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1 Semiconductor nanostructures

1.1 Scope and outline of this thesis

Semiconductor nanostructures have received much attention from chemists and
physicists in the last decade due to the fact that their electrical and optical proper-
ties can be very different from those of bulk semiconductor crystals. The optical
and electrical properties of semiconductor nanostructures can be tailored to a large
extent by the dimensions of the crystals. The various effects that occur due to spa-
tial confinement of electrons in such structures are of scientific importance. In
addition, semiconductor nanostructures are very promising for a number of appli-
cations in the opto-electronic industry.

Semiconductor nanostructures will show size-dependent properties different
from those of a macroscopic semiconductor if one or more dimensions of the
structure is in the same range as the length scale of a physical quantity ( e.g.
wavelength of light, wavelength of electrons, electrostatic length scales). For in-
stance, porous semiconductors with random structures and pores will strongly
scatter photons with a wavelength similar to the dimensions of the structures and
pores. Macroporous n-type GaP is a random network with structures of dimen-
sions in the 150-300 nm range. At present, macroporous GaP is the strongest
known scattering medium for visible light [1], [2]. The electrical properties of
such a semiconductor network can also be extraordinary. For instance, the elec-
tron depletion layer, with a width in the 10-50 nm range, can ”permeate” the
porous network giving rise to a three-dimensional interfacial region. As a result,
the electrical or electrochemical capacitance of such a system can be many orders
of magnitude larger than that of a flat interface [3], [4]. Furthermore, random
semiconductor networks with dimensions in the 100 nm range show very efficient
separation of photogenerated electrons and holes, due to the fact that the diffusion
length of the minority carrier is close to the size of the structures in the network
[5].

Long-range electron transport in random networks of semiconductors has been
studied extensively. It was generally found that electron diffusion is extremely
slow. For example, the effective ”long-range” mobility of the conduction elec-
trons in n-type macroporous GaP can be five orders of magnitude smaller than in
a bulk GaP crystal [6]. This low mobility is due to multiple trapping/detrapping
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8 Chapter 1

of the conduction electrons in interfacial states. Although interfacial trap states
can thus play an important role in the attenuation of long-range transport, it has
proven very difficult, however, to quantify the contribution of surface trapping in
long-range transport by independent methods. Therefore, it would be of interest
to measure the trap-free conduction mobility µ of electrons in a porous semicon-
ductor.

The first part of this thesis (chapters 2 and 3) presents a study of the short-
range mobility of conduction electrons in macroporous n-type GaP. The complex
dielectric constant of macroporous GaP in the 1010 Hz region is determined by
measuring the reflection of microwaves on a cavity loaded with a porous sample.
During one oscillation period of the electromagnetic wave the electrons, resid-
ing in the central part of the porous structure, travel over a distance of about one
nanometer; the electronic transport involves only very small distances and is not
affected by the geometrical topology of the sample. An analysis of the results
provides the short-range trap-free mobility which differs significantly from the
mobility of conduction electrons in a bulk crystal of GaP, and orders of magnitude
from the long-range mobility determined by multiple trapping in macroporous
GaP. In addition, time-resolved microwave reflection measurements in the ns-µs
region allow us to measure the extension/shrinking of the depletion barriers in the
n-type GaP network due to photogeneration/recombination of conduction elec-
trons. In such a way, we were able to study the kinetics of electron-hole surface
recombination in macroporous n-type GaP. The method to determine the com-
plex dielectric constant from microwave conductivity measurements is explained
in chapter 2. The microwave experiments on macroporous GaP are presented in
chapter 3.

Another interesting size-effect occurs when the dimensions of the semicon-
ductor are further reduced to below ten nanometer, such that they are smaller
than the wavelength of conduction electrons in bulk semiconductors. The elec-
tron standing waves have to ”fit” the size of the semiconductor nanocrystal; this
leads to discrete levels for conduction electrons and valence holes. These discrete
energy levels and the HOMO-LUMO band gap will strongly depend on the di-
mensions of the crystal. For spherical nanocrystals, the electrons are expected to
move in a spherically symmetric confinement potential, where the eigenstates can
be classified as S,P,D, ... orbitals according to the quantum number of angular
momentum. As such, the usual selection rules for optical transitions in atomic
spectroscopy should be observed. It is interesting, however, to consider whether
this analogy of ”artificial atoms” applies in practice, in particular whether the
usual spectroscopic selection rules are violated by symmetry breaking interac-
tions at the surface or with the underlying crystal lattice.
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In the second part of this thesis (chapter 4), we present a study of the optical
transitions in artificial atoms which consist of one to ten electrons strongly con-
fined in colloidal ZnO nanocrystals with a diameter in the 3 - 6 nm range. We have
prepared the artificial atoms by injection of electrons into the conduction levels of
ZnO nanocrystals using an electrochemical and a photochemical method. With IR
absorption spectroscopy, we have studied the optical transitions in these artificial
atoms. We have found that the symmetry of the atomic-like orbitals determine
if an electronic transition between two energy levels is allowed. The selection
rules are the same as for electronic dipole transitions in ordinary atoms. From
an analysis of the IR absorption spectra we obtained the energy separation be-
tween the single-particle conduction energy levels as a function of the diameter
of the ZnO nanocrystals. These results present a remarkable demonstration of the
size-confinement effect.

Below, we introduce some fundamental concepts which form the basis for
an understanding of the research results of this thesis presented in chapters 2-4.
We start with a description of electrons and holes in bulk semiconductor crystals.
The electrical transport properties of semiconductor nanostructures in the size-
range of 100 nm are considered next. Finally, a brief introduction to quantum
size-confinement is presented.

1.2 Electrons in bulk semiconductor crystals

For a free electron, the Hamiltonian contains only the kinetic energy operator. The
eigenvectors of this Hamiltonian are wavefunctions eik.r which represent running
waves. The electron in such an eigenstate carries a momentum p = �k and has
an energy [7]

E =
�

2

2m
k2, (1.1)

where m denotes the mass of the electron. For an electron in a crystal we describe
the interaction with core ions by a potential U(r). Because of the periodicity of
the lattice, U(r + R) = U(r) for every vector R between two lattice points. An
important theorem states that the solutions of the Schrodinger equation for the
case involving a periodic potential must have the form

ψk(r) = uk(r)eik.r (1.2)

where uk(r) has the translation symmetry of the lattice. The valence and con-
duction electron energy levels in a crystal can often be described by a nearly-free
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electron model for which the periodic potential of the ion cores is only a weak per-
turbation. Fig. 1.1 shows a plot of the energy versus wavevector for an electron
in a monatomic linear lattice of lattice constant a. For a wavevector k = ±π/a,

Bandgap E
G

Valence band

Conduction band

-π/a +π/a k

E

 

Figure 1.1: Schematic plot of the energyE versus the wavevector k for an elec-
tron in a linear lattice of lattice constant a. The energy gap Eg shown is associ-
ated with the first Bragg reflection at k = ±π/a.

the curve splits up in two values by an amount Eg. The energy levels are ar-
ranged in energy bands separated by regions in energy for which no solutions of
the Schrodinger equation exist. Such forbidden regions are called bandgaps. The
physical reason for the bandgap is Bragg scattering at the ionic lattice for wave-
functions with a wavevector k = ±nπ/a where n is an integer number. From a
linear combination of incoming waves and reflected waves, two standing waves
can be constructed. One of this standing waves is more concentrated at the po-
sitions of the ionic cores and has a lower energy than the other standing wave,
more concentrated between the ionic cores. The difference in energy between
both states equals the bandgap Eg.

In a semiconductor crystal, the Fermi energy EF lies in the bandgap. At
low temperatures, the valence band is completely filled with electrons and the
conduction band is completely empty. At higher temperatures, the lowest levels
in the conduction band are filled by thermal activation leaving empty states at the
top of the valence band. The electrical transport properties of a semiconductor are
completely determined by the electrons at the bottom of the conduction band and
the holes at the top of the valence band since only these charge carriers can make
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transitions to empty states with a similar energy. At the bottom or top (k = km)
of a band we can make the approximation for small values of k that

E(k) � E(km) + (
∂2E

∂k2
)k=kmk

2. (1.3)

This dispersion relation is identical to the dispersion relation for a free particle
with mass m∗ = �

2(∂2E
∂k2 )−1

k=km
(see Eq. 1.1). An electron (hole) with an energy

at the bottom (top) of the conduction (valence) band behaves like a free electron
with an effective mass m∗. If an electric field E is applied in a crystal, the force
on the electron is equal to −eE and the average drift velocity will be [7]

vdrift =
eτE

m∗ , (1.4)

where τ is the mean free time between inelastic collisions at impurities, thermal
vibrations of the lattice or dislocations. The atoms or dangling bonds at the surface
of a crystal can have energy levels in the bandgap. Trapping of free carriers in
energy levels at the surface can lead to a free carrier depletion layer, characterized
by a potential barrier. Especially surface states with an energy close to the Fermi-
level EF can act as traps for charge carriers, reducing their mobility.

1.3 Effects of spatial confinement in macroporous GaP

In the first part of this thesis we consider a porous n-type GaP semiconductor
with structure sizes of about 150 nm. The conduction electron energy levels are
described by the bulk energy bands; quantum-size effects can be neglected. Due
to a depletion barrier at the surface, the conduction electrons are confined to a
volume with a size of about 80 nm. To describe the transport of electrons in
this confined volume, we use a hydrodynamic model [8]. This model describes
how, by applying a uniform electric field, the conduction electrons drift to the de-
pletion barrier where they screen the applied electric field. Diffusion due to the
charge density gradient at the surface acts as a force opposite to the applied field
so that the screening charge is spread out over a distance of the order of the Debye
screening length L. This is in firm contrast with the commonly used Mie the-
ory [9] where diffusion is not taken into account and thus the screening charge is
located singularly at the surface itself. With this accurate model for electrodynam-
ics in confined geometries we interpret microwave conductivity measurements on
porous GaP under constant illumination and laser pulse excitation.
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1.4 Quantum size-confinement

Confinement of an electron in a crystalline material which is size-restricted in
three dimensions demands that its wavefunction vanishes outside the crystallite.
Due to this boundary condition the electron energy levels are discrete and the
crystallite is called a quantum dot. As an example, for an electron confined in a
cube with side L, the only wavefunctions eik.r in agreement with the boundary
condition are characterized by ki = niπ

L (i = x, y, z) for ni an integer number.
These discrete wavevectors k correspond to discrete energy levels

E =
�

2(k2
x + k2

y + k2
z)

2m
, (1.5)

(see Fig. 1.2). For example, the separation between the lowest energy levels for

+π/L-π/a +π/a k

E

Figure 1.2: Schematic plot of the energyE versus the wavevector k for an elec-
tron in a semiconductor nanocrystal with diameter L.

a cube with a side L = 5 nm is of the order of 400 meV.
Adding an electron to an otherwise neutral nanocrystal, its charge will in-

teract with the (valence) electrons (electronic polarization) and the ionic lattice
(ionic polarization) of the crystal. If the screening of the charge due to this polar-
ization, occurs on a length scale larger than the size of the nanocrystal, the elec-
tron polarization energy will also depend on the size of the nanocrystal and the
dielectric surroundings of the nanocrystal. Adding more electrons to a nanocrys-
tal, Coulomb and exchange interactions between these electrons also need to be
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accounted for. Although these interactions are screened by the dielectric envi-
ronment, they become more important for smaller nanocrystals because of the
increase in the spatial overlap of the wavefunctions due to quantum confinement.
As an example, the Coulomb interaction between two S-electrons in a cube with
a side L = 5 nm and dielectric constant ε = 10 is of the order of 150 meV.
Because all these interactions depend strongly on the size of the nanocrystal,
in strongly confined systems as yet unobserved electrical and optical properties
should emerge.
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2 Dielectric measurements at microwave
frequencies

2.1 Abstract

Dielectric measurements at microwave frequencies provide information on elec-
tric conduction and polarization mechanisms with a time resolution of nanosec-
onds. Here we discuss an experimental method for the contactless measurement
of the complex dielectric constant of a nonconducting dielectric sample. The di-
electric constant is obtained from the reflection spectrum of a resonant microwave
cavity loaded with the sample. We describe the simple Cavity Perturbation Model
to obtain the change in the complex dielectric constant of the sample from the
shift in the resonance frequency and the increase in the width of the reflection
spectrum. To measure very small changes in the imaginary part of the dielectric
constant, we describe with the general Transmission Line Model how the magni-
tude of the reflection depends on the dielectric constant of the sample. We test the
accuracy of our method on reference samples and discuss the sensitivity for small
changes in ε′ and ε′′.

2.2 Introduction

The dielectric constant ε of a material describes the polarization density P =
(ε − 1)E, due to the presence of an electric field E. In a complex representa-
tion of quantities (with a time dependence given by e−iωt where ω is the radial
frequency), the dielectric constant can become a complex number. The real part
of the dielectric constant ε′ is a measure of how much electric energy is stored in
a dielectric, the imaginary part of the dielectric constant ε′′, also called the loss
factor, is a measure of how dissipating a material is to an external electric field.
(These properties are easily understood by considering a capacitor filled with a
dielectric with a complex dielectric constant. The capacitance of this capacitor is
proportional to the real part ε′, the conductance of the capacitor is proportional to
the imaginary part ε′′.)

Figure 2.1 schematically shows the frequency dependence of a few impor-
tant dielectric mechanisms, and their typical frequencies [1], [2]. Orientation of
molecules with a permanent dipole moment by an electric field typically occurs up
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Figure 2.1: Schematic drawing of the frequency dependence of a few dielec-
tric mechanisms: in order of increasing relaxation/resonance frequency we show
dipole orientation and ionic and electronic polarization. As the frequency in-
creases, the slower mechanisms drop out, leaving the faster ones to contribute to
the storage (ε′). The loss factor (ε′′) will correspondingly peak at each critical
frequency.

to frequencies of about 1010 Hz. At these frequencies, the real part of the dielec-
tric constant ε′ falls off while the loss factor ε′′ becomes maximal. Displacement
of ions (atoms, molecules) by an electric field contributes to the real part of the
dielectric constant ε′ up to IR frequencies (ionic polarization). Transitions be-
tween vibrational modes of ions give rise to strong absorption at IR frequencies.
Electronic polarization in atoms contribute to the real part ε′ of the dielectric con-
stant up to frequencies that correspond with visible light. At these frequencies,
electronic transitions in atoms give rise to strong absorption.

Here we study dielectric measurements at microwave frequencies (109 − 1010

Hz corresponding to photon energies of 10−5−10−4 eV). Microwave spectroscopy
at these frequencies may reveal for example the energy levels of large rotat-
ing molecules (see Fig. 2.1) [3]-[5] or the fine structure in vibrational states of
molecules [6]. Beside resonant absorption, dielectric measurements at microwave
frequencies can be used to study polarization mechanisms with a resonance fre-
quency larger than microwave frequencies (e.g. electronic polarization) or con-
ductivity measurements, without a contribution from mechanisms slower than mi-
crowave frequencies. Moreover, all measurements can be obtained with a time
resolution of nanoseconds. Time Resolved Microwave Conductivity (TRMC)
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measurements, which need no electrical contacts to the sample, have been used
to study photo-induced charge separation in thin semiconducting layers [7] and
the decay of photo-electrons in a network of semiconducting nanocrystals [8]. A
quantitative interpretation of TRMC results may provide information on the mo-
bility of photo-electrons or photo-holes in large molecules [9]-[11] or on an iso-
lated chain of polymers [12]. The growth mechanism of silicon films [13]-[15],
their electrical transport mechanism [16], [17], and recombination of charge carri-
ers at their interfaces [18], [19] have been studied by in-situ TRMC measurements.
Transport mechanisms in superconductors have been studied by microwave con-
ductivity measurements of their surface impedance [20]-[21].

We have built a microwave resonant cavity to measure small changes in the
complex dielectric constant (≥ 10−6) of a small (milligrams) and low loss sample
(ε′′ ≤ 10) with a time resolution of 10 ns. In section 2.4 we describe how electric
currents and voltages at microwave frequencies, and their corresponding electro-
magnetic waves propagate through waveguides, that are structures designed to
transport electromagnetic energy at high frequencies for example a coax-cable or
a hollow metal beam. Next we describe the simple Cavity Perturbation Model to
obtain the change in the complex dielectric constant of the sample from the shift in
the resonance frequency and the increase in the width of the reflection spectrum.
We test the accuracy of this method and discuss the sensitivity for small changes
in ε′ and ε′′. The sensitivity in ε′′ can become orders of magnitude better from a
measurement of the height of the reflection. With the general Transmission Line
Model we are able to describe the coupling of the waveguide to the cavity and
obtain the reflected microwave power as a function of the dielectric constant of
the sample in the cavity. We test the accuracy of this model on reference samples
and discuss the sensitivity for changes in the complex dielectric constant.

2.3 Experimental

Fig. 2.2 shows a schematic drawing of our dielectric measurement set-up. Mi-
crowaves generated by a Gigatronic synthesizer (model 610, 30 mW output power
with a frequency ν between 6 and 12 GHz and a spectral resolution δν/ν = 10−6)
run through a rectangular X-band waveguide in TE1,0 mode to the cavity (see sec-
tion 2.4). The cavity consists of an X-band waveguide ended at one side by a
metal grid, which reflects all microwave power, and a metal pin at the other side,
which partially reflects microwaves. By changing the position and height of the
pin, the reflection at the cavity is tuned. Microwave power reflected at the cavity
is amplified (Miteq Inc., AMF-2B-8612-30, +40dB) and detected in a microwave
diode which delivers an output voltage as a function of the microwave power to a
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Figure 2.2: Schematic drawing of our dielectric measurement set-up. The di-
rectional coupler only transmits microwaves in the direction as indicated in the
drawing.

digitizing oscilloscope (Lecroy 9450, 350 MHz bandwidth). Optical excitation of
a dielectric sample in the cavity can be performed through the metal grid by a laser
(pulsed YAG laser with pulse duration of a few nanoseconds and a pulse energy
of 92mJ at a wavelength of 355nm) or by a halogen lamp. The time resolution of
this set-up is restricted to 100 nanoseconds by the response time of the microwave
cavity.
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2.4 Waveguides

In our dielectric measurement set-up, we use a hollow metal waveguide (see Fig.
2.3) to couple the microwave generator to the resonant cavity and to transport the
microwave power reflected at the cavity to the microwave detector. The resonant
cavity itself is also built up from this waveguide. In this section we discuss how
electromagnetic waves propagate in such a waveguide.

ε,µ

b

a

x

y

z

Figure 2.3: Schematic drawing of a hollow rectangular (X-band) waveguide.

For monochromatic waves, the electric (E) and magnetic (B) fields inside the
waveguide are obtained from the Maxwell equations

∇× E = −iωB ∇.B = 0
∇× B = iµεωE ∇.E = 0, (2.1)

and the boundary conditions at the walls. For the boundary conditions we as-
sume that the walls consist of perfect conductors. Therefore the component of the
electric field E parallel to and the component of the magnetic induction B per-
pendicular to the surface vanish at the surface. For a uniform permittivity ε and
permeability µ, the electric and magnetic fields in the waveguide satisfy

(∇2 + µεω2)
{

E
B

}
= 0 (2.2)
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and can be described as waves running in the positive and negative z directions:

E(x, y, z, t)
B(x, y, z, t)

}
=

{
E(x, y) exp(±ikzz + iωt)
B(x, y) exp(±ikzz + iωt) . (2.3)

Furthermore, the solutions of (2.2) can be divided into two categories: Transverse
Magnetic (TM) waves are solutions with no magnetic component in the z direction
i.e. Bz = 0, Transverse Electric (TE) waves have no electric component in the z
direction i.e. Ez = 0.

For Transverse Electric waves, the z-component of the magnetic induction is
given by

Bz(x, y) = Bo cos(
mπx

a
) cos(

nπy

b
). (2.4)

From (2.2) it follows that

k2
z + π2(

m2

a2
+
n2

b2
) = µεω2. (2.5)

For a non-absorbing medium inside the waveguide (i.e. ε and µ real) waves are
not evanescent only if kz is real. This occurs if the radial frequency ω is larger
than the cut-off frequency ωc given by

ωc =
1√
µε

√
m2

a2
+
n2

b2
. (2.6)

The lowest cut-off frequency for Transverse Electric waves is obtained for the
mode with m=1 and n=0 (TE1,0). For Transverse Magnetic Waves, the z compo-
nent of the electric field is given by

Ez = Eo sin(
mπx

a
) sin(

nπy

b
) (2.7)

and the lowest cut-off frequency is obtained for the mode with m=n=1 (TM1,1).
In the X-band waveguide we use for our experiments, ε = µ = 1, a = 2.286

cm and b = 1.016 cm. From (2.6), it follows that the cut-off frequency for the
TE1,0 mode equals 6.6 GHz. The next mode has m=n=1 and starts at 14.8 GHz.
Fig. 2.4 shows the dispersion relation for electromagnetic waves in the two lowest
modes (TE1,0 and TM1,1) in a X-band waveguide. Since the microwave generator
used in our experiments has a frequency range from 6 to 12 GHz only the TE1,0

mode is excited and the electromagnetic fields in the waveguide are completely
described by the complex amplitudes of the left and right running TE1,0 modes
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Figure 2.4: The dispersion relation for electromagnetic waves in the two lowest
modes (TE1,0 and TM1,1), in the X-band waveguide (used in our experiments).

