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Chapter 1

Introduction

1.1 Brief history on X-ray binaries

In 1962 the first extra-solar X-ray source was discovered during a rocket flight
(Giacconi et al. 1962). For this work Giacconi was awarded part of the Nobel
prize in physics in 2002. In 1966 it was suggested that this source, named
Scorpius X-1 (Sco X-1, first X-ray source detected in the constellation Scorpius),
was a member of a binary system with a period of 18.9 hrs and an optical
counterpart of V=12.6+0.2 mag (Gottlieb et al. 1975; Gursky et al. 1966;
Sandage et al. 1966). During the period between 1962 and 1966 it was realized
that binary systems could emit X-rays, through accretion onto a compact object
(Hayakawa & Matsuoka 1963; Salpeter 1964; Zel’Dovich 1964), either a neutron
star or black hole. CygX-1 was the first binary system for which the compact
object was suggested to be a black hole (Webster & Murdin 1972, Bolton 1972).
The radial velocity of the supergiant showed a 5.6 day orbital period, imlying
a mass for the compact object in excess of ~ 7 My . Since then, approximately
230 X-ray binaries have been detected in our Galaxy. An excellent overview on
the topic of X-ray binaries is the book ’X-ray binaries’ edited by Lewin, van
Paradijs, & van den Heuvel (1995).

1.2 X-ray binaries

X-ray binaries are traditionally divided in two classes; those with companion
stars which have masses above 10Mg, the so-called high mass X-ray binaries
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(HMXBSs), or those with companion stars which have masses below 1My, the
so-called low mass X-ray binaries (LMXBs). Only later it was realized that a
few binaries have intermediate mass, for example Cygnus X-2 and Hercules X-1
(e.g. Podsiadlowski & Rappaport 2000; Reynolds et al. 1997), and that a class
of intermediate mass X-ray binaries exists (e.g. Davies & Hansen 1998; Kolb
1998)

The X-rays from HMXBs are thought to be due to either accretion from the
wind of the O or B type companion (e.g. VelaX-1) or a disk that is fed by Roche
lobe overflow of the supergiant companion (e.g. CenX-3). The neutron stars
in HMXBs have strong magnetic fields (B2 10!? G) that disrupt the accretion
flow and funnel the material on the magnetic poles (e.g. Pringle & Rees 1972;
Davidson & Ostriker 1973). This causes hot-spots at the magnetic poles which
are observed as X-ray pulsations when they rotate through the line of sight.
Their X-ray to optical flux ratio ranges from ~ 1073 to ~ 10 and their orbital
periods from 4.8 hrs to 187 days.

The compact object in LMXBs accretes matter through a disk that is fed
by Roche lobe overflow of the secondary. The magnetic fields from LMXBs are
much lower (BS 101 G) and the accretion disk can come close to, or connect
to the compact object through a boundery layer. The energy released from
the inner parts of the disk is observable in X-rays, and gives rise to a signifi-
cantly softer X-ray spectrum compared to HMXBs. The optical counterparts
of LMXBs are faint (My >0), making detection difficult. The LMXBs that are
optically identified have X-ray to optical flux ratios ranging from 102 to 10*
while their orbital periods range between 0.19 and 398 hrs. The outer regions of
the accretion disk outshine the secondary, and completely dominate the optical
flux. Recently signatures of the mass donor of ScoX-1 were revealed (Steeghs
& Casares 2002).

1.3 Low Mass X-ray binaries
Most bright X-ray sources (2 10710 ergem=2s71 (2-10 keV), corresponding to
2 10%* ergs™! for a source at 8 kpc distance) in the sky are LMXBs, and about
160 have been detected so far (Liu et al. 2001). As can be seen from Fig.1.1
the population of LMXBs is concentrated towards the Galactic center. The
fact that LMXBs are found towards the Galactic center or in globular clusters,
together with the fact that they have low-mass companions points towards an
old population.

The creation of a LMXB is very hard. It is not easy to understand why the
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Ariel V 3rd Catalogue

Figure 1.1: Distribution of X-ray sources in Galactic coordinates as observed
with the Ariel V satellite. The Galactic center is in the middle of the figure.
The size of a dot gives the relative brightness of the X-ray source. The field of
view of the BeppoSAX Wide Field Cameras is indicated with a square centered
around the Galactic center and anti-center.

system is not disrupted during the supernova explosion which forms the neutron
star. Two solutions have been suggested (see, e.g., Verbunt 1993 for a review).
The exchange of the neutron star during the encounter with a binary or tidal
capture are thought to be the most important formation mechanisms in globular
clusters (Hut et al. 1992). This could explain the large fraction (~ 10%) of X-
ray binaries in globular clusters; e.g. in 47 Tuc and NGC 6440 the Chandra
satellite recently detected 2 and 4 LMXBs, respectively (Grindlay et al. 2001;
Pooley et al. 2001). In the Galactic center region a spiral-in scenario where the
binary lost most of its initial mass and angular momentum is most likely (van
den Heuvel et al. 1983). A third scenario, the collapse of a white dwarf induced
by accretion, is not thought to be a likely scenario anymore (Verbunt 1993).
The discovery of the first millisecond pulsar, PSR 1937421, triggered the
idea of 'recycled’ pulsars (Backer et al. 1982). These pulsars have low magnetic
fields (108~2 Gauss) and are often found in binary systems. They are thought
to be spun-up by the accretion of ~0.1 Mg from the companion star (see e.g.
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Figure 1.2: The four different classes of low mass X-ray binaries. The last two
classes, the faint transients and burst-only, were discovered with BeppoSAX.
The solid line sketches the typical observed behaviour of the persistent emission
for the different classes. The horizontal dotted line indicates the typical sen-
sitivity for survey instruments. The dashed line indicates the behavior of the
persistent emission below this limit. A question mark indicates that the behav-
ior of the persistent emission is not known. The spike denotes the occurrence of
a typel X-ray burst (see below). They do not occur in all sources. No physical
value is attached to the timescales, although days is a good approximation.

reviews by Bhattacharya & van den Heuvel 1991). This makes LMXBs very
good candidates of being the progenitor of millisecond pulsars. But it was only
until the discovery of coherent millisecond pulsations in SAX J1808.4—3658 that
this connection was confirmed (Wijnands & van der Klis 1998). So far, only
three accreting millisecond pulsars have been detected, and all of them are very
close binaries and have extremely low mass transfer rates (Markwardt et al.
2002, Galloway et al. 2002).

The population of LMXBs can be further divided in four subclasses as indi-
cated in Fig. 1.2. Easiest to detect are the persistent sources which are always
‘on’ at luminosities of 1026738 ergs~!. In this class a distinction is made between
so-called Z-sources with persistent emission levels roughly at the Eddington limit
(1038 ergs~1), and the so-called Atoll sources which emit well below the Edding-
ton limit (~ 1036737 ergs~!; Hasinger & van der Klis 1989). The distinction
between these two groups is made by the different tracks they follow in X-ray
color-color diagrams. However, recently it was suggested that over long periods
of time some Atoll sources follow the same track as the Z-sources (Muno et al.
2002; Gierlinski & Done 2002).

The (soft) X-ray transients are most of the time not visible to survey instru-
ments. Only sometimes do they brighten by several orders of magnitude and
rise above the detection thresholds. The peak luminosity of their outbursts is
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1037738 ergs™!, as was the case with e.g. AqlX-1 and Cen X-4 (see Campana

et al. 1998 for an overview). Thereafter their luminosities slowly decay over
a period of weeks to months, back to a quiescent level of 1032733 ergs~! for
neutron stars systems (Campana et al. 1998) and < 1032733 ergs™! for black
hole systems (Campana et al. 2001).

A class of faint transients was established by the BeppoSAX Wide Field
Cameras (Heise et al. 2000; in 't Zand 2001). The cameras detected about a
dozen transients with outburst peak luminosities of 103637 ergs~! and outburst
durations of only a few weeks, i.e. much shorter and fainter than the classical
bright transients. One of the conclusions in this thesis is that the distribution of
these faint transients is clearly more concentrated towards the Galactic center
as compared to the persistent sources, pointing towards a separate class of the
LMXBs.

Finally, there is the class of burst-only sources (in 't Zand et al. 1998; Cocchi
et al. 2001). These sources are always below 10%¢ ergs~! (the detection limit of
most survey instruments) and probably above 1032 ergs~! (the level of known
neutron star soft X-ray transients in quiescence). Not much is known about
the behaviour of these objects, because they are detected during a type I X-ray
burst only (see below). The fact that these objects show a type I X-ray burst is a
clear indication that the object is a LMXB containing a neutron star. Chapters
6 and 7 of this thesis discuss the class of burst-only sources in more detail.

1.4 Typel X-ray burst theory

Hansen & van Horn (1975) were the first to investigate the stability of a neutron
star envelope assuming steady accretion rates and nuclear burning in thin shells.
For most of the models they reviewed it was noticed that the nuclear fusion time
became shorter than the cooling time, i.e. the shells become thermally unstable
with growth rates ranging between milliseconds and months. A few months af-
ter the publication of their paper the Astronomical Netherlands Satellite (ANS)
discovered intense X-ray bursts from the globular cluster NGC 6624 (Grindlay &
Heise 1975, Grindlay et al. 1976). The connection between these X-ray bursts,
later named typel X-ray bursts (Hoffman et al. 1978), and thermally unstable
shell burning was later independently realized by Maraschi & Cavaliere (1976)
and Woosley & Taam (1975). Since then about 65 typel X-ray bursters have
been discovered. Typell X-ray bursts are only observed from the Bursting Pul-
sar (GRO J1644-28) and the Rapid Burster (MXB 1730—335) and are thought
to be due to spasmodic accretion onto the neutron star surface (see Lewin et al.
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Figure 1.3: A typical X-ray burst as observed with the Wide Field Cameras.
In the top panel the lightcurve of the source SAX J1808—3658 is shown with a
resolution of 5 seconds. In the bottom panel the hardness, an indication for the
temperature, during the burst is shown.

1995 for more information).

In Fig. 1.3 a typical example of a typel X-ray burst is shown. The shape
of typel bursts is best described by a fast rise (< 1 — 10 s), during which the
photoshere is heated, and an exponential-like decay (seconds to tens of minutes).
During the decay the spectrum becomes softer, which is explained as the cooling
of the neutron star photosphere. The burst spectrum is best bescribed by black
body radiation with a peak temperature of ~ 2.5 keV and a radius of ~ 10 km
(see Lewin et al. 1993 for a review).

The neutron star accretes hydrogen and/or helium rich material from the
companion star, and a layer of fresh material is built up on the neutron star
surface. If the temperature reaches about 108 K and a density of about 10° g
ecm ™2 the hydrogen starts burning in a stable manner in the hot CNO cycle.
This will create successive shells where the burning processess slowly changes
the composition of the accreted matter. The shells at the bottom are increas-
ingly difficult to cool. When the cooling rate becomes lower than the energy
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production rate an instable situation arises, and thermonuclear runaway pro-
cesses may start. Within a few milliseconds the temperature of this thin shell
increases above the ignition temperature of helium. The helium rapidly starts
burning in various shells via the triple alpha process. This is the start of the
typel X-ray burst. Extensive overviews of the physics of X-ray bursts are given
by Fujimoto et al. (1981) and Bildsten (1998). The fact that a surface is needed
to start thermonuclear runaway processes gives direct prove that the compact
object is a neutron star instead of a black hole (which has no surface). This
makes X-ray bursts one of the best tools to unambiguously identify the compact
object.

Differences in burst durations are explained by different fuel compositions
which are basically caused by different accretion rates (see e.g. Fujimoto 1981).
At the highest accretion rates (0.055M /MgqaS1) hydrogen is accreted at a
higher rate than can be burned in a stable fashion. This causes the unstable
helium burning to take place in a hydrogen rich environment. Consequently,
rapid proton capture can take place on the ashes of the helium burning, cre-
ating proton-rich elements up to Tellurium (1°"Te; Schatz et al. 2001). The
extra energy released due to the proton capture processes plus the 3-decay pro-
cesses, which are very slow compared to the other nuclear processes, extends
the duration of the burst to at least tens of seconds. At intermediate accre-
tion regimes (O.OlSM/MEddSO.%), hydrogen is burned in a stable manner at
the same rate as it is accreted. As a result a helium layer is formed below
the hydrogen burning shell. This layer is heated by the inward heat flow of
the hydrogen burning shell until the critical temperature for unstable helium
burning is reached. Due to the lack of protons only 3 and ap processes can
take place (and not the [-decay processes), creating elements up to Titanium
(“2Ti). This gives rise to bursts with durations shorter than 10 s. In the lowest
accretion regime (5 x 1077 SM /Mgaqq$0.01) the stable hydrogen burning is ex-
tinghuised during the inter-flash phase. When the temperature at the bottom of
this hydrogen-rich envelope reaches ~ 107 K unstable hydrogen burning takes
place triggering the X-ray flash. In this case the accreted helium burns in a hy-
drogen rich environment, giving rise to bursts with durations of tens of seconds.
However, one must note that these different regimes only exists if hydrogen-rich
material is accreted. For pure helium accretors, e.g. 4U 1820—30, only flashes
in a pure helium environment can occur that last seconds, increasing to tens of
seconds at very low mass accretion rates (Bildsten 1995).

