same, help to focus on the issue at hand, while not forgetting its
context. The Ruler tool uses colors to accomplish this. However, this has its limits,

196

12.2. EH, use of explicit and implicit type information

for example Fig. 7.16, page 119 and Fig. 7.17, page 120 are likely to require a bit of
study.

• Hide ‘irrelevant’ material. This thesis hides a fair amount of code, making it only
indirectly available. This is not a satisfactory solution, because the need to expose
hidden information depends on the reader’s frame of reference, understanding and
knowledge.

• Render non-linearly. A paper version of an explanation is one-dimensional, under-
standing often is non-linear and associative.

Most of the abovementioned measures facilitate understanding. However, their realisation
requires alternate ways of browsing through material, supported by proper tool(s). Exist-
ing mechanisms for abstraction and encapsulation, like module systems, can help a great
deal, but in our experience a single feature often requires changes crossing traditional en-
capsulation boundaries. Crucial to the success of such a tool would be, in our opinion, the
handling of feature isolation and feature combination.

This thesis and future work We summarize our contribution and future work:

• This thesis: type system specification and implementation are jointly presented.

• Future work: the type system is algorithmically specified; a declarative specification
would benefit understanding but its relationship with the implementation would be
less clear. Our intended approach is to incorporate strategies into Ruler to be able
to automate the translation from declarative to algorithmic specification (see also
Section 12.4).

• This thesis: a stepwise description and implementation.

• Future work: a step is described relative to a previous step; splitting such a step into
(1) an isolated feature description which is (2) explicitly combined with a particular
step would allow for further modularisation of features.

12.2 EH, use of explicit and implicit type information

Discussion EH supports a flexible use of explicitly specified type information:

• Type signatures are exploited as much as possible by employing several strategies
for the propagation to the place (in the AST) where they needed.

• Type signatures may be partially specified. This gives the “all or nothing” type
specification requirement of Haskell a more (user-)friendly face, by a allowing a
gradual shift between explicit and implicit.

197

12. Conclusion and future work

Furthermore, EH supports a flexible use of implicit parameters by allowing explicit param-
eter passing for implicit parameters and by allowing explicitly introduced program values
to be used implicitly for an implicit parameter.
Our approach to the interaction between explicit (higher-ranked) types and type inference
is algorithmic. This is similar to the algorithmic approach taken by Rémy [95], but also
lacks a clear type theoretical characterisation of the types which we can infer. However,
our informal claim is that the notion of “touched by” a quantified type provides an intuitive
invariant of our algorithm. In practice, we expect this to be sufficiently predictive for a
programmer.
The central idea is to allow a programmer to gradually shift between full explicit type
signature specification to implicitly inferred types. We can apply the ‘gradual shift’ design
starting point to other parts of the language as well. For example, the instantiation of
type variables with types now is done implicitly or indirectly. We may well allow explicit
notation a la System F, instead of the more indirect means by specifying (separate) type
signatures and/or type annotations.
We have also implemented explicit kind signatures, but did not discuss these in this thesis.

This thesis and future work We summarize our contribution and future work:

• This thesis: allow a more flexible use and integration (into the type inferencer) of
explicit (type) information.

• Future work: allow explicit specification of other implicit elements of the language
(e.g. System F like notation).

• This thesis: exploitation of type annotations by means of (global) quantifier propa-
gation.

• Future work: formalise quantifier propagation.

12.3 Partitioning and complexity

Discussion In this thesis we have chosen a particular partitioning of the full EH system
into smaller and ordered steps. Although we feel that the chosen partitioning serves the
explanation well, others are possible and perhaps better within different contexts.
Fig. 12.1 intuitively illustrates where we have to make choices when we partition. We can
partition along two dimensions, one for the language constructs (horizontally), and one for
the semantic aspects (vertically). For example, in Chapter 3 we fill in the light grey zone,
ending in Chapter 9 by filling in the dark grey zone. The horizontal dimension corresponds
to AST extensions, the vertical dimension corresponds to attributes and their (re)definition.
Each step describes one or more polygon shaped areas from the two-dimensional space.
Partitioning means selecting which squares are picked for extension and description.

198

12.3. Partitioning and complexity

...

expr: var, con, lam
, app,

expr: app.f

expr: ilam
, iapp

pat expr: ...

type expr: ...

decl: tysig, val

decl: class, instance

...

type inference

type check

impredicative

implicit param

Figure 12.1.: AST and aspects

Fig. 12.1 also shows that complexity increases with the addition of features. Not only
do we have to describe new features, but we also have to adapt the semantics of previous
features as well, hopefully minimizing their interdependencies. Most likely the partitioning
has the least interdependencies; this is similar to proper module design.
Extending EH is not simply a matter of adding a new module. An EH extension requires
changes to the AST, attributes, semantics for attributes, supporting Haskell functions and
type rules. It is unclear how to capture such a group of changes by a module-like mecha-
nism.

This thesis and future work We summarize our contribution and future work:

• This thesis: a partitioning of EH into steps, with tool support (either already existing
(AG) or new (Shuffle, Ruler)).

• Future work: what is a good partitioning, and which mechanisms support the parti-
tioning required for the description and construction of a compiler.

199

12. Conclusion and future work

12.4 Consistency

Discussion Our approach to maintaining consistency between material used for expla-
nation and implementation, is to avoid inconsistencies in the first place. Inconsistencies are
introduced when two (or more) artefacts represent derived information, but are treated as
independent, non-related pieces of information. A change in such an artefact, or the arte-
fact derived from, not accompanied by a corresponding (correct) change in the remaining
related artefacts, results in an inconsistency.
The dangers of inconsistency are therefore twofold:

• Changes are not propagated.

• Changes are made in related artefacts, but the changes are incorrect, that is, incon-
sistent.

This is a general problem. In our particular case we consider it a problem for:

• Implementation (program code) and its incorporation into explanation.

• Formal representation of type rules, and their implementation (AG code).

The first combination often is handled by “copy and paste” of code. For a one-shot product
this usually is not a large problem, but for long-lived products it is. A solution to this prob-
lem consists of mechanisms for sharing text fragments. Both our tool Shuffle and similar
literate programming tools [6] have in common that a shared text fragment is associated
with some identification by which the shared text fragment can be included at different
places.
The second combination suffers the fate of many specifications: they are forgotten after
being implemented. This is also a general problem, because non-automated translation
between artefacts is involved: human translations are seldom flawless. This, of course,
also holds for the artefacts themselves, but translation at least can be automated, provided
a well-defined semantics of the artefacts and their relation.
Type rules and AG implementation correspond to such a degree that it is possible to trans-
late from a common type rule description to an implementation and a visual rendering,
which can be included in text dealing with the formal aspects of type rules. This is the
responsibility of the Ruler tool, which already in its first version turned out to be indis-
pensable for the construction of this thesis. Actually, the Ruler tool started out to reduce
the amount of work involved in typesetting type rules, soon to be extended to generate AG
code when we were confronted with the amount of work required to keep those type rules
consistent with their AG implementation.
The strong point of a tool like Ruler is that it acts, like any compiler, as a substitute for
the proof that implementation and type rules describe the same semantics. And, like any
compiler, optimisations can be performed. We foresee that a tool like Ruler can deal with

200

12.4. Consistency

aspects of the translation from type rule specification to implementation, some of which
are done manually in this thesis:

• In this thesis, equational type rules are implemented by algorithmic ones, which
easily map to AG rules. The transition from equation to algorithm involves a certain
strategy. In this thesis we use HM inference, a greedy resolution of constraints.
Alternate strategies exist [37, 36]; Ruler (or similar tools) can provide abstractions
of such strategies.