E⇀
o and E↽

o . The electromagnetic fields in the TE1,0 mode are explicitly given
by Ex = Ez = Hy = 0,

Ey = E�
o sin(

πx

a
) exp(±ikzz − iωt) (2.8)

Hz =
πi

ωaµ
E�

o cos(
πx

a
) exp(±ikzz − iωt) (2.9)

Hx = ± 1
Zo
E�

o sin(
πx

a
) exp(±ikzz − iωt) (2.10)

where B = µH. The charactersitic impedance of the waveguide Zo, defined by

Ht = ± 1
Zo

ẑ × Et exp(±ikzz − iωt) (2.11)

(where the subscript t denotes the component transverse to the direction of the
waveguide), is given by Zo = ωµ

kz
= kz

εω .
Non-uniformities or obstacles in the waveguide e.g. a dielectric sample, pos-

sibly can excite higher modes of the electromagnetic fields but these modes vanish
at a typical distance 2π/kz from the obstacle. Therefore at a certain distance from
a small non-uniformity with a linear response, the amplitudes of the incoming and



24 Chapter 2

outgoing waves at one side of an obstacle can be related to the amplitudes of the
incoming and outgoing waves at the other side by a complex 4 × 4 matrix.
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2.5 Cavity Perturbation Model

Loading the cavity with a dielectric sample modifies the reflection at the cav-
ity. We now discuss how to obtain the dielectric constant of the sample from the
change in the reflection spectrum with the Cavity Perturbation Model (CPM) [22].
We test the accuracy of this model on reference samples and discuss the sensitiv-
ity for changes in ε′ and ε′′ from the measurement of the resonance frequency ν0
and the spectral width Γ.

In the Cavity Perturbation model one assumes that in the unperturbed cavity,
i.e. the cavity without dielectric sample , the electric field is represented as E =
E0(r) exp (iωot− αt) and the magnetic field as H = H0(r) exp (iωot− αt).
Remark that the cavity response equals (2α)−1 where α is the time constant at
which the electric and magnetic field vanish. The spectrum of the electric energy
stored in the cavity is proportional to the square modulus of the Fourier transform
Ẽ(ω) of the electric field E(t). From

|Ẽ(ω)|2 ≈ 1
(ω − ωo)2 + α2

, (2.12)

we obtain that ωo equals the resonance frequency (the frequency at which the
spectrum is maximal) and that the full width of the spectrum at half maximum Γ
equals 2α; the spectral width of the cavity is inversely proportional to the cavity
response time. By the introduction of a small dielectric sample with volume V1
and dielectric constant ε, the electric field becomes

E = (E0 + E1)(r) exp (i(ωo + δωo)t− (α+ δα)t) (2.13)

and

H = (H0 + H1)(r) exp (i(ωo + δωo)t− (α+ δα)t). (2.14)

After some calculation, we obtain from the Maxwell relations (without any ap-
proximation)

δωo − iδα

ωo
=

∫
V1
dVE1.D0 − E0.D1∫

V0
dV E0.(D0 + D1) − H0.(B0 + B1)

, (2.15)

where V0 is the volume of the cavity. For |V1ε| � V0 we can make the approxi-
mation

δωo − iδα

ωo
�

∫
V1
dV E1.D0 − E0.D1∫

V0
dV E0.D0 − H0.B0

. (2.16)
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For a small dielectric post, parallel to the electric field we make the approximation
E1 � 0 to obtain

δωo − iδα

ωo
�

∫
V1
dV (ε0 − ε1)E2

0∫
V0
dV E0.D0 − H0.B0

. (2.17)

By placing the dielectric post at a position of maximal electric field

δωo − iδα

ωo
� −2

V1

V0
(ε− 1). (2.18)

From this result we conclude that by introducing a small dielectric post in the
cavity, the real part of the dielectric constant ε′ is obtained from the lowering of
the eigenfrequency,

δωo = −2ωo
V1

V0
(ε′ − 1). (2.19)

This result can easily be understood from the condition for resonance which says
that the length of the cavity equals an integer times half the wavelength of the
electromagnetic field. The wavelength is related to the frequency via the disper-
sion relation νλ = c/

√
µε. From this relation we see that introducing a dielectric

in the cavity lowers the resonance frequency. The complex part of the dielectric
constant ε′′ is obtained from the increase of the width of the spectrum δΓ = 2δα;

δΓ = 4ωo
V1

V0
ε′′. (2.20)

Fig. 2.5 shows the experimental reflection spectra at an empty cavity (+) and
a cavity loaded with a capillary with toluene (×). The reflection spectrum at the
cavity with toluene is shifted towards a lower resonance frequency, the width has
increased with a few percentages. The solid lines are predictions from the Cavity
Perturbation Model with the dielectric constant of toluene taken from literature.
The reflection spectrum at the cavity is taken equal to one minus the spectrum of
the cavity since the back side of the cavity reflects completely. Because the Cavity
Perturbation Model does not describe the coupling of the waveguide to the cavity,
this model does not contain information on the height of the dip. For a better com-
parison we have set the height (magnitude) of the dip equal to the experimental
value. Fig. 2.6 shows the experimental reflection spectrum at an empty cavity
(+) and a cavity loaded with a capillary with water (×). The solid lines are pre-
dictions from the Cavity Perturbation Model with the dielectric constant of water
taken from literature. The difference between experiment and Cavity Perturbation
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Figure 2.5: The experimental reflection spectrum at an empty cavity (+) is shown
and the reflection at a cavity with a capillary filled with toluene (×) (filling factor
2.6 10−3). The capillary is placed at a position of maximal electric field. The
solid lines are predictions from the Cavity Perturbation Model with the dielectric
constant of toluene taken from literature (ε = 2.38 + 0i [23] ). The magnitude
(depth) of the dips are not predicted by the Cavity Perturbation Model and are
set equal to the experimental values.

Model for the shift in the resonance frequency and the increases in the width is
of the order of 10 percent. The asymmetry in the reflection spectrum is due to
parasitic reflections in the waveguide.

Table 2.1 shows the experimental values for the dielectric constant at 8.2 GHz,
obtained with the Cavity Perturbation Model, and the corresponding values from
literature. The indicated errors are measuring errors due to inaccuracy in the vol-
ume fraction and the position of the sample relative to the position of maximal
electric field. The experimental values are in agreement with the values from lit-
erature, within the measuring accuracy. The measuring accuracy in ε′ and ε′′ is of
the order of ten percent, except for non lossy samples. For non absorbing samples,
the spectral width of the cavity is determined by ohmic dissipation in the walls or
radiative losses. For these samples, the accuracy in the loss factor ε′′ is of the
order of 0.1. We thus conclude that the first order approximation in V1ε of the
Cavity Perturbation Model holds valid up to about ten percent, for a filling factor
of the order of 10−3 and a dielectric constant as large as that of water.
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Figure 2.6: The experimental reflection spectrum at an empty cavity (+) is shown
and the reflection at a cavity with a capillary filled with water (×) (filling factor
1.1 10−3). The capillary is placed at a position where the electric field is 0.45
of the maximal electric field. The solid lines are predictions from the Cavity
Perturbation Model with the dielectric constant of water taken from literature
(ε = 60.6 + 25i at a frequency ν= 10 GHz [24]). The magnitude (depth) of
the dips are not predicted by the Cavity Perturbation Model and set equal to the
experimental values.

We now discuss how to tune the cavity sensitive for small changes in the di-
electric constant of the sample. The coupling of the waveguide to the cavity is
determined by the height of the metal pin at the front side of the cavity. Increas-
ing the height of the pin decreases the response time of the cavity. From a Fourier
transform of the energy in the cavity we know this corresponds to a decrease of
the spectral width Γ. If the magnitude of the reflection decreases, the cavity is
called overcoupled [25]. At a certain height of the pin, the reflection becomes
minimal (zero at resonance frequency). The cavity is called critically coupled to
the waveguide. At a further increase of the height of the pin, the magnitude of
the reflection increases; the cavity is called undercoupled. Introducing an absorb-
ing sample in the cavity more dissipation occurs in the cavity, reduces the cavity
response time and the spectral width of the cavity increases. If the cavity is over-
coupled, the introduction of an absorbing sample decreases the magnitude of the
reflection. If the cavity is undercoupled, the introduction of an absorbing sample
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ε′ ε′′

Experimental Literature [24] Experimental Literature [24]
Water1 62 ± 3 60.6 24 ± 2 25
Quartz 3.6 ± 0.6 3.85 0 ± 0.1 10−4

Ethanol1 3.3 ± 0.7 2.9 0.7 ± 0.5 0.33
KBr2 4.8 ± 0.5 4.9 0 ± 0.1 0.001
Selenium2 8.5 ± 0.7 9.7 0.9 ± 0.3 1.4
Toluene1 2.3 ± 0.1 2.38[23] 0.1 ± 0.1 0[23]

Table 2.1: The experimental values for the dielectric constant at 8.2 GHz, obtained with
the Cavity Perturbation Model, are compared with the values from literature. 1 Liquid
sample in quartz capillary. 2 Powder sample in quartz capillary. The dielectric constant
of the capillary with dielectric is taken linear in the volume fractions of the constituents.
All samples have a volume fraction of the order of 10−3 to the volume of the cavity.

increases the magnitude of the reflection. This behaviour is shown in Fig. 2.7 for
an undercoupled cavity.

Tuning the cavity close to critical coupling, the reflection close to the res-
onance frequency becomes small, and a large amplification of the reflected mi-
crowave power can be applied. In this way, small changes in the reflection, and
finally in the dielectric constant ε, can be measured.

The resolution for changes in the real part of the dielectric constant δε′ is most
easily evaluated from Eq. 2.19 that relates the change in ε′ to the change in the
resonance frequency ν0, to obtain

δε =
1
f

δν

ν0
. (2.21)

In this expression f is the filling factor of the dielectric and δν the resolution in the
resonance frequency. In our set-up, the (single shot) resolution in the frequency
δν0 can be obtained as small as 1kHz (at maximum of microwave detector). For
a non lossy sample, the filling factor can be taken as high as 10−1 to obtain a
resolution δε′ of the order of 10−6. For a large lossy sample, the spectral width of
the cavity is no longer determined by ohmic losses in the walls or radiative losses
and the width becomes proportional to the filling factor. Because the frequency
resolution is inversely proportional to the spectral width, the resolution in ε′ is
smaller for lossy samples.

The resolution in the loss factor ε′′ can be obtained from the increase in the
spectral width or from the change in the magnitude of the reflection. In the Cavity
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Figure 2.7: The reflection spectrum at an undercoupled cavity, loaded with a
dielectric sample, calculated with the Transmission Line Model. In the next
section we demonstrate this model accurately describes the reflection at a cavity.
The solid line corresponds with a dielectric constant ε = 4.0, the dashed line
with ε = 4.4, and the dotted line with ε = 4.0 + 0.04i. The filling factor of the
sample equals 10−3.

Perturbation Model, the height of the reflection is not described and only the width
of the reflection can be predicted. From a measurement of the spectral width Γ one
obtains a resolution in the loss factor δε′′ of only 10−3. This poor result is because
amplification of the reflected microwave power can only be applied to frequencies
close to resonance. At these frequencies the change in the reflection due to an
increase in the width disappears. We conclude that amplification does not improve
the resolution in the spectral width. The maximal electric field strength in the
cavity is obtained at critical coupling. At resonance frequency no reflection at
the cavity occurs and all microwave power from the generator P (� 32 mW at
maximum) disappears in the cavity. Because the electric energy in the cavity
disappears out of the cavity on a time scale Γ−1 �10−7s), we conclude that the
the instantaneous electric energy in the cavity equals PΓ−1 � 3 10−9J. For a
cavity with a length of 5 cm this corresponds to a maximal electric field strength
of 78 V/cm.
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2.6 Transmission Line Model

From a measurement of the change in the width of the reflection we obtain a sen-
sitivity in the loss factor ε′′ of about 10−3. The sensitivity in ε′′ can become orders
of magnitude better from a measurement of the height of the reflection. With the
general Transmission Line Model [22] we are able to describe the coupling of the
waveguide to the cavity and obtain the reflected microwave power as a function
of the dielectric constant of the sample in the cavity. We test the accuracy of the
model on reference samples and discuss the sensitivity for changes in the complex
dielectric constant.

From section 2.4 we know that the electromagnetic waves in a uniform X-
band waveguide (as in our set-up) are completely described by the constant com-
plex amplitudes E⇀

o and E↽
o of the right and left running electric waves. In

order to obtain the power reflected at the cavity we calculate the reflection coeffi-
cient E↽(z)

E⇀(z) as a function of the position z in the cavity and waveguide (see Fig.
2.8). In appendix A we show that a description of the electromagnetic waves in
a waveguide is equivalent to a description in terms of the corresponding voltages
and currents in the walls of the waveguide. We thus obtain that the reflection coef-
ficient E↽(z)

E⇀(z) is identical to the reflection coefficient V ↽(z)
V ⇀(z) where V is the voltage

between the upper and lower wall of the waveguide. Fig. 2.8 shows an electrical

z
ss

dielectric metal gridmetal pin

Z Z

ZZZ

p1 s1

s2s2p2p2

2 1

Z

Z ZZo o o

Figure 2.8: Electrical equivalent circuit of a microwave cavity consisting of a
metal grid, a dielectric sample and a height adjustable metal pin.

equivalent circuit of the cavity used in our set-up. At one side the cavity is ended
by a metal grid where the electric field vanishes i.e. E⇀

o = −E↽
o . In terms of

the voltage between both walls the metal grid corresponds to a short-circuit. From
Eq. A.14 we obtain that the reflection coefficient at a distance s1 of z = 0 is given
by

E↽(z = s1)
E⇀(z = s1)

= exp(2ik∗zs1)
E↽

o

E⇀
o

. (2.22)

In this expression k∗z = kz + iγ where γ is an absorption coefficient that describes
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ohmic loss in the metal walls and radiative losses. The value for γ is experimen-
tally obtained by fitting the reflection spectrum of an empty cavity with the model
for the reflected power that we derive in this section (γ = 3.87 10−2 m−1).

εa

b

d

Figure 2.9: Cross section of the waveguide with a cylindric dielectric post placed
in the middle of the waveguide, parallel to the electric field

Fig. 2.8 shows the general electric equivalent circuit for a cylindric dielectric post
placed in the middle of the waveguide and aligned parallel to the electric field (see
Fig. 2.9). For d/a < 0.1 we can with an accuracy of a few percent reduce the
circuit to a simple shunt impedance Zs1(Zs2 = 0) with

Zo

Zs1
=

−2iV ω2

ab c2πkz
(ε∗ − 1) (2.23)

where ε∗ is the complex dielectric constant and V the volume of the dielectric [22].
The reflection coefficient (E↽(z)

E⇀(z))out at one side of a shunt impedance Z1 is ob-

tained from the reflection coefficient (E↽(z)
E⇀(z))in at the other side of the impedance

via [25]

(
E↽

E⇀
)out =

E↽
in + Z0

2Z1
(E↽

in + E⇁
in )

E⇁
in − Z0

2Z1
(E↽

in + E⇁
in )

. (2.24)

The electric equivalent circuit of the height adjustable metal pin can be approxi-
mated by a completely imaginary shunt impedance Zp1(Zp2 = 0). Thus we obtain
an expression for the microwave power reflected at the cavity as a function of the
dielectric constant of the sample. The value of Zp1 and the total length of the cav-
ity s1 + s2 are determined from the reflection spectrum of an empty cavity. The
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volume of the dielectric V is measured by its weight or by an other independent
method. The distance s1 is determined by placing the dielectric at a position of
maximal electric field. This can easily be performed experimentally since for a
given dielectric, the resonance frequency is minimal if the sample is at a position
of maximal electric field.
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Figure 2.10: The reflection spectra of an empty, undercoupled cavity (+) and
a cavity with a capillary filled with toluene (×) are shown. The capillary with
toluene (filling factor 2.6 10−3) is placed at a position of maximal electric field.
The solid lines are predictions from the Transmission Line Model with the di-
electric constant of toluene taken from literature (ε = 2.38 + 0i [24]).

Fig. 2.10 shows the reflection spectra of an empty, undercoupled cavity (+)
and a cavity loaded with a capillary with toluene (×). The solid lines are the pre-
dictions from the Transmission Line Model with the dielectric constant of toluene
taken from literature (ε = 2.38 + 0i [23] ). Fig. 2.11 shows the reflection spectra
of an empty, undercoupled cavity (+), and a cavity loaded with a capillary with
water (×) (ε = 60.6+25i [24] ). The difference in the magnitude of the reflection
between the experiment and the Transmission line Model is due to the inaccurate
description of our model.

Table 2.2 compares the dielectric constant of a few reference liquids, obtained
with the Transmission Line Model, with literature values. To test the accuracy
of our Transmission Line Model in the height of the reflection, the values for
ε′′ are obtained from the shift in the height of the reflection, and not from the
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Figure 2.11: The reflection spectra of an empty, undercoupled cavity (+) and
a cavity with a capillary filled with water (×) are shown. The capillary with
water (filling factor 1.1 10−3 )is placed at a position where the electric field is
0.45 of the maximal electric field strength. The solid lines are predictions from
the Transmission Line Model with the dielectric constant of water taken from
literature (ε = 60.6 + 25i [24]).

ε′ ε′′

Experimental Literature[24] Experimental Literature[24]
Toluene 2.16 ± 0.1 2.38[23] 0.1 ± 0.1 0[23]
Ethanol 3.5 ± 0.5 2.6 0.9 ± 0.4 0.3
Methanol 12.2 ± 3 11.7 7.3 ± 0.8 8.7

Table 2.2: The experimental values for the dielectric constant of a few liquids at 8.7 GHz,
obtained with the Transmission Line Model, are compared with the values from literature.
The imaginary part of the dielectric constant is obtained from the shift in the magnitude
of the reflection (and not from the increase in the spectral width). The indicated errors are
measuring errors for example due to inaccuracy in the volume fraction and the position
of the sample relative to the position of maximal electric field. The dielectric constant of
the capillary with dielectric is taken linear in the volume fractions of the constituents. All
samples have a volume fraction of the order of 10−3 to the volume of the cavity.
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increase in the spectral width. The experimental values for ε′ are in agreement
with the values from literature within the measuring accuracy. The difference in
ε′′ between the experiment and literature is larger than the measuring accuracy.
The value for ε′′ obtained from a measurement of the change in the height of the
reflection, can be predicted by our model only with an accuracy of a factor two.
Although the description of the magnitude of the reflection as a function of ε′′ is
not very accurate in our model, it is the best quantity to measure small changes
in ε′′ because of the good resolution in the reflection at resonance frequency with
critical coupling. From the measurement of the reflected microwave power at
two frequencies close to resonance frequency at critical coupling, we are able to
calculate changes in ε′ and ε′′ as small as 10−6.

An important feature of our method is that no contacts to the sample are
needed. Disadvantages of our method are the time resolution of about 100 ns,
and the limited frequency range of 8 to 12 GHz. Furthermore to describe the re-
flection at the cavity we need to make approximations. These approximations hold
valid only for small samples and a small dielectric constant of the sample. There-
fore only low conducting dielectrics can be studied. Applying electric contacts
to the sample is difficult [27] just as in situ measurements. Another difficulty of
our method is that heating expands the cavity and therefore lowers the resonance
frequency (the sensitivity in the length of the cavity is of the order of a microme-
ter) while thermal expansion of the metal pin drives the cavity to undercoupling.
For example, illumination of a sample with a halogen lamp through the metal grid
causes heating of the cavity and which changes the reflection at a time scale of
seconds. Heating by air or by ohmic dissipation of microwaves in the walls is
much slower and can be neglected.