After an X-ray burst in a hydrogen-rich environment the composition of the
ashes consists mainly of heavy elements (e.g. ““Ru) with a few % of Carbon
(12C; Schatz 2001). The amount of carbon gradually increases due to the X-ray
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bursts until it can burn in an unstable fashion in the ocean of heavy element
ashes (Cumming & Bildsten 2001). This is observed as the so-called superbursts,
as discussed in chapter 4 and 5 of this thesis.

1.5 Observations of typel X-ray bursters

If the mass accretion rate is constant, the same amount of matter is accreted
during equal intervals and the instability should occur after equal waiting times.
The waiting time between bursts should in principle decrease linearly with in-
creasing accretion rate. However, in many sources the opposite behaviour is ob-
served, e.g. 4U 1705—44 and EXO 0748—676 show increasing waiting times with
higher accretion rates (Langmeier 1987; Gottwald 1986). This was explained
by Marshall (1982) and Bildsten (2000) by considering the local accretion rate
instead of the global accretion rate. They suggest that, when the accretion rate
gets higher, the burning area of the neutron star increases in such a way that
the accretion rate per unit area actually decreases. Another explanation was
given by van Paradijs et al. (1988). They suggested that more helium is burned
in a stable manner with increasing mass accretion rate.

The energy released during an X-ray burst is in principle related to the
amount of matter accreted and to the composition of the fuel. This is expressed
by the so-called a-parameter, i.e. the ratio of the total emitted flux between
bursts and the total flux emitted during a burst. For hydrogen-dominated bursts
(at high and low accretion regimes; see above) a value of ~ 40 and for pure he-
lium bursts (middle accretion regime) a value of ~ 200 is predicted. These values
are confirmed by long term observations of e.g. 4U 1705—44, EXO 0748—676 and
GS1826—24 (Gottwald 1986; Gottwald 1989; Ubertini et al. 1999).

It is possible to make an estimate of the distance to a LMXB using X-ray
bursts, and one may even get an indication on the ratio of the mass and ra-
dius of the neutron star. The peak-flux of an X-ray burst can never exceed the
Eddington-limit of 2x 1038 ergs™! (assuming standard neutron star parameters
and solar abundances). When a burst reaches this Eddington-limit, the photo-
sphere, through which the luminosity is transported, expands due to radiation
pressure and the effective temperature decreases. After the luminosity decreases
below the Eddington limit the temperature increases and the radius decreases
again to their original value; at that point the neutron star atmosphere starts
cooling. This is observed during so-called photospheric radius expansion bursts.
One can use the fact that for these bursts the peak luminosity equals the Ed-
dington limit to estimate the distance. For non radius expansion bursts, where
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the peak luminosity is below the Eddington Limit an upper-limit to the distance
can be estimated. During radius expansion bursts the gravitational redshift can
in principle be estimated, and from this the ratio of the mass and radius of
the neutron star (see Lewin et al. 1993 for a detailed overview). However, the
uncertainties on these parameters are still very large.

For a long time radius expansion bursts were the only method to estimate
the gravitational redshift, and thus the ratio on the mass and radius of a neu-
tron star. Only recently the XMM-Newton satellite observed absorption lines
from EXO 0748—676 (Cottam et al. 2002), giving a direct measurement of the
gravitational redshift. This is the first measurement of absorption lines in a neu-
tron star atmosphere. High resolution spectra of other sources, like the isolated
neutron stars RX J1856.5—3754, showed no spectral lines (Drake et al. 2002).
For RX J1856.5—3754 the spectrum could very well described by pure black
body radiation from an object with a radius of 3.8-8.2 km, inconsistent with the
radius derived from optical and infra red observations (1546 km; Kaplan et al.
2002).

The RXTE satellite discovered nearly coherent X-ray oscillations during
thermonuclear X-ray bursts (Strohmayer 1996). For ten sources such oscilla-
tions have been detected, so far (see Strohmayer 2001). They are thought to
be caused by a burning hot-spot on the neutron star surface rotating in and
out of the line of sight near the neutron star spin frequency. One of these 10
sources, SAX J1808.4—3658 has a known spin frequency (401 Hz; Wijnands &
van der Klis 1998) that corresponds to the observed burst oscillations (in ’t
Zand et al. 2001). The observed frequencies for the other nine sources are be-
tween 270 and 620 Hz, which is consistent with estimates of the spin periods
reached by accretion-induced spin-up (Webbink et al. 1983). In principle these
oscillations can tell us something about the propagation of the nuclear burning
on the neutron star surface and again on the radius and mass of the neutron
star.

1.6 Outline of this thesis

When I started the research for this thesis the main goal was to analyse the X-ray
sources observed with the Wide Field Cameras (WFC) onboard the BeppoSAX
satellite, resulting in a catalogue. The catalogue has not been completed due
to all kinds of interesting discoveries during the analysis. Therefore, this thesis
has become a compilation of these discoveries. The main theme is about low
mass X-ray binaries, and more particular the typel X-ray bursters.
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The first chapters of this thesis (3-5) discuss individual sources. Then there
are two chapters (6+7) that treat several sources, and finally in chapter 8 a large
set of X-ray bursters that are the most frequent bursters of the total popula-
tion is discussed. The emphasis of this thesis is on the topics of superbursts
(chapters4+4-5) and the burst-only sources (chapters6+47). These are two new
developments in the area of X-ray bursters to which this thesis adds a significant
contribution.

Most of the data presented in this thesis are from the WFC. Therefore, a
description of the satellite and in particular the WFC is given in chapter 2.

In chapter 3 the discovery is described of SAX J1750.8—2900, a new member
of the class of faint transients. The outburst lasted for ~ 2 weeks before the
source disappeared below the detection limit of the WFC. Seven typel X-ray
bursts were observed during the outburst and two after the end of the outburst,
proving that the compact object is a neutron star.

The discovery of the first so-called superburst is described in chapter 4.
An hours long flare-like event was detected from the known X-ray burster
4U 1735—44. This event showed all the characteristics of thermonuclear X-ray
bursts. However, no explanation could be given for the long duration and the
large amount of energy released; both are an order of magnitude larger than
typical typel X-ray bursts.

The discovery of this first superburst triggered an archival search for other
such events in the WFC database. Two such superbursts were found; one in
Serpens X-1 which is described in chapter 5 of this thesis. The third superburst,
from KS1731-260, is reported by Kuulkers et al. (2002). In the meantime
two theoretical models were developed to explain these superbursts: unstable
carbon burning in the deeper layers of a neutron star (Cumming & Bildsten
2001; Strohmayer & Brown 2002) and electron capture on heavy elements in
the deeper layers of the neutron star (Kuulkers et al. 2002). Interestingly,
according to the newest ideas most of the energy of a superburst is released due
to photo-dissociation of heavy elements (Schatz 2002), making superbursts the
only known process in astronomy where nuclear fission is the dominant energy
source!

In chapter 6 five new discoveries of burst sources are reported. Four of these
sources are burst-only sources, strengthening the proof of existence of this class.
Chapter 7 describes follow-up observations with the Chandra X-ray satellite on
five burst-only sources. No X-ray counterparts could unambiguously be identi-
fied, and the inferred persistent luminosity of ~ 1032 ergs~! shows that these
sources are probably connected with the soft X-ray transients in quiescence.

General properties of the population of X-ray bursters are derived in chap-

10
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ter 8. The nine of the most frequent bursters, as observed with the WFC are
discussed. They appear to show the same burst behaviour when they are at the
same luminosity. At the lowest luminosities there is a linear increase in burst
rate with increasing luminosity. At 3x1037 ergs™! there is a drop by a factor of
five in burst rate observed, connected to the transition of burst in a hydrogen-
rich environment to pure helium bursts. At higher luminosities the burst rate
becomes irregular and no clear trend is observed with increasing luminosity.
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Chapter 2

BeppoSAX

2.1 The satellite

The Satellite per Astronomia X (SAX) (Boella et al. 1997a) is an Italian-Dutch
X-ray satellite that operated from April 30 1996 to April 30 2002. Fig.2.1 gives
a photograph of the satellite. Shortly after launch the satellite was renamed
BeppoSAX in honor of the Italian physicist Giuseppe (Beppo) Occhialini (1907-
1993). He was an Italian elementary particle physicist and played a crucial role
in starting the European Space Research Organisation, especially in stimulating
the scientific program.

The satellite had a low-earth circular orbit of 600 km, with an inclination of
3°9. It had an orbital period of 96 min; however, the observing efficiency was
on average 50% due to earth eclipses and South Atlantic Anomaly passages.
The satellite was stabilized in three axes with a pointing accuracy of about 1’.
The solar panel needed to be oriented within 30° from the sun, with occasional
excursions of upto 5° possible. Due to these solar constraints about 50% of the
sky was accessible at any given time.

The main scientific characteristic of the satellite was the wide spectral cov-
erage, from 0.1 to to 300 keV. The scientific payload consisted of four Narrow
Field Instruments (NFI), the Gamma Ray Burst Monitor and two Wide Field
Cameras (WFC). The WFCs will be discussed separately in section2.2. The
NFI were co-aligned with the Z-axis of the satellite (see Fig. 2.2) and consisted
of the following instruments:

e Low Energy Concentrator Spectrometer (LECS): grazing incidence tele-
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Figure 2.1: The BeppoSAX satellite before launch at ESTEC, Noordwijk

scope with a position sensitive gas scintillation proportional counter in its
focal plane (Parmar et al. 1996).

e Medium Energy Concentrator Spectrometers (MECS): three identical graz-
ing incidence telescopes, identical to the LECS, with position sensitive
gas scintillation proportional counters in their focal planes (Citterio et al.
1985; Conti et al. 1994; Boella et al. 1997).

e High Pressure Gas Scintillation Proportional Counter: non-imaging device
(HPGSPC; Manzo et al. 1996).

e Phoswich Detector System: non-imaging device (PDS; Frontera et al.
1997).

In Table2.1 we summarize the main characteristics of each instrument. The
four lateral active shields of the PDS were used to detect gamma-ray bursts
(with a temporal resolution up to 1 ms) in the range of 40-700 keV (Frontera
et al. 1997).

2.2 Wide Field Cameras

The Wide Field Cameras were developed by the Space Research Organization
Netherlands in Utrecht (Jager et al. 1997). In Fig.2.3 one of the WFCs is
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Figure 2.2: An schematic drawing of the BeppoSAX satellite showing the sci-
entific instruments accommodation

shown. They are identical coded mask cameras that are mounted in opposite
directions and perpendicular to the pointing directions of the NFI (see Fig. 2.2).
In Table 2.2 the characteristics of the instrument are given.

The main scientific goal of the WFC was the study of transient X-ray phe-
nomena at unexpected positions in the sky. It therefore continuously monitored
(except for earth occultations and South Atlantic Anomaly passages) during
the so-called WFC secondary mode observations the region in the sky dictated
by the NFI observing program. The instrument could also carry out spatially-
resolved simultaneous monitoring of compact X-ray sources in crowded fields
like the Galactic center. Therefore, each spring and fall a monitoring program
was carried out on the Galactic center region, so-called WFC primary mode

Table 2.1: Characteristics of the NFI.

instrument energy range field of view resolution area

(keV) (°) FWHM () cm?
LECS 0.1-10 0.5 3.5 50
MECS 1.3-10 0.5 1.2 150
HPGSPC 4-120 1.1 240
PDS 15-300 1.3 600
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Figure 2.3: One of the Wide Field Cameras

observations. In total 8% of the observing time was dedicated to these primary
mode observations.

During the visibility windows in which the Galactic center was observable
with the WFC, a program was carried out that on average monitored this region
one day per week. In Figl.1 the WFC field of view of the X-ray sky is over-
layed on about the Galactic center region (and the anti-center). From Figl.1
we notice that 50% of the low mass X-ray binary population can be observed
simultaneously. The brightest source, Sco X-1, was kept out of the field of view
on purpose. This source is so bright that it prevents the detection of weak
sources over large portions of the field of view (see below).