• Strategies can be user defined. This thesis uses a representation of yet unknown
information (type variable), a representation of found information (constraints) and
combinatorial behavior (application of constraints as a substitution, type matching,
AST top-down/bottom-up propagation). These, and similar aspects, may well form
the building blocks of strategies.

• This thesis often uses multiple passes over an AST. For example, Chapter 7 describes
a two-step inference for finding polymorphic type information. A more general
purpose variant of this strategy would allow categorisation of found information,
where each pass would find information from a particular category.

• Ruler exploits the syntax-directed nature of type rules. This means that the struc-
ture of an AST determines which rule has to be used. The choice of the right rule
may also depend on other conditions (than the structure of the AST), or a choice
may be non-deterministic. The consequence of this observation is that Ruler has to
deal with multiple levels of rules, transformed into eachother, with the lowest level
corresponding to an AST based target language.

• Ruler uses AG as its target language. In thesis, the rules for type matching (e.g.
Fig. 3.8, page 43), are also syntax-directed, but base their choice on two AST’s (for
types), instead of one. This is a special, but useful, case of the previous item.

• Ruler extends views on type rules by adding new computations, expressed in terms
of holes in a judgement. The final version combines all descriptions; this easily be-
comes too complex (Fig. 7.15, page 118, Fig. 7.17, page 120) to be helpful. Instead,
mechanisms for separation of feature description (say, a feature module or trait) and
feature combination would better serve understanding.

• Ruler compiles to target languages (AG, TEX), but does not proof anything about
the described rules. A plugin architecture would allow the translation to different
targets, in particular, a description suitable for further use by theorem provers, or
other tools.

This thesis and future work We summarize our contribution and future work:

• This thesis: consistency between parts of this thesis and EH implementation by
generating material from shared sources. This is done for (1) type rules and their

201

12. Conclusion and future work

AG implementation (Ruler), and (2) all source code used for the construction of EH
compilers and their inclusion in this thesis.

• Future work: other guarantees and derived information related to consistency, for
example “explain before use” of (program) identifiers occuring in this thesis, or
(automatically generated) indices of used (type system) symbols.

• This thesis: automic generation of type rule implementation.

• Future work: high level (declarative) type rule specification with various mecha-
nisms to automate the translation to an implementation for multiple targets.

12.5 EH, formal properties

Discussion In this thesis we do not make claims about the usual formal properties of a
type system: soundness, completeness, and principality (of type inference). However, we
still can make the following observations:

• EH3 implements Hindley-Milner type inference, which is standard [38, 17], com-
bined with the use of explicit type signatures, which also has been explored [92, 81].

• From EH4 onwards we allow the same expressiveness as System F by means of type
annotations which allow quantifiers at arbitrary positions (in the type annotation).
The key question is what kind of types can be inferred when type annotations are
omitted. We informally argue the following:

– We rely on (classical) Hindley-Milner type inference, hence we inherit its prop-
erties in case no type signatures are specified.

– We propagate known type signatures (specified or generalised by means of HM
inference) to wherever these signatures are needed, so these signatures can be
used as if specified by type annotations.

– We allow polymorphic types to propagate impredicatively, but we do not in-
vent polymorphism other than via HM generalisation. Propagation is based on
the relatively simple notion of “touched by another polymorphic type” (Chap-
ter 7)). This notion can be seen as a characterisation of what we can infer.

These observations are formulated more precisely in Section 6.2 (Theorem 6.4 and Theo-
rem 6.5).

This thesis and future work We summarize our contribution and future work:

• This thesis: we have engineered (but not proven) a type system for exploiting type
annotations.

202

12.6. EH, relation to Haskell

• Future work: further investigate the formal properties of our type inference, in par-
ticular the quantifier propagation.

12.6 EH, relation to Haskell

Discussion EH includes essential features of Haskell; EH is closer to the core language
internally used by GHC [107, 75], in that it allows System F expressiveness [30, 96]. EH
also resembles the core used for the description of the static semantics of Haskell [26]
or used by the language definition [84], in the assumption that syntactic desugaring and
dependency analysis (of identifiers) has been done.
The strong point, however, of EH, is the lifting of restrictions with respect to explicitly
specified information and implicitly inferred information. With a Haskell frontend for
syntactic sugar, and a module mechanism, these strong points are easily made available as
Haskell with extensions.

This thesis and future work We summarize our contribution and future work:

• This thesis: Haskell extensions on top of EH, a simplified Haskell, or, in the form of
acronym: Haskell--++.

• Future work: make EH available via a Haskell frontend. This requires additional
preprocessing with respect to dependency analysis and desugaring, a module system
and completion of code generation (and much more).

12.7 AG experience

Discussion The AG system is heavily used for the description of all EH implementa-
tions. For the description of the EH compilers, the following features of the AG system
proved to be essential:

• The AG notation (in essence) offers a domain specific language for the specification
of tree based computations (catamorphisms).

• The AG system offers mechanisms to split a description into smaller fragments, and
later combine those fragments.

• The AG system allows focussing on the places where something unusual needs to
be done, similar to other approaches [62]. In particular, copy rules allow us to forget
about a large amount of plumbing.

203

12. Conclusion and future work

• A collection of attribute computations can be wrapped into a Haskell function. Al-
though the AG system does not provide notation for higher-order AG [105], this
mechanism can be used to simulate higher-order AG’s as well as use AG for de-
scribing transformations on an AST.

Although the AG system is a simple system it turned out to be a surprisingly useful system,
of which some of the features found their way into the Ruler system as well. However, the
simplicity of our AG system also has its drawbacks:

• Type checking is delegated to AG’s target language: Haskell. As a consequence
errors are difficult to read because AG’s translation is exposed.

• Performance is expected to give problems for large systems. This seems to be pri-
marily caused by the simple translation scheme in which all attributes together live
in a tuple just until the program completes. This inhibits garbage collection of inter-
mediate attributes that are no longer required. It also stops GHC from performing
optimizations. Work to improve this is in progress, based on AG dependency analy-
sis [97].