2.7 Conclusions

Reflection measurements at a resonant microwave cavity loaded with a small,
non-conductive dielectric sample are well suited for the contactless measurement
of the complex dielectric constant. The real part is accurately obtained from the
shift in the resonance frequency, the complex part from the increase in the width
of the spectrum, as described in the Cavity Perturbation Model. The sensitivity of
this method is of the order of 10−6 for changes in ε′ and 10−3 for changes in ε′′.
The sensitivity for changes in ε′′ can be improved to 10−6 from a measurement
of the magnitude of the reflection, which can be described with the Transmission
Line Model.
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3 Short range electron motion in semi-
conducting macroporous GaP

3.1 Abstract

Studies of long-range electron transport in porous semiconductors have shown
that the effective mobility is strongly reduced with respect to that of single crys-
talline bulk semiconductors. This strong attenuation of electron transport has been
attributed to multiple trapping/detrapping in states located at the internal surface
of the porous solid. Here, we report microwave reflectivity measurements on a
dark and illuminated macroporous GaP network which allow us to probe the trap-
free mobility of electrons present inside the core of the network. We obtain the
imaginary and real component of the dielectric constant, and the changes of these
variables as a function of the incident light intensity. We show that the changes
in the real and imaginary parts of the dielectric constant as a function of the light
intensity are correlated and can be interpreted on the basis of a hydrodynamic
model. We find that the short-range electron mobility is 3 cm2/Vs. We compare
this value with the mobility obtained from Hall-measurements on single crystals
and the effective mobility characterizing long-range transport through a porous
GaP network. The transient changes in the dielectric constant upon excitation with
a laser pulse and with constant illumination reflect the dynamics of electron-hole
photogeneration and bulk and surface recombination in the porous GaP network.

3.2 Introduction

Porous semiconductors, which consist of electrically connected (nanometer-sized)
crystals or of a single-crystalline network, have attracted much interest in the last
decade [1]. These materials show some interesting optical and photo-electric
properties. For example, because of multiple scattering of light in the porous
matrix, absorption of light can be stronger than in the corresponding bulk semi-
conductor [2]. Trapping of charge carriers in surface states considerably increase
the lifetime of photoexcited carriers. Porous electrodes immersed in an electrolyte
that plays the role of hole scavenger have shown photocurrent quantum efficien-
cies equal to one [3]. Therefore these systems show promising properties for
application in batteries, (photoelectrochemical) solar cells [4,5], electrochromic
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Figure 3.1: SEM micrograph of anodic etched porous GaP. Dark areas indicate
the absence of GaP material.

windows [6,7], light emitting diodes [8], and photonic devices. In addition, porous
semiconductors offer a set of challenging fundamental questions dealing with the
short and long-range transport of electrons and holes, and their recombination
dynamics. Electron transport in porous semiconductors, such as TiO2, ZnO and
GaP, has been studied by a number of methods that measure the response of a pho-
toelectrochemical device to a small-amplitude modulation of the absorbed light
intensity7−14. Measurements on classic metal/semiconductor/metal systems have
also been performed [9]. In the case of macroporous GaP and microporous TiO2

electrodes, it has been shown that the transport-characteristics are non-dispersive
(Gaussian or normal); this means that all the photogenerated electrons behave in
a similar way and can be described by mean transport parameters [10]. One can
thus use an effective mobility (often called drift mobility) to quantify the long-
range electron motion [11,12,13,14]. Nonetheless, long-range electron transport
in porous semiconductors is strongly attenuated: the measured effective mobilities
are two to five orders of magnitude smaller than those reported for the non-porous
single crystalline counterparts (obtained from Hall conductivity measurements).
This has been attributed to multiple trapping/detrapping in localized energy lev-
els located at the huge internal surface of the porous matrix. It has proven very
difficult, however, to quantify the contribution of surface trapping in long-range
transport by independent methods. In this respect, it would be of interest to mea-
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sure the trap-free conduction mobility µ of electrons in a porous semiconductor.
In this paper we investigate the short-range motion of electrons in macrop-

orous GaP by measurement of the interaction with microwaves. The motivation
for this work is twofold. The main interest of this work can be appreciated by
examining Figs. 3.1 and 3.2. Fig. 3.1 shows a SEM micrograph of the porous
GaP that we have used. Fig. 3.2 a) sketches the energetics in the structural units
under the given conditions; macroporous GaP can be mimicked by spheres (radius
75 nm), which consist of a semiconducting core (radius denoted as Rc, electron
density n = 3 × 1017cm−3), surrounded by a region depleted of electrons. The
depleted shell is due to the trapping of free electrons in surface states of energy in
the band gap. The precise dimensions of both regions and their variations under
illumination will be considered below. Fig. 3.2 b) shows the penetration of the
microwave electric field E in the structural units of this matrix, calculated with a
hydrodynamic model discussed below. The field penetration according to the Mie
model is also shown for comparison. It can be seen that the microwave field pene-
trates the semiconducting cores to a depth equal to the Debye screening length L,
which is here about 6 nm (see further). The distance that an electron can migrate
during one period of the microwave 2π/ω is equal or less than µE2π/ω, which
is about 1 nm. Thus, the microwaves probe the electrons residing at the inter-
face between the semiconducting core and the depleted region. These electrons
are sufficiently remote from the surface; measurement of the short-range electron
motion by microwave reflection should, therefore, provide the ”bulk” mobility of
the electrons in the porous matrix, free from the effects of surface trapping. This
work is thus complementary to methods that measure the long-range transport
parameters which are determined by surface trapping/detrapping.

A second motivation for this work is related to the interpretation of the re-
sults obtained with illuminated nanostructured semiconductors, probed with the
(Time Resolved) Microwave Conductivity method. The pioneering works of Deri
et al. [15] and Grabtchak et al. [16] on polycrystalline semiconductors (AgCl, and
CdSe) showed that the microwave absorption and the shift of the cavity resonance
frequency provide the changes in the imaginary (∆ε′′) and real component (∆ε′)
of the dielectric constant due to photo-excitation of the nanostructured semicon-
ductor. Interpretation of ∆ε′ and ∆ε′′ is, however, less straightforward. Deri and
Grabtchak attributed ∆ε′′ to microwave absorption by photogenerated free carri-
ers, while ∆ε′ was believed to correspond to trapped carriers. The observations
that the decay of ∆ε′ and ∆ε′′ transients show the same time constants and that
∆ε′ and ∆ε′′ depend in the same way on the intensity of photogeneration were
attributed to fast equilibration between trapped and free charge carriers. This cor-
relation between ε′ and ε′′ can be explained [17] from the dielectric properties of
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a dilute electron gas confined to a small region of space, like a small dielectric
particle. This hydrodynamical model shows that photogeneration of excess free
carriers in such a system leads to an increase of both ∆ε′′ and ∆ε′ ; it thus pro-
vides a natural explanation for the previously reported correlation between ∆ε′′

and ∆ε′ . In appendix B this hydrodynamic model is extended and adapted to
the case of semiconducting spheres surrounded by a dielectric shell. The experi-
mental results that we present can be understood quantitatively by this model. In
section III it will be shown that ∆ε′′ and ∆ε′ correspond to the expansion of the
semiconducting regions in the porous matrix (see Fig. 3.2) due to the photogener-
ation of excess free electrons and we discuss how we obtain from these quantities
a value for the mobility µ inside the semiconducting part and the radius of the
semiconducting part Rc. In section IV, interpretation of ∆ε′ and ∆ε′′ measured
under steady-state conditions as a function of the incident light intensity, and of
the transient ∆ε′ and ∆ε′′ upon turning on and off photo-excitation provide novel
information on the electron-hole recombination dynamics in porous semiconduc-
tors. In section IV we show how the change in ε upon excitation with a laser pulse
provides information on the electron-hole recombination on a time scale of 100
nanoseconds to a second.
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Figure 3.2: a) Schematic drawing of the edges of the conduction band (CB) and
valence band (VB) with respect to the Fermi level EF for macroporous GaP in
the dark (solid line) and under illumination (dashed line) (the bandgap is 2.3eV).
The band-bending (� 0.3 eV) is indicated with an arrow. A GaP sphere is used
as a model; the sphere has an outer radiusR of 75 nm and consists of a semicon-
ducting core with radius Rc surrounded by a depletion layer. b) The amplitude
of the microwave-induced electric field in the nano-particle relative to the am-
plitude of the applied microwave electric field E0 is shown as a function of the
distance in the direction of the applied field. In the hydrodynamic model the
screening of the electric field in the conducting part occurs on a length scale
of the Debye screening length L(=6.3nm). In the Mie model the electric field
changes discontinuously at the interface of the conducting and depleted regions.
Outside the particle, the electric field falls off due to the induced dipole.
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3.3 Experimental

Single crystalline n-type GaP is made porous by anodic etching in a sulphuric
acid solution. Afterwards, the porosity of the anodically etched GaP is further
increased from 25% to 50% by photo-anodic etching in a H2O : H2SO4 : H2O2

electrolyte using 1.96 eV sub-band gap light [18].
Scanning Electron Microscopy analysis (Fig. 3.1) reveals that we obtain a

randomly porous matrix [19,20]. The GaP structures in this network have a typ-
ical length scale of about 150 nm. X-ray diffraction measurements show that the
semiconducting part in the porous structure is single crystalline [19]. For the mi-
crowave measurements 5 milligrams of porous material is scraped off the porous
GaP electrode and compressed in a quartz capillary. The filling factor f of GaP
in the capillary is 0.4. The dielectric constant of porous GaP is obtained from
the measurement of the microwave reflection spectrum at a cavity loaded with the
capillary (see chapter II). The microwave cavity consists of an X-band waveguide
terminated at one side by a metal grid through which optical access is possible.
The other end consists of a height-adjustable metal pin which only partially re-
flects the microwaves. The microwave power reflected at this cavity is amplified,
downconverted in a detector and displayed on an oscilloscope. By changing the
height of the metal pin, we can reduce the reflection at the resonance frequency. In
this way a large amplification can be achieved and the reflection spectrum can be
measured very accurately. The reflection spectrum is only slightly perturbed by
loading the cavity with a dielectric with a volume much smaller than the volume
of the cavity and with a complex dielectric constant with a modulus close to 1.
The decrease of the resonance frequency is then proportional to the real part of
the dielectric constant ε′, the increase of the width of the spectrum is proportional
to the complex part of the dielectric constant ε′′ [21]. A quantitative description
of the change of the reflected spectrum as a function of the dielectric constant is
calculated with the Transmission Line Model [22].

Porous GaP was illuminated in the cavity with a halogen lamp equipped with
a filter transparent between 400 and 600 nm. Changes in ε′ and ε′′ were measured
as a function of the incident light intensity (see Fig. 3.3). In addition the transient
changes of ε′ and ε′′ upon turning the light on and off were recorded (see Fig.
3.8). For excitation with a laser pulse we used a 50 Hz Quanta Ray Nd-YAG laser.
The frequency tripled (355 nm) output pumped an optical parametrical oscillator
(OPO, Spectra Physics), generating pulses of 10 ns duration with an energy of
7mJ/pulse over an area of 1 cm2. Heating of the sample by the illumination causes
an estimated increase of the temperature of less than 10−2 K, which corresponds to
changes in the dielectric constant two orders of magnitude smaller than the values
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we obtained. All measurements are performed at room temperature in contact
with air.
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3.4 Determination of the short range mobility

The dielectric constant of porous GaP in the dark obtained from the microwave
measurements (at a frequency of 8 GHz) is ε′ + iε′′ = 2.57±0.15+ i0.07±0.05.
In a linear approximation, the dielectric constant of a mixture of air with a crystal
with volume fraction f is given by ε = (1 − f) + f.εcrystal. In this expression
εcrystal is the effective dielectric constant of crystalline GaP which is the sum of
the contributions from the bound electrons εb (=8.5)[23] and the free electrons,
described by a Drude term iσ/ω. The conductivity of the free electrons at a radial
frequency ω is denoted by σ. For our doped crystalline GaP εcrystal = 8.5 +
i1122.0. With the independently determined value for f(= 0.4) we then obtain
ε = 4.0 + i448.8. This approximation thus overestimates the imaginary part of
porous GaP by several orders of magnitude. In appendix B a more realistic model
is developed which takes into account surface polarization at the GaP spheres.
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Figure 3.3: The change in the complex dielectric constant of porous GaP ∆ε as
a function of the incident photon flux I . The experimental values for ∆ε ′ and
∆ε′′ are depicted as (�) and (◦), respectively. These values are fitted with the
hydrodynamic model by choosing the mobility µ = 3 cm 2/Vs and the radius of
the semiconducting part in the darkRc(dark)=45 nm. The procedure is discussed
in the text.

Fig. 3.3 shows the changes in the dielectric constant of porous GaP under
illumination as a function of the incident light intensity. Because the optical ab-
sorption length of photoanodically etched porous GaP (α−1 � 2.10−6 m [2]) is
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much smaller than the diameter of the sample (6 .10−4 m), only a small strip of
the sample is illuminated. From the change in the dielectric constant of the whole
sample ∆εS , as a function of the incident light intensity, and the absorption length,
we can calculate the change in the local dielectric constant ∆ε, as a function of
the local light intensity. From a numeric computation we obtain that the change
in the local dielectric constant at the front side of the sample ∆ε is about 11 ± 1
times the change in the dielectric constant of the whole sample ∆εS . The change
in the real part of the dielectric constant ∆ε′ is of the same order and has the same
sign as the imaginary part ∆ε′′. The ratio ∆ε′(I)/∆ε′′(I) is constant for all light
intensities used in our experiments and has a value ∆ε′/∆ε′′ = 2.0 ± 0.1. We
remark that the same ratio is found in time resolved measurements (see Fig. 3.8).
The experimental accuracy in ∆ε′/∆ε′′ is good because one needs to measure
only small perturbations in ε and only the ratio of the real and imaginary part is
involved.

Note that in the linear approximation of the dielectric constant ε, with a con-
ductivity given by σ = ne2τ

m(1−iωτ) (e is the elementary charge, m the effective mass
of the charge carrier, τ the momentum ralaxation time and n the density), an in-
crease in the charge carrier density corresponds to a ratio ∆ε′/∆ε′′ = −ωτ. In
our experiments this would correspond to a negative (!) ratio ∆ε′/∆ε′′ = −10−5

which is five orders of magnitude smaller than the experimental value!
In appendix B we calculate the dielectric constant ε of a collection of semi-

conducting spheres of GaP (radius Rc) surrounded by a shell of (dielectric) GaP,
depleted of free electrons. This calculation is an extension of the hydrodynamic
model that has been previously presented [17]. This model shows that the increase
of ∆ε′(I) and ∆ε′′(I) is due to the increase in the radius Rc of the semiconduct-
ing spheres in the GaP matrix with increasing light intensity I. A fit of ∆ε′(I),
∆ε′′(I) by this model is presented by the solid lines in Fig. 3.3 (details are given
below).

In Fig. 3.4 we have plotted the ratio ∆ε′/∆ε′′, calculated with the hydro-
dynamic model, as a function of the mobility µ, for different values of the radius
Rc(dark) of the nondepleted core in the dark. The change in the dielectric constant
is calculated as ∆ε(I) = ε(Rc(I))−ε(Rc(dark)) assuming Rc(I)−Rc(dark) =
5 nm, a realistic change as can be seen below. From Fig. 3.4 we conclude that
with an experimental value ∆ε′/∆ε′′ = 2.0±0.5 the mobility µmust lie between
1 and 5 cm2/Vs for all reasonable values for Rc(dark) (0 ≤ Rc(dark) ≤ R). No
information about the radius Rc(dark) is obtained from this plot.

In Fig. 3.5 we show the real part of the dielectric constant of porous GaP in the
dark, calculated with the hydrodynamic model, as a function of the mobility µ for
different values of the radius Rc. From the fit of ∆ε′/∆ε′′ we know that the mo-
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Figure 3.4: The ratio ∆ε′(I)/∆ε′′(I), calculated with the hydrodynamic model,
is shown as a function of the mobility µ of free electrons in the semiconducting
core, for different values of the radius of the semiconducting coreR c. The change
in the dielectric constant is calculated as ∆ε(I) = ε(Rc(I))− ε(Rc(dark)) with
Rc(I) − Rc = 5 nm. With an experimental value ∆ε ′/∆ε′′ = 2.0 ± 0.5 we
conclude that the mobility lies between 1 and 5 cm2/Vs. (Only the lines that pass
through the rectangle are compatible with the experimental value ∆ε ′/∆ε′′ =
2.0 ± 0.5.)

bility µ is between 1 and 5 cm2/Vs. With an experimental value ε′ = 2.57± 0.15
and a mobility µ between 1 and 5 cm2/Vs, we conclude that the radius Rc(dark)
must be between 40 and 75 nm. In Fig. 3.6 we show the imaginary part of the
dielectric constant of porous GaP in the dark, obtained with the hydrodynamic
model, as a function of the mobility µ for different values of the radius Rc. With
an experimental value ε′′ = 0.07±0.05 and a mobility µ between 1 and 5 cm2/Vs,
we conclude that the radius Rc must be between 50 and 5 nm.

In summary we have shown that a combination of the results obtained from
the fitting of ∆ε′/∆ε′′ and from the values of ε′ and ε′′ in the dark provides the
mobility inside the nondepleted core of macroporous GaP µ = 3± 1 cm2/Vs and
the radius of the semiconducting part in the dark Rc(dark) = 45 ± 5 nm.

The value for the mobility µ inside the GaP particle is about a factor 40 smaller
than that in bulk GaP obtained with Hall measurements [24,25];µ = 130 cm2/Vs.
At present, the reason for this difference is not clear. Because of screening, the
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Figure 3.5: The real part of the dielectric constant of porous GaP in the dark,
calculated with the hydrodynamic model, is shown as a function of the mobility
µ for different values of the radius Rc(dark). With an experimental value ε′ =
2.57 ± 0.15 and a mobility µ between 1 and 5 cm2/Vs, we conclude that the
radius Rc must be between 40 nm and 75nm. (Only the lines that pass through
the rectangle are compatible with the experimental value ε ′ = 2.57 ± 0.15 and
∆ε′/∆ε′′ = 2.0 ± 0.5.)

polarizability of the semiconducting sphere is determined essentially by the prop-
erties of the non-depleted region at a distance of the screening length from the
depletion layer. Up to now we have assumed that the free electron density equals
n0 inside the non-depleted layer and zero inside the depletion layer. A more accu-
rate description of the electron density at the depleted/non-depleted interface may
influence the electron mobility that is obtained from the polarizability.

Long-range transport through completely depleted macroporous GaP has been
studied by light intensity modulated photocurrent spectroscopy [12]. The effective
mobility ranged between 10−2 (at high light intensity) and 10−5cm2/Vs (at low
light intensity) and is thus two-five orders of magnitude smaller than the short-
range mobility obtained by microwave reflectivity measurements with structural
identical macroporous GaP. In addition, the short-range mobility that we obtain is
independent of the incident light intensity and thus of the position of the electron
Fermi-level in macroporous GaP. These contrasting results highlight the differ-
ences between long-range electron transport (with transport paths of 10-200 µm
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Figure 3.6: The imaginary part of the dielectric constant of porous GaP in the
dark, calculated with the hydrodynamic model, is shown as a function of the
mobility µ for different values of the radius Rc. With an experimental value
ε′′ = 0.07 ± 0.05 and a mobility µ between 1 and 5 cm2/Vs, we conclude that
the radius Rc must be between 50 and 0 nm. (Only the lines that pass through
the rectangle are compatible with the experimental value ε ′′ = 0.07 ± 0.05 and
∆ε′/∆ε′′ = 2.0 ± 0.5.)

through the porous network) attenuated by multiple trapping/detrapping and short-
range motion (transport path 1 nm) in the interior of the network far from surface
localized traps.

Deri and Spoonhower [15] studied the photoinduced changes ∆ε′, ∆ε′′ upon
illumination of a AgCl powder. They found that ∆ε′ and ∆ε′′ were correlated, as
in the case reported here. Very likely, the origin of ∆ε′, ∆ε′′ is similar to that for
GaP i.e. an expansion of the semiconducting region inside the AgCl nanocrystals
upon illumination.
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3.5 Electron-hole recombination under constant illumi-
nation
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Figure 3.7: a)The radius Rc of the semiconducting core (◦) in the macroporous
GaP matrix obtained from Fig. 3.3 and b) the potential difference across the
depletion layer (�) surrounding the core, calculated with Eq. 3.1 is shown as a
function of the incident ligh intensity. The experimental values for the potential
are fitted with Eq. 3.3.