Table 2.2: Characteristics of the Wide Field Cameras

Field of View 40° x40°

Energy range 1.8-28 keV (31 channels)
Effective area @6 keV 140 cm?
Angular resolution 5’

source location accu. <1
sensitivity few mCrab in 10° s
time resolution 0.5 ms
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2.3 Coded aperture imaging

In Fig.2.4 the mask pattern that is used for the WFC is shown. It is basi-
cally a semi-random pattern (Dicke 1968) of equal sized squares that are either
transparant or opaque to photons between 2 to 28 keV. The WFC mask has
256256 elements of 1 mm? each. Behind the mask there is an equally sized
(25.6x25.6 cm?) detector. This detector is a two-dimensional position-sensitive
multi-wire proportional counter (Mels et al. 1995).

Photons from a certain direction in the sky project the mask pattern on the
detector. The direction of the photons gives the projected mask pattern a unique
shift relative to the central position. During an observation the detector collects
the sum of mask patterns equal to the number of point sources in the sky. The
amplitude of the mask pattern encodes the intensity. The mask pattern should,
therefore, satisfy the conditions that the auto-correlation function of the mask
pattern is a single peak with flat side-lobes, and that the signal-to-noise ratio
of a coded sky source is optimum. Semi-random patterns exist that fulfill these
requirements (e.g. Fenimore & Cannon 1978). In the case of the WFC, where
one of the objectives was the observation of crowded fields like the Galactic
Center, an open fraction of the pattern between 0.25 and 0.33 was found to be
optimum. However, a pattern with an open fraction around 0.33 which fulfills
the above conditions does not exist, so a pattern was chosen for the WFC as
close as possible to an optimum one (in 't Zand et al. 1994). An extensive
overview of the principles of coded mask imaging is given by in 't Zand (1992).

After an observation the image of the detector must be decoded to recon-
struct an image of the observed sky. For the WFC this is done by the process
of Iterative Removal Of Sources (IROS; Hammerslay et al. 1992). In the first
stage a cross-correlation between the mask and the detector image is made for
each sky position, meaning that all counts from the detector pixels that are
illuminated for a sky position are summed. This total derived flux for a sky po-
sition is a combination of the photons from a potential source at this position,
the background photons plus the contribution of all other sources that illumi-
nated these detector pixels. To estimate the contribution from the background
and the other sources, the inverted mask (i.e. transparant squares are taken as
opaque and vice versa) is correlated with the detector. One now knows that
the measured flux at each sky position is only a combination of the background
and other sources illuminating these pixels, the contribution from a potential
source at this sky position should be zero. By subtracting the two fluxes derived
above, and after accounting for the different numbers of open and closed mask
elements, it gives an estimate for the flux from a potential source at each sky
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Figure 2.4: The Wide Field Cameras coded mask pattern.

position.

If the flux for each sky position is estimated IROS considers the brightest
100 sky postions in more detail (IROS takes into account that the point spread
function of a real source is usually distributed over several sky positions, so
the number of considered sky positions drops to ~20 ). These positions are
compared with a catalogue of X-ray sources, and the positions coinciding with
catalogued sources are taken as a detection. For each of the detections the
position (not taking into account the catalogued position) and the flux (plus
error) are estimated. These fluxes are subtracted from the original detector
image, and a background level is determined assuming that it is homogeneous
over the detector.

After the detected sources are subtracted the second iteration starts in the
same way as the first. The only difference is when IROS evaluates the brightest
sky positions. Then it takes into account the sources found previously (to get
a better flux and position estimate) and sources not listed in the catalogue
(detection of new transient sources). This process is repeated until no new
sources at 100 significance are detected.

In principle IROS should find all sources up to the poisson noise. However,
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due to the support structure of the WFC and the non perfect response of the
detector pixels some extra flux is left in the image after all sources are removed.
Especially at the edges of the detector some structure is still visible, making
it impossible to detect weak sources on the edge of the field of view. Also, a
very bright source (like Sco X-1) in the field of view degrades the detection limit
significantly. The poisson noise of this source is so high that weaker sources do
not belong to 100 brightest sky positions, and therefore can not be detected.
This problem is solved by removing the part of the detector illuminated by
this bright source, and thus lowering the noise level of the rest of the detector
significantly.

The final result of TROS is a list of detected sources with their positions
and average flux. The list of positions can be used to derive lightcurves for
each individual source. For each time interval a detector image is created.
Correlating the source positions in the sky with the mask gives for the photons
in each detector pixel a weighted distribution over the sources. Applying this to
all detector images in time gives a lightcurve. With this method the directional
information of individual photons is lost, however. But this is an intrinsic
problem of the coded mask. The advantage is that for a large part of the
sky all (bright) sources can be observed simultaneously. To create a spectrum
of an individual source one takes the position derived with IROS (for the total
energy passband) as fixed and performs IROS for each of the 31 energy channels
seperately.
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SAX J1750.8-2900

A new bursting X-ray transient

L. Natalucci, R. Cornelisse, A. Bazzano, M. Cocchi, P. Ubertini, J. Heise,
J.J.M. in 't Zand and E.Kuulkers

Astrophysical Journal 1999, 528, L}5

Abstract— We have analysed in detail the discovery measurements of the X-ray
burster SAX J1750.8—2900 by the Wide Field Cameras on board BeppoSAX in
spring 1997, at a position ~1.2 degrees off the Galactic Centre. The source was
in outburst on March 13th when the first observation started and showed X-ray
emission for ~ 2 weeks. A total of 9 bursts were detected, with peak intensities
varying from 0.4 to 1.0 Crab in the 2-10 keV range. Most bursts showed a
fast rise time (=1 s), an exponential decay profile with e-folding time of ~5 s,
spectral softening during decay, and a spectrum which is consistent with few
keV blackbody radiation. These features identify them as typel X-ray bursts
of thermonuclear origin. The presence of typel bursts and the source position
close to the Galactic Centre favours the classification of this object as a neutron
star low mass X-ray binary. X-ray emission from SAX J1750.8—2900 was not
detected in the previous and subsequent Galactic bulge monitoring, and the
source was never seen bursting again.
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3.1 Introduction

A long term program to survey the 40x40 degrees around the Galactic Cen-
tre started on mid 1996 with the large field of view instruments on board the
BeppoSAX satellite (Wide Field Cameras, hereafter WFC). Previous surveys of
the region with similar instruments were limited by the lack of the combination
of sufficiently long, repeated exposures and the wide angular coverage. In the
last 10 years, however, the use of the coded mask imaging technique increased
the total number of known X-ray emitters in the region ( Skinner et al. 1993;
Vargas et al. 1997) stimulating detailed measurements of individual sources and
in turn their identification at different wavelengths.

The Galactic Bulge monitoring program carried out by BeppoSAX WFC in
the energy range 2-30 keV has been especially prolific in the study of X-ray
burst sources, increasing substantially (by about 50% in 2.5 years) the number
of objects of this type which were known originally in this region. As of January
1999 it led to the discovery of 6 new burst sources and, in addition, found burst
emission from 7 already known sources (Heise et al. 1999; Ubertini et al. 1999a;
Cocchi et al. 1998a for earlier results) in a total time exposure of ~2.5x10%s.
The new transient sources show dim X-ray outburst episodes during ~1 to a few
weeks, with peak fluxes generally below a few 1037 ergs™! at 10 kpc distance
(Heise et al. 1999). From one of these sources, SAX J1808.4-3658 (in 't Zand
et al. 1998) a modulation period of 2.5 ms was discovered by RXE during a
second outburst (Wijnands & van der Klis 1998; Chakrabarty & Morgan 1998).

Here we report results of one of these previously unknown transients showing
bursting behaviour, discovered by the WFC on March 18th, 1997 (Bazzano et
al. 1997a; Heise et al. 1997) in a celestial position 1.2 degrees off the Galactic
Center. In particular, we analyse the spectral and temporal behaviour of the
persistent emission and characterise the burst emission properties to determine
the nature of the transient.

3.2 Observations and data analysis

The Wide Field Cameras experiment on board the BeppoSAX satellite com-
prises 2 identical coded aperture multi-wire proportional counter detectors view-
ing opposite sky directions (Jager et al. 1997), each one featuring a field of view
of 40x40 degrees full width to zero response (i.e., 3.7% of the sky) and an
angular resolution of 5 arcmin. The source location accuracy depends on the
signal-to noise ratio and is 0.7 arcmin at best (99% confidence level). The en-
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ergy range is 2-30 keV on-axis and the time resolution is 0.5 ms. The field
of view (FOV) is the largest of any flown X-ray imaging device with arcmin
resolution, which allows for the search of short duration and/or weak transient
events. The on-axis sensitivity for the Galactic Bulge field is ~10 mCrab in
10*s observing time. Detector data contain a superposition of background and
of multiple source shadowgrams, the latter resulting from the coding of the sky
object image with the instrument aperture pattern. The reconstruction of the
sky image for point-like sources involves an algorithm that consist of a cross
correlation of the detector data with the aperture (see e.g. Caroli et al. 1987).
The position and intensity of any point source is determined by folding a sky
model distribution through a point spread function (PSF), using iterative x 2
minimisation (Jager et al. 1997). For WFC this can be carried out in each
individual energy channel. The full-width at half maximum of the PSF is small-
est on axis at &5 arcmin. SAX J1750.8—2900 is located only 1.2 degrees off the
Galactic Centre and so in the most sensitive region for this type of observations.
The Galactic Bulge was observed during spring 1997 for 5 x10° s, spread out
along 28 days.

Burst phenomena are systematically searched in data from both cameras
using time profiles of the total detector over the entire energy range with a time
resolution of 1 s. When a burst occurs a reconstructed sky image is generated
for the burst duration and different sky images corresponding to longer time
exposure are generated for intervals just before and after burst. This allows to
resolve the point source responsible for the intensity increase revealed in detector
ratemeters. In crowded fields and in some not evident case an image subtraction
is necessary to facilitate identification of bursting sources in the FOV.

3.3 Transient source position and lightcurve

Fig. 3.1 shows the error region for SAX J1750.8-2900. The best fit position is
R.A. = 17h 50m 24s, Dec = -29° 02’ 18” (equinox 2000.0), with an error radius
of 1 arcmin (99% confidence). This is a position refined from the previously
published value which resulted from a quick-look analysis (Heise et al. 1997).
The deviation between both values is 0.4 arcmin. Also shown are the positions
of two X-ray bursts that were observed simultaneously with the active phase
of SAX J1750.8-2900, showing that they result from a position coincident with
the transient. In March 1992 the ROSAT/PSPC observed the region around
SAX J1750.8—2900 four times (between MJD 48685.09 and MJD 48691.63 with
exposure times up to 1976 s), during a raster scan of the Galactic Centre region.
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SAX J1750.8—2900
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Figure 3.1: Position of SAX J1750.8-2900 computed by analysis of both per-
sistent and burst images. Dashed contours are the source positions estimated
from two X-ray bursts, and the solid line circle (1 arcmin radius) is the error
circle of the transient source. Also shown (dotted circle) is the position of the
ROSAT source 1IRXP J175029-2859.9. All contours represent 99% confidence.

No source was detected during these observations within the 99% confidence er-
ror box of SAX J1750.8—2900. The source 1IRXP J175029-2859.9 lies 1.5 arcmin
outside the SAX J1750.8—2900 error box. This close-by source was marginally
detected at 6.2 +£ 1.9 x1073 counts s™! in the second observation (between
MJD 48685.36 and MJD 48685.39). From this result we can derive an upper
limit of ~ 3 x107!? erg cm™2 s~! on the soft X-ray emission (0.5-2.0 keV) of
SAX J1750.8—2900 during quiescence.

The RossiXTE All Sky Monitor (RXTE/ASM; Levine et al. 1996) data
shows the onset of a fast rise, exponential decay outburst of SAX J1750.8—2900
peaking at ~ 120440 mCrab in the 2-10 keV range, starting close to MJD 50518
(two days before the initial WFC observation) and lasting ~ 2 weeks. This

26



SAX J1750.8—2900

0.100

0.010

Intensity 2—30 keV (cts cm™?s™)
T
e
T
=
—

T \\\\\\‘
"
p—
L \\\\\\‘

0.001 . . . | . . . . | . . . . I

50520 50525 50530 50535 50540
Time (MJD,days)

Figure 3.2: Light curve of the persistent emission from SAX J1750.8-2900 in
the 2-30 keV band. The markers indicate the epoch of the observed bursts.

transient behaviour is supported by WFC later detections as previously reported
by in 't Zand et al. (1997).