Attribute grammar systems have been around for a while [58]. We refer to Parigot’s AG
www page [82] and Saraiva’s work [97] for further reading. Alternative systems are FNC-2
[83], Eli [5, 32], and JastAdd (Java based, with some rewriting like Stratego [109, 108])

204

B

[1] Projet CROAP. Design and Implementaiton of Programming Tools.
http://www-sop.inria.fr/croap/, 1999.

[2] Hugs 98.http://www.haskell.org/hugs/, 2003.

[3] C–.http://www.cminusminus.org/, 2004.

[4] ASF+SDF.http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/ASF+SDF, 2005.

[5] Eli: An Integrated Toolset for Compiler Construction.
http://eli-project.sourceforge.net/, 2005.

[6] Literate Programming.http://www.literateprogramming.com/, 2005.

[7] Martin Abadi and Luca Cardelli.A Theory of Objects.Springer, 1996.

[8] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, and Benjamin C.
Pierce.Mechanized metatheory for the masses: The POPLmark challenge.In The 18th
International Conference on Theorem Proving in Higher Order Logics, 2005.

[9] Arthur Baars.Attribute Grammar System.
http://www.cs.uu.nl/groups/ST/Center/AttributeGrammarSystem, 2004.

[10] Arthur Baars and S. Doaitse Swierstra.Syntax Macros (Unfinished draft).
http://www.cs.uu.nl/people/arthurb/macros.html, 2002.

[11] Stef van Bakel.Intersection Type Disciplines in Lambda Calculus and Applicative Term
Rewriting Systems.PhD thesis, Mathematisch Centrum, Amsterdam, 1993.

[12] Richard S. Bird.Using Circular Programs to Eliminate Multiple Traversals of Data.Acta
Informatica, 21:239–250, 1984.

[13] Urban Boquist.Code Optimisation Techniques for Lazy Functional Languages, PhD Thesis.
Chalmers University of Technology, 1999.

[14] Urban Boquist and Thomas Johnsson.The GRIN Project: A Highly Optimising Back End
For Lazy Functional Languages.In Selected papers from the 8th International Workshop on
Implementation of Functional Languages, 1996.

[15] Didier Botlan, Le and Didier Rémy.ML-F, Raising ML to the Power of System F.In ICFP,
2003.

[16] Luis Damas and Robin Milner.Principal type-schemes for functional programs.In
Proceedings of Principles of Programming Languages (POPL), pages 207–212. ACM,
ACM, 1982.

205

Bibliography

[17] Luis Damas and Robin Milner.Principal type-schemes for functional programs.In 9th
symposium Principles of Programming Languages, pages 207–212. ACM Press, 1982.

[18] B.A. Davey and H.A. Priestley.Introduction to Lattices and Order.Cambridge Univ. Press,
2nd edition edition, 2002.

[19] Atze Dijkstra.EHC Web.http://www.cs.uu.nl/groups/ST/Ehc/WebHome, 2004.

[20] Atze Dijkstra and S. Doaitse Swierstra.Explicit implicit parameters.Technical Report
UU-CS-2004-059, Institute of Information and Computing Science, 2004.

[21] Atze Dijkstra and S. Doaitse Swierstra.Typing Haskell with an Attribute Grammar.In
Advanced Functional Programming Summerschool, number 3622 in LNCS. Springer-Verlag,
2004.

[22] Atze Dijkstra and S. Doaitse Swierstra.Typing Haskell with an Attribute Grammar (Part I).
Technical Report UU-CS-2004-037, Department of Computer Science, Utrecht University,
2004.

[23] Atze Dijkstra and S. Doaitse Swierstra.Making Implicit Parameters Explicit.Technical
report, Utrecht University, 2005.

[24] Atze Dijkstra and S. Doaitse Swierstra.Ruler: Programming Type Rules.Technical report,
Utrecht University, 2005.

[25] Dominic Duggan and John Ophel.Type-Checking Multi-Parameter Type Classes.Journal of
Functional Programming, 2002.

[26] Karl-Filip Faxen.A Static Semantics for Haskell.Journal of Functional Programming,
12(4):295, 2002.

[27] Karl-Filip Faxen.Haskell and Principal Types.In Haskell Workshop, pages 88–97, 2003.

[28] Leonidas Fegaras and Tim Sheard.Revisiting catamorphisms over datatypes with embedded
functions (or, programs from outer space).In Principles of Programming Languages, 1996.

[29] Benedict R. Gaster and Mark P. Jones.A Polymorphic Type System for Extensible Records
and Variants.Technical Report NOTTCS-TR-96-3, Languages and Programming Group,
Department of Computer Science, Nottingham, November 1996.

[30] Jean-Yves Girard.Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur.PhD thesis, Université Paris VII, 1972.

[31] GrammaTech.Synthesizer Generator.
http://www.grammatech.com/products/sg/overview.html, 2005.

[32] Rober W. Gray, Simon P. Levi, Vincent P. Heuring, Anthony M. Sloane, and William M.
Waite.Eli: a complete, flexible compiler construction system.Communications of the ACM,
35(2):121–130, 1992.

[33] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler.Type Classes in
Haskell.ACM TOPLAS, 18(2):109–138, March 1996.

[34] Robert Harper.Mechanizing Language Definitions (invited lecture at ICFP05).
http://www.cs.cmu.edu/ rwh/, 2005.

[35] Bastiaan Heeren.Top Quality Type Error Messages.PhD thesis, Utrecht University, Institute
of Information and Computing Sciences, 2005.

206

Bibliography

[36] Bastiaan Heeren and Jurriaan Hage.Type Class Directives.In Seventh International
Symposium on Practical Aspects of Declarative Languages, pages 253 – 267.
Springer-Verlag, 2005.

[37] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra.Generalizing Hindley-Milner Type
Inference Algorithms.Technical Report UU-CS-2002-031, Institute of Information and
Computing Science, University Utrecht, Netherlands, 2002.

[38] J.R. Hindley.The principal type-scheme of an object in combinatory logic.Transactions of
the American Mathematical Society, 146:29–60, December 1969.

[39] Ralf Hinze and Simon Peyton Jones.Derivable Type Classes.In Haskell Workshop, 2000.

[40] Trevor Jim.Rank 2 type systems and recursive definitions.Technical Report MIT/LCS
TM-531, MIT, 1995.

[41] Thomas Johnsson.Attribute grammars as a functional programming paradigm.In Functional
Programming Languages and Computer Architecture, pages 154–173, 1987.

[42] Mark Jones.Exploring the design space for typebased implicit parameterization.Technical
report, Oregon Graduate Institute, 1999.

[43] Mark P. Jones.A system of constructor classes: overloading and implicit higher-order
polymorphism.In FPCA ’93: Conference on Functional Programming and Computer
Architecture, Copenhagen, Denmark, pages 52–61, 1993.

[44] Mark P. Jones.Qualified Types, Theory and Practice.Cambridge Univ. Press, 1994.

[45] Mark P. Jones.Using Parameterized Signatures to Express Modular Structure.In Proceedings
of the Twenty Third Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1996.