With the values for µ and Rc(dark) we can fit the changes in the complex
dielectric constant under illumination by increasing the radius Rc (see Fig. 3.3).
In Fig. 3.7 we have plotted the radius of the semiconducting part Rc as a function
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of the light intensity as obtained from the fit in Fig. 3.3. The electrostatic potential
difference over the depletion layer V (which is four orders of magnitude larger
than the microwave induced potential difference over the depletion layer) can be
related to the width of the depletion layer R−Rc via [27]

V =
e n

3εε0
(
1
2
R2 − 3

2
R2

c +
R3

c

R
), (3.1)

where ε is the static dielectric constant of undoped GaP. The potential difference
over the depletion layer is also shown in Fig. 3.7.

Fig. 3.8 shows the transients ∆ε′ and ∆ε′′ upon turning on and off the illu-
mination. It is clear that ∆ε′ and ∆ε′′ are correlated i.e. show the same time de-
pendence. This further supports our explanation on the basis of the hydrodynamic
model. We remark that correlated ∆ε′ and ∆ε′′ transients have also been reported
for polycrystalline CdS electrodes [16]. The ε transient is multiexponential, on
a very slow time scale of seconds to minutes. This reflects that the photogener-
ated electrons have to overcome the energy barrier of the depletion layer before
recombination at the surface is possible. The first milliseconds after switching on
the illumination, the change in the potential is linear in time. In the inset, we have
plotted the initial rate of change of the depletion layer dV/dt as a function of the
light intensity I. The initial decay dV/dt is linear in I.

The increase in the radius of the semiconducting sphere Rc upon illumination
is due to the photogeneration of excess free electrons. We explain the transients
and the increase of Rc with I by a model that accounts for photogeneration in the
bulk GaP and recombination at the surface and in the bulk.

Illumination with light with a photon energy hν larger than the band gap (2.3
eV for GaP) generates electron-hole pairs. Since the absorption length α−1 for
light with this photon energy (α−1 = 2× 10−5m) is much larger than the particle
radius R, the creation of electron-hole pairs can be considered as uniform in a
GaP sphere and the total rate of electron-hole pair generation in the particle equals
4
3πR

3αI where I is the incident photon flux. Since the diffusion length for holes
Lp = 80 nm [28] is larger than the radius of the particle, every hole reaches the
surface; this occurs on a time scale td which is given by the equation

R = (
kBT

e
µhtd)1/2 (3.2)

where µh is the hole-mobility. For our GaP particles this diffusion time td is
10−11 s and thus much smaller than the time resolution of our measuring method.
A fraction fs of the holes becomes trapped in a surface state, the rest recom-
bines in the bulk. Independent measurements on GaP single crystal electrodes



Short range electron motion in semiconducting macroporous GaP 53

10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0 1x10
16

2x10
16

3x10
16

-8

-6

-4

-2

0

 

 

d
V

/d
t 

[V
/s

]

Light intensity I [s
-1

cm
-2

]

∆ε'

and
∆ε''

Light off
Light on

 

 

Time [s]

Figure 3.8: The transients in the real part (dotted line) and imaginary part (solid
line) of the dielectric constant of porous GaP upon switching on and off the
illumination for different light intensities (I =1.25, 3.8 and 12.5×10 15s−1cm−2).
Insert: Rate of decay of the potential difference across the depletion layer dV/dt,
measured a few ms after turning on the light, as a function of the incident light
intensity.

(photoluminescence, electroluminescence and photocapacitance) have shown that
electrons and holes recombine in the bulk solid as well as the surface[29]. The
change in the number of free electrons in a semiconducting particle per unit time
under illumination thus becomes

dN

dt
= −4πR2n exp

−eV
kT

βnS +
4
3
πR3αIfs +

4
3
πR3gthfs. (3.3)

The first term describes the trapping rate of free electrons in surface states. This
rate is proportional to the number of free electrons at the surface n exp−eV

kT , to the
capture rate for free electrons in surface states βn and the number of unoccupied
surface states per unit surface area S. The second term describes the photogener-
ation of free electrons and the third term describes the thermal generation rate of
free electrons.

The steady state condition for Eq. 3.3 yields an expression for the depletion
layer barrier V as a function of the light intensity I. The only unknown parameter
in this expression is βnS/fs. Fitting the results presented in Fig. 3.7 with the
expression for V (I) (obtained from Eq. 3.3) we obtain βnS/fs = 2 ± 1 cm/s−1.
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We now consider the time dependence of the potential difference over the
depletion layer. Immediately after the illumination is switched on, the first and
third terms on the righthand side of Eq. 3.3 still counterbalance each other; the
rate of change dN

dt of the number of free electrons in a GaP particle is completely
determined by the photogeneration term (second term). For small variations in N
we can develop the depletion layer voltage V around its value in the dark to obtain

∆V
∆t

|V �Vdark
=

∆V
∆Rc

∆Rc

∆N
∆N
∆t

=
∆V
∆Rc

∆Rc

∆N
4
3
πR3αIfs; (3.4)

Thus the initial change in the depletion layer barrier per unit time is linear in the
intensity of the illumination.

By fitting Eq. 3.4 to the experimental results (see insert of Fig. 3.8)) we ob-
tain fs = 0.5 ± 0.1. Combining this result with the value for βnS/fs we obtain
βnS = 1±0.5 cm/s. In order to estimate the capture rate constant βn,we assume a
reasonable density of surface states S = 1012cm−2. For this value of S we obtain
an electron capture constant βn = 10−12cm3/s. This value of the capture rate con-
stant corresponds to a capture cross section βn/(thermal velocity) � 10−20cm2

which is orders of magnitude smaller than the geometrical cross section of an
atomic like center (10−15cm2). Similar results for the electron-capture cross sec-
tion have been reported for InP crystals, while GaAs crystals show even lower
values for the electron capture cross section[30].
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3.6 Electron-hole recombination time resolved
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Figure 3.9: The change in the real part ε ′ of the dielectric constant of porous
GaP upon illumination with a laser pulse (wavelength λ= 500 nm, pulse energy 7
mJ), as measured with the Time Resolved Microwave Conductivity method. The
decay is presented on a) a logarithmic to linear and b) a linear to logarithmic scale
to show the non-exponential decay over a wide range of time scales. The dotted
line in a) corresponds to a mono-exponential decay with a time constant τ =
0.02s. The rise time of the signal (� 20ns) is determined by the cavity response
time. Figure b) also shows a fit calculated with the hydrodynamic model (for
the parameters, see text). The radius of the conductive part R c(t) as a function
of time is obtained from our recombination model with βnS =0.6 cm/s, and
Rc(dark) = 35 nm. The fit (+) is a linear combination of contributions (×)
with Rc(t = 0)=75 nm (9% of GaP volume), Rc(t = 0)=65 nm (5%), and
Rc(t = 0)=40 nm (14%).
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Here we consider the electron-hole recombination in macroporous GaP upon
illumination with a laser pulse. Fig. 3.9 shows the change in the real part ε′ of the
dielectric constant of porous GaP upon illumination with a laser pulse, as mea-
sured with the Time Resolved Microwave Conductivity method (see chapter 2).
The decay is presented on a) a logarithmic to linear and b) a linear to logarithmic
scale to show the non-exponential decay over a wide range of time scales.

The electron-hole recombination at the surface and in the bulk is described
with the model presented in the previous section. Upon illumination with a laser
pulse, trapping of holes at the surface, which reduces the depletion layer, occurs
on a time scale of 10−11 s (see previous section) and is not detected by our method.
Trapping of electrons at the surface, which increases the depletion layer, is more
slowly since the electrons have to overcome the depletion barrier. The radius of
the conductive core Rc as a function of time is calculated with Eq. 3.3. The ad-
justable parameters in this expression are βnS, the capture rate for free electrons
in surface states, Rc(t = 0), the maximal radius of the conductive core, immedi-
ately after the laser pulse hit the semiconducting sphere and Rc(dark) the radius
of the conductive core in the dark (i.e. Rc(t = +∞)). Figure 3.10 shows the
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Figure 3.10: The transients of the radius of the conductive core R c calculated
with our recombination model, are shown for different values of R c(t = 0)
(βnS =0.6 cm/s and Rc(dark) 35 nm).

decay of the radius Rc(t) as a function of time, calculated with our recombination
model for different values of Rc(t = 0). This figure shows that the radius of the
conductive core at t = 0 strongly affects the time delay after which the decay in
the radius Rc effectively starts. Figure 3.11 shows the decay of the real part of
the dielectric constant of macroporous GaP ε′, calculated with the hydrodynamic
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Figure 3.11: The change in the real part of the dielectric constant of macroporous
GaP ε′ calculated with the hydrodynamic model (for parameters, see text). The
radius of the conductive part Rc as a function of time is calculated with our re-
combination model for βnS =0.6 cm/s, Rc(dark) = 35 nm andRc(t = 0) =75
nm (×). To test the sensitivity of our model in βnS and Rc(dark), we also plot
the results for βnS =0.3 cm/s (solid line) and Rc(dark) = 45 nm (+).

model and our recombination model. From this figure it is clear that an increase in
Rc(dark) as well as an increase in the electron capture rate βnS reduces the time
to reach equilibrium. A fit of the time dependence and the magnitude of the real
part ε′ of macroporous GaP under illumination with a laser pulse (see Fig. 3.9) is
obtained with the same value for the electron mobility µ(= 3 cm2/Vs) as obtained
from the measurements under constant illumination (see previous section). The
values for βnS = 0.6± 0.3 cm/s and Rc(dark) = 35± 5 nm we find here, are in
agreement with the values obtained from experiments under constant illumination
(βnS = 1 ± 0.5 cm/s and Rc(dark) 45 ±5nm).

The fit values for Rc(t = 0) (see Fig. 3.9) show that 9± 4% of the volume of
the GaP sample reaches flat band (i.e. depletion voltage V = 0) immediately after
the pulse hit the sample. The condition for a semiconducting sphere surrounded
by a depletion layer to reach flat band under excitation by a laser pulse is that
the number of photogenerated holes that are trapped at the surface equals the
number of electrons trapped at the surface in the dark at t = +∞ (= the number
of electron-donors in the depletion layer in the dark at t = +∞ ). The number
of electron-donors in the depletion layer in the dark per unit volume is given by
(1− (Rc(dark)/R)3).f.n(= 6.1016 cm−3) where n equals the doping density and
f the volume fraction of crystalline GaP in the sample. For a laser intensity of
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1016 photons per pulse per cm2, and an absorption length α−1 = 2.10−6m [2],
we obtain that flat-band is obtained upto 14 µm into the sample. For a sample
diameter of 600 µm, this corresponds to a depleted volume of about 4 % of the
volume, in agreement with the value obtained from the fit of ∆ε′.

In summary, we have shown that the electron-hole pairs photogenerated in a
porous GaP network recombine in the bulk as well as at the internal surface. Upon
illumination, the surface barrier for the electrons is reduced as the width of the de-
pleted region shrinks. After switching off the illumination the depleted region is
gradually restored and the surface barrier for electron recombination rises accord-
ingly. The increase in the surface barrier for the photogenerated electrons forms
the main reason for the increasingly slower electron-hole recombination rate after
turning off photoexcitation.



Short range electron motion in semiconducting macroporous GaP 59

3.7 Conclusions

The complex dielectric constant of macroporous GaP ε and the transients of its
change ∆ε under constant illumination and by excitation with a laser pulse, ob-
tained from Time Resolved Microwave Conductivity measurements, can be quan-
titatively understood from a model that describes the porous network as a collec-
tion of non-depleted spheres surrounded by a depleted region. The polarizability
of these spheres is described with the hydrodynamic model. Electron-hole pairs
photogenerated in the porous network recombine in the bulk as well as at the inter-
nal surface. Trapping of holes at the surface, which occurs on a time scale faster
than our method (10−8 s), reduces the depleted region upon illumination. After
illumination, the depletion layer restores by electron surface recombination across
the depletion barrier. The increase in the depletion barrier for the photogenerated
electrons forms the main reason for the increasingly slower electron-hole recom-
bination at the surface. The electron mobility inside the non-depleted core, which
is accurately obtained from the fitting of the ratio ∆ε′/∆ε′′, is smaller than the
mobility in bulk GaP, and orders of magnitude larger than the long-range mobility
in macroporous GaP.
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4 Optical transitions between the conduc-
tion levels of ZnO quantum dots studied
by IR absorption spectroscopy

4.1 Abstract

In this chapter, we report on the optical transitions in few-electron artificial atoms
strongly confined in ZnO nanocrystals with diameter between 3 and 6 nm. The
artificial atoms are prepared by two methods. The first method uses an assem-
bly of weakly coupled ZnO nanocrystals in which electrons are injected electro-
chemically; the average electron number is obtained from the injected charge and
the number of quantum dots in the assembly. In the second method a colloidal
solution of ZnO nanocrystals is used; few-electron artificial atoms are obtained
by photogeneration of electron-hole pairs and subsequent hole-scavenging. The
charged ZnO nanocrystals show broad spectra in the near IR; the shape and to-
tal absorption intensity being determined only by the average electron number.
The spectra can be explained by taking into account the allowed electric dipole
transitions between the atom-like orbitals of the ZnO nanocrystals and the size
distribution of the nanocrystals in the sample.

4.2 Introduction

Colloidal insulating nanocrystals should form ideal hosts for strongly-confined
artificial atoms, i.e. configurations of one to a few electrons occupying the con-
duction energy levels of the nanocrystal. Such nanocrystals can be obtained in
molar quantities by wet chemical synthesis with increasing control of the size,
shape and surface electronic properties [1]-[3]. The dimensions below 10 nm en-
sure strong quantum-confinement of the electrons corresponding to confinement
energies in the 0.1 to 1 eV range. For comparison, artificial atoms defined by
lithography in bulk semiconductor crystals have dimensions of a few tens to hun-
dreds of nanometers and, accordingly, show much weaker confinement effects
in the 1 meV range [4]. The interest in studying artificial atoms in the strong
confinement regime is that quantum confinement, and Coulomb and exchange in-
teractions all depend in a different way on the dimensions of the nanocrystal host
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[5]. Thus, in strongly confined systems, as yet unobserved electrical and optical
properties should emerge.

A major problem in studying strongly-confined artificial atoms is the fabri-
cation of devices in which the electron occupation number N, i.e. number of
electrons per quantum dot, can be controlled. For example, a transistor consisting
of a single CdSe quantum dot, mounted between two electrodes, with a gate to
control the electron or hole number has been reported [6], [4]. The technologi-
cal sophistication required for the fabrication of such a device, however, prevents
experimental studies by a wide research community. We have fabricated assem-
blies consisting of ZnO nanocrystals of diameter between 3 and 6 nm in which the
electron number can be controlled by the electrochemical potential. It has been
shown that the electrons occupy the atom-like S and P envelope wavefunctions.
In long-range electron transport, two quantum regimes have been observed corre-
sponding to tunneling between the S-orbitals for an electron occupation number
lower than two, and tunneling between the P-orbitals for an electron occupation
number between two and eight [7].

Here, we report a study of the optical properties of artificial atoms created in
such an assembly. We detect the optical transitions between the conduction levels
in artificial atoms consisting of one to ten electrons by absorption spectroscopy
in the near infra-red. The importance of this work for the physics of strongly-
confined systems is two-fold. First, we demonstrate that, by gradually increasing
the electron number in the ZnO nanocrystals, the contribution of each individual
electronic transition to the absorption spectrum can be identified, despite the size
dispersion in the assembly. Until now, only the optical transition between the low-
est (S) and second lowest (P) conduction level in CdSe and ZnO quantum dots has
been reported. Second, the present method of spectroscopy directly provides the
single-particle energy separations between the electron levels. This is due to the
fact that electrons are transferred from one conduction level to another (keeping
the electron number constant), the repulsion energy between two electrons being
nearly independent of the orbitals that they occupy[8]. This is in firm contrast to
conventional absorption and luminescence spectroscopies that probe transitions
between valence and conduction levels. In the latter case the polarization and the
Coulomb-interaction energies of the electron and hole play an important role in
the energy of the transition[8] making the extraction of single-particle energies
more complex and subject to uncertainties.

In this chapter, we first discuss the single-electron conduction levels in ZnO
quantum dots and the optical transitions between these levels. The electron energy
levels in ZnO quantum dots are calculated with the most simple effective mass ap-
proximation and the elaborate tight-binding method. These orbitals are then used
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to calculate the oscillator strengths of the electric dipole transitions between the
energy levels. Next we show the IR absorption spectra obtained with an assembly
of ZnO quantum dots with an increasing average occupation number. We present
a model that calculates the distribution of the electrons over the quantum dots in
the assembly for a given electrochemical potential, and their corresponding IR
absorption. By fitting this model to the absorption spectra we obtain the relative
oscillator strengths of S-P, P-D, P-S’ and D-F transitions and single-particle sep-
arations between these levels. The oscillator strengths and single-particle energy
separations are compared with the predictions from the tight-binding model and
the effective mass method.

4.3 Single-electron conduction levels in ZnO quantum dots

An electron added to an otherwise neutral ZnO nanocrystal will occupy the con-
duction state of lowest energy, the Lowest Unoccupied Molecular Orbital (LUMO).
This orbital is strongly delocalised. As a consequence, this electron is confined
in the limited space of the nanocrystal. The kinetic confinement energy, i.e. the
difference in kinetic energy between an electron in a nanocrystal and a bulk crys-
tal, due to confinement of its wave function, can be calculated with a number of
methods. In order of increasing sophistication, we have the particle-in-a-box ap-
proximation, the quasi-particle-in-a-box (effective mass) approximation [9]-[11]
and various tight-binding [12]-[14] and pseudo-potential methods [13], [5]. We
use here the quasi-particle-in-a-box approximation to calculate the single-particle
kinetic confinement energy levels in a spherical ZnO quantum dot, and compare
the results with the outcome of more sophisticated tight-binding calculations. The
polarization (i.e. dielectric) confinement energy of an electron in a quantum dot
is considered in section 4.6.

In the effective mass approximation, the interaction of a (conduction) electron
with a periodic lattice potential (i.e. the scattering with core atoms) is described
by replacing the (bare) mass m of the electron, by an effective mass m∗ (called
the mass of the quasi-electron). This approximation holds for a weak periodic po-
tential and small values of the wave vector k. To describe the confinement of the
electron to the nanocrystal, we assume, as a first approximation, that the quasi-
electron potential is constant inside the quantum dot and infinitely high outside the
particle. The eigenfunctions of the electron (in spherical coordinates) are a prod-
uct of the spherical harmonics Ym

l (θ, ϕ)[15], which only depend on the spherical
coordinates θ and ϕ, and the spherical Bessel functions jl(kl,nr)[15], which only
depend on the radial distance r. With l we denote the quantum number for the
angular momentum, m is the quantum number for the projection of the angular
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momentum and the quantum number n distinguishes different energy levels with
equal angular momentum. The atom-like electron orbitals S, P, D, F, ... have
l = 0, 1, 2, 3, .... The orbital with quantum numbers l = 0, n = 2 is denoted with
S’. The wavevector kl,n is determined from the condition that the wavefunction
vanishes at the surface, i.e. jl(kl,nR) = 0 where R is the radius of the particle.
Due to this condition, the energy levels no longer form a continuum; instead we
obtain quantized energy levels with discrete wave vectors k. Figure 4.1 shows the
square of the modulus of the S and P eigenfunctions, which corresponds to the
probability of finding an electron as a function of its position.
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Figure 4.1: The square of the wavefunctions with quantum numbers a)n =
1, l = 0 (S, LUMO) and b) n = 1, l = 1 (P), calculated with the effective
mass approximation for a spherical ZnO quantum dot (4 nm in diameter) as a
function of the position in the quantum dot.
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The energy levels of the eigenfunctions are given by [15]

εl,n =
�

2k2
l,n

2m∗ (4.1)

for an electron with an effective mass m∗. From this expression and the boundary
condition jl(kl,nR) = 0, we obtain that the kinetic confinement energy of the
electron depends on the radius R of the quantum dot as 1/R2, and is inversely
proportional to the effective mass. Figure 4.2 shows the kinetic confinement
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Figure 4.2: The kinetic confinement energy of the lowest conduction levels of a
ZnO quantum dot, as a function of the diameter of the quantum dot. The solid
lines are calculated with the tight-binding model (from bottom to top; S, P, D,
S’, F), the symbols are the predictions from the effective mass approximation; S
(+), P (◦), D (×), S’ (
) and F (�).

energy of the lowest conduction levels, obtained with the effective mass approx-
imation, as a function of the diameter of the ZnO quantum dot. With an electron
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effective mass equal to the bulk electron effective mass (m∗ = 0.2m [16]), the
kinetic confinement energy of the lowest energy level is of the order of 400 meV
for a quantum dot with a diameter of 4 nm. In order of increasing energy we find
a S, P, D, S’ and F levels. The degeneracy (including spin states) of an energy
level l is given by 2(2l + 1).