The X-ray persistent emission of SAX J1750.8-2900 (i.e., the emission de-
tected during time intervals excluding bursts) was measured by the WFC start-
ing from March 13th, 1997. The source flux was initially at a level of ~ 70
mCrab in the energy band 2-30 keV. The light curve detected in the 2-30 keV
range is shown in Fig. 3.2, along with the burst occurrence time. The outburst
profile decay is close to exponential, with intensity changes on the time scale
of hours. The first two days measurements (when the source was more lumi-
nous) are affected by relatively large errors caused by the off-axis position of
the source. The average luminosity in the 2-30 keV band, calculated for 10 kpc
distance is ~3x10%7 erg s~! on March 13th. The flux was about ~ 1.5 times
weaker five days later, when the source was seen bursting for the first time, and
dropped to less than ~ 3 mCrab (=~ 103% erg s=! at 10 kpc) on March 25th.
The source was again visible at ~ 10 mCrab on March 30-31, when two more
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Table 3.1: Summary of spectral fitting for persistent emission

Period MJD Model Model Parameter Flux® y2°
50520.52-50521.68 Power Law I' =2.40£0.17 15.6£0.9 0.6
Bremsstrahlung kT (keV) = 9.24+1.1 0.5

50521.68-50522.35 Power Law I' =24240.25 14.1£1.2 1.0
Bremsstrahlung kT (keV) = 9.1+1.6 1.0

50525.04-50526.19 Power Law I' =2.70£0.08 8.46+04 1.5
Bremsstrahlung kT (keV) = 6.14+0.3 1.0

50526.19-50527.35 Power Law I' =276+0.14 5.12+0.3 1.1
Bremsstrahlung kT (keV) = 4.3+0.4 0.9

50527.35-50527.77 Power Law I' =2.78+£0.23 4.69+£0.2 1.0
Bremsstrahlung k7T (keV) = 6.04+0.7 1.0

50530.21-50531.04 Power Law I' =3.59£0.50 1.79£0.2 0.6
Bremsstrahlung kT (keV) = 3.44+0.5 0.5

@ ynits of 10719 ergem™2s71 (2-30keV); ? reduced 2 for 24 d.o.f.

bursts were detected.

We fitted the emission spectra detected in the 2-30 keV band during six ob-
serving periods between MJD 50520 and MJD 50531 using a few spectral models.
The results obtained for power law and thermal bremssthralung (both with low
energy absorption) are shown in Table 3.1. The spectra can be described either
by a power law shape having a photon index I'" &~ 2.5 and extinction parameter
Ng ~ 6 x10%2 cm ™2, or by bremssthralung emission with kT in the 3 to 10 keV
range and Ny ~ 2.5 x10?2 cm~2. The spectra cannot be fitted satisfactorily
with single component blackbody emission.

The fit results give indication that the source has experienced spectral soft-
ening during the outburst decay. By performing an F-test on the two spectra
taken at MJD 50520 and MJD 50527 we find that the probability that there
is no softening is less than 1%. If the X-ray emission mechanism is thermal
(as observed in many X-ray bursters) the softening could be ascribed to a tem-
perature variation of the electron plasma, possibly due to the decrease in the
accretion flow.
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Figure 3.3: Time profiles of two X-ray bursts from SAX J1750.8—2900 detected
on 1997 March 19th and March 20th (from left to right).

3.4 The X-ray bursts

A total of 9 X-ray bursts were detected from SAX J1750.8-2900 during an overall
time span of 14 days in spring 1997. The first one (the faintest observed)
occurred on MJD 50525.48150, with a peak flux of ~0.4 Crab. 7 out of 9
bursts were detected during three days from March 18th (see Table 3.2 for burst
occurrence times), having similar bolometric fluences in the range ~2 to 3x10~7
erg cm~2. In Fig. 3.3 burst profiles in two energy bands are plotted for two of
these events.

The study of the burst frequency is limited by the fact that during observa-
tion the effective exposure time is only a fraction (/60%) of the total pointing
time, due to earth occultations and other shorter non-coverage periods. The
observed values of time intervals are in fact an upper limit to the real burst in-
terval time. It is then possible that SAX J1750.8-2900 made bursts during the
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first observation period when its persistent flux was above ~50 mCrab. In spite
of this, there is evidence that the burst frequency decreased when the source
flux dropped below ~20 mCrab, i.e. in observations performed after MJD 50530
(see Fig.3.2).

The primary question concerning the bursts is whether they are typel X-
ray bursts. All burst profiles detected from SAX J1750.8-2900 show a fast rise
(= 1 s), exponential decay shape, with e-folding time in the range ~ 5-10 s
(see Fig.3.3). The decay times in the energy band 8-26 keV are systematically
shorter than those observed in the band 2-8 keV. However, the spectral softening
cannot be proven by examining the individual bursts, due to the large statistical
error (see Table 3.2). In order to increase significance we summed up the profiles
of the last 7 bursts in the energy bands 2-8 and 8-26 keV, with a time resolution
of 0.1 s. The first two bursts were excluded because their detection was affected
by the earth atmosphere. The start channel of each burst was determined as
the first point in the time profile which differed more than ~4¢ from the mean
persistent emission. The fit of the two profiles obtained with an exponential
function gives an e-folding decay time 7 = 5.3+0.7 s in the low energy band and
7 = 2.840.2 s in the high energy band, and proves that spectral softening is
occurring during burst decay. Together with a consistency of the burst spectrum
with that of a few keV blackbody emission (see Table3.2) this identifies the
bursts as typel.

Among the bursts detected, there is no clear evidence of an X-ray burst
with double peaked or flat profile, which might have suggested saturation of the
luminosity to near-Eddington level and resulting photospheric radius expansion
(Lewin et al. 1995). However we can derive an upper limit on the source
distance assuming that the maximum burst luminosity was below Eddington.
The maximum observed peak flux (burst F, see Table 3.2) is consistent with a
3 o upper limit of =~ 7 kpc.

Burst spectra are rather soft and generally compatible with blackbody emis-
sion having colour temperatures between 2 and 3 keV (see Table3.2). Under
given assumptions (Lewin et al. 1993) the effective temperature Tog and the
bolometric flux of a burst can determine the ratio between the blackbody radius
Ry, (that is, the radius of the emitting sphere) and the distance d of the neutron
star. Assuming d=10 kpc and the observed colour temperatures as Teg, and not
correcting for gravitational redshift the measured blackbody radius is ~ 8 km.
For the above upper limit of 7 kpc, this value of Ry, scales to a corresponding
upper limit of ~ 6 km. This value could be underestimated, due to the un-
certainties in the relationship between colour and effective temperature. If, as
suggested by Ebisuzaki (1987) the colour temperature exceeds Teg by a factor
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Table 3.2: Parameter fit results of bursts

Burst id. Time®

Peak flux’  kTpoi(keV)  Rpp®  x2¢

T2-8 78—26
Ac 0.48151 1.2 £0.2 1.6 £ 0.3 104432 13 10.1£56 25414
Be 1.25676 3.9+0.5 2.3 +0.2 8.3+1.2 0.8 75+26 24406
C 1.42773 3.8 £ 0.6 24 4+0.2 8.0%+1.1 0.9 50+16 3.0%+1.0
D 1.62039 22 +0.3 22 4+0.2 10.7+2.1 1.2 52+ 24 25407
E 1.82726 4.5 + 0.7 2.1 £0.2 9.2+1.4 0.5 41+17 144+04
F 2.38799 54+ 0.8 2.2+ 0.1 9.3+1.2 1.5 45+12 15+04
G 2.63415 27+04 24 4+0.2 7.4+1.1 1.3 11.2+£61 44+1.0
H 12.41515 4.7 £ 0.6 24 +0.2 8.4+1.2 1.0 54 4+ 2.1 22+ 0.6
I 13.30355 4.2 £ 0.5 24 4+0.2 7.8+1.2 1.0 6.7+21 3.1+0.9

@ time of burst rise in days (MJD-50525); ° in units of 10~% erg cm=2 s™1 | 2-26 keV.
¢ for source at 10 kpc distance; ¢ reduced x2 for 23 d.o.f.
¢ burst detection affected by the earth atmosphere.
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~1.5, then the neutron star radius should be at least two times the measured
blackbody radius. These values are therefore consistent with a neutron star
nature of the compact object.

3.5 Discussion

3.5.1 Burst emission properties

In the simplest interpretation of the thermonuclear flash model which success-
fully explains typel X-ray bursts (Lewin et al. 1995 for review) the matter
accreted onto a neutron star surface prior to an observed typel burst is con-
verted into nuclear fuel and the fraction of the total accreted energy available
for burning depends on the actual reaction process and fuel composition. If
the thermonuclear flash is isotropic and the accreted material is totally con-
verted into fuel, the ratio between the mass and radius of the NS is given by
M./ Riokm = (0.01-0.04)*cr, where 0.01 and 0.04 hold for helium and hydrogen
burning respectively. Here M, is the mass of the compact object in units of solar
masses, Riogm is the NS radius in units of 10 km and « is the ratio between the
bolometric flux of the persistent emission (integrated over the burst interval)
and the bolometric fluence of the burst. A 1.4 Mg neutron star would then
result in a value of a =~ 100 for pure helium burning. For the four shortest ob-
served burst times intervals B-C,C-D,D-E and F-G (see Table 3.2) we estimated
the o parameter and found values of 85420, 120+30, 170+£30 and 210+£40 re-
spectively. These intervals are monotonically increasing from 4.1 to 5.9 h on
a time scale of 1.5 days, and all the related bursts show similar profiles and
fluences. This suggests that perhaps no bursts were missed in between. The
fast rise time of the bursts (< 2 s) and the measured values of « seem to favour
a pure helium flash respect to combined hydrogen-helium shell burning. (Lewin
et al. 1993).

3.5.2 SAX J1750.8-2900 and the transients of the Galactic
Bulge

Most X-ray burst sources known so far are typeI bursters associated with low-
mass X-ray binaries (LMXBs) containing old, weakly magnetized neutron stars,
and show concentration in the direction of the Galactic Centre (van Paradijs,
1995). They can be persistent (though variable) or transient, and may have
recurrence periods with nearly constant burst activity, like the recently studied
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(GS1826-338 (Ubertini et al. 1999b), or conversely show only episodic burst
emission, like for example SLX 1735-26 (Bazzano et al. 1997b) and XTE J1709-
267 (Cocchi et al. 1998a). Correlation between burst frequency and persistent
emission is not an uncommon feature. In general, typel bursts are observed
when the source persistent luminosity is comprised between ~10~2 and ~0.3 of
the Eddington limit. For the bursting soft X-ray transients (White et al. 1984;
see Campana et al. 1998 for recent review) the burst activity is usually detected
during the occurrence of outburst episodes, which show peak luminosity of up
to ~1038 erg s~! and often recur on time scales of ~ 1 to ~ 10 years.

SAX J1750.8-2900 shows this type of transient phenomenology. The out-
burst light curve has a rather clear fast rise and exponential decay shape. In
spite of the incomplete sampling it evidently shows variable decay behaviour,
as observed in other LMXB transients (Chen et al. 1997). So there is no real
evidence that the source had a secondary outburst after MJD 50535 as it could
appear at a first glance. The X-ray flux decreased of a factor ~ 20 in a period
of ~ 3 weeks in spring 1997, after which the source remained undetected (the
RXTE/ASM and BeppoSAX data do not show any other evident outburst in
the period 1996 to 1999 May). We provide evidence that SAX J1750.8-2900
has been observed bursting only whenever the intensity was above ~ 10 mCrab,
and that the burst frequency was positively correlated with the persistent emis-
sion (at least when the persistent flux was in the range ~ 10 to ~ 50 mCrab).
The spectral softening seen by analysis of burst profiles is an evidence that
SAX J1750.8-2900 is a typel burster, and hence that the compact object is a
neutron star. The observed peak luminosity of bursts suggests an upper limit
of 7 kpc on the source distance. Due to the lack of optical identification and/or
visible X-ray modulation it is not possible to classify with certainty the binary
source as a low mass system. Nevertheless, the detection of typel bursts is
sufficient to firmly set SAX J1750.8-2900 as a candidate member of the LMXB
class.

The current sample of known LMXB could be biased towards bright X-ray
transients, due to instrument selection effects and the established occurrence of
weak, short lasting transients with long recurrence time (like e.g., 2S 1803-245,
Muller et al. 1998; and SAX J1748.9-2021, in 't Zand et al. 1999). In fact,
the recent observations by BeppoSAX and RXTE are significantly growing the
number of weak LMXB. Among them, most are NS transients which are also
burst sources and often show high energy tails. For this reason, these have
been suggested as a possible new subclass of low mass binaries (Heise et al.
1999). Indeed these systems could be NS soft X-ray transients (of the type of
CenX-4 or AqlX-1), which are harboured within the Galactic Bulge at quite
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large distances. This is what should be expected, as increasing the sensitivity
and coverage will push the limit of observable distances up to a range in which
many more sources are available, due to their concentration towards the Galactic
Centre.
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The longest thermonuclear
X-ray burst ever observed?