[46] Mark P. Jones.Typing Haskell in Haskell.In Haskell Workshop, 1999.

[47] Mark P. Jones.Type Classes with Functional Dependencies.In Proceedings of the 9th
European Symposium on Programming, ESOP 2000,, March 2000.

[48] Mark P. Jones.Typing Haskell in Haskell.http://www.cse.ogi.edu/ mpj/thih/, 2000.

[49] Mark P. Jones and Simon Peyton Jones.Lightweight Extensible Records for Haskell.In
Haskell Workshop. Utrecht University, Institute of Information and Computing Sciences,
1999.

[50] Stefan Kaes.Parametric overloading in polymorphic programming languages .In Proc. 2nd
European Symposium on Programming, 1988.

[51] Wolfram Kahl and Jan Scheffczyk.Named Instances for Haskell Type Classes.In Haskell
Workshop, 2001.

[52] A. Kfoury and J. Wells.Principality and type inference for intersection types using expansion
variables.http://citeseer.ist.psu.edu/kfoury03principality.html, 2003.

[53] A.J. Kfoury and J.B. Wells.A Direct Algorithm for Type Inference in the Rank-2 Fragment
of Second-Order lambda-Calculus.In Proceedings of the 1994 ACM conference on LISP and
functional programming, pages 196–207, 1994.

[54] A.J. Kfoury and J.B. Wells.Principality and Decidable Type Inference for Finite-Rank
Intersection Types.In Principles of Programming Languages, pages 161–174, 1999.

207

Bibliography

[55] A.J. Kfoury and J.B. Wells.Principality and Type Inference for Intersection Types Using
Expansion Variables.Theoretical Computer Science, 311(1-3):1–70, 2003.

[56] Assaf Kfoury, Hongwei Xi, and Santiago M. Pericas.The Church Project.
http://www.church-project.org/, 2005.

[57] Oleg Kiselyov and Chung-chieh Shan.Implict configuration - or, type classes reflect the
value of types.In Haskell Workshop, 2004.

[58] D.E. Knuth.Semantics of context-free languages.Mathematical Systems Theory,
2(2):127–145, 1968.

[59] D.E. Knuth.Literate Programming.Journal of the ACM, (42):97–111, 1984.

[60] Donald E. Knuth.Computers and Typesetting, Volume B, TeX: The Program.Addison-Wesley,
1986.

[61] M.F. Kuiper and S. Doaitse Swierstra.Using Attribute Grammars to Derive Efficient
Functional Programs.In Computing Science in the Netherlands CSN’87, November 1987.

[62] Ralf Lämmel and Simon Peyton Jones.Scrap your boilerplate: a practical design pattern for
generic programming.In Types In Languages Design And Implementation, pages 26–37,
2003.

[63] Konstantin Laufer and Martin Odersky.Polymorphic Type Inference and Abstract Data
Types.Technical Report LUC-001, Loyola University of Chicago, 1994.

[64] J. Launchbury and SL. Peyton Jones.State in Haskell.
http://citeseer.nj.nec.com/details/launchbury96state.html, 1996.

[65] Daan Leijen and Andres Löh.Qualified types for MLF.In ICFP, 2005.

[66] Xavier Leroy.Manifest types, modules, and separate compilation.In Principles of
Programming Languages, pages 109–122, 1994.

[67] Xavier Leroy.Applicative Functors and Fully Transparent Higher-Order Modules.In
Principles of Programming Languages, pages 142–153, 1995.

[68] Michael Y. Levin and Benjamin C. Pierce.TinkerType: A Language for Playing with Formal
Systems.http://www.cis.upenn.edu/ milevin/tt.html, 1999.

[69] Jeffrey R. Lewis, Mark B. Shields, Erik Meijer, and John Launchbury.Implicit Parameters:
Dynamic Scoping with Static Types.In Proceedings of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston,
Massachusetts, pages 108–118, January 2000.

[70] Mark Lillibridge.Translucent Sums: A Foundation for Higher-Order Module Systems.PhD
thesis, School of Computer Science, Carnegie Mellon University, 1997.

[71] Andres Löh.Exploring Generic Haskell.PhD thesis, Utrecht University, Department of
Information and Computing Sciences, 2004.

[72] Andres Löh.lhs2TeX.http://www.cs.uu.nl/people/andres/lhs2tex/, 2004.

[73] David B. MacQueen.Using dependent types to express modular structure.In Principles of
Programming Languages, pages 277–286, 1986.

[74] G. Malcolm.Homomorphisms and promotability.In J.L.A. van Snepscheut, editor,
Mathematics of Program Construction, number 375 in LNCS, pages 335–347, 1989.

208

Bibliography

[75] Simon Marlow.The Glasgow Haskell Compiler.http://www.haskell.org/ghc/, 2004.

[76] R. Milner.A theory of type polymorphism in programming.Journal of Computer and System
Sciences, 17(3), 1978.

[77] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of Standard
ML (Revised).MIT Press, 1997.

[78] John C. Mitchell and Gordon D. Plotkin.Abstract Types Have Existential Type.ACM
TOPLAS, 10(3):470–502, July 1988.

[79] Martin Odersky and Konstantin Laufer.Putting Type Annotations to Work.In Principles of
Programming Languages, pages 54–67, 1996.

[80] Martin Odersky, Martin Sulzmann, and Martin Wehr.Type Inference with Constrained Types.
In Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL
4), 1997.

[81] Martin Odersky, Christoph Zenger, and Matthias Zenger.Colored Local Type Inference.In
Principles of Programming Languages, number 3, pages 41–53, March 2001.

[82] Didier Parigot.Attribute Grammars Home Page.
http://www-rocq.inria.fr/oscar/www/fnc2/attribute-grammar-people.html,
1998.

[83] Didier Parigot.The Fnc-2 Attribute Grammar System.
http://www-rocq.inria.fr/oscar/www/fnc2/littlefnc2.html, 1998.

[84] Simon Peyton Jones.Haskell 98, Language and Libraries, The Revised Report.Cambridge
Univ. Press, 2003.

[85] Simon Peyton Jones, Mark Jones, and Erik Meijer.Type classes: an exploration of the design
space.In Haskell Workshop, 1997.

[86] Simon Peyton Jones and Mark Shields.Lexically-scoped type variables.In ICFP, 2003.

[87] Simon Peyton Jones and Mark Shields.Practical type inference for arbitrary-rank types.
http://research.microsoft.com/Users/simonpj/papers/putting/index.htm,
2004.

[88] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.Wobbly types: type
inference for generalised algebraic data types, 2004.

[89] Simon L. Peyton Jones.The Implementation of Functional Programming Languages.Prentice
Hall, 1987.

[90] Frank Pfenning.Unification and Anti-Unification in the Calculus of Constructions.In Sixth
Annual IEEE Symposium on Logic in Computer Science, pages 74–85, 1991.

[91] Benjamin C. Pierce.Types and Programming Languages.MIT Press, 2002.