A more accurate description of the confinement of the electron to a quantum
dot is based on the assumption that the potential barrier is finite. The tunneling
decay length rt is given by [15]

rt =
�√

2m(Evac − E)
, (4.2)

in which Evac is the energy of the electron at rest in vacuum and E is the energy
of the electron in a given conduction energy level. With a typical value Evac − E
of 4 eV [16], the decay length is 1 nm. Because the kinetic confinement energy
strongly depends on the volume in which the electron is confined, carrier penetra-
tion outside the crystallite reduces the energy of the electron considerably.

Because the effective mass approximation holds only for small kinetic energy
values (such that the kinetic energy is quadratic in the wave vector k ), smaller
quantum dots are described less accurately by the effective mass approximation.
Advances in computational physics have enabled the direct solution of the single
electron Schrodinger equation for larger quantum dots [14]. The Hamiltonian of
the electron in this system accounts for the interaction of the electron with the
atoms of the nanocrystal and the surroundings of the quantum dot. However, to
find solutions of the Schrodinger equation, approximations are necessary and the
success of a method depends on the choice of the approximations. Two meth-
ods frequently used are the pseudopotential method and the tight-binding theory.
The use of the pseudopotential method to calculate the energy levels in insulating
nanocrystals has been advocated by Zunger and coworkers [17]-[20]. Here, we
will consider the elaborate tight-binding model to calculate the conduction levels
in ZnO quantum dots, results obtained from a collaboration with the group of Dr.
Allan and Dr. Delerue (IEMN, Lille).

In the tight-binding model, one assumes that the dot-wavefunctions are built
up from a relatively small number of localized atomic wavefunctions. In this ap-
proximation we exclude the delocalized (=ionized) atomic wavefunctions. Here
we describe a tight-binding approximation [21] built up from the Zn and O atomic
wave functions s, p, d and s∗ (including spin-orbit coupling). One assumes that
the electron can be described by a single-particle Hamiltonian and that this single-
particle Hamiltonian inside the quantum dot equals the bulk single-particle Hamil-
tonian. This means that the scattering of the electrons by the lattice is assumed



Optical transitions between the conduction levels of ZnO quantum dots studied
by IR absorption spectroscopy 69

to be the same as in a bulk crystal. The tight-binding parameters are fitted to the
bulk ab-initio pseudopotential energy dispersion curve and the experimental elec-
tron and hole effective masses. Advantage of this semi-empirical approach is that
only a relevant selection of wavefunctions needs to be calculated; this enables
one to perform calculations for a large quantum dot (up to 15 nm). Dangling
bonds at the surface are saturated by pseudo-hydrogen atoms. Fig. 4.2 shows
the kinetic confinement energy of the lowest conduction levels of a ZnO quan-
tum dot. The lowest conduction level of a ZnO quantum dot has S-symmetry
and is doubly degenerate. In order of increasing energy we further have a P-level
(six-fold degenerate), a D-level (ten-fold degenerate), a S’ level (doubly degener-
ate), and a F-level (fourteen-fold degenerate). From Fig. 4.2 it is clear that the
size-dependence of the kinetic confinement energy calculated with tight-binding
theory is less strong than that calculated with the effective mass approximation
(1/R2). Furthermore, the relative difference between tight-binding theory and ef-
fective mass approximation is larger for higher values of energy. For quantum
dots with a diameter of 6 nm for instance, the difference between tight-binding
and effective mass is only 30 % for the S level and already 50 % for the F level.
The different results here are mainly due to the infinite energy barrier used in the
effective mass approximation.

Fig. 4.3 shows the square of the S and P wavefunctions in a ZnO quantum
dot as a function of the position, obtained with the tight-binding model. The
wavefunctions obtained with the tight-binding method show the periodicity of the
lattice. A detailed comparison between Fig. 4.1 and Fig. 4.3, shows that the
tight-binding orbitals decay more slowly from the center towards the crystal sur-
face than the orbitals obtained with the effective mass approximation with infinite
walls.
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Figure 4.3: The square of the S wavefunction (n = 1, l = 0) a) and P wavefunction (n =
1, l = 1) b), of a nearly spherical ZnO quantum dot (4.2 nm in diameter) calculated with
the tight-binding model as a function of the position. The atoms of the ZnO nanocrystal
are indicated with points; note the crystal facets.
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4.4 Optical transitions between the conduction levels in
ZnO quantum dots

4.4.1 Electric dipole transitions in a one-electron dot and oscillator
strengths

We investigate the electric dipole absorption rate (i.e. the amount of energy ab-
sorbed per unit time which equals the transition probability per unit time multi-
plied by the photon energy) Ait, by one quantum dot that contains one electron,
due to a transition between the electron states i and t . This rate is proportional to
the incident energy intensity per unit frequency j(Et − Ei) (i.e. the photon flux
per unit frequency times the photon energy). With Ei(Et), we denote the energy
of the electron in the initial (final) state. This absorption rate (with the dimension
of energy per unit time) is given by1 (Fermi’s golden rule) [15]:

Ait =
πe2

2mcε0
fit j(Et − Ei), (4.3)

where m is the mass of the electron, c the speed of light and ε0 the permittivity
of vacuum. In this expression fit denotes the dimensionless oscillator strength
between the electron states i and t, defined as

fit =
2m
�2

(Et − Ei)|〈i|z|t〉|2. (4.4)

The matrix element of the z coordinate of the dipole operator is represented by
e〈i|z|t〉. In order to compare the oscillator strength calculated with the tight-
binding model and the effective mass approximation, we use the bare mass of the
electron in Eq. 4.3 and 4.4. An interesting feature of the oscillator strength is
that its sum over a complete set of (normalized) basis states t (without spin states)
equals one2, i.e.

∑
t

fit = 1. (4.6)

1The absorption rate Ait is averaged over the polarization directions of incident radiation.
2This sum rule holds for a Hamiltonian that contains the momentum operator only in the kinetic

energy operator. A complete set of electron basis states is a collection of states t such that every
possible electron state can be written as a unique linear combination of these basis states. For
example, the collection of states with the set of quantum numbers (n, l, ml) (see section 4.3) is a
complete set of electron basis states in the effective mass model. We remark that all these states
have an energy larger than the S level. In the calculation of fit with the effective mass model, we
took the bare mass of the electron m in the definition of the oscillator strength (Eq. 4.4 ) but the
effective mass m∗ in the Hamiltonian to calculate the eigenfunctions, and the sum rule therefore
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This property can be used to check if all allowed transitions have been accounted
for.

From IR absorption measurements we obtain the transition rate between two
energy levels, not between two electron states. We therefore must calculate the
average absorption rate Āll′ for one quantum dot that contains one electron, due
to transitions between the energy levels El and El′ . We assume that every energy
level El contains 2(2l + 1) electron states (including spin states). Under this
assumption

Āll′ =
1

2(2l + 1)

∑
i

∑
t

Ait. (4.7)

where the sum runs over all states i with energy El and all states t with energy
El′ ; Ait is given by Eq. 4.3.

For an electron with a spherically symmetric Hamiltonian, the electric dipole
transition rules are ∆l = ±1,∆j = 0,±1 and ∆mj = 0,±1 [22]. With j we
denote the quantum number for the total angular momentum (spin + orbit) andmj ,
the quantum number for its projection. In other words, the matrix element 〈i|z|f〉
is non zero only for the transitions between states with ∆l = ±1,∆j = 0,±1 and
∆mj = 0,±1. If spin-dependent interactions are negligible, the spin is conserved
and the transition rules become ∆l = ±1,∆j = ±1 and ∆ml = 0,±1. Figure
4.4 shows the allowed transitions between the orbitals corresponding to the S, P
and D levels. In the effective mass approximation, which possesses full rotational
symmetry, the oscillator strengths of forbidden transitions are zero. Although the
tight-binding model has no full rotational symmetry, the oscillator strengths of
forbidden transitions are orders of magnitude smaller than the allowed transitions.
The selection rules for transitions in our quantum dots are thus determined by the
symmetry of the envelope wave functions.

Analogous to the absorption rate, the average oscillator strength due to transi-
tions between the energy level El and El′ is given by

f̄ll′ =
1

2(2l + 1)

∑
i

∑
t

fit, (4.8)

becomes∑
t

fit =
m

m∗ = 5.0. (4.5)

In the tight-binding model, a set of basis states not only contains conduction states and free states
but also valence states, with an energy smaller than the S conduction level. Because spin-orbit
coupling is only a slight perturbation (meV) the sum rule holds to a good approximation for our
tight-binding model.
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Figure 4.4: The allowed transitions between the S, P and D conduction levels in
a spherical quantum dot between electron states with orbit angular momentum
quantum number l and projection of the angular momentum quantum number
ml.

where the sum runs over all states i (t) with energy El (El′). Figure 4.5 shows
the summed oscillator strength 2(2l + 1)f̄ll′ for the allowed transitions between
the lowest energy levels in a spherical ZnO quantum dot 3. We take the S-P
transition as an example. From the sum rule we obtain that in the effective mass
approximation (see Eq. 4.5)

∑
i

∑
t fit = 10.0, where the sum on i runs over the

spin states ms = ±1/2 and the sum on t runs over a complete set of basis states
in the effective mass model. From Fig. 4.5 it is clear that 2f̄SP is slightly less than
10. Since in the effective mass model all electron states have an energy larger than
the energy of the S level, this shows that the transition probability for S to P’, P”,
etc. is much smaller than for S to P. For the tight-binding model,

∑
i

∑
t fit � 2,

3A polarisation term (see section 4.6.1) is not taken into account. Because the polarisation
energy Σl of an electron in our dots, depends only slightly (of the order of meV) on l(= S,P) [19],
we assume that a polarisation term will only slightly disturb the oscillator strengths we obtain here.
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Figure 4.5: The summed oscillator strength 2(2l + 1) f̄ll′ for different allowed
transitions is shown as a function of the diameter of the ZnO quantum dot. The
values obtained by tight-binding theory (including spin-orbit coupling) are rep-
resented as solid lines, the values obtained by the effective mass approximation
(no spin interaction accounted for) are represented by a dotted line. To compare
values obtained by both methods, the bare mass of the electron is used in the
definition of the oscillator strength. The matrix element 〈i|z|t〉 in Eq. 4.4 is
calculated numerically.

where the sum on i runs over the spin states ms = ±1/2, and the sum on t runs
over a complete set of basis states in the tight-binding model (including valence
states). Here we find that in the tight-binding model 2f̄SP � 7. This value
should be compared with the value slightly smaller than 10 obtained with the
effective mass model. Summation of the oscillator strength over a complete set
of basis states (including valence states with an energy smaller than the S level),
would reduce the sum to a value of about 2. We remark that the average oscillator
strength f̄ll′ is of the order of 4 for the S-P transition, as well as the P-D and D-F
transition. The difference in the oscillator strengths for the tight-binding theory
and effective mass approximation is essentially due to the difference in the energy
separation (Et − Ei) of the two models; the difference in the matrix element
< i|z|t > between both models is less than 10 %. The value of the matrix element
of the electric dipole operator is merely determined by the envelope wavefunctions
and not by the atomic details (for instance the surface termination). It will become
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clear in the following sections that the selection rules and the calculated oscillator
strengths are of importance to understand the absorption spectra of few electron
artificial atoms.

4.4.2 Transitions in a dot containing more than one electron

We now consider the absorption rate by one quantum dot with more than one
electron, due to transitions between the energy levels El and El′ . We assume that
the energy level El(El′) contains Nl(Nl′) electrons (N = Nl + Nl′). Because
the transition probability per quantum dot per photon is much smaller than one
(� 10−15 see section 4.5.2), and in the approximation that the absorption rate is
independent of spectator electrons4, the absorption rate of a quantum dot with two
electrons, due to a transition from electron state i to f or a transition from state i′

to f ′ equals Aif +Ai′f ′ . Under these assumptions the average absorption rate by
one quantum dot due to transitions between the energy levels El and El′ , ĀN

ll′ is
given by:

ĀN
ll′ = NlĀll′ if Nl ≤ 2(2l + 1),

= 2(2l + 1)Āll′(1 − Nl′

2(2l′ + 1)
) if Nl′ > 0.

For example, the average absorption by a quantum dot with three electrons (con-
figuration S2P1), due to a transition between the S and P level equals 2ĀSP (1 −
1/6).

4.5 IR absorption spectra obtained with an assembly of
ZnO quantum dots

4.5.1 Experimental method

In the IR absorption measurements we use nearly monodisperse ZnO quantum
dots without capping, with diameters in the 3-6 nm range [23]. ZnO nanoparticles
are prepared by addition of LiOH to an ethanolic zinc acetate solution [23]. Ag-
ing of particles is governed by temperature, the water content, and the presence

4Spectator electrons with an energy El′ occupy states that cannot be occupied by an electron
that makes a transition to this energy level. Obviously, we take this into account. Here we mean the
influence of spectator electrons on the absorption rate beside this Pauli-effect. Because the Coulomb
interaction Jl,l′ between electrons depends only by a few meV on the quantum number l, l′(=S,
P) [19], we assume that spectator electrons only slightly disturb the absorption rate. Exchange
interaction is about an order of magnitude smaller than the Coulomb interaction [19] and we neglect
it in the rest of this chapter.
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of reaction products. Water and acetate induce considerably accelerated particle
growth. Growth can almost be stopped by removal of these species (’washing’).
The average diameter of the nanocrystals is determined with XRD. The IR ab-
sorption measurements on an assembly of ZnO quantum dots are performed with
a two-electrode electrochemical cell schematically shown in Figure 4.6. A film of

IR

x

x

SiO

SiO

Gold grid

Gold grid

Propylene carbonate

µm5

Plastic spacer

V

I

5 mm

Quantum dots

200 nm

IR

Figure 4.6: Schematic drawing of the two-electrode electrochemical cell used in
IR absorption measurements on an assembly of ZnO quantum dots.

ZnO quantum dots, about 200 nm thick, is deposited by spin-coating a ’washed’
colloidal suspension on a gold/glass substrate. Annealing of the layer by heating
it to 90◦ C for 15 minutes removes residual alcohol from the layer. IR transpar-
ent contacts consist of a gold grid (with a distance of 10 µm between the gold
lines). A negative voltage V between the work electrode (with the ZnO layer) and
a counter electrode, leads to an increase in the electrochemical potential µ of the
ZnO quantum dot assembly, which becomes populated with electrons. Because of
the presence of positive ions in the electrolyte solution (propylene carbonate with
0.2M LiClO4) in the pores of the film, the electric field due to electrons in the
quantum dots is screened. As a result, the electron number in the quantum dots
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can be quite high (up to 10 electrons) and the electrons are distributed uniformly
over all ZnO nanocrystals in the film. By measuring the current I between work
and counter electrodes, during the discharge of the electrode, no contribution from
reduction (e.g. of water) is observed; all charge that flows from the work electrode
was stored in the ZnO layer. The number of electrons stored in the ZnO layer is
measured by integrating the current I that flows between work and counter elec-
trode. The average electron occupation number 〈N〉 of a quantum dot is obtained
from the total number of electrons in combination with the number of quantum
dots in the layer. The latter is calculated from the amount of zinc, determined
with the elemental analysis technique ICP-OES, and the size of the nanocrystals.
At a voltage of -3V between the electrode with the quantum dots and the counter
electrode reduction of the ZnO film starts. This limits the charging to a maximum
of 15 electrons per quantum dot, 5.2 nm in diameter and to only 3 electrons if
the diameter is 3.7 nm. Because of IR absorption by the electrolyte, the width
of the electrolyte layer should be as small as possible. We have used cells where
the optical path through the electrolyte solution is only 5 µm. We therefore have
no place for a reference electrode, which means that we cannot measure the elec-
trochemical potential µ of the ZnO layer. All IR absorption measurements are
performed with a Bio-rad FTIR5 spectrometer FTS-40, at room temperature in a
nitrogen purged environment.

5In a FTIR spectrometer, the IR path is modulated by an oscillating mirror such that every IR
frequency appears in the probing IR beam with a given time period. By a Fourier transform of the
time-dependent detector signal, the intensity of the detected IR beam is obtained as a function of the
IR frequency. The IR absorption spectrum of a sample is obtained from the IR spectrum measured
with the sample in the IR beam and the IR spectrum measured before or after the sample is in the
beam. The advantage of this FTIR method is that a whole frequency range is obtained in about one
second, the disadvantage is a time resolution larger than one second.
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4.5.2 Results

Figure 4.7 shows the increase in the absorption (i.e. the fraction of the incident
intensity which is absorbed) of an assembly of ZnO quantum dots (the average
diameter is 4.2 nm in a) and 3.7 nm in b)) due to charging with on average 〈N〉
electrons per quantum dot. The corresponding voltage V between the electrode
with the quantum dots and the counter electrode is also indicated. The charging
of the electrode takes a few seconds. The change in the IR absorption is instan-
taneous with the charging of the electrode. The dips in the absorption spectrum
at 3000, 1800, 1300, and 1100 cm−1 are also found in the absorption spectrum
of the propylene carbonate electrolyte. We therefore conclude that these dips are
due to a decrease in the absorption of propylene carbonate, induced by charged
quantum dots. The precise mechanism behind these sharp features is not under-
stood. The assembly can reversibly store up to seven electrons per quantum dot
without chemical degradation [24]. The energy of the absorbed photons is in the
range of a few 100 meV, which corresponds to the energy difference between the
conduction levels in ZnO quantum dots in the 3 to 6 nm range (see section 4.3).
The width of the absorption peak (� 50% of peak position), is essentially due to
the size distribution. Indeed, the spectra obtained at cryogenic temperatures show
the same width. From Fig. 4.7 it is clear that for increasing occupation number
〈N〉, the absorption and the width of the absorption peak increase while the posi-
tion of the absorption peak shifts to higher energies. This strongly suggests that
several different optical transitions become possible when 〈N〉 increases. From
a comparison between the spectra shown in Fig. 4.7 a) and b), it is clear that the
absorption peak is at larger energy for the smaller quantum dots. This is a clear
manifestation of the size confinement of the energy levels. Fig. 4.7b) shows that
the absorption spectra obtained at two different samples are nearly identical; the
reproducibility is of the order of a few percent. The reproducibility in the mea-
surement of the charge for two different samples is better than 10% for voltages
V smaller than -3 V.

The IR absorption due to charging of the S-level of a ZnO assembly (average
diameter 5 nm) is about 10 % of the incident flux. The IR intensity through-
out the sample is thus about constant. From the absorption due to charging, in
combination with the incident IR photon flux of 1018 photons per second per cen-
timeter square (over a photon energy range of 400 meV)[25] and the total number
of quantum dots (1014), we obtain an S-P average absorption cross section6 σ=
0.1 ±0.05 nm2. From Eq. 4.3 we obtain, with an average S-P oscillator strength

6The absorption cross section σ is defined as the ratio of the absorption rate per quantum dot
[energy per time unit] and the incident energy intensity [energy per time and per surface unit].
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Figure 4.7: The increase in the IR absorption by an assembly of ZnO quantum
dots due to injection of an increasing number of electrons. The applied potential
between the ZnO layer and counter electrode, and the corresponding average
occupation number are indicated. For quantum dots with an average diameter
of 4.2 nm (a), the average occupation number 〈N〉 can be as high as 7, where
for quantum dots with an average diameter of 3.7 nm (b), 〈N〉 reaches only 4
maximally. The excellent reproducibility is shown by the results obtained with
another sample (dotted line) in b).

f̄S−P = 3.5 (f̄S−P = 5.0 in effective mass approximation) (see Fig. 4.5), for a
quantum dot with a diameter of 5 nm, σ = 0.09±0.03 nm2 (σ = 0.12±0.03 nm2

with effective mass approximation), in excellent agreement with the experimental
value.
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Figure 4.8: The increase in the IR absorption of an assembly of ZnO quantum
dots (average diameter is 4.2 nm) due to charging with on average 0.8 and 3.7
electrons per quantum dot. The symbols (+) show the increase in the absorption
of a colloidal solution of the same ZnO quantum dots, due to excitation with
UV light (λ=300 nm). The latter spectra are very similar to these obtained with
ZnO quantum dot assemblies. The sharp features, below 2000 cm−1, due to the
electrolyte solution have been deleted for clarity.