A BeppoSAX Wide Field Camera observation of
4U 1735—44

R. Cornelisse, J. Heise, E. Kuulkers, F. Verbunt and J.J.M. in 't Zand
Astronomy & Astrophysics 2000, 357, L21

Abstract— A long flux enhancement, with an exponential decay time of 86 min,
is detected in 4U 1735—44 with the BeppoSAX Wide Field Cameras. We argue
that this is a typel X-ray burst, making it the longest such burst ever observed.
Current theories for thermonuclear bursts predict shorter and more frequent
bursts for the observed persistent accretion rate.

4.1 Introduction

Of the ~150 low-mass X-ray binaries known in our galaxy, about 40% show
occasional bursts of X-rays, in which a rapid rise, lasting from less than a second
to ~10s, is followed by a slower decay, lasting between ~10s to minutes. During
the decay the characteristic temperature of the X-ray spectrum decreases. An
X-ray burst is explained as energy release by rapid nuclear fusion of material
on the surface of a neutron star and thus an X-ray burst is thought to identify
the compact object emitting it unambiguously as a neutron star. If the burst
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is very luminous, reaching the Eddington limit Lgqq, the energy release may
temporarily lift the neutron star atmosphere to radii of order 100 km. Reviews
of observations of X-ray bursts are given by Lewin et al. (1993, 1995).

The properties of a burst depend, according to theory, on the mass and
radius of the neutron star, on the rate with which material is accreted onto the
neutron star, and on the composition of the accreted material. It is hoped that
a detailed study of X-ray bursts can be used to determine the mass and radius of
the neutron star, via the relation between luminosity, effective temperature and
flux, and via the changes in the general relativistic correction to this relation
when the atmosphere expands from the neutron star surface to a larger radius.
However, the physics of the X-ray burst is complex. There is evidence that
the emitting area does not cover the whole neutron star and changes with the
accretion rate. Reviews of the theory of X-ray bursts are given by Bildsten
(1998, 2000).

In this paper we describe a long flux enhancement that we observed with the
Wide Field Cameras of BeppoSAX in the X-ray burst source 4U 1735—44, and
argue that this event is the longest type I X-ray burst ever observed. In Sect. 2
we describe the observations and data extraction, in Sect.3 the properties of
the flux enhancement. A discussion and comparison with earlier long bursts is
given in Sect.4. In the remaining part of this section we briefly describe earlier
observations of 4U 1735—44.

4U 1735—44 is a relatively bright low-mass X-ray binary. Smale et al. (1986)
fit EXOSAT data in the 1.4-11keV range with a power law of photon in-
dex 1.8 with an exponential cutoff above TkeV, absorbed by an interstellar
column Ny ~ 5 x 102%atomscm™2. The flux in the 1.4-11keV range is ~
4 x 107 %rgem 257!, Van Paradijs et al. (1988) show that a sum of ther-
mal bremsstrahlung of ~ 10keV and black body radiation of ~ 2keV, ab-
sorbed by an interstellar column Ny < 8 x 10%2°atomscm™2, adequately de-
scribes EXOSAT data in the same energy range and at a similar flux level,
obtained one year later. A similar spectrum, with a higher absorption col-
umn Ny =~ 3.4 x 102*atoms cm 2, fits the Einstein solid-state spectrometer and
monitor proportional counter data (Christian & Swank 1997). During GINGA
observations, the source was somewhat brighter, at ~ 9 x 10~ %ergcm 257! in
the 1-37keV range (Seon et al. 1997).

Bursts were detected at irregular time intervals during each of the five oc-
casions in 1977 and 1978 that SAS-3 observed 4U 1735—44, leading to a total
of 53 detected bursts (Lewin et al. 1980). EXOSAT detected one burst in 1984
(Smale et al. 1986) and five bursts during a continous 80 hr observation in 1985
(Van Paradijs et al. 1988), one rather bright burst was detected with GINGA
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in 1991 (Seon et al. 1997), and five X-ray bursts with RXTE in 1998 (Ford et
al. 1998). Burst intervals range from about 30 minutes to more than 50 hrs.
Three of the bursts observed with EXOSAT and the single burst observed with
GINGA were radius expansion bursts (Damen et al. 1990, Seon et al. 1997), and
have been used to determine the distance to 4U 1735—44 at about 9.2kpc (Van
Paradijs and White 1995).

4U 1735—44 was the first X-ray burster for which an optical counterpart was
found: V926 Sco (McClintock et al. 1977). From optical photometry an orbital
period of 4.65 hrs was derived (Corbet et al. 1986).

4.2 Observations and data extraction

The Wide Field Camera experiment (Jager et al. 1997) is located on the Bep-
poSAX platform which was launched early 1996 (Boella et al. 1997). It com-
prises two identically designed coded-aperture multi-wire Xenon proportional
counter detectors. The field of view of each camera is 40x40 degrees full width
to zero response, which makes it the largest of any flown X-ray imaging device
with good angular resolution. The angular resolution is 5" full width at half
maximum, and the accuracy of the source location is upward of 0.7’, depending
mainly on the signal-to-noise ratio. The photon energy range is 2-28 keV, and
the time resolution is 0.5ms. Due to the coded mask aperture the detector
data consist of a superposition of the background and shadowgrams of multiple
sources. To reconstruct the sky image an algorithm is employed which is based
on cross correlation of the detector image with the coded mask (Jager et al.
1997).

Since the fall of 1996, the Wide Field Cameras observe the field around
the Galactic Center on a regular basis during each fall and spring. The first
campaign was a nine-day near-continuous observation from August 21 until
August 30, 1996. About 30% of the time, viz. ~35 minutes per orbit, is lost due
to earth occultation and due to passage through the South Atlantic Anomaly.

4.3 A long flux enhancement of 4U 1735—44

In Fig. 4.1 we show the lightcurve of 4U 1735—44 as observed with the WFC be-
tween 21 and 30 August 1996. The persistent countrate varies between 0.2 and
0.3 countscm~2s~!. Immediately after the earth occultation on MJD 50318.1
a strong enhancement (factor ~3) in the X-ray intensity was seen which sub-
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sequently decayed exponentially. An expanded lightcurve of this event is also
shown in Fig.4.1. The position derived for this event is 3”2 4 3”4 from the
position of 4U 1735—44 as derived from its persistent emission. (Both positions
share the same systematic error, and thus their relative position is much more
accurate than their absolute positions, which have errors of ~ 1’.) We conclude
that the event is from 4U 1735—44.

To the persistent flux we fit the two models discussed in the introduction,
i.e. a power law with high energy cutoff, and a sum of bremsstrahlung and black
body spectra, in the 2-24 keV range. The spectrum before and after the event are
for the intervals MJD 50317.8-50318.1 and MJD 50319.7-50320.8, respectively.
The results are given in Table4.1. We note that the values of the fit parameters
are similar to those for earlier observations. Notwithstanding the different flux
levels before and after the flux enhancement, the hardness of the spectrum
(also shown in Fig.4.1) is similar. The persistent flux corresponds to an X-ray
luminosity at 9.2kpc of 4.4 x 1037ergs™! in the 2-28keV band. In our fits we
set the interstellar absorption at a fixed value of Ny = 3.4 x 10%'atoms cm™?;
the hard energy range of the WFC is not much affected by absorption, and fits
for different assumed absorption values give results similar to those listed in
Table 4.1.

To describe the flux decline we first fit an exponential C' = C'(0)e™*/7 to the
observed countrate in the 2-28keV range. The fit is acceptable (at xZ = 1.6 for
33 d.o.f.) and 7 = 86 &+ 5min. Fits to the counts in the 2-5keV and 5-20keV
ranges give decay times of 129 4+ 15 and 67 &£ 5 min, respectively, in accordance
with the observed softening of the flux during decline (see Fig.4.1). We fit the
spectrum during the flux enhancement as follows. First we add all the counts
obtained between MJD 50318.10 and 50318.25. We then fit the total spectrum
with the sum of a black body and either a cutoff power law spectrum or a
thermal bremsstrahlung spectrum. In these fits, the parameters of the power
law and bremsstrahlung component are fixed at the values obtained for the fit to
the persistent spectrum after the event. The resulting parameters for the black
body are also listed in Table4.1. At the observed maximum the bolometric flux
was (1.5 4 0.1) x 107 8ergem~2?s~! which for a source at 9.2kpc corresponds
to a luminosity of 1.5 x 1038ergs™!. The start of the flux enhancement is not
observed, but if we assume that its maximum is at the Eddington limit of
1.8 x 1038ergs~! (for a neutron star mass of 1.4M) and that the decay time is
constant, then maximum was reached 23.6 min before the source emerged from
earth occultation, leaving at most 12.4 min for the rise to maximum (since the
start of the data gap). The decay from maximum was therefore much longer,
by a factor >8, than the rise. The fluence in the observed part of the burst is
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Figure 4.1: Top: The nine day lightcurve of 4U 1735—44 as observed with the
WEFC in August 1996. Countrates are for channels 1-31 (energy range 2-28 keV).
Each time bin corresponds to 15 minutes. A large enhancement in intensity
starts near MJD 50318.1 and ends about ~4.0 hours later. The vertical dotted
lines indicate the time interval for which the countrate and hardness ratio are
shown in the expanded view of the lower frames. The hardness ratio shown is
the ratio of the countrate in channels 12-29 (5-20keV) to that in channels 3-11
(2-5keV). During the flux enhancement the exponential softening expected for
a type-I X-ray burst is clearly visible. The vertical dotted lines indicate the
time interval for which we add the data to obtain the burst spectrum.
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Table 4.1: Results of the modeling of the X-ray spectrum. We fit a cutoff photon
powerlaw spectrum N (E) = N,E~ Ve~ (P~Fo)/Ew and a sum of a bremsstrahlung
of temperature T3, and black body spectrum of temperature T}, and radius R
to the data before and after the burst. For the burst, we fix the parameters
of either the cutoff power law or the bremsstrahlung component to the values
found after the burst, and fit for a blackbody added to these. The absorption
column is fixed at the value of Ny = 3.4 x 102!atoms cm~2 found by Christian &
Swank (1997). For each model we give the total flux in the range observed with
the WFC, i.e. 2-28keV, as well as, for comparison with earlier observations, in
the range of 1.4-11keV.

cutoff power law before after
X2 (dof) 0.9(23) 0.9(23)
r 1.84£0.07 1.55+0.06
E, (keV) 9.4+1.1 6.2+0.4
Ey (keV) 3.6+1.7 6.9+0.7
Fy_95 (107 %rgem=2s71) 3.444+0.10 4.3140.08
Fr4 11 (107 %rgem—2s71) 3.53+0.06 3.9140.04
brems plus black body before after
X2 (dof) 1.1(23) 1.0 (23)
kT, (keV) 7.8+£0.6 8.0£1.3
kT (keV) 0. 1.6+0.2
R (km) 0. 3.84£0.9
Fy_og (107 %rgcem=2s71) 3.80+£0.09 4.32+0.10
Fr4-11 (10 %rgem—2s71) 3.40£0.05 3.8740.04
added blackbody for burst +cutoff +brems
X2 (dof) 1.3(25) 1.3(25)
kT, (keV) 1.704+0.05 1.6940.04
R (km) 6.1+0.3 7.240.3
Fy_9g (107 %rgem=—2s71) 7.4240.05 7.4340.05
Fr4 11 (107 %rgem—2s71) 6.76+0.04 6.7140.04
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5.1 x 10~ %ergcm~2, corresponding to 5.2 x 10*! erg; this is a lower limit to the

energy released during the full event.

We have also made fits to the first and second half of the event separately, and
find temperatures for the blackbody component of 2.1-2.2keV and 1.3-1.4keV
for the first and second half respectively, confirming the softening. For the
blackbody radius we find 5.7-6.5 km and 8.5-8.8 km, for the first and second half,
respectively. This apparent increase in radius is probably due to the difference
between the observed colour temperature and the actual effective temperature
of the black body; when we apply corrections to the colour temperature as given
by van Paradijs et al. (1986) the value for the radius in the first part of the burst
increases to 14 km, whereas that for the second half is unchanged.

4.4 Discussion

In addition to the thermonuclear X-ray bursts, also called type I bursts, low-
mass X-ray binaries show other sudden enhancements in X-ray flux. Type II
bursts are different from type I bursts in that type II bursts do not show cooling
of the characteristic temperature of the X-ray spectrum during the decline. X-
ray flares have an irregular flux evolution. Type II bursts are thought to be
accretion events; the nature of flares is unknown.