[92] Benjamin C. Pierce and David N. Turner.Local Type Inference.ACM TOPLAS, 22(1):1–44,
January 2000.

[93] Francois Pottier and Yann Régis-Gianas.Stratified type inference for generalized algebraic
data types (submitted).
http://pauillac.inria.fr/ fpottier/biblio/pottier.html, 2005.

[94] Francois Pottier and Didier Rémy.The essence of ML type inference, chapter 10, pages
389–489.MIT Press, 2005.

209

Bibliography

[95] Didier Rémy.Simple, partial type-inference for System F based on type-containment.In
ICFP, 2005.

[96] J.C. Reynolds.Towards a theory of type structure.In Proceedings Colloque sur la
Programmation, number 19 in LNCS, pages 408–425, 1974.

[97] Joao Saraiva.Purely Functional Implementation of Attribute Grammars.PhD thesis, Utrecht
University, 1999.

[98] Jan Scheffzcyk.Named Instances for Haskell Type Classes.Master’s thesis, Universitat der
Bundeswehr München, 2001.

[99] Chung-chieh Shan.Sexy types in action.ACM SIGPLAN Notices, 39(5):15–22, May 2004.

[100] Rob Simmons.The Twelf Project (Wiki Home).
http://fp.logosphere.cs.cmu.edu/twelf/, 2005.

[101] Utrecht University Software Technology Group.UUST library.
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/, 2004.

[102] M. Srensen and P. Urzyczyn.Lectures on the Curry-Howard isomorphism.Technical Report
TOPPS D-368, Univ. of Copenhagen, 1998.

[103] Peter J. Stuckey and Martin Sulzmann.A Theory of Overloading.Technical Report
TR2002/2, Dept. of Computer Science and Software Engineering, The University of
Melbourne, Parkville 3052, Australia, June 2002.

[104] S. Doaitse Swierstra, P.R. Azero Alocer, and J. Saraiava.Designing and Implementing
Combinator Languages.In Doaitse Swierstra, Pedro Henriques, and José Oliveira, editors,
Advanced Functional Programming, Third International School, AFP’98, number 1608 in
LNCS, pages 150–206. Springer-Verlag, 1999.

[105] S. Doaitse Swierstra and H.H. Vogt.Higher order attribute grammars, Lecture notes of the
International Summer School on Attribute Grammars, applications and systems.Technical
Report RUU-CS-91-14, Utrecht University, 1991.

[106] Simon Thompson.Type Theory and Functional Programming.Addison-Wesley, 1991.

[107] Andrew Tolmach.An External Representation for the GHC Core Language (Draft for
GHC5.02).http://www.haskell.org/ghc/documentation.html, 2001.

[108] Eelco Visser.Stratego: A language for program transformation based on rewriting strategies.
System description of Stratego 0.5.In A. Middeldorp, editor, Rewriting Techniques and
Applications (RTA’01), number 2051 in LNCS, pages 357–361. Springer-Verlag, 2001.

[109] Eelco Visser.Stratego Home Page.
http://www.program-transformation.org/Stratego/WebHome, 2005.

[110] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.Boxy type inference for
higher-rank types and impredicativity (submitted to ICFP2005), 2005.

[111] Phil Wadler.Theorems for free! In 4’th International Conference on Functional Programming
and Computer Architecture, September 1989.

[112] Phil Wadler.Proofs are Programs: 19th Century Logic and 21st Century Computing.
http://www.research.avayalabs.com/user/wadler/papers/frege/frege.pdf,
November 2000.

210

Bibliography

[113] Phil Wadler.The Girard-Reynolds isomorphism .In Theoretical Aspects of Computer
Software, October 2001.

[114] Phil Wadler and Stephen Blott.How to make ad-hoc polymorphism less ad-hoc.In
Conference Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 60–76, 1988.

[115] Philip Wadler.Deforestation: transforming programs to eliminate trees.In Theoretical
Computer Science, (Special issue of selected papers from 2’nd European Symposium on
Programming), pages 231–248, 1990.

[116] J.B. Wells.Typability and Type Checking in System F Are Equivalent and Undecidable.
Annals of Pure and Applied Logic, 98(1-3):111–156, 1998.

211

Bibliography

212

S  “S 
H”

Computerprogramma’s worden geschreven met behulp van computerprogramma’s, in
het bijzonder programma’s die een specificatie van een programma vertalen naar een
werkend programma. Zo’n specificatie wordt beschreven in een programmeertaal. De
huidige trend is dat een programmeertaal, en de daarbij horende implementatie (dwz de
realisatie) van de vertaler voor zo’n programeertaal, steeds meer van het werk van een
programmeur uit handen neemt. Programmeertaal en implementatie zelf worden daardoor
ingewikkelder en steeds moeilijker te implementeren. Het proefschrift ”Stapsgewijs door
Haskell” is een experiment in het stapsgewijs beschrijven van een implementatie van de
(functionele) programmeertaal Haskell met als doel een begrijpelijke en consistente uitleg
van die implementatie. Als onderdeel van deze beschrijving worden eveneens enkele
uitbreidingen op Haskell beschreven. Het proefschrift representeert een tussenstadium in
de ontwikkeling van een complete implementatie met bijbehorende beschrijving, en zal als
project hierna voortgezet worden. Essentieel voor het welslagen van dit experiment en de
voortzetting ervan is het gebruik van geautomatiseerde oplossingen voor de problemen die
handmatig niet te garanderen zijn: consistentie en opsplitsing in stappen.
De reden om deze reis te beginnen is de observatie dat Haskell [84] langzamerhand een
gecompliceerde programmeertaal is geworden. Haskell incorporeert veel (experimentele)
programmeerconstructies die het programmeren zowel vergemakkelijken als versnellen.
Vertalers voor Haskell (e.g. GHC [75]) die ook daadwerkelijk gebruikt worden zijn in de
loop van de jaren zo omvangrijk geworden dat het begrijpen van en experimenteren met
zulke vertalers ten behoeve van onderzoek erg ingewikkeld geworden is. Daarnaast blijft
het experimenteren beperkt tot kleinere implementaties [46], waarbij de aandacht ligt bij
een facet van de complete taal en/of implementatie.
Een tweede reden is dat experimenten met Haskell, of het ontwerpen van
programmeertalen in het algemeen, meestal plaats vinden in de theoretische setting. De
focus ligt dan op het bewijzen van formele eigenschappen. Op het praktische vlak wordt
ook geëxperimenteerd, maar vaak is het dan niet duidelijk hoe de theorie en praktijk van
een experiment zich onderling verhouden.
De bijdrage van dit proefschrift is allereerst het samenbrengen van een implementatie van
Haskell, de beschrijving van deze implementatie, en de bijbehorende formele vastlegging

213

Samenvatting

in de vorm van typeregels. De opzet van het proefschrift is zodanig dat de onderlinge
consistentie van deze aspecten wordt gegarandeerd. Hierdoor wordt een verbinding gelegd
tussen theorie en praktijk.