Figure 4.8 shows the increase in the IR absorption of an assembly of ZnO
quantum dots (average diameter is 4.2 nm) due to charging with on average 0.8
and 3.7 electrons per quantum dot. The symbols (+) show the increase in the
absorption of a colloidal solution of the same ZnO quantum dots, due to photo-
chemical charging with UV light (see section 4.7.2). The spectra are multiplied
by a constant factor in order to account for the different number of quantm dots in
the IR-optical path in the case of an assembly and a dispersion. It can be seen that
the spectra obtained with solutions have a very similar shape to those obtained
with the assembly. This suggests that the electronic coupling between the ZnO
quantum dots in an assembly is weak. In addition, the redshift of the exciton ab-
sorption of an assembly of ZnO quantum dots, compared to a colloidal solution
of ZnO quantum dots is very small [7]. This further supports the idea that the
coupling between neighbouring quantum dots is weak. Finally, the magnitude of
the mobility of electrons in an assembly of ZnO quantum dots, due to tunneling
between conduction band levels, also indicates a weak overlap of the conduction
band orbitals of neighbouring quantum dots. Therefore, we will assume that or-
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bital overlap in an assembly of ZnO quantum dots is not important in the electric
dipole transitions; thus uncoupled quantum dots will be considered (sections 1.6
and 1.7).
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4.6 Quantitative analysis of the spectra

4.6.1 A statistical model

Tunneling of an electron between two conduction orbitals of adjacent ZnO quan-
tum dots occurs on a time scale of nanoseconds [7]. On the other hand, the re-
laxation of electrons from a higher to a lower conduction level is extremely fast
(of the order of a ps [26]). We therefore can assume that the electrons injected
in a ZnO assembly are in electrochemical equilibrium. In this section we present
a model for the absorption of a collection of quantum dots with a given size dis-
tribution and a electrochemical potential µ. We calculate the electron occupation
N of a quantum dot of diameter D for a given electrochemical potential µ and
temperature T. In combination with the expression for the absorption of a quan-
tum dot with N electrons given in section 4.4.2, we are able to calculate the total
absorption in a ZnO assembly as a function of the average occupation number
〈N〉.

The occupation number N of a quantum dot with radius R (present in a quan-
tum dot assembly with electrochemical potential µ) is most easily obtained by
considering the electron addition energy µN . The electron addition energy µN (R)
is defined as the energy required to add one electron to a quantum dot (with radius
R) containing N − 1 electrons in the conduction band, i.e.

µN = EN − EN−1, (4.9)

where EN is the internal energy of a quantum dot with N excess electrons. The
occupation number is obtained by counting all electron additions for which µN (R)
is smaller than the electrochemical potential µ.

If an electron is added to a quantum dot with N − 1 electrons, it occupies
a conduction state with a kinetic confinement energy εN (see section 4.3). The
charge of this electron, with wave function ψ, will polarize the quantum dot and
its environment; as a result there is a polarization energy

ΣN =
1
2

∫
−e|ψ(r)|2V (r) dr, (4.10)

where V is the electrostatic potential due to the charge distribution −e|ψ(r)|2.
Furthermore, there is the repulsion energy JN due to the Coulomb interaction
with the N − 1 conduction electrons already present in the dot;

JN =
∫

−e|ψ(r)|2VN−1(r) dr, (4.11)
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where VN−1(r) is the potential due to the N − 1 other electrons in the dot. For
our quantum dots, the exchange energy is about an order of magnitude smaller
than the Coulomb interaction [19], and we neglect it here. The electron addition
energy µN can then be written as

µN (R) � εN (R) + ΣN (R) + JN (R). (4.12)

In appendix C we calculate the polarization energy Σ1 for a spherically symmet-
ric electron charge distribution with respect to the polarisation energy in a bulk
crystal, and find in first order perturbation for the S-level (effective mass model)

Σ1 =
e2

4πεoR
(
1.01
εin

+
1
εout

), (4.13)

in the approximation that the microscopic static dielectric function ε(r, r′) equals
the macroscopic static dielectric constant εin(εout) inside (outside) the quantum
dot. For a ZnO quantum dot (εin = 7.8 [27]) in propylene carbonate (εout = 55
[28]) we obtain a polarization energy

Σ1 =
0.211 [eVnm]

R [nm]
. (4.14)

Tunneling of the electron outside the quantum dot delocalizes the charge distri-
bution and hence reduces the polarisation energy with respect to the value we ob-
tained here. On the other hand, the microscopic dielectric function ε(r, r′) tends
to 1 when r → r′ and this significantly enhances the polarisation energy relative
to the value obtained with the macroscopic dielectric constant [19]. Because the
polarisation energy Σl and the Coulomb interaction between two electrons Jll′
depends on l, l′(=S,P) only by a few meV [19] and because correlation effects be-
tween electrons are of the order of a few meV [19], [9], [10], [12] we make the
approximation7

ΣN � Σ1 (4.15)

and

JN � 2(N − 1)Σ1. (4.16)

In this way we obtain an electric addition energy µelN (= µN − εN )

µel
N (R) = (2N − 1)Σ1. (4.17)

7The accuracy of our method in the separation of the energy levels is about 100 meV (see Fig.
4.13).
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Eq. 4.17 corresponds to the constant capacitance of electron addition better known
as the ’standard model’ which has been used frequently for metallic nanocrys-
tals and larger (10 to 100 nm) semiconductor quantum dots defined by lithog-
raphy [4], [29]. In our fitting procedure, we use an electron addition energy
µN (R) = εN (R) + (2N − 1) 1

2RC in accordance with Eq. 4.17, where C is
a constant parameter that can be adjusted to fit the experimental absorption spec-
tra. The Coulomb interaction between two neighbouring charged quantum dots
in our electrolyte (with a Debye screening length L of 1.2 nm) is of the order of
10−1 meV and is neglected.

At a temperature of 0 K, all single-particle energy levels in a quantum dot with
radius R that have an addition energy µN (R) smaller than the electrochemical
potential µ will be filled. With RN we denote the radius of the smallest quantum
dot with N electrons. This radius is the solution of the equation

µ = µN (RN ). (4.18)

The addition energy µN (R) is calculated with tight-binding values for the kinetic
confinement energy εN (R), and an electric addition energy µel

N = (2N − 1) 1
2RC .

Equation 4.18 is third order in RN and is solved numerically with an accuracy up
to a few percent. Because µN increases with N and decreases with R, RN+1 >
RN . Quantum dots with a radius R between RN < R < RN+1 have N electrons.
By calculating the radii RN for N = 1 to N = 32 (F-like shell filled), we obtain
the occupation number for all quantum dots in our assembly. As an example we
show in Fig. 4.9 the electron occupation in a collection of ZnO quantum dots with
a relevant size-distribution around the average diameter of 4.2nm. The radii RN

are indicated for an average occupation number 〈N〉=1.3 (a) and 〈N〉=2.8 (b). At
a temperature T , the occupation of a single-particle level εN in a quantum dot
with radius R is given by the Fermi-Dirac distribution f = 1

1+e
µN (R)−µ

kT

.

Since we now have the occupation number as a function of the diameter of the
quantum dot, we can calculate the IR absorption by each class of quantum dots
with a given occupation number. The absorption of the sample due to charging of
the quantum dots is of the order of 10−1. This means that the IR intensity through-
out the sample is nearly constant. In combination with the incident IR photon rate
(1018 photons per second [25]) and the number of quantum dots in the sample
(1014), we obtain a S-P absorption rate of the order of 103 photons per quantum
dot per second. It has been shown that an electron excited to a P level decays to
the S level on a picosecond time scale [26]. Thus, all IR photons are absorbed by
the quantum dots with ground state electronic configuration. Furthermore, since
the absorption probability per quantum dot per photon is much smaller than one
(� 10−15), the cross section for a quantum dot with N electrons is the sum of the
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Figure 4.9: The solid line shows the size distribution of a collection of quantum
dots with an average diameter of 4.2nm. The smallest diameters of a quantum
dot with N electrons at a temperature of 0 K, 2RN , are indicated for an aver-
age occupation number N=1.3 (a)) and N=2.8 (b)). The dashed lines show the
distribution of quantum dots with one up to six electrons at room temperature.
Addition energies µN (R) are taken from the best fit to experimental results.

cross sections of a quantum dot with one single electron, under the assumption
that the cross section for a transition is independent of spectator electrons.

4.6.2 Discussion of the results

We now have a model for the absorption of a collection of ZnO quantum dots with
a given size distribution, electrochemical potential µ and temperature T. From the
occupation number as a function of the diameter of the quantum dot, we also
calculate the average occupation number 〈N〉 as a function of the electrochemical
potential. Experimentally we have measured the change in the IR absorption due
to charging of the quantum dots with on average 〈N〉 electrons per dot. We now
compare the experimental absorption spectra with those obtained from our model.
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The fitting parameters in our model are i) the values for the single-particle energy
levels εN , ii) the averaged oscillator strengths f̄ll′ of the allowed transitions and
iii) the electric charging energy µel

N = 2N−1
2R C and iv) the size distribution of the

quantum dots.
Figure 4.10 presents the IR absorption spectra for a quantum dot assembly

(diameter of ZnO nanocrystals is 4.2 nm) for 〈N〉 equal to 0.8 and 4.9. With in-
creasing 〈N〉, the maximum of the absorption spectrum shifts to higher energy,
and the integrated intensity of IR absorption increases markedly. The latter ob-
servation indicates that the number of optical transitions increases when, besides
the S-, the P-orbitals also become occupied with electrons. We have fitted the
absorption curves, with the energy separations between the S,P,D,S’ and F elec-
tron orbitals and the relative oscillator strengths for the allowed transitions as ad-
justable parameters. Figure 4.10 a) shows the results for a low average occupation
number; 〈N〉 = 0.8. The absorption curve can be accounted for by the allowed
S-P transition (∆l = +1). For 〈N〉 = 0.8, the sample consists of nanocrystals
with 0, 1 and 2 electrons (see Fig. 4.9). The contribution of the nanocrystals with
one electron corresponds to the right shoulder in the fit. (Note that the dip at 3000
cm−1 is due to absorption by the electrolyte.) The contribution of the nanocrys-
tals with two electrons provides the left part. The energy separation between the S
and P electron levels is obtained from the position of the absorption peak. There
is also a very small contribution from a P-D transition. This is due to the fact that
a small fraction of the (largest) quantum dots in the assembly have an electron
in a P-orbital. We remark that the absorption at the high energy side cannot be
explained by a P-S’ transition. The width of the S-P transition is about 200 meV.
This width is due solely to the size distribution of the quantum dots. This is sup-
ported by measurements at 10 K, which provide absorption spectra that are nearly
identical to those at room temperature. A similar width has been observed for the
S-P transition in a sample of CdSe quantum dots[30].

For 〈N〉 = 4.9, transitions from the P-orbitals to higher lying orbitals are
expected. Figure 4.10b shows the contributions of the distinct transitions to the
overall absorption spectrum. The main contribution comes from the P-D optical
transition (∆l = +1). The steps on the high energy side are due to the con-
tributions of sub-ensembles of nanocrystals, each with a distinct number of P-
electrons. Each sub-ensemble has a different average diameter, and gives thus a
contribution at slightly different energy due to the effect of quantum confinement.
The energy separation between the P and D levels is obtained from the position
of the peak in the absorption spectrum. The average oscillator strength of the P-D
transition f̄PD (relative to that of the S-P transition) is obtained from the inten-
sity of the absorption curve. The remaining S-P contribution is merely due to
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Figure 4.10: Absorption spectra (black lines) and corresponding fits (grey solid
lines) for a ZnO quantum dot assembly (average diameter is 4.2 nm) at low and
higher occupation 〈N〉. The spectrum for 〈N〉 = 0.8 can be fitted with an S-P
(+) and a forbidden S-D (x) transition. The spectrum for 〈N〉 = 4.9 can be fitted
with the S-P (+) and S-D (x) transition and the P-D (�) and P-S’ (◦) transition.
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the subset of the smallest quantum dots in the sample. Note that the maximum
of the S-P contribution is therefore at higher energy than that of the S-P contri-
bution for 〈N〉 = 0.8. Moreover, despite the fact that there are two electrons in
the S orbitals, the total S-P intensity has decreased markedly compared to that for
〈N〉 = 0.8. At 〈N〉 = 4.9 most particles have already three electrons in a P-level,
which strongly reduces the S-P intensity (see section 4.4.2). The subset of largest
particles have occupied D-orbitals. This leads to a D-F contribution (∆l = +1)
at the low energy side of the spectrum. The tail at the high energy side of the
spectrum is merely accounted for by the allowed P-S’ (∆l = −1) transitions.
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Figure 4.11: The increase in absorption of a quantum dot assembly (average
diameter is 4.2nm) due to charging with on average 4.9 electrons, is shown with
the predictions from our model for different values of the parameter C (µ el

N =
2N−1

2R C). The first peak in the curve withC = 125 meV is due to D-F transitions,
the second peak mainly due to P-D transitions.

Figure 4.11 shows the increase in absorption of a quantum dot assembly due
to charging with on average 4.9 electrons, and the predictions from our model for
different values of the electric addition energy µelN = 2N−1

2R C . From section 4.6,
we know that the electric addition energy determines the electron occupation of
the quantum dots (with radius R) in the assembly. From a fitting of the experi-
mental spectra we obtain C = 500 ± 200 [eV nm]. For a quantum dot with two
electrons (N = 2) and radius of 2 nm, this corresponds to an electric addition
energy of 375 meV. In section 4.6, we find from a rough approximation (see Eq.
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4.14) that C = 422 meV nm. From the differential capacitance function obtained
in a three-electrode system, it is found that the electric charging energy is about
C = 420 meV nm, which is very close to the value obtained from our experiment.
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Figure 4.12: Absorption spectra (black lines) and corresponding fits (grey solid
lines) for a ZnO quantum dot assembly (average diameter is 5.2 nm) at different
occupation numbers 〈N〉. The spectrum for 〈N〉 = 1.4 can be fitted with an S-P
(+) and a P-D (�) transition. The spectra for 〈N〉 = 4.7 and 〈N〉 = 8.6 can be
fitted with the S-P (+), P-D (�), P-S’ (×) and D-F (◦) transition.
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Figure 4.12 shows the absorption spectrum for a quantum dot assembly with
an average diameter of 5.2 nm. The spectrum with 〈N〉 = 1.4 can essentially be
fitted with a S-P transition. There is a small contribution from a P-D transition.
From the fitting of this spectrum we obtan information on the energy separation
between the S and P level. The spectrum with 〈N〉 = 4.7 is fitted with a S-P,
P-D, P-S’ and D-F transition. Because the main contribution comes from the P-
D transition, we essentially obtain information on the energy separation between
the P and D level, and the oscillator strength of the P-D transition, relative to the
oscillator strength of the S-P transition. The spectrum with 〈N〉 = 8.6 provides
information on the energy separation between the F and D level, and the oscillator
strength of the D-F transition, relative to the S-P transition.

In summary, we have shown that, by fitting the IR absorption spectra for a
gradually increasing occupation of the ZnO quantum dots, we obtain the relative
oscillator strengths for the allowed transitions and the energy separations between
the S, P, D and F levels. The contribution from P-S’ is too broad and too weak to
obtain reliable data for the P-S’ energy separation.

We analyzed the absorption spectra for ZnO quantum dots of three differ-
ent sizes: 3.7 nm (0 < 〈N〉 < 1.7), 4.2 nm (0 < 〈N〉 < 4.9), and 5.2 nm
(0 < 〈N〉 < 8.6). In Figure 4.13 the single-particle energy separations that we
obtain from analysis of the spectra are compared with the tight binding values
and the values obtained by the effective mass approximation. The dependence of
S-P and P-D energy separation on the nanocrystal diameter is in line with the-
ory. Quantitatively, the experimental S-P, P-D and D-F separations are somewhat
larger than the values calculated with the spds∗ tight-binding model used here.
The reason for this difference may be an inaccurate description of the surface of
the quantum dot. Tight-binding calculations with different surface atoms passi-
vating dangling bonds have shown that the energy levels sensitively depend on
the surface termination [31], [32].The presence of an internal electric field and
deviations from the spherical shape are other possible reasons for the difference
between the experimental and calculated results.

The oscillator strengths that we have obtained from a fit of the IR absorption
spectra are compared with the tight-binding values in Table 1.1. We have taken
the experimental oscillator strength of the S-P transition equal to the tight-binding
value. The table presents therefore a comparison of the relative oscillator strengths
for the different allowed transitions. For the quantum dots of 3.7 and 4.2 nm, we
find a remarkable agreement between observed and calculated values. The oscil-
lator strengths observed for the particles of 5.2 nm are higher than those predicted
by tight-binding theory. The reason for this discrepancy is not yet clear.

Fig. 4.9 shows the size distribution used to fit the IR absorption spectra for
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Figure 4.13: The separations between the single-electron energy levels obtained
from the IR spectra (symbols) and calculated with tight binding theory (solid
lines) and effective mass approximation (dotted lines), as a function of the diam-
eter of the ZnO nanocrystals.

quantum dots with an average diameter of 4.2 nm. The asymmetrical log-normal
distribution is obtained from TEM pictures of similar quantum dots [33], [34].
The width of the size distribution necessary to fit the IR absorption spectrum is
however, much larger than the width obtained from TEM size histograms which
is about 20 % of average diameter [23]. Below, we evaluate some phenomena
which might be important in the broadening of the IR absorption spectra. The
precise reason for the broadening of the spectra which is accounted for in our fit-
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Table 4.1: The summed dipole oscillator strength 2(2l + 1) f̄ll′ are shown for different
allowed transitions. Theoretical values are obtained with tight-binding model. The ex-
perimental S-P oscillator strength is set equal to the theoretical value. This allows us to
compare the oscillator strengths of the P-D, D-F and P-S’ transitions with the theoretical
values.
Diameter S-P P-D D-F P-S’

[nm]
3.7 6.1 18 ± 2 − −

Theory 6.1 18.3 33.8 3.2

4.2 6.4 21 ± 2 36 ± 14 4 ± 2
Theory 6.4 19.2 36.2 3.4

5.2 6.6 29 ± 4 54 ± 10 4 ± 3
Theory 6.6 20.7 40.5 3.7

ting model by an anomalous broadening of the size-distribution is not yet clear.
Spectra obtained at 10 K have a width almost identical to spectra obtained at room
temperature (see Fig. 4.19). This excludes broadening due to the absorption of
phonons in the electronic transition. Also a coupling of the electron levels with the
(fluctuating) dipoles of the solvent can very probably be excluded. The linewidth
of an IR transition between conduction levels in a quantum dot due to its lifetime
(� a picosecond [26]) is of the order of a meV and can thus also not explain the
broad spectra. Band-edge exciton emission and absorption measurements on an
identical assembly of ZnO quantum dots show a similar width as obtained from
IR absorption measurements. Size-selective band-edge exciton absorption mea-
surements have shown that phonon replicas can shift the optical absorption by
40 meV [35]. Capacitance measurements on a ZnO quantum dot assembly in
the same electrolyte solution as we have used (propylene carbonate) show a size
distribution identical to that needed to explain the IR absorption spectra. We con-
jecture that shape asymmetry [35], surface atoms [31] and changes in the local
electric field (spectral diffusion) [36]-[37] are factors that might explain the dis-
persion in the kinetic confinement energy levels εN and perhaps the anomalous
width of the spectra.
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4.7 IR absorption spectroscopy of a colloidal solution of
ZnO quantum dots

4.7.1 Experimental

The quantum dots that we used in IR absorption measurements with colloidal
solutions are identical to those used to prepare the assemblies. Their synthesis and
characterization has been discussed in section 4.5.1. From the amount of reagents,
we know that the volume fraction of ZnO quantum dots to the total volume is 3.8
10−3. IR absorption measurements are performed using a UV transparent plastic
bag containing 40 mg of the quantum dot solution. Photochemical charging of the
quantum dots is performed by illumination with a Xe-lamp. The wavelength of
the excitation light is selected by a monochromator with a spectral width of 5 nm.
The exciton absorption by 100 µm of the colloidal solution is of the order of 0.1.
All IR absorption measurements are performed with a Bio-rad FTIR spectrometer
FTS-40, at room temperature in a nitrogen purged environment.