The flux enhancement of 4U 1735—44 shows a smooth exponential decay
of the countrate and of the characteristic temperature. Its rise must have been
shorter than the decline. A black body gives a good fit to the observed spectrum,
for a radius as expected from a neutron star, similar to earlier, ordinary bursts
of 4U1735—44. All these properties indicate a typel burst. The only special
property of the new burst is its duration, which when expressed as the ratio
of fluence F}, and peak flux Fiax: Ep/Fmax > 3400s, is more than 300 times
longer than the longest burst observed previously from this source (see Lewin
et al. 1980). This duration also translates in a fluence which is several orders of
magnitude larger than the previous record holder for 4U 1735—44, because the
peak flux is similar to those of normal typeI bursts. The fluence of a typel burst
which burns all matter deposited onto a neutron star since the previous burst
must be ~1% of the accretion energy released by deposition of this matter. We
do not have a measurement to the previous burst, but in seven days following
the burst no other burst was observed. Multiplying this time by the persistent
luminosity we obtain ~ 2.7 x 1043 erg, or about 50 times the energy of the burst,
well in the range of previously observed ratios for typel bursts.

The presence of clear cooling argues against a typell burst; this and the
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smooth decay argues against a flare. If the flux enhancement were due to an
accretion event, the amount of matter dropped extra onto the neutron star
(assuming a mass of 1.4M¢, and a radius of 10 km) must have been > 3 x 10%! g,
which may be compared to the average accretion rate of 2.3 x 107 gs~—! derived
for the persistent flux. If the inner part of the accretion disk would have depleted
itself onto the neutron star during the flux enhancement, one would expect the
accretion rate immediately after to be lower than before. The observations
suggest the opposite.

We conclude that a typel X-ray burst is the best explanation for the en-
hanced flux event. We consider it significant that the occurrence of this burst is
accompanied by the absence of any ordinary — i.e. short — burst throughout our
9-day observation, whereas all previous observations of 4U 1735—44 did detect
ordinary bursts (see Introduction).

Searching the literature for long bursts we find that the longest typel burst
published previously is a radius expansion burst observed with SAS-3, probably
in 4U1708—23 (Hoffman et al. 1978; see also Lewin et al. 1995). The ratio of
fluence and peak flux for that burst was ~ 500s, so that the BeppoSAX WFC
burst of 4U 1735—44 lasted at least six times longer. Other events published as
long bursts from AqlX-1 (Czerny et al. 1987) and from X 19054000 (Chevalier
and Tlovaisky 1990) are in fact relatively short bursts followed by an enhanced
constant flux level which persisted for several hours: in both cases the flux
declined to 1/e of the peak level within 20s. These events are clearly different
from the long exponential bursts seen in 4U 1708—23 and 4U 1735—44.

From the theoretical point of view, a long interval between bursts would
allow hydrogen to burn completely before the onset of the burst, so that the
energetics of the burst is dominated by pure helium burning. If matter accreted
at a rate of 2.3 x 1017 gs™! during one week, the energy released by helium
burning is compatible with the energy of the observed burst. The problem with
this model is that theory predicts for this accretion rate that the burst initiates
well before hydrogen burning is completed, i.e. that bursts are more frequent
and less energetic, in accordance with those previously observed of 4U 1735—44.
Indeed, Fujimoto et al. (1987) find that a burst of 10*s duration occurs only
for accretion rates M < 0.01Mgqq. The persistent flux during the BeppoSAX
observation is a factor ~ 20 higher than this limit; observations previous to ours
have consistently found 4U 1735—44 at a similar luminosity.

An alternative model for bursts with a duration of 10*s is accretion of pure
helium at an accretion rate in excess of the Eddington limit (M > 5 X Mpgad,
Brown & Bildsten 1998). The orbital period and optical spectrum indicate a
main-sequence, i.e. hydrogen-rich, donor star (Augusteijn et al. 1998).
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Perhaps the main challenge for any theoretical explanation is that the prop-
erties of the persistent flux during our nine day long observation, during which
a single very long X-ray burst was observed, are not different from those during
earlier observations with EXOSAT when more frequent ordinary bursts were
found.
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A four-hours long burst
from Serpens X-1

R. Cornelisse, E. Kuulkers, J.J.M. in ’t Zand, F. Verbunt and J. Heise
Astronomy € Astrophysics 2002, 382, 17/

Abstract— During a serendipitous observation of the BeppoSAX Wide Field
Cameras, a very long Typel X-ray burst was observed from the low mass X-
ray binary Serpens X—1. The burst lasted for approximately 4 hours and had
an exponential decay time of 69 + 2 min (2-28 keV). The bolometric peak-
luminosity is (1.6 £ 0.2) x 1038 ergs™! and the fluence (7.3 & 1.4) x 10%! erg.
The first 'normal’ TypeI burst was observed 34 days after the superburst. This
is in rough agreement with recent predictions for unstable carbon burning in a
heavy element ocean.

5.1 Introduction

Since the first report of a very long thermo-nuclear X-ray burst in 4U 1735—44
(Cornelisse et al. 2000), six more of these so-called ’superbursts’ have been
noted (Strohmayer 2000; Heise et al. 2000; Wijnands 2001; Kuulkers 2001).
The superbursts have the following common properties: a long duration of a
few hours, a large burst energy (~ 10%2 erg) and a persistent pre-burst lumi-
nosity between 0.1 an 0.3 times the Eddington limit Lgqq (Wijnands 2001). In
addition, all superbursts are known Typel X-ray bursters.
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Apart from its duration, a superburst shows all the characteristics of a Typel
X-ray burst, namely: the lightcurve has a fast rise and exponential decay; spec-
tral softening occurs during the decay; black-body radiation describes the burst
X-ray spectrum best. Normal Typel bursts can be explained very well by un-
stable He and/or H fusion on a neutron star surface (for reviews see e.g. Lewin
et al. 1993, 1995; Bildsten 1998). In contrast, the superbursts are possibly due
to unstable carbon fusion in layers at larger depths than where a typical Typel
burst occurs (Cumming & Bildsten 2001; Strohmayer & Brown 2001).

In this paper we report the detection of one of the seven superbursts, namely
from the X-ray source SerpensX—1 (SerX—1), as observed with one of the
Wide Field Cameras (WFC) onboard BeppoSAX. Ser X—1 is a relatively bright
persistent X-ray source discovered in 1965 (Friedmann et al. 1967). Over 100
'normal’ Typel bursts have been reported from Ser X—1 (e.g. Swank et al.
1975, Sztajno et al. 1983, Baluciriska 1985). The proposed optical counterpart
is MM Ser (Thorstensen et al. 1980). Wachter (1997) showed that the object
is a superposition of two stars, and that no clear period could be derived from
a photometric study. A distance of 8.4 kpc derived from Typel bursts is given
by Christian & Swank (1997).

In this paper we describe the observation and properties of the Ser X—1
superburst, and discuss this in context to the other superbursts reported so far.
(The occurrence of this burst was first mentioned in Heise et al. 2000.)

5.2 Observations

The Wide Field Cameras are two identical coded mask cameras onboard the
Italian-Dutch satellite BeppoSAX (Jager et al. 1997, Boella et al. 1997). An
overview of the characteristics of the WFC is given in Jager et al. (1997).

Most WFC observations are done in secondary mode. These are arbitrary
sky-pointings except that they are perpendicular to the direction of the target
to which the Narrow Field Instruments onboard BeppoSAX are pointed, and
dictated by solar constraints. During the first half of 1997, the WFC observed
Ser X—1 for a total of 411 ks (corrected for earth occultation and south Atlantic
anomaly passages), distributed over 12 observations. In Table 5.1 an overview
of all these observations is given.

During this period, there were also two RXTE Proportional Counter Array
(RXTE/PCA) observations. The RXTE/PCA is an array of 5 co-aligned Pro-
portional Counter Units (PCU). In Jahoda et al. (1996) a detailed description
is given of the instrument. All PCU’s were on during the observations. We

48



A long burst from Serpens X-1

Table 5.1: Overview of the WFC and PCA observations of Ser X—1 between
February 23 and May 13 1997. The exposure time is corrected for earth oc-
cultation, South Atlantic Anomaly passages and other data gaps. The WFC
observation of Ser X—1 prior to this period was on November 6 1996 (MJD
50393) and the one following on August 22 1997 (MJD 50682).

start (MJD) end (MJD) net exposure (s)

WFC 50502.29 50503.37 43437
50506.82 50508.02 32237
50508.61 50509.29 31180
50513.16 50513.86 29020
50517.70 50518.00 15306
50518.26 50519.36 33699
50529.63 50530.20 15496
50541.26 50542.08 36302
50542.63 50543.37 33310
50554.62 50555.77 60707
50563.69 50565.86 75693
50581.47 50581.63 4652
PCA 50535.5 50539.9 34560
50554.4 50554.7 25920

use standard 1 data for our analysis. Also on-board RXTE are three Scanning
Shadow Cameras with a 6° x 90° field of view forming the All-Sky Monitor
(ASM; Levine 1996). We use the data products provided by the RXTE/ASM
team at the MIT web-pages.

5.3 Data analysis & Results

On February 28, 1997 a flare-like event was observed which lasted for almost 4
hours. In Fig. 5.1 we show the RXTE/ASM lightcurve of Ser X—1 over a period
of 5 years (a), and an expanded lightcurve during spring 1997 (b). The flare was
observed after BeppoSAX came out of earth occultation on MJD 50507.075. In
Fig.5.1c and d a detailed view of the flare is shown. The rise to maximum was
missed. After the satellite came out of earth occultation a flat top is observed
before the decay starts, so it appears that the peak is covered. The flare shows
an exponential decay. In Fig.5.1 we see that spectral softening occurs during
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the decay. This is indicative for Typel bursts. In Table5.2 we summarize the
exponential decay times from fits in different energy bands.

We divided the observation in which we discovered the superburst (see
Fig.5.1c and d) in three different intervals before, during and after the su-
perburst, as indicated by dashed lines in Fig. 5.1c. In the first and last interval
we fit the persistent flux with solely an absorbed bremsstrahlung spectrum.
During the superburst we used a sum of the (persistent) bremsstrahlung and
black-body radiation to describe the flux, taking the persistent bremsstrahlung
emission as fixed at the average level of the spectral fits before and after the
burst. We tried several other spectral models for the persistent emission, like
a cut-off power-law and a disk black-body. The derived fluxes did not change
significantly for the different models, and the best fit during the superburst is
given by the bremsstrahlung model. In all our fits we fixed the absorption col-
umn at Ny = 0.5 x 10?2 atoms cm ™2 (Christian & Swank 1997). We also added
a black-body component to model the emission after the burst. However, an
F-test showed that this extra component did not improve the fit significantly
(~ 2.50 probability).

In Fig. 5.2 the results of the time-resolved spectral fits are shown. It is seen
that both the black-body flux and the temperature drop exponentially, while
the radius stays nearly constant. This is typical for normal Typel bursts.

An increase in the RXTE/ASM count-rate is observed on MJD 52120.15.
This increase lasted for several dwells, having a total duration of at least 8.6
minutes and less then 2.3 hrs. Spectral softening can not be proven. This
flare-like event may be another superburst.

5.4 Discussion

The flare-like event from Ser X—1 shows, except for its duration, all character-
istics of a Typel burst. There are now six sources showing superbursts lasting
for hours up to half a day. This superburst occurred at a persistent flux level of
0.21Lgqq, for Lrgq = 2 x 1038 ergs™!. This is comparable to that for the other
superbursts. The fact that the persistent luminosity before the superburst is
similar in the 6 sources may be an observational selection effect. As suggested
by Cumming & Bildsten (2001), superbursts can occur at higher luminosities,
where they are more difficult to detect due to the smaller contrast with the per-
sistent flux. The total energy emitted during the burst, By, = (7.3 +£1.4) x 104!
erg, and the exponential decay time, are also comparable to those of the other
superbursts.
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Figure 5.1: a) RXTE/ASM lightcurve of Ser X—1. Each bin is a 2 day average,
and normalized to that of the Crab; only data with more than one dwell per
day were included. The time span between the dashed lines has been blown up
in b), where we also show the data of the WFC (2-28 keV), and RXTE/PCA
(indicated by small horizontal bars underneath). The WFC bins are one orbit
averages and the PCA bins are 5 min averages; data points are connected to
guide the eye when less than 0.2 days apart. The ASM points are one day
averages (with more than one dwell per day). All observations are normalized
to the Crab. A sharp increase can be seen at MJD 50507. The vertical tick-
marks at the middle-right indicate the occurrence of 'normal’ Typel bursts.
Panels c-e show again a blow-up, indicated by the dashed line in b), of the
superburst in two different energy-bands, i.e. 2-5 keV (c) and 5-28 keV (d),
and their ratio in (e). Each bin is 5 min. In panel c¢) individual ASM dwells
are also over-plotted.
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Table 5.2: Fit results of the superburst. The top panel shows the decay times
for exponential decay fits in different passbands. The next panels shows the
spectral fit results for the persistent emission before, after and during the burst,
respectively. A bremsstrahlung model is employed to describe the persistent
emission. The burst-emission is described by a sum of the bremsstrahlung and
black-body spectrum, taking the bremsstrahlung emission fixed at the average
of the spectral fits before and after the burst. For all spectral fits we fixed the
absorption column at the value of Ny = 0.5 x 10?2 atomscm ™2 (from Christian
& Swank (1997)).
exponential decay