214

A

Without my promotor Doaitse Swierstra, this thesis would not have been created. Not only
did he give me the opportunity to embark on this thesis journey, during lively discussions
he also sparked the ideas implemented in the EHC project described by this thesis.
Johan Jeuring, Oege de Moor, and Lex Augusteijn provided, in their role as reading
committee member, valuable feedback. The comments of anonymous reviewers of the
included papers were also very helpful.
The Software Technology group is a great place to be. Although occasionally educational
obligations blocked my work on this thesis, my colleagues have relieved me of many other
educational and orginisational tasks.
Piet van Oostrum and Andres Löh have been helpful with providing some tweaking for
respectively TEX and lhs2TeX.
Ineke has taken upon her much of the care and worry our mother nowadays requires. She
also knows me well enough to ignore my complaining during the last months of thesis
writing.
Gerard Legeland, with whom I share the stress relieving pleasure of making music and
sitting in his garden.
Finally, but not the least, I thank those who walk with me on the Buddhist path. The
(meditation) training, which is part of Buddhism, forms the foundation upon which any
life, and thus my life, can be lived in peace. A certain amount of peace of mind turned out
to be an essential ingredient for the making of this thesis.

215

Acknowledgements

216

A N

A.1 Legenda of notation

Notation Meaning
σ type
σk expected/known type
� any type
v type variable
ι identifier
i value identifier
I (type) constructor identifier,

type constant
Γ assumptions, environment,

context
C constraints, substitution
Ck..l constraint composition of

Ck... Cl

6 subsumption, “fits in”
relation

σQ σ with a quantifier
σ¬Q σ without a quantifier
f fixed type variable (a.k.a.

skolem type)
o options to �

Notation Meaning
� σ for quantifier propagation
σQ σ with a quantifier
σ¬Q σ without a quantifier
C C for quantifier propagation
M meet of two types
O join of two types
� 6, M or O
H type alternative hardness

(hard or soft)
Hh hard type alternative
Hs soft type alternative
N type alternative

need/context (offered
or required)

No offered type alternative
Nr required type alternative
ϕ type alternative
ϑ translated code
V co-, contravariant context
V+ covariant context
V− contravariant context
π predicate
$ predicate wildcard

(collection of predicates)

217

A. Notation

A.2 Term language

Values (expressions, terms):
eF int | char literals
| i program variable
| e e application
| let d in e local definitions
| (e, ..., e) tuple
| λp→ e abstraction
| e :: t type annotated expression
| case e of p→ e case expression
| (l = e, ...) record
| (e | l B e, ...) record update
| e.l record selection
| (e | l = e, ...) record extension
| e ∼e impredicative application
| e (!ef π!) explicit implicit application
| λ(!if π!)→ e explicit implicit abstraction

Declarations of bindings:
dF i :: t value type signature
| p = e value binding
| data t = I t data type
| class pr ⇒ pr where d class
| instance pr ⇒ pr where d introduced instance
| instance if pr ⇒ pr where d named introduced instance
| instance i :: pr ⇒ pr where d named instance
| instance ef pr value introduced instance

Pattern expressions:
pF int | char literals
| i pattern variable
| i @p pattern variable, with subpattern
| (p, ..., p) tuple pattern
| p :: t type annotated pattern
| (r | l = p) record pattern

218

A.2. Term language

Type expressions:
tF Int | Char type constants
| t → t function type
| (t, ..., t) tuple type
| i type variable
| ∀i.t universal quantification
| ∃i.t existential quantification
| (l :: σ, ...) record

Predicate expressions:
prF I t class predicate
| pr ⇒ pr predicate transformer/abstraction
| t\l record lacks label predicate

Identifiers:
ιF i lowercase: (type) variables
| I uppercase: (type) constructors
| l field labels

219

A. Notation

A.3 Type language

Types:
σF Int | Char literals
| v variable
| σ→ σ abstraction
| σ σ type application
| ∀v.σ universally quantified type
| f (fresh) type constant (a.k.a. fixed type variable)
| ∃α.σ existentially quantified type
| (l :: σ, ...) record
| π⇒ σ implicit abstraction

Predicates:
πF I σ class predicate
| π⇒ π predicate transformer/abstraction
| σ\l record lacks label predicate

Types for quantifier propagation:
σF ...
| � type alternatives

�F v [ϕ] type alternatives

Types for computing meet/join:
σF ...
| vPσ both
| � absence of type information

Type alternative:
ϕF σ :: H / N type alternative
NF No ‘offered’ context
| Nr ‘required’ context

HF Hh ‘hard’ constraint
| Hs ‘soft’ constraint

220

B R   Ruler

The following overview is automatically generated.
EH version Ruler view rules
1 K . . . . .. . .

. . . . . . . .
. . . . . . . .
. .. .

2 C . . . . .. . .
. . . . . . . .
. . . . . . . .
. .. .

3 HM . . . . .. . .
. . . . . . . .
. . . . . . . .
. .. .

4 EX . . . . .. . .
. . . . . . . .
. . . . . . . .
. .. .

5 DT . . . .
6 DT . . . .
7 DT . . . .
8 CG . . . .
9 P . . . .
10 P . . . .
11 P
4_2 I2 . . . . .. . .

. . . . . . . .
. . . . . . . .
. .. .

6_4

221

B. Rules generated by Ruler

222

C U 

C.1 Parser combinators

Combinator Meaning Result
p 〈∗〉 q p followed by q result of p applied to result of q
p 〈|〉 q p or q result of p or result of q
pSucceed r empty input ε r
f 〈$〉 p ≡ pSucceed f 〈∗〉 p
pKey "x" symbol/keyword x "x"

p 〈∗∗〉 q p followed by q result of q applied to result of p
p ‘opt‘ r ≡ p 〈|〉 pSucceed r
p 〈??〉 q ≡ p 〈∗∗〉 q ‘opt‘ id
p 〈∗ q, p ∗〉 q, f 〈$ p variants throwing away

result of angle missing
side

pFoldr listAlg p sequence of p’s foldr c n (result of all p’s)
pList p pFoldr ((:), []) p
pChainr s p p’s (>1) separated by s’s result of s’s applied to results of p’s aside

C.2 Pretty printing combinators

Combinator Result
p1 >‖< p2 p1 besides p2, p2 at the right
p1 >#< p2 same as >‖< but with an additional space in between
p1 >−< p2 p1 above p2
pp parens p p inside parentheses
text s string s as PP Doc
pp x pretty print x (assuming instance PP x) resulting in a PP Doc