4.7.2 Results and discussion

Figure 4.14 shows the increase in the absorption of a colloidal solution of ZnO
quantum dots, due to the illumination with UV light (4 eV). Upon UV illumination
of a colloidal solution of ZnO quantum dots in ethanol, electron-hole pairs are
created. The relaxation of an electron from a higher electron state to the lowest
conduction state occurs on a time scale of 600 fs via a Auger-like electron-hole
energy transfer [38]. Holes are selectively removed by electron transfer from an
ethanol molecule, which is, in a second step oxidised to CH3-CHO [39]. As a
result negatively charged quantum dots with electrons in the lowest levels of the
conduction band are formed. Charged quantum dots slowly discharge e.g. due to
the presence of an electron scavenger like oxygen.

The absorption spectra are measured at different time delays after the illu-
mination is switched on and off. Figure 4.15 shows the increase (decrease) in
the absorption peak maximum as a function of the time after the illumination is
switched on (off). The absorption increases with time and saturates typically 3±1
minutes after the start of the illumination. After switching off the illumination, the
absorption returns to its value before the illumination started, on a time scale of
10 ± 2 minutes. It can be seen from Fig. 4.14 that the spectra measured during
the illumination are equal to those measured after the illumination is switched off.
The width of the absorption peak increases with the illumination time, and the
position of the absorption peak shifts to higher energy. The perturbations at 3000
and 1500 cm−1 are due to changes in the (strong) absorption of the plastic sample
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Figure 4.14: The increase in the absorption of a colloidal solution of ZnO quan-
tum dots (average diameter is 4.2 nm) due to illumination with UV light (4eV).
The spectra are measured at different time delays after the UV illumination is
switched on (0.25, 0.5, 0.75, 1, 2.5, 3.5 minutes) (solid lines), and switched off
(1, 4, 7, 11 minutes)(+). The perturbations observed at 1500 and 3000 cm −1 are
due to the absorption of the plastic bag.
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Figure 4.15: The change in the maximum of the absorption peak of a colloidal
solution of ZnO quantum dots at room temperature, as a function of the time
after the UV illumination (4 eV) is switched on (rising part) and off.

holder. The spectrum measured 11 minutes after switching off the illumination
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is slightly shifted from zero due to the instability of the FTIR spectrometer. The
absorption of the sample without quantum dots, i.e. the absorption of the solvent
and the plastic sample holder does not change upon illumination.

The absorption spectrum that we obtain here is very similar to the absorption
spectra obtained with an assembly of quantum dots (see Fig. 4.8). The changes
in the absorption spectra as a function of time are analogous to the changes in the
spectra of an assembly for an increasing average occupation number 〈N〉.
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Figure 4.16: The change in the absorption of a colloidal solution of ZnO quan-
tum dots (average diameter is 4.2 nm) due to illumination with different excita-
tion wavelengths (from bottom to top: λ=400, 380, 360, 340 and 300 nm). The
spectra are normalized to incident photon flux.

Figure 4.16 shows the change in the absorption of a colloidal solution of ZnO
quantum dots due to illumination with different excitation wavelengths. The ab-
sorption does not change if the solution is illuminated with light of a photon en-
ergy smaller than the bandgap of ZnO (3.2 eV for macrocrystalline ZnO). This in-
dicates that the IR absorption requires the presence of conduction electrons in the
quantum dots. For increasing photon energy, the total absorption and the width of
the absorption peak increase. The position of the absorption peak shifts to higher
energies for increasing photon energies. Because of the size-dependence of the
conduction energy levels, increasing the photon energy enables smaller quantum
dots to be photo-excited. Size-selective excitation could provide, in principle, in-
formation on the IR absorption of a smaller size distribution of dots. However, we
have strong indications that electron transfer occurs between dots (see further).
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By such a process electrons are redistributed over the dots in the sample.
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Figure 4.17: The change in the absorption of a colloidal solution of ZnO quan-
tum dots (average diameter is 4.2 nm) due to illumination for different excitation
intensities (λ=300 nm). The spectra are obtained at (from bottom to top) 2.5%,
5%, 10% and 100% of the UV intensity (3.6 1015 photons/s cm2).

Figure 4.17 shows the change in the absorption of a colloidal solution of ZnO
quantum dots due to illumination (λ = 300nm) with different excitation intensi-
ties. The absorption and the width of the absorption peak increase with increasing
excitation intensity. The position of the absorption peak shifts to higher energies
with increasing excitation intensity. The integrated absorption is linear in the il-
lumination intensity up to about 5 % of the maximum intensity, and sublinear for
higher intensities. Since the average oscillator strength f̄ll′ is about identical for
S-P and P-D transitions (see Fig. 4.5), this indicates that the efficiency of pho-
tochemical generation of an electron in a ZnO nanocrystal decreases if there is
already one or more electrons present in the conduction levels. Identification of
the colloidal spectra with those obtained with an assembly (see Fig. 4.8) indeed
shows that 〈N〉 � 1 for an illumination intensity of 5 % of the maximum.

The isomorphism between the IR absorption spectra obtained with assemblies
and solutions (see Fig. 4.8) strongly suggests that the spectra are determined
by the average electron occupation number 〈N〉 only. This means that quantum
dots with 〈N〉 > 1 can be obtained with photochemical charging (see Fig. 4.8).
Furthermore, it strongly suggests that with quantum dot solutions, the distribution
of the electrons over the quantum dots of different sizes is very similar to that



98 Chapter 4

2000 4000 6000

0.00

0.02

0.04
0.248 0.496 0.744

Photon energy [eV]

 

 
D

iff
er

en
tia

l a
bs

or
pt

io
n

Wavenumbers [cm-1]

Figure 4.18: A comparison of the change in the IR absorption of a colloidal so-
lution of ZnO quantum dots due to illumintaion in different ways. The solid lines
are spectra obtained by photoexcitation at 300 nm with different light intensities;
the (+) spectra are obtained with different photon excitation energies, and the (×)
spectra are obtained after different waiting times of illumination with λ= 300nm.

in our assembly, where electrochemical equilibrium prevails. It is not clear how
electrons in a quantum dot solution equilibrate; a possible mechanism is electron
transfer between quantum dots. Furthermore, Fig. 4.18 strongly indicates that
electrochemical equilibrium at varying 〈N〉 can be achieved by using a variation
of the excitation intensities or a variation of the photon energy.

Figure 4.19 shows the change in the absorption of a colloidal solution of ZnO
quantum dots due to illumination (λ=330 nm), at a temperature of 300 K (solid
line) and 10 K (+). The absorption spectrum at 10 K is almost identical to that
measured at 300K. The intensity is reduced by 30% compared to the spectrum at
300 K, the width is reduced only by a few percent. The rising (relaxation) time of
the absorption upon illumination increased from 1 minute (8 minutes) at 300K to
8 minutes (50 minutes) at 10 K. These results show that ZnO quantum dots can
be photochemically charged with electrons even at very low temperatures (10 K).
This is surprising since it means that thermally activated electron transfer from
an ethanol molecule to the unoccupied valence state can occur with a certain rate
also at low temperatures.
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Figure 4.19: The change in the absorption of a colloidal solution of ZnO quan-
tum dots due to illumination (λ=330nm), measured at a temperature of 300 K
(solid line) and 10 K (+). For a better comparison, the spectrum at 300 K is
multiplied by a factor 0.68.

4.8 Conclusions

In this chapter we have shown that artificial atoms can be prepared by electro-
chemical injection of electrons in an assembly of weakly coupled ZnO quantum
dots with a diameter between 3 and 6 nm. The injected electrons occupy the
conduction electron orbitals of the ZnO nanocrystals. By measuring the injected
charge and the number of nanocrystals in the assembly, the average electron num-
ber 〈N〉 can be obtained. We have shown that up to ten electrons can be confined
in the ZnO nanocrystals, thus that artificial atoms with S1, S2, S2P1, ... elec-
tron configurations can be studied. On the other hand, the same artificial atoms
can also be prepared using a colloidal solution of ZnO nanocrystals in ethanol.
Formation of an electron-hole pair by absorption of a photon with energy in the
near UV and subsequent removal of the hole by electron transfer from an ethanol
molecule leads to ZnO nanocrystals with one or more electrons in the conduction
orbitals.

Using absorption spectroscopy in the near-IR we have studied the optical tran-
sitions in these artificial atoms. By gradually increasing the electron number, we
could identify the contributions of the S-P, P-D, D-F and P-S’ allowed electric
dipole transitions to the total absorption spectrum could be identified. The absorp-
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tion spectra can be understood by a comprehensive model. The model is based on
the allowed electric dipole transitions between the atom-like conduction orbitals
of the ZnO quantum dots. The distribution in the size of the ZnO nanocrystals
in the sample is the most serious problem. It is accounted for by calculating the
electron configuration as a function of the diameter of the quantum dots for a
given average occupation number 〈N〉 assuming electronic equilibrium between
the dots. In this way the experimental absorption spectra could be fitted accurately
and in a self-consistent way. There is, however, one remaining problem: the size
distribution needed to explain the spectra is considerably broader than that found
by analysis of TEM pictures. The relative oscillator strengths of the S-P, P-D,
D-F and P-S∗ transitions were found to be in excellent agreement with the values
calculated with an effective mass approximation and with a more sophisticated
tight-binding theory. This means that the optical transitions are completely deter-
mined by the symmetry of the envelope wave functions, expressed by the quantum
number l. Here, we wish to remark that generally excitonic HOMO-LUMO tran-
sitions cannot be explained in such a simple way [40]. From the analysis, the
single-particle energy separations between the S, P, D, and F can also be obtained.
The increase of these separations with decreasing size of the dots due to quantum
confinement are in line with effective mass and tight binding calculations.
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Appendix A: Transmission Line Theory for
currents and voltages

In this appendix we describe the transport of electromagnetic energy in a waveg-
uide (coax-cable) in terms of the corresponding currents and voltages in the walls
of the waveguide. Advantage of this formalism is that a waveguide can be repre-
sented as an equivalent electric circuit. As an example we calculate the reflection
at an impedance in a waveguide.

Fig. A.1 shows a schematic drawing of a coaxial cable. The voltage V (z) is
defined as the difference in potential between the inner and the outer conductor
at the position z. The current in the inner conductor in the direction of the z axis
is denoted by I(z). Currents and voltages in the coax-cable are obtained from the
electrical equivalent circuit shown in Fig. A.2. The capacitance per unit length in
the z direction between the inner and outer conductor is given by c = εε0 2π

ln(a/b) . The
energy of the magnetic field perpendicular to the z axis induced by the current
I(z) can be described by an inductance per unit length l = µµ0

2π ln(a/b) where µ
is the relative permeability of the medium between both conductors. A resistance
per unit length r describes ohmic loss in the conductors. Finally a conductance
per unit length g between both conductors accounts for the (small) conductivity
of a dielectric.

z

a

b

outer conductor

dielectric

inner conductor

ε,µ

Figure A.1: Schematic drawing of a coaxial cable filled with a dielectric with
dielectric constant ε and magnetic permeability µ.

The electrical circuit shown in Fig. A.2 can easily be solved in a complex
representation of the currents and voltages. With a time dependence given by
exp(iωt) we obtain

V (z) − V (z + dz) = I(z)(r + iωl)dz (A.1)

and

I(z) − I(z + dz) = V (z)(g + iωc)dz. (A.2)
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z+dz

V(z) V(z+dz)c dzg dz

l dzr dzI(z) I(z+dz)

z

Figure A.2: Equivalent electrical circuit of a coaxial cable with length dz.

These equations can be written as differential equations

∂V

∂z
= −I(r + iωl), (A.3)

∂I

∂z
= −V (g + iωc) (A.4)

or equivalently

∂2V

∂z2
= V (r + iωl)(g + iωc), (A.5)

∂2I

∂z2
= I(r + iωl)(g + iωc). (A.6)

The solutions of (A.5) and (A.6) are given by right and left running waves

V�(z) = V�
o exp(∓ikzz + iωt) (A.7)

and

I�(z) = I�
o exp(∓ikzz + iωt) (A.8)

where the wave number kz is given by

kz =
√

−(r + iωl)(g + iωc). (A.9)

From (A.3) follows that

V� = ±ZoI
� (A.10)

where Zo =
√

r+iωl
g+iωc is called the characteristic impedance of the transmission

line. To conclude, for a given radial frequency ω, the currents and voltages in a
uniform waveguide are completely determined by the complex amplitudes of the
right and left running waves e.g. V⇀

o and V↽
o and the complex impedance Zo.
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As an example of the above formalism we describe the reflection of an incom-
ing wave with amplitude V⇀

o for z = 0 at a distance l from a load impedance ZL

(see Fig. A.3).
By definition

ZL =
V⇀(z = l) + V ↽(z = l)
I⇀(z = l) + I↽(z = l)

. (A.11)

Because of (A.10) this is equal to

ZL =
V⇀(z = l) + V↽(z = l)

V⇀/Zo(z = l) − V↽/Zo(z = l)
(A.12)

which can be written as

V↽(z = l)
V⇀(z = l)

=
ZL − Zo

ZL + Zo
. (A.13)

Amplitudes for z = 0 can easily be obtained from the amplitudes for z = l using
(A.7). In this way we obtain for the reflection coefficient at z = 0

R(z = 0) =
V ↽

o

V ⇀
o

= exp(−2ikz l)
ZL − Zo

ZL + Zo
. (A.14)

0

zl0
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Figure A.3: Electrical equivalent circuit of a transmission line ended with a load
impedance ZL.





Appendix B: Dielectric constant of a
porous semiconductor

We discuss a model for the dielectric constant of porous GaP at microwave fre-
quencies. During one microwave period 2π/ω � 10−10s, free electrons are trans-
ported over a distance which is at maximum given by µE2π/ω where E is the
microwave-induced electric field inside the semiconducting part and µ is the mo-
bility inside the semiconducting part. Due to screening, the electric field strength
in the semiconducting part is smaller than the amplitude of the applied microwave
electric field which is of the order of 10 V/cm. With the mobility µ for bulk GaP
(µ = 130 cm2/Vs [1, 2]) we obtain a transport distance of the order of 1 nm.
This distance is much smaller than the size of the porous structure. The dielectric
constant obtained from microwave conductivity measurements thus reflects short
range motion of the free electrons in macroporous GaP. Fig. 3.1 shows that the
porous structure is random and has a typical size of 150 nm. Therefore, in a de-
scription of the dielectric constant of porous GaP at microwave frequencies, we
model the porous structure as a collection of isolated spheres with a typical radius
R equal to 75 nm. Because of surface states with an energy level in the bandgap,
a region at the surface of the semiconductor is depleted of free electrons and only
the inner core of these spheres, with a radius Rc is semiconducting.

In the Clausius-Mossotti approximation, the dielectric constant ε of a collec-
tion of particles is related to the polarizability of one particle α via [3]

ε(ω) − 1
ε(ω) + 2

= fα(ω). (B.1)

In this expression f is the fraction of the volume of the spheres to the total volume.
In a complex representation of physical quantities, the time dependence is given
by exp (−iωt) and α and ε can become complex numbers. The modulus of α is
proportional to the size of the induced dipole moment while the phase factor of
α describes the delay of the induced dipole moment on the applied electric field.
The polarizability α of a mildly doped semiconducting sphere surrounded with a
dielectric shell is calculated with the hydrodynamic model [4]. In this model the
flow of the electrons is described by hydrodynamic equations which incorporate
electrostatic interactions between the electrons in a self-consistent fashion and a
diffusion term due to gradients in the free electron density. Applying a uniform
electric field to a semiconducting sphere, the conduction electrons drift to the
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surface where they screen the applied electric field. Diffusion due to the gradient
in the electron density acts as a force opposite to the applied field and makes that
the screening charge is spread out over a distance of the Debye screening length
L. The electric field inside the semiconducting sphere vanishes on a distance of
the order of the Debye screening length from the surface (see Fig. 3.2). This is in
firm contrast with the well-known Mie model [5] where diffusion is not taken into
account. In the Mie model the screening charge is singularly located at the surface
and the electric field changes discontinuously at the surface of the semiconducting
sphere. Fig. B.1 shows the frequency dependence of the polarizability α′ and
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Figure B.1: The frequency dependence of the polarizability α ′ and dielectric
loss α′′ of a semiconducting sphere calculated with the hydrodynamic model for
several values of the Debye screening length L. The dielectric relaxation time τ d

(see [4]) equals the time constant on which the screening occurs. The radius is
50 nm and the dielectric constant is 10. The solid line gives the prediction from
Mie theory.
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dielectric loss α′′ of a semiconducting sphere calculated with the hydrodynamic
model for several values of the Debye screening length L. For a Debye screening
length L of the order of the radius R, the elaborate hydrodynamic model differs
significantly from the Mie model.

At the end of this appendix we explicitly calculate the polarizability α of a
semiconducting sphere surrounded by a dielectric shell (see Eq. B.6). Parameters
in the expression for this polarizability are the outer radius R and the dielectric
constant ε of the dielectric background in which the free electrons move. We esti-
mate R to be 75 nm from SEM images (see Fig. 3.1) and from literature we take
ε to be 8.5 [6]. With an effective electron mass mn = 0.35me, where me is the
bare electron mass [6], and a free electron density n equal to the doping density
(= 3 × 1017cm−3) the other parameters of α become L =

√
εε0kT/ne2 = 6.4

nm and the plasma frequency Ωp =
√
ne2/εε0mn = 1.8×1013 Hz. The only pa-

rameters not determined yet by an independent measuring method are the radius
of the semiconducting part in the dark Rc(dark), under illumination Rc(I) and the
mobility of the free electrons inside the semiconducting core.

Explicit calculation of the polarizability α of a weakly conducting sphere sur-
rounded by a dielectric sphere

For wavelengths long compared to the size of a particle, the applied field E can
be considered uniform on the scale of the particle. We assume the electric field to
be directed along the z axis. For this case the electrostatic potential outside of the
sphere has the form (in spherical coordinates)

Φo(r, θ) = (−Er +
1

4πε0
p

r2
)P1(cos θ), (B.2)

where the second term is the polarization field caused by the dipole moment p
induced in the sphere. Note that the polarizability of the particle α(ω) is related
to the dipole moment p(ω) via

p(ω) = 4πR3ε0α(ω)E(ω). (B.3)

Inside the conducting sphere the potential has the form

Φc(r, θ) = [aB(
r

ζ
) + br]P1(cos θ) (B.4)

where B is a spherical Bessel functions of the first kind and ζ is the complex
Helmholtz length (see [4]). Inside the depletion layer the potential obeys the
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Laplace equation and has the form

Φd = (
c

r2
+ dr)P1(cos θ). (B.5)

The five unknowns a, b, c, d and p are determined from the boundary conditions
at the conducting and depleted region interface and the depleted region and air
interface.

At the conducting and depleted region interface we require
(i) Φc(Rc) = Φd(Rc),
(ii)εc(∂/∂r)Φc(Rc) = εd(∂/∂r)Φd(Rc) (continuity of the component of D per-
pendicular to the interface) and
(iii) ∂/∂r(Φc − L2 
 Φd)|r=Rc = 0 (electron flow tangential to the interface),
where εc (εd) is the dielectric constant of the dielectric backgound in which the
electrons move in the conducting (depleted) region. At the depleted region and air
interface we require
(iv) Φd(R) = Φo(R) and
(v) εd∂/∂rΦd(R) = ∂/∂rΦo(R) (continuity of the component of D perpendicu-
lar to the interface).
By solving these five equations we obtain the expression for the polarizability

α = 1 − ηχR3 −R3
cχ. (B.6)

In this expression

η =
RcB

′(1 − δ) + 2 εd
εc

(Bζ −B′δR)
εd
εc

(Bζ −B′δR) −RcB′(1 − δ)
, (B.7)

δ = 1 − L2

ζ2
(B.8)

and

χ =
3

2R3
c(1 − εd) + ηR3(εd + 2)

. (B.9)

The validity of this expression is verified for two special cases:
(i) For a semiconducting sphere without dielectric shell,

lim
R→Rc

α =
[εc − δ(εc − 1)]Rζ B

′ −B

[εc − δ(εc + 2)]Rζ B
′ + 2B

(B.10)

which is the expression derived in [4].
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(ii) For a non-conducting sphere (with εc = εd),

lim
L→∞

α =
εc − 1
εc + 2

(B.11)

which is the well-known expression for the polarizability of a dielectric sphere.
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Appendix C: Polarisation energy of a
spherical symmetric charge distribution

We calculate the polarization energy Σ1(R) for a spherical symmetric charge dis-
tribution ρ(r) = −e|Ψ(r)|2 in a sphere with radius R. We make the approxima-
tion that the microscopic static dielectric function ε(r, r′) equals the macroscopic
static dielectric constant εin(εout) inside (outside) the quantum dot. In terms of
the electric field strength, the polarization energy is defined by [1]:

Σ1 =
ε0
2

∫
ε(r)E(r)2 dr (C.1)

where E equals the electric field strength due to the charge distribution ρ(r). Out-
side the sphere the electric field strength equals

Eout(r) =
e

4πε0εoutr2
. (C.2)

The contribution to the polarization energy Σ1(= Σ1,in +Σ1,out) from outside the
sphere is given by

Σ1,out =
∫ ∞

R
ε0εoutE

2
out(r)4πr

2dr =
e2

4πε0εoutR
. (C.3)

Inside the sphere, the electric field is given by

Ein(r) =
c(r)

4πε0εinr2
, (C.4)

where c(r) represents the charge enclosed by a sphere with radius r. The contri-
bution from inside the sphere is given by

Σ1,in =
∫ R

0
ε0εinE

2
in(r)4πr2dr. (C.5)

Within the effective mass model with an infinite potential barrier at the surface, the
normalized wavefunction for an electron in the S-level equals ψ(r) = 1√

2πR
sin( π

Rr),
and we obtain

c(r) =
2e
R

(
1
2
r − R

4π
sin(

2π
R
r)). (C.6)
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From a numerical computation of Eq. C.5 we obtain that

Σin =
e2 1.01

4πε0εinR
. (C.7)

The (first order perturbation) polarisation energy for an S-electron with respect to
the polarisation energy in a bulk crystal becomes

Σ1 =
e2

4πε0R
(
1.01
εin

+
1
εout

). (C.8)

For comparison, the polarisation energy of a uniform charge distribution inside
the sphere (c(r) = e r3

R3 ) equals

Σ1 =
e2

4πε0R
(
0.2
εin

+
1
εout

). (C.9)
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Samenvatting

Halfgeleider nanostructuren vertonen elektrische en optische eigenschappen die
erg verschillen van bulk halfgeleiders. Het bestuderen van deze verschillen is niet
enkel interessant vanuit wetenschappelijk oogpunt, het is ook van belang voor
toepassingen in de optische en elektronische industrie. We denken hier bijvoor-
beeld aan halfgeleider komponenten zoals transistoren die steeds kleiner worden,
onder andere om ze sneller en efficiënter te maken.