Ta_9gkev (min) (x2, d.o.f.) 69+3 (1.2, 53)
To_5kev (Min) (x2, d.o.f.) 108+12 (1.2, 51)
Ts_agkev (min) (x2, d.o.f.) 5242 (1.4, 56)
brems before

kT (keV) 7.3+0.4
Fy_ogkev (10 %rgem—2s71) 5.0£0.2
Foor (107 %rgem=2571) 8.3+0.2
x2 (d.o.f.) 0.8 (27)
brems after

KT, (keV) 6.24-0.4
Fy_ogkev (10_9ergcm_28_1) 5.7+£0.3
Foor (107 %rgem=2s71) 10.14+0.4
X2 (d.o.f.) 1.0 (27)
brems & black-body during

kT, (keV) 2.440.1

R (km at 8.4 kpc distance) 3.6+0.3
Fy_ogkev (10 %ergem—2s71) 6.1+1.1
Fior (107 %rgem—2s71) 6.3+1.1
Lpeak (10%8ergs™1) 1.6+0.2
Ey, (10* erg) 7.8+1.4
X2 (d.o.f.) 1.7 (26)
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Figure 5.2: Results from time resolved spectroscopy from the beginning of
the burst back to the persistent emission level. We show the black-body
flux (Fyp), black-body temperature (kTyp) and black-body radius (Rpb) of the
burst, respectively. We have taken the persistent emission level, modeled by a
bremsstrahlung spectrum, as fixed at the same values as used with the spectral
fit of the total burst (see Table 5.2). Also the absorption column is fixed at
Ny = 0.5 x 10?2 atoms cm =2 (Christian & Swank 1997). During the first part
of the burst each bin is 180 s. After the first gap due to earth occultation the
bin size becomes 300 s and the last two intervals have bin sizes of 420 s. The
black body radius is for a source at 8.4 kpc distance.

Cornelisse et al. (2000) noticed the absence of normal Typel bursts in the
regular burster 4U 1735—44 throughout the 9-day observation. In the case of
KS1731-260, no Typel bursts were seen after the superburst, whereas they
were present beforehand (Kuulkers et al. 2001). From Fig.5.1 we see a simi-
lar effect in Ser X—1. The first normal burst is observed about 34 days after
the superburst, at MJD 50541.32. After that, Ser X—1 is seen to burst rather
regularly, having a total of seven bursts in 210.7 ks (about 3 bursts per day).
For this burst-rate the Poisson distribution predicts a probability of 24% that
no bursts are detected in the 55 ks WFC observations before the superburst,
so it is possible that the lack of observed bursts before the superburst is due to
chance. The probability that the absence of ordinary bursts in the 34 days after
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the superburst is due to chance is 1.2%.

We also performed Monte Carlo simulations to verify in more detail the
significance of finding no bursts around the superburst. We randomly varied the
burst waiting time in an interval symmetric around 0.38 day (i.e. the average
waiting time), and taking as the lower limit 0.04 day (the lowest waiting time
observed by Sztajno et al. 1983). We then determined the number of bursts in:
1) the observing window before the superburst, and 2) the observing windows
between the superburst and the occurrence of the first normal Typel burst. By
doing 10° simulations for each window we found that the expected number of
bursts for window 1) is 1.5 + 1.1 and the chance of observing no bursts is 14%.
For window 2) the expected number of bursts is 4.9 + 1.9 and the chance of
observing no bursts is only 0.4%. We conclude that the absence of bursts after
the superburst is significant.

Fig. 5.1 shows that after the superburst the persistent flux-level in the low
energy passband is higher then before the burst, while in the high energy pass-
band no significant increase is observed. This is also visible in the burst from
4U 1735—44 (Cornelisse et al. 2000), but less obvious in KS1731-260 (Kuulk-
ers et al. 2001). This offset could be due to the heating of the neutron star
atmosphere after the superburst, and could be present in the spectrum as a
black-body component. However, for both Ser X—1 and KS 1731—260 no signif-
icant black-body contribution can be proven. We re-analyzed the off-set emis-
sion after the superburst of 4U 1735—44 (interval MJD 50318.55-50319.0). Here,
x? = 38.2 (27 d.o.f.) for the absorbed bremsstrahlung model, which improves
to x% = 17.2 (25 d.o.f.) when a black-body component was added. Performing
an F-test shows that this is a significant (~ 40 probability) improvement. This
may indicate that, at least for 4U 1735—44, the neutron star atmosphere is still
cooling ~ 0.5 day after the superburst.

Cumming & Bildsten (2001) propose that these bursts are due to unstable
carbon burning in an ocean of heavy elements, e.g. '“Ru. This can explain
the observed durations and fluences for these superbursts. Also, the recurrence
time is roughly consistent with that found for 4U 1636—53 (Wijnands 2001). A
waiting time is predicted before the normal Typel bursts start again; tait =~
5teool, Where the cooling time is a function of mass accretion rate (Cumming &
Bildsten 2001). In the case of Ser X—1, for which the persistent flux is roughly
0.2Lgq4q, a waiting time of ~15 days is predicted. Given the rough estimates
above, and the small observational coverage between 15 days and 34 days after
the burst, the predicted waiting time is consistent with the observation.

If the increase in the RXTE/ASM data is due to a superburst, an upper limit
of 4.4 years on the recurrence time of superbursts in Ser X—1 can be estimated.
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This timescale is comparable to the 4.7 years found for 4U 1636—53 (Wijnands
2001).
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BeppoSAX Wide Field
Cameras observations of six
typel X-ray bursters

R. Cornelisse, F. Verbunt, J.J.M. in 't Zand, E. Kuulkers, J. Heise,
R.A. Remillard, M. Cocchi, L. Natalucci, A. Bazzano and P. Ubertini

Astronomy & Astrophysics 2002, 392, 885

Abstract— We have discovered three certain (SAX J1324.5—6313, 2S 1711—339
and SAX J1828.5—1037) and two likely (SAX J1818.7+1424 and SAX J2224.9+
5421) new thermonuclear X-ray burst sources with the BeppoSAX Wide Field
Cameras, and observed a second burst ever from a sixth one (2S0918—549).
Four of them (excluding 251711—-339 and 2S0918—549) are newly detected
X-ray sources from which we observed single bursts, but no persistent emis-
sion. We observe the first 11 bursts ever from 2S 1711—339; persistent flux was
detected during the first ten bursts, but not around the last burst. A single
burst was recently detected from 2S0918—549 by Jonker et al. (2001); we ob-
serve a second burst showing radius expansion, from which a distance of 4.2 kpc
is derived. According to theory, bursts from very low flux levels should last
= 100s. Such is indeed the case for the last burst from 2S 1711—339, the single
burst from SAX J1828.5—1037 and the two bursts from 2S 0918—549, but not for
the bursts from SAX J1324.5—6313, SAX J1818.7+1424 and SAX J2224.94-5421.
The bursts from the latter sources all last ~20s. We suggest that SAX J1324.5—
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6313, SAX J1818.7+1424, SAX J1828.5—1037 and SAX J2224.945421 are mem-
bers of the recently proposed class of bursters with distinctively low persistent
flux levels, and show that the galactic distribution of this class is compatible
with that of the standard low-mass X-ray binaries.

6.1 Introduction

About 40% of the low mass X-ray binaries in our Galaxy occasionally show (so-
called Typel) X-ray bursts, which are thermonuclear flashes due to unstable
helium and/or hydrogen burning of matter accreted on a neutron star surface
(for a review see e.g. Lewin et al. 1993). A typical burst shows a fast rise (~ 1s)
and exponential decay, softening during the decay (interpreted as cooling of the
neutron star photosphere), and a spectrum which can be well described with
black-body radiation. At the moment, about 70 X-ray bursters are known,
approximately 20 of which have been discovered with BeppoSAX (e.g., in 't
Zand 2001).

Most X-ray bursters are detected with persistent X-ray flux observed before
and after bursts. But some sources have been detected during bursts only, with
upper-limits on the persistent emission. These limits vary widely, as they de-
pend on the sensitivity of the instrument used. For example, the X-ray sources
in the globular clusters Terzan 1 and Terzan 5 were detected with the Haku-
cho satellite during bursts only, but EXOSAT and ROSAT also detected the
persistent emission (Makishima et al. 1981, Warwick et al. 1988, Verbunt et al.
1995).

The study of X-ray bursts serves various purposes. First, applying the theory
of X-ray bursts to observations provides information about the neutron star
(e.g., its radius when the distance is known) and about its companion (e.g.,
whether the matter transferred from the companion is hydrogen-rich or not).
Second, the bursts unambiguously decide which of the low-mass X-ray binaries
contain a neutron star as opposed to a black hole, and provide (an upper limit
to) the distance of the binary, from the condition that its luminosity should be
less than the Eddington luminosity. Third, new low-mass X-ray binaries may
be discovered by the detection of bursts, in cases where the persistent flux is
too low. The last two points help in forming a more accurate view of the total
number and distribution of low mass X-ray binaries in our Galaxy, and of the
fraction that contains a neutron star.

In this paper we describe the observation with the BeppoSAX Wide Field
Cameras of six type I burst sources. Four of these are new X-ray sources with
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a persistent flux below the detection threshold of the Wide Field Cameras of
~ 10710 ergem™2s7!. The fifth source is a known X-ray source, from which
we detect bursts for the first time. The sixth source is also a previously known
X-ray source, the first burst of which was recently discovered by Jonker et al.
(2001); we describe a second burst from this source and use it to determine its
distance. In Sect. 2 we describe the observations and data reduction; the results
are described in Sect.3. Because of their diversity, the sources are discussed
in separate subsections, each of which is accompanied by a sub-subsection in
which comparison with other observations are made. Finally, in Sect. 4 we
discuss some implications of our results for the theory of bursts (Sect. 4.1) and
for various sub-populations of the low-mass X-ray binaries with neutron stars
(Sect. 4.2).

6.2 Observations and data analysis

Our observations were obtained from mid 1996 to the end of 2001 with the Wide
Field Cameras (Jager et al. 1997) on board of the BeppoSAX satellite (Boella
et al. 1997). The Wide Field Cameras are two identical coded mask aperture
cameras with a 40° x 40° (full width to zero response) field of view and ~ 5’
angular resolution. The source location accuracy is between 0/7 and 5, and the
passband is 2 to 28 keV. Data are collected with a time resolution of 0.5 ms.
The sensitivity depends on the off-axis angle, but is on average a few mCrab in
a 10° s exposure.

The large sky coverage together with the good angular and time resolution
make the Wide Field Cameras an excellent experiment to detect fast transient
X-ray phenomena at unexpected sky positions and simultaneously study the
behavior of a large fraction of the low mass X-ray binary population in our
Galaxy.

Roughly 90% of all observations of the Wide Field Cameras are carried out
in the so-called 'secondary mode’, in which the pointing of the satellite is set
for the Narrow Field Instruments. The pointing of the Wide Field Cameras
is arbitrary, except for solar angle constraints and the constraint that the two
Wide Field Cameras point in opposite directions, perpendicular to the direction
of the Narrow Field Instruments. The remaining 10% of the Wide Field Camera
observations are 'primary mode’ observations, in which one of the two cameras
is pointed at the Galactic Center (and the other, thus, at the anti-center).

We search for X-ray bursts in the lightcurve of the total detector (i.e., a su-
perposition of all the sources in the field of view). With this method we detect
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Table 6.1: Results of the BeppoSAX Wide Field Cameras observations. For each burst source the table gives the time of the burst,
the position with error ¢, the total exposure time on the source between August 1996 and December 2001 t¢o¢, the exposure time texp
of the pointing in which the burst was detected, and the hydrogen absorption column Ny, persistent flux Fyers between 2-28 keV,
and the distance d derived from the burst peak flux. For the bursts the table gives the e-folding times 7 for the total flux, and for
the hard and soft energies, where we choose bands 2-x and x-28 keV such that both bands have similar countrates. Spectral fits have
been made for counts integrated over tsi; we give the black body temperature kT, radius R at distance (limit) d, the average flux
F in two bands, the bolometric peak flux Fleak, and the total burst fluence Ey; and the temperature kTirems and photon index I' for
bremsstrahlung and power law fits, respectively. All fluxes are corrected for absorption.