223

C. Used libraries

224

I

λ-calculus, 7

abstract syntax, 28
abstract syntax tree, 14
aspect, 15
assumptions, 37
AST, 14
attribute, 15
attributes, 15

binding group, 53

children, 15
class declaration, 132
closing, 125
co-variant, 94
concrete syntax, 28
constraint, 59
constructor, 15
context, 37
contra-variance, 95
contravariance, 44
Copy rule, 23

defining, 186
defining position, 189
dictionary transformer, 140

EH typing, 91
environment, 37
evidence, 140
existential type, 123
existentially quantified type, 123
expected, 42
explicit, 140

fields, 15
fitting, 33

fixed, 76
fixed type variable, 80
fresh type variable, 67

global quantifier propagation, 101, 104

HM typing, 91
holes, 175, 178

implicit, 140
impredicativity, 87, 89, 101
impredicativity inference, 101
infinite type, 63
inherited, 15, 184
instance declarations, 132
instantiation, 77, 78

judge, 175
judgement, 35
judgeshape, 175, 178
judgespec, 175
judgeuse, 175

known, 42

local quantifier propagation, 101

monotypes, 176

named type wildcard, 160
node, 15
nonterminal, 15

occurs check, 63
opening, 125

partial type signature, 9
Partial type signatures, 159

225

Index

pattern function, 68
plain, 76
polymorphic types, 176
polytypes, 176
predicate wildcard, 161
predicate wildcard variable, 148
primary hole, 188
productions, 15

Quantifier location inference, 159
quantifier location inference, 159
quantifier propagation, 87

rank, 86
rank position, 86
relation, 176, 182
rexpr, 178
rule, 175
rulesets, 175

scheme, 175, 178
SELF, 26
skolemized type variable, 76
specialization, 78
substitution, 60, 177
synthesized, 15, 184
System F typing, 91

tangling, 192
target, 178
threaded, 23, 185
type, 33
type alternative hardness, 106
type alternative need, 105
type alternative offering, 105
type alternative requirement, 106
type alternatives, 105
type checking, 39
type expressions, 34
type inferencing, 39
type join, 108
type meet, 108
type scheme, 77, 87
type signatures, 34
type variable, 57, 58
type wildcard, 159, 161
typing rule, 35

use, 186

variants, 15
view hierarchy, 175
views, 6, 171, 175

weaving, 192

226

T   IPA D S

J.O. Blanco. The State Operator in Process Alge-
bra. Faculty of Mathematics and Computing Science,
TUE. 1996-01

A.M. Geerling. Transformational Development of
Data-Parallel Algorithms. Faculty of Mathematics
and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs:
Models, Methods, and Implementation. Faculty of
Mathematics and Computer Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search. Faculty
of Mathematics and Computing Science, TUE. 1996-
04

M.H.G.K. Kesseler. The Implementation of Func-
tional Languages on Parallel Machines with Distrib.
Memory. Faculty of Mathematics and Computer Sci-
ence, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard Real-
Time Systems. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchronization,
and Fault-Tolerance. Faculty of Mathematics and
Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Program
Construction. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and its
Denotational Dual. Faculty of Mathematics and Com-
puter Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Circuits.
Faculty of Mathematics and Computing Science,
TUE. 1996-10

N.W.A. Arends. A Systems Engineering Specification
Formalism. Faculty of Mechanical Engineering, TUE.
1996-11

P. Severi de Santiago. Normalisation in Lambda Cal-
culus and its Relation to Type Inference. Faculty of
Mathematics and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Partition Re-
finement for Model Checking. Faculty of Mathematics
and Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Seman-
tics. Faculty of Mathematics and Computer Science,
VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small
Treewidth. Faculty of Mathematics and Computer
Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in
Context. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types.
Faculty of Mathematics and Computing Science,
TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in Logic
and Mathematics. Faculty of Mathematics and Com-
puting Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit
Substitution. Faculty of Mathematics and Computing
Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Fac-
ulty of Mathematics and Computing Science, TUE.
1997-06

F.A.M. van den Beuken. A Functional Approach to
Syntax and Typing. Faculty of Mathematics and Infor-
matics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing. Fac-
ulty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event Sim-
ulator for Systems Engineering. Faculty of Mechani-
cal Engineering, TUE. 1998-02

227

J. Verriet. Scheduling with Communication for Mul-
tiprocessor Computation. Faculty of Mathematics and
Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-Power
80C51 Microcontroller. Faculty of Mathematics and
Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design with
Petri Nets and Process Algebra. Faculty of Mathemat-
ics and Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and
Subtyping – A Relational Model. Faculty of Mathe-
matics and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-
based Parsing. Faculty of Computer Science, UT.
1999-02

J.P.L. Segers. Algorithms for the Simulation of Sur-
face Processes. Faculty of Mathematics and Comput-
ing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolution-
ary Search. Faculty of Mathematics and Natural Sci-
ences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study on In-
decisiveness in Sample Selection. Faculty of Mathe-
matics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in Real-
Time Distributed Databases. Faculty of Mathematics
and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax and
Semantics. Faculty of Mathematics and Computing
Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiabil-
ity problems. Faculty of Mathematics and Computing
Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols with
Formal Methods. Faculty of Computer Science, UT.
1999-09

P.R. D’Argenio. Algebras and Automata for Timed
and Stochastic Systems. Faculty of Computer Science,
UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid
Systems. Faculty of Mechanical Engineering, TUE.
1999-11

J. Zwanenburg. Object-Oriented Concepts and
Proof Rules. Faculty of Mathematics and Computing
Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Pre-
diction System. Faculty of Mathematics and Natural
Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of
Attribute Grammars. Faculty of Mathematics and
Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Parallel
Program Construction. Faculty of Mathematics and
Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in the
Dutch Republic. Faculty of Mathematics and Com-
puter Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified approach
to the verification of distributed algorithms. Faculty
of Mathematics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design of
Delay-Insensitive Communicating Processes. Faculty
of Mathematics and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer Aided Verifi-
cation of Protocols. Faculty of Science, KUN. 2000-
04

P.H.F.M. Verhoeven. The Design of the MathSpad
Editor. Faculty of Mathematics and Computing Sci-
ence, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Packag-
ing Plant. Faculty of Mechanical Engineering, TUE.
2000-06

M. Franssen. Cocktail: A Tool for Deriving Correct
Programs. Faculty of Mathematics and Computing
Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Hetero-
geneous Applications. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Language.
Faculty of Mathematics and Natural Sciences, RUG.
2000-10

M. Jelasity. The Shape of Evolutionary Search Dis-
covering and Representing Search Space Structure.
Faculty of Mathematics and Natural Sciences, UL.
2001-01

R. Ahn. Agents, Objects and Events a computational
approach to knowledge, observation and communica-
tion. Faculty of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java programs in
higher order logic using PVS and Isabelle. Faculty
of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and se-
mantics. Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualization.
Faculty of Natural Sciences, Mathematics and Com-
puter Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing of
Event Sequences. Faculty of Mathematics and Com-
puting Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.
Faculty of Mathematics and Natural Sciences, UL.
2001-08