De eigenschappen van halfgeleider nanostructuren zullen erg verschillen van
de bulk eigenschappen zodra een afmeting van zo een structuur van de orde van
grootte wordt van de lengteschaal van een fysische grootheid (bijvoorbeeld de
golflengte van licht of van een elektron of een elektrostatische afschermingslengte).
Zo zal bijvoorbeeld zichtbaar licht sterk verstrooid worden in een poreuze halfgelei-
der met structuurafmetingen van enkele honderden nanometers. Dit verschijnsel
is analoog aan de sterke verstrooiing van een elektron in een kristal indien de
golflengte van het elektron gelijk wordt aan de roosterafstand van het kristal, wat
aanleiding geeft tot energiebanden en verboden energiezones.

De elektrische eigenschappen van zo een poreuze halfgeleider zijn ook erg
verschillend van de bulk eigenschappen. Vooreerst heb je de oppervlakte-toestanden
aan het enorme inwendige oppervlak met een energie in de verboden zone, die
geleidingselektronen en valentiegaten kunnen vangen. Op deze manier kan een
laag aan de rand van een halfgeleider ontdaan worden van geleidingselektronen
(depletielaag) met een sterk elektrisch veld tot gevolg. Daarnaast zal er, indien de
diffusielengte van minderheidsladingdragers van de orde van de structuurafmetin-
gen wordt, efficiénte scheiding van elektronen en gaten optreden. Dit is van belang
in een toepassing zoals een zonnecel waar scheiding van fotoelektron-gat paren
een externe stroom veroorzaakt.

Ook de transporteigenschappen van elektronen in zo een poreuze halfgeleider
zijn erg verschillend van transport in de bulk. De mobiliteit van elektronen in
poreus GalliumFosfide (GaP) over afstanden groot ten opzichte van de poreuze
structuren zijn tot vijf ordes van grootte kleiner dan in bulk GaP. Deze enorme
afname van de mobiliteit wordt toegeschreven aan het vangen van elektronen in
oppervlaktetoestanden. In het eerste deel van dit proefschrift bestuderen we de
mobilitiet van elektronen in poreus GaP over afstanden die klein zijn in verhoud-
ing tot de afmetingen van de poreuze structuur. Deze mobiliteit bekomen we aan
de hand van reflectiemetingen aan een microgolf caviteit gevuld met poreus GaP.
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In hoofdstuk 1 van dit proefschrift overlopen we de fysische concepten van
energieniveaus in bulk halfgeleiders en halfgeleider nanostructuren. In hoofd-
stuk 2 bespreken we een experimentele methode voor het kontaktloos meten van
de diëlektrische konstante bij frekwenties van 1010 Hz van een zwak geleidend
monster. De diëlektrische konstante wordt bepaald aan de hand van het reflektie-
spektrum van een microgolf caviteit gevuld met het monster. Deze methode blijkt
erg geschikt voor het meten van kleine veranderingen in de complexe diëlektrische
konstante (≥ 10−6) en dit met een tijdsresolutie van 10 nanoseconden.

In hoofdstuk 3 wordt bovenstaande methode gebruikt om de diëlektrische kon-
stante van poreus GaP te meten en de verandering ervan onder konstante belicht-
ing en onder belichting met een laser puls. De resultaten kunnen kwantitatief
begrepen worden door het poreuze materiaal te beschrijven als een verzameling
geleidende bollen omgeven door een depletielaag. De polarizeerbaarheid van
zo een geleidende bol omgeven door een depletielaag met een totale straal van
ongeveer 75 nm, berekenen we met een hydrodynamisch model. In dit model
wordt de elektrostatische interaktie tussen de elektronen op een zelf-consistente
manier beschreven. Dit model beschrijft dat indien een uniform elektrisch veld
wordt aangelegd over een geleidende bol, de geleidingselektronen zich naar de
rand van de bol verplaatsen waar ze het aangelegde elektrische veld afscher-
men. Diffusie tengevolge van de gradiënt in de elektrondichtheid werkt als een
kracht tegengesteld aan die van het elektrisch veld en zorgt ervoor dat de afscher-
mingslading zich verspreidt over een afstand van de orde van de Debye afscher-
mingslengte. In ons geval is deze afschermingslengte van de orde van 10 nm. Dit
staat in scherp kontrast met het veel gebruikte Mie model waar geen diffusie in
rekening wordt gebracht en de afschermingslading zich dus enkel op de rand van
de geleidende bol bevindt.

De verandering in de diëlektrische konstante onder belichting kan met dit
model beschreven worden als een verandering in de grootte van de depletielaag.
Op deze manier bekomen we dat zonder belichting het geleidende deel van de bol
een straal heeft van 43 ±5 nm en dat de mobiliteit van de elektronen in deze bol 3
±1 cm2/Vs bedraagt. Deze waarde is ongeveer 40 maal kleiner dan de elektron-
mobiliteit in bulk GaP. Een mogelijke verklaring voor dit verschil is dat de elek-
trondichtheid aan de rand van de geleidende bol onnauwkeurig is beschreven.
Door afscherming van het aangelegde elektrisch veld wordt de polarizeerbaarheid
immers voornamelijk bepaald door de eigenschapen van de halfgeleider tot een af-
stand van de Debye lengte van de rand. In ons model wordt de elektrondichtheid
gelijk aan de doteringsdichtheid verondersteld in het geleidende gedeelte en gelijk
aan nul in het gedepleteerde gedeelte. Een meer nauwkeurige beschrijving van de
elektrondichtheid aan de rand van de geleidende bol kan de mobiliteit beı̈nvloeden
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die uit de polarizeerbaarheid wordt bepaald. De mobiliteit die we hier bekomen
is tot vijf ordes van grootte groter dan de mobiliteit in poreus GaP bepaald uit
transportmetingen over afstanden groter dan de poreuze structuren. De verklaring
voor dit enorme verschil ligt in het feit dat in het transport over lange afstanden
elektronen veelvuldig gevangen worden in gelokaliseerde elektrontoestanden met
een energie beneden de rand van de geleidingsband.

Het krimpen van de depletielaag onder belichting en het opnieuw uitzetten er-
van na belichting kan kwantitatief begrepen worden met een model dat elektron-
gat recombinatie veronderstelt in de bulk en aan het oppervlak. Het vangen van
gaten in oppervlaktetoestanden gebeurt op een tijdsschaal sneller dan onze meet-
methode (10−8 s) en is verantwoordelijk voor de reductie van de depletielaag. Re-
combinatie van elektronen in oppervlaktetoestanden, wat de depletielaag vergroot,
gebeurt echter via het overkomen van de depletiebarriere. Dit verklaart waarom
elektron-gat paren na belichting alsmaar langzamer recombineren en waarom deze
recombinatie zich uitstrekt in tijd over meer dan vijf ordes van grootte.

In het laatste hoofdstuk van dit proefschrift bestuderen we ZnO kristallen met
een afmeting tussen drie en zes nanometer. Aangezien deze kristallen veel kleiner
zijn dan de golflengte van geleidingselektronen in bulk kristallen, leidt opsluit-
ing in deze kristallen tot staande golven met discrete golfvectoren. De afstand
tussen de discrete energieniveaus is in onze kristallen van de orde van 100 meV en
daarmee groter dan de thermische energie bij kamertemperatuur (kT ∼25 meV).
Dergelijke kristallen worden ook wel quantum dots genoemd. Naast de kinetis-
che energie zal ook de polarizatie-energie, en de exchange en Coulomb interaktie
tussen elektronen, sterk afhangen van de grootte van de quantum dot. Opsluiting
dwingt de golffunkties immers elkaar te overlappen.

In hoofdstuk 4 bestuderen we optische overgangen tussen de discrete geleid-
ingsniveaus in ZnO quantum dots met behulp van infrarood (IR) absorptiemetin-
gen. Het meest eenvoudige model voor een geleidingselektron in een quantum dot
is het model van een vrij elektron in een potentiaalput met oneindig hoge wan-
den. Merk op dat dan geen interaktie met het kristalrooster of oppervlakte atomen
beschreven wordt. Voor elektronen met een energie net boven het minimum van
de geleidingsband kan de interaktie met het kristal benaderd worden door het
elektron een effectieve massa toe te kennen (effectieve massa model). Voor een
sferisch symmetrisch systeem kunnen de energie-eigentoestanden aangeduid wor-
den met hun baanimpulsmoment kwantumgetal l. De laagste geleidingsenergie-
niveaus in het effectieve massa model kunnen in volgorde van toenemende energie
aangeduid worden met S (n = 1, l = 0), P (n = 1, l = 1), D (n = 1, l = 2), S’
(n = 2, l = 0) en F (n = 1, l = 3) waarbij het kwantumgetal n energieniveaus
met gelijke baanimpulsmoment kwantumgetallen l onderscheidt. Indien de twee
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mogelijke spin-toestanden van een elektron worden inbegrepen bevat ieder en-
ergieniveau 2(2l + 1) elektrontoestanden. Naast dit eenvoudige effectieve massa
model gebruiken we in dit hoofdstuk een geavanceerd ’tight-binding’ model. In
dit model wordt de eigenwaarde-vergelijking van de één-deeltjes Hamiltoniaan
van een elektron in een quantum dot (die interaktie met rooster en oppervlakte-
atomen en spin-baan koppeling bevat) numeriek opgelost, waarbij de eigenfunk-
ties van het elektron opgebouwd worden uit een beperkt aantal atomaire golffunk-
ties. Hoewel beide modellen analoge energieniveaus hebben verschilt voor de
kleinste dots het effectieve massa model sterk van het nauwkeurige ’tight-binding’
model. De voornaamste reden hiervoor is dat we in het effectieve massa model
geen eindige potentiaalsprong aan de rand van de dot verondersteld hebben waar-
door tunnelen van het elektron buiten de quantum dot uitgesloten wordt.

De ligging van de elektronniveaus is spectroscopisch te onderzoeken indien
het aantal geleidingselektronen in de quantum dot bekend is. Voor het bezetten
van de quantum dots met elektronen hebben we twee methodes gebruikt. In de
eerste methode wordt een laag ZnO quantum dots gedeponeerd op de werkelek-
trode van een elektrochemische cel. Mobiliteitsmetingen aan deze lagen hebben
aangetoond dat elektronen tunnelen tussen de energieniveaus van elkaar rakende
quantum dots. Dit transport van elektronen tussen de dots zorgt ervoor dat de
elektronen in de laag een evenwichtsbezetting innemen die volledig bepaald wordt
door de elektrochemische potentiaal van de werkelectrode. De totale lading opges-
lagen in de laag wordt bepaald door het integreren van de opladingsstroom. In
combinatie met het aantal quantum dots in de laag, bepaald met een chemis-
che analyse methode, bekomen we het gemiddeld aantal geleidingselektronen per
quantum dot. Op deze manier kunnen tot tien elektronen opgeslagen worden in
een quantum dot. In de tweede methode wordt een suspensie van ZnO quantum
dots in ethanol gebruikt. Het opladen van de quantum dots met geleidingselek-
tronen gebeurt hier door het maken van elektron-gat paren door belichting met
ultraviolet licht. Door het wegvangen van het gat door het oplosmiddel (ethanol)
bekomen we een geladen quantum dot met een levensduur van enkele minuten.
Aangezien de afstand tussen de dots in oplossing tien maal de grootte van de dots
bedraagt verwachten we dat de koppeling tussen de dots hier zwak is. IR absorp-
tie spectra bekomen met beide methodes zijn erg gelijkend. Dit wijst er op dat
koppeling tussen de dots ook in de eerste methode geen grote invloed heeft op de
elektrontoestanden in een dot.

Door het aantal elektronen per dot stapsgewijs te vergroten kan de IR ab-
sorptie toegekend worden aan verschillende overgangen tussen de energieniveaus.
Echter, door de spreiding in de deeltjesgrootte en de sterke afhankelijkheid van de
energieniveaus van de grootte van de dots, wordt de spectrale breedte van een
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overgang tussen twee energieniveaus sterk vergroot. Om de absorptie van de laag
quantum dots toe te kennen aan overgangen tussen discrete energieniveaus is het
daarom noodzakelijk om de elektronbezetting van een dot als funktie van zijn
grootte te kennen. Met een model dat de absorptie berekent van een verzameling
dots met een elektron evenwichtsbezetting kunnen we de absorptie spectra kwan-
titatief beschrijven voor een gemiddelde elektron bezetting tot tien elektronen. De
interpretatie van de absorptie spectra met dit model toont aan dat enkel overgangen
toegestaan door rotatiesymmetrie optreden. Met andere woorden we meten enkel
overgangen met ∆l = ±1. Dit betekent dat de interaktie met het kristalrooster
en/of oppervlakteatomen, die geen volmaakte rotatiesymmetrie bezit, de optische
overgangswaarschijnlijkheden niet ernstig stoort. De overgangswaarschijnlijkhe-
den voor S-P, P-D, D-F en P-S’ zijn in overeenstemming met de waarden berekend
met het ’tight-binding’ model en het effectieve massa model. Ook de afstanden
tussen de S, P, D, en F energieniveaus en hun afhankelijkheid van de grootte van
de dots zijn in overeenstemming met de waarden berekend met het ’tight-binding’
model en het effectieve massa model. We besluiten dat IR absorptiemetingen
met controle over het aantal elektronen per dot een krachtige methode is voor het
bestuderen van de elektrontoestanden in quantum dots.
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voorbeeld geweest. Mijn promotor Werner van der Weg wil ik bedanken voor zijn
steun op een ogenblik dat het onderzoek dreigde vast te lopen. John Kelly dank ik
voor de zorg bij het tot stand komen van dit proefschrift.

Aarnoud Roest heeft me geleerd eigenhandig quantum dots te maken. Het was
aangenaam en produktief om samen met hem gecombineerde infrarood absorptie-
en capaciteitsmetingen aan quantum dots te doen. Met Zeger Hens heb ik vaak
fysische problemen kunnen doorspreken. Je tiens à remercier Christophe Delerue
et Guy Allan pour leurs calculs précis des états d’un électron dans une boı̂te quan-
tique. En plus, ils étaient si gentils à répondre toutes mes questions sur leur
modèle de liaisons fortes. I would like to thank Stephen Hickey and Celso de
Mello-Donega for making CdSe quantum dots. It is a pity I could neither mea-
sure their permanent nor their induced electric dipole moment. Andries Meijerink
en Paul Peijzel waren steeds zo vriendelijk om mij hun apparaten te laten ge-
bruiken. Zo heb ik hun IR detector en lock-in amplifier mogen gebruiken om
tevergeefs naar IR emissie van quantum dots te speuren. Hun Excimer laser heb
ik gebruikt om de elektrische polarizeerbaarheid van quantum dots te bepalen.
Later bleek deze polarizeerbaarheid jammer genoeg niet te onderscheiden van
artefacten. Via Tom Visser heb ik infrarood absorptiemetingen kunnen uitvoeren
in de groep anorganische chemie.

Bij de technici wil ik in de eerste plaats Stephan Zevenhuizen bedanken voor
het automatiseren van microgolfmetingen en radiofrekwentie impedantie- en re-
flectiemetingen. Mari Hanegraaf dank ik voor het maken van heel wat technische
constructies zoals een geschikte condensator en een afscherming voor de YaG
laser. Glasblazer Wim wist steeds weer kleinere capillairtjes te maken tot hij ze
nog nauwelijks kon zien of vasthouden. Ruurd Lof had vaak een originele insteek
van fysische problemen en Carine van der Werf heeft een aantal halfgeleiderlaag-
jes gedeponeerd.
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Ook wil ik iedereen van de groep Grenslaagfysica bedanken waar ik de twee
eerste jaren van mijn promotie heb doorgebracht. Ik deelde er de kamer met Ge-
offrey Munyeme die net als ik het leven in Nederland leerde kennen. Het was er
goed ontspannen met jongens als Jeroen, Harald, Riny, Aad, Bernd, Jochen, Raul,
... te veel om allemaal op te noemen. De laatste twee jaren heb ik aangenaam
doorgebracht in de groep Gecondenseerde Materie. Tussen mijn kamergenoot
François Reincke en mij klikte het dadelijk en met geregeld wat humor zorgden
we voor een zorgeloze sfeer in onze kamer. Voor een vlotte babbel kon ik steeds
terecht bij mensen als Zeger, Hans, Aarnoud, Otto, Gijs, Harry, ... .

Naast het werk heb ik de voorbije vier jaren heel wat spannende weekends
en vakanties beleefd met de Amsterdamse zweefvliegclub. Verder heb ik mooie
herinneringen aan tochten in de Alpen met Steven, rotsklimweekends en vakanties
met Pieter en Iwanka en fietsvakanties met de ’helden van de fredmobiel’. Dichter
bij huis heb ik mijn passie voor klimmen beleefd met Rob, Chris en Irene. Het
zwemmen kreeg een extra dimensie door Huib, René en Patricia. Aan het slot van
dit dankwoord denk ik aan Jan-Pieter, mijn familie en Marieke.



Curriculum vitae

Alexander Germeau werd op 21 september 1973 geboren te Leuven (België). In
1991 beëindigde hij het middelbaar onderwijs in de studierichting Latijn-wiskunde
aan het Sint-Jorisinstituut te Brussel. Daarna begon hij aan de studie natuurkunde
aan de universiteit te Leuven. In 1996 behaalde hij er zijn doctoraalexamen in de
theoretische natuurkunde met een afstudeeronderzoek over operatorentheorie en
kwantum statistische mechanica. In het daaropvolgende jaar heeft hij een post-
graduaat bekomen in de hoge-energiefysica aan de universiteit te Mons. Het on-
derzoek dat hij hiertoe heeft gedaan heeft geleid tot kinetische parameters voor
de detectie van elementaire deeltjes bij botsingen van atoomkernen uitgevoerd
aan het CERN te Genève. In het jaar 1998 heeft de auteur als software engineer
gewerkt bij het bedrijf Siemens A.G. te Mons. Daar heeft hij programmatuur
ontwikkeld voor het upgraden van telefoonnetwerken. Vanaf januari 1999 was
hij aangesteld als assistent in opleiding aan de Universiteit Utrecht. Daar heeft
hij gedurende vier jaar onderzoek gedaan aan halfgeleider nanostructuren binnen
de vakgroepen Grenslaagfysica en Gecondenseerde Materie. De resultaten van
dit onderzoek staan beschreven in dit proefschrift. Tijdens deze periode heeft hij
werkcollege elektromagnetisme gegeven aan derdejaars natuurkundestudenten.

125