M.H. Lamers. Neural Networks for Analysis of Data
in Environmental Epidemiology: A Case-study into
Acute Effects of Air Pollution Episodes. Faculty of
Mathematics and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking. Fac-
ulty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concurrency
control and recovery protocols. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presentation of for-
mal mathematical documents. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A simula-
tion approach using χ. Faculty of Mechanical Engi-
neering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction tech-
niques for model checking. Faculty of Mathematics
and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent
Data Analysis: theoretical and experimental aspects.
Faculty of Mathematics and Natural Sciences, UL.
2002-01

V. Bos and J.J.T. Kleijn. Formal Specification and
Analysis of Industrial Systems. Faculty of Mathemat-
ics and Computer Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy
Software Systems. Faculty of Natural Sciences, Math-
ematics and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Alge-
bra. Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction: Al-
gorithms and Complexity. Faculty of Mathematics
and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification
of Probabilistic, Real-time and Parametric Systems.
Faculty of Science, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular Computing. Fac-
ulty of Mathematics and Natural Sciences, UL. 2002-
07

A. Fehnker. Citius, Vilius, Melius: Guiding and
Cost-Optimality in Model Checking of Timed and Hy-
brid Systems. Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing.
Faculty of Mathematics and Natural Sciences, UL.
2002-09

D. Tauritz. Adaptive Information Filtering: Concepts
and Algorithms. Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Process
Algebra. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Seman-
tical Models. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty
of Natural Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Computa-
tion to Constraint Satisfaction and Data Mining. Fac-
ulty of Mathematics and Natural Sciences, UL. 2002-
14

S. Andova. Probabilistic Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of
Mathematics and Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage for Video
on Demand. Faculty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Techniques
for component composition and construction. Faculty
of Natural Sciences, Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed Source
Code Representations. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of
Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in Pro-
cess Algebras with Data and Timing. Faculty of Math-
ematics and Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of Catalytic Re-
actions. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary
Storage. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annotation –
CoMPAs. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics of
Object-based Software: a Foundational Approach.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Ap-
proach to the Modeling of Collaboration Between Sys-
tem Components. Faculty of Mathematics and Natural
Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Approach
to Software Components. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the Dif-
ferencing Method. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and Their
Use in Interactive Theorem Proving. Faculty of Math-
ematics and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing – Splicing
and Membrane systems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty of
Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for
Home Environments. Faculty of Mathematics and
Computer Science and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction and Prob-
abilistic Specification Formats. Faculty of Sciences,

Division of Mathematics and Computer Science,
VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a Type-
Theoretical Formalization and Applications. Fac-
ulty of Science, Mathematics and Computer Science,
KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargaining
Games: An Evolutionary Investigation of Fundamen-
tals, Strategies, and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques for the
Automated Testing of Reactive Systems. Faculty of
Mathematics and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Represen-
tations, Algorithms and Proofs. Faculty of Science,
Mathematics and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of Math-
ematics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms for
Car Navigation. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Processing
Using Conditionally Guaranteed Budgets. Faculty of
Mathematics and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Systems.
Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Economics.
Faculty of Technology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation Us-
ing a Single Base Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Verified
Distribution. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-oriented
Editor for Structured Documents. Faculty of Mathe-
matics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Prediction
of Quality Attributes for Component-Based Software
Architectures. Faculty of Mathematics and Computer
Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Machine
Control by Predictive-Reactive Scheduling. Faculty
of Mechanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System for Multi-
threaded Java -Theory and Tool Support- . Faculty of
Mathematics and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in Bone
Tissue. Faculty of Biomedical Engineering, TU/e.
2005-02

C.N. Chong. Experiments in Rights Control - Expres-
sion and Enforcement. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free Parallel
Algorithms. Faculty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of
Internet Applications. Faculty of Mathematics and
Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architecting - A
Systematic Approach to Developing Future-Proof Sys-
tem Architectures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techniques in
Security and Fault-Tolerance. Faculty of Electrical
Engineering, Mathematics & Computer Science, UT.
2005-07

I. Kurtev. Adaptability of Model Transformations.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth -
Lower Bounds and Network Reliability. Faculty of
Science, UU. 2005-09

O. Tveretina. Decision Procedures for Equality
Logic with Uninterpreted Functions. Faculty of Math-
ematics and Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Populations in
Dynamic Environments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Program-
ming: Classification and Symbolic Regression. Fac-
ulty of Mathematics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Error Messages. Fac-
ulty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hybrid
Systems using Simulation Relations. Faculty of Sci-
ence, Mathematics and Computer Science, RU. 2005-
14

M.R. Mousavi. Structuring Structural Operational
Semantics. Faculty of Mathematics and Computer
Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabilistic
Systems. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure of
pi-Calculus Processes with Replication. Faculty of
Mathematics and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint Solvers. Faculty
of Natural Sciences, Mathematics, and Computer Sci-
ence, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of Source
Code by Parsing and Rewriting. Faculty of Natural
Sciences, Mathematics, and Computer Science, UvA.
2005-19

M.Valero Espada. Modal Abstraction and Replica-
tion of Processes with Data. Faculty of Sciences, Di-
vision of Mathematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell. Faculty of
Science, UU. 2005-21

	Introduction
	Overview
	A short EH tour

	Attribute Grammar (AG) system tutorial
	Haskell and Attribute Grammars (AG)
	Repmin a la Haskell
	Repmin a la AG
	Parsing directly to semantic functions
	More features and typical usage: a pocket calculator

	EH 1: Typed -calculus
	Concrete and abstract syntax
	Types
	Checking types
	Conclusion and remarks

	EH 2: Monomorphic type inferencing
	Type variables
	Constraints
	Type inference for expressions (Expr)
	Type inference for pattern expressions (PatExpr)
	Declarations (Let, Decl)
	Conclusion

	EH 3: Polymorphic type inferencing
	Type language
	Type inferencing
	Conclusion

	EH 4: Local quantifier propagation
	Motivating examples
	Design overview
	It all boils down to fitting
	Type inference
	Conclusion

	EH 4: Global quantifier propagation
	Design overview
	Finding possible quantifiers
	Computing actual quantifiers
	Impredicativity inference
	Related work, discussion

	EH 4: Existential types
	Motivating examples
	Design overview
	Type matching
	Impredicativity inference and type inference
	Related work, discussion

	Making implicit parameters explicit
	Introduction
	Preliminaries
	Implicit parameters
	Implementation
	Discussion and related work
	Conclusion

	Partial type signatures
	Partial type signatures
	Quantifier location inference

	Ruler: programming type rules
	Introduction
	Ruler overview
	Preliminaries
	Describing typing rules using Ruler notation
	Extending to an algorithm
	Extensions for AG code generation
	Discussion, related work, conclusion

	Conclusion and future work
	EH, explanation and presentation
	EH, use of explicit and implicit type information
	Partitioning and complexity
	Consistency
	EH, formal properties
	EH, relation to Haskell
	AG experience

	References
	Samenvatting
	Acknowledgements
	Notation
	Legenda of notation
	Term language
	Type language

	Rules generated by Ruler
	Used libraries
	Parser combinators
	Pretty printing combinators

	Index