SAX SAX SAX SAX 25 25
J1324.5—6313 J1818.7+4+1424 J1828.5-1037 J2224.9+45421 1711—339 0918—549

Source parameters
Burst time (MJD) 50672.151 50683.770 51988.863 51488.454  bl-11, Table6.2 51335.049
RA (J2000) 13ho4mo7s 18h18™44° 18h2gm33s  22hogmpos 17h14m178 09"20™37°
Dec (J2000) —63°13/4 14°24!2 —10°37/8 +54°2179 —34°3/3 —55°139
§ (99% confidence.) 1/8 2’9 2/8 3/2 1/5 07
lir,brr 306°6, —0°6  42°2,4+13°7  20°9,0°2 10296, —2°6  352°1,42°8 275°9, —3°8
teor (day) 58 31 25 65 66 62
toxp (ks) 18.5 16.2 12.7 40.2 314 36
N (1022 atoms cm™2) 1.5% 0.1¢ 1.9% 0.5% 1.5° 0.24°¢
Fpers (10710 ergem™2s71) < 0.80 (30) < 1.7 (30) < 1.9 (30) <0.35(30) 6.34+0.6 3.84+0.6
d (kpc) < 6.2 < 9.4 < 6.2 <71 <75 4.2
Burst parameters
To—28kev (8) 6.0+ 0.1 4.540.1 11.240.6 2.6+0.2 7.14£0.2 48.5 + 0.2
x 8 4 7 6 6 5
T2—akev (8) 9.7+0.4 5.7+0.2 21.541.3 3.940.7 7.6 +£0.3 80.6 £ 0.7
To—28kev () 2.640.2 1.17 £ 0.04 4.740.6 1.840.3 5.9+0.3 36.5 4 0.2
black-body fit
trig (s) 9.3 6.0 25.1 4.0 - 86.4
kTyp, (kev) 2.540.2 1.140.14 2.340.2 2.540.3 1.640.1 2.264-0.05
R (km) at d 4.540.5 24.7% 4.740.9 4.740.5 5.5—-11.9 6.340.2
Fy_jokev (1078 ergem™2s7') 1.2340.10 1.02 £ 0.03 1.084-0.40 1.0040.42 0.4+0.1¢ 4.05+0.27
Fa_ogrev (1078 ergem™2s71) 2.17+£0.07 1.07 £ 0.05 1.6540.73 1.6640.89 0.540.1¢ 6.1£0.5
Fpoax (1078 ergem™2s71) 4.340.2 1.940.1 4.3+1.6 3.3+1.5 3.0 +1.0¢ 9.44+1.7
Ey, (1077 ergem™2) ~2.6 ~0.86 ~4.3 ~0.67 - ~52
x2 (d.o.f.) 1.0 (26) 0.6 (26) 0.7(26) 1.0(26) 0.9 (270) 1.6 (26)
bremsstrahlung fit
ETbrems (keV) 56137 5.9+ 1.7 44,1196 507129 - 64+14
x2 (d.o.f.) 1.4 (26) 0.5 (26) 1.1(26) 1.1(26) - 9.7 (26)
power law fit
r 1.440.1 2.3+0.21 1.440.2 1.440.2 - 1.3140.04
X2 (d.o.f.) 1.5 (26) 0.5 (26) 1.1(26) 1.1(26) - 10 (26)

¢ Interpolated from Dickey & Lockman (1990); ®From NFI, see Sect. 3.2.1; ¢ From Christian & Swank (1997); 9Values for b8.
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a burst if the fast fluctuations in the overall count-rate are small (< 10%), and
if the burst lasts 10 to 100 seconds and reaches a peak count-rate of at least
a few times 1078 ergecm~2s~!. If a burst-like event is observed, a sky image
is reconstructed by cross-correlating the detector image with the coded mask
(Jager et al. 1997). During this reconstruction the background is subtracted au-
tomatically. By comparing the sky image with a catalogue of X-ray sources the
burst event can be attributed to a known, or previously unknown, X-ray burster.
In this way we discovered bursts from SAX J1324.5—6313, SAX J1828.5—1037,
SAX J1818.7+1424, SAX J2224.945421 and 2S0918—549. The burst positions
of the newly discovered sources are then used to search for persistent emission
and other, possibly somewhat fainter, X-ray bursts in all Wide Field Cameras
observations of these sources.

During primary mode, lightcurves for individual sources are created and are
searched for bursts. In these data we discovered bursts from 2S 1711—339.

The SAX positions for new X-ray sources are also used to generate studies
with the RXTE All-Sky Monitor (ASM; Levine et al. 1997), which has smaller
cameras than the WFC but typically provides many measurements per day
for every X-ray source. Retrospective ASM light curves are obtained by re-
fitting the coded mask data as a superposition of the mask shadows for all of
the sources in a particular camera exposure (90 s), including the new target of
interest. This reprocessing effort yields light curves that track the behavior of
X-ray sources with substantially greater sensitivity compared to the threshold
for generic identifications of new transients at random sky positions.

6.3 Results

6.3.1 New sources

A single burst was detected at four locations where no X-ray source is known
from previous observations, including the ROSAT All Sky Survey (Voges et al.
1999). We conclude that we have detected four new sources and designated
them with SAX names in Table6.1.

All new sources are detected only during the burst: the Wide Field Cameras
show no persistent emission or other burst between August 1996 and December
2001 in any of the four cases. To compute the upper limits listed in Table 6.1, we
employ absorption columns interpolated from HI maps by Dickey & Lockman
(1990), and a power law spectrum with photon index I'=1.0. (This value is
typical for burst sources at low luminosities; see for example Sect. 3.3 below.)
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Figure 6.1: Lightcurves of bursts from SAX J1324.5—6313, SAX J1818.7+1424, SAX J1828.5—1037,
SAX J2224.945421, and 2S 1711339, respectively. For 25 1711—-339 the profile is the average of bursts
b1-b10. Three different energy passbands are shown; the total Wide Field Cameras passband (2-28 keV),
a low energy passband, and a high energy passband. The high and low energy passbands are chosen in
such a way that the count rate was roughly comparable, giving the same statistical quality. Also, the
hardness, i.e. the ratio of the high to the low energy count rate, is shown. For each source the binsizes are
1s,1.5s,2s,1s,and 1 s, respectively; except for the hardness of SAX J2224.9+5421 and 2S1711—339,
which have binsizes of 2 s.
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Observations of six typel bursters

For a photon index of I'=2.0 the flux values would be 70% lower.

The All-sky Monitor onboard RXTE satellite (RXTE/ASM) scanned the po-
sitions of the four new sources. During the course of our analysis the lightcurves
of these sources became available. These lightcurves rather uniformly cover a
five year period with, most of the time, several 90 s observations per day and
actual exposure times of 1.7 x 10% s and 1.8 x 10° s, respectively. None of the
four lightcurves show a clear detection during this period at an upper-limit of
~ 2 x 10719 ergem 2571 (2-10 keV) in 7 days of observation.

The lightcurves of the bursts in various passbands are shown in Fig.6.1.
They have a fast-rise (~1—3s) and exponential-like decay (for SAX J1828.5—1037
this is evident mainly at the lower energies). The decay is faster at higher ener-
gies, indicative of spectral softening; decay times are listed in Table 6.1 together
with the spectral fits for the bursts.

The burst profile of SAX J1828.5—1037, as shown in Fig. 6.1, looks rather
strange even considering the low statistical quality. But it is precedented by
profiles from at least one well established burster (4U 1636—536; van Paradijs
et al. 1986). Thus, it would be interesting to observe more bursts from
SAX J1828.5—1037 with better sensitivity.

To obtain a spectrum we integrate the spectrum over the burst duration; the
exact integration times are given in Table6.1. We fit the spectra with a black-
body, power law, and bremsstrahlung model. The black-body gives the best
description for three of the four bursts and is acceptable for SAX J1818.741424,
as expected for typel bursts.

If they are indeed typel bursts, their peak flux must be less than or equal
to the Eddington limit of 2 x 103® ergs~! (for canonical neutron star values),
and we can use the observed peak flux to obtain an upper limit to the distance
(e.g. Lewin et al. 1993); these upper limits are also listed in Table6.1. We note
that due to systematic uncertainties the errors on the distance are ~ 30% (e.g.
Kuulkers et al. 2002).

To prove that the above-discussed bursts are genuine typel X-ray bursts it
must be shown that a black body gives the only acceptable description of their
spectrum. From Table 6.1 we see that this is the case only for SAX J1324.5—6313;
for the other three bursts bremsstrahlung or power-law spectra are still accept-
able. That is why we consider the two alternative explanations for these three
bursts, i.e. that they are stellar X-ray flares or X-ray flashes.

Stellar X-ray flares are generally much longer (~hours) and have much lower
peak fluxes than the bursts that we have observed (e.g. Greiner et al. 1994,
Haisch & Strong 1991). We therefore consider it unlikely that any of the three
bursts is a stellar flare.
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X-ray flashes are related to gamma-ray bursts in the sense that they look
like the prompt X-ray counterparts to Gamma ray bursts but lack the ~-ray
emission: they have similar time scales, have the same variety of time profiles
(including fast-rise exponential-decay shapes), and have spectra that are best
described by a power law rather than black body radiation (Heise et al. 2001).
X-ray flashes are non-repetitive, and if they are related to gamma-ray bursts no
detectable X-ray emission is expected before or lang after the flash. The Wide
Field Cameras have observed about 25 of these (in 't Zand et al., in prep.).

SAX J1828.5—1037 was previously observed during a ROSAT observation
(see Sect.3.1.1), leaving only doubts on the nature of SAX J1818.7+1424 and
SAX J2224.9+5421. If these two bursts were X-ray flashes with fast-rise exponential-
decay time profiles, they would be the shortest two of all, and they would be
the only ones for which the black body model for the spectrum can not be un-
ambiguously ruled out. Together with the fact that the bursts were at positions
near the Galactic plane where typel bursters are likely to occur we think that
the most probable explanation for all four bursts is therefore that they are typel
X-ray bursts.

Other observations

HD 168344, a V=7.6 magnitude K2-type star is within the error-radius at a
distance of 2/1 from the centroid of SAX J1818.74+1424. There are 18 stars
of magnitude 8 or brighter within a 4° x 4° field around SAX J1818.7+1424
(ESA 1997). This makes the chance probability of having an 8th magnitude or
brighter star within the error radius 0.8%. This probability is so small that we
consider the possibility that the event was an X-ray flare from HD 168344.

According to the Tycho Catalogue (ESA 1997) it is a K2 star with V=7.59
and B—V=1.047, a parallax of 0700684070055 and a proper motion of about
0.029” /yr. A main sequence K2 star with this apparent magnitude would have
a distance of only ~ 16 pc, incompatible with the small observed parallax. In
contrast, a K2III star of the observed magnitude would be at a distance of 230-
270 pc, compatible with the observed parallax, and its velocity perpendicular to
the line of sight would be comparable with the observed radial velocity.

The too short burst time scale of 10s and the high peak luminosity of 1.2 x
10%% ergs™! at a distance of 230 pc, both exclude that the burst observed by us
was a stellar flare on HD 168344. (No stellar flare this short and bright has ever
been observed to our knowledge; e.g. Haisch & Strong 1991.) If a neutron star
were a companion of HD 168344, the peak flux of its burst would be ~ 6 x 10~*
of the Eddington flux. This also is unlikely We conclude that HD 168344 is not
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Figure 6.2: Long-term lightcurve of 25 1711—339 obtained with the RXTE All-
sky monitor, which shows an outburst between July 1998 and May 1999. Each
point represents a one-week average. The vertical arrows indicate the times at
which bursts were detected with the BeppoSAX Wide Field Cameras.

the optical counterpart of SAX J1818.7+1424.

Whereas none of the four burst positions coincides with a catalogued ROSAT
source, we find that SAX J1828.5—1037 is in the field of view of a 9.4 ks
ROSAT/PSPC pointed observation obtained on April 4 1993. We have an-
alyzed this observation and detect seven sources (in channels 50-240), one of
which is in the Wide Field Cameras error-circle. With a radius for the ROSAT
field of view of ~ 50’ the chance probability that one of seven sources falls in the
SAX J1828.5—1037 error-circle of 28 is about 2%. Thus the ROSAT source is
probably the counterpart of SAX J1828.5—1037, confirming that SAX J1828.5—
1037 was not an X-ray flasher. The position of the ROSAT source is RA=18"28™
25.7%, Dec=—10°37'51" (J2000) with an error of 39” (1o). The source is not
detected in channels 11-50, as expected for a highly absorbed source. The coun-
trate of 0.011£0.002 cts s~! corresponds to an unabsorbed flux between 0.5-2.5
keV of 1.9 x 107!2 ergem2s~! for a power law with photon index I' = 1. At a

distance of 6.2 kpc this corresponds to a luminosity of 8.7 x 1033 ergs™!.

6.3.2 2S1711-339

251711—-339 is an X-ray source that was bright between July 1998 and May
1999. The Wide Field Cameras covered this outburst in August-October 1998
and February-April 1999. Ten short bursts were detected which we designate
bl, b2,...,b10. All these bursts appear to have a similar shape. In the left panel
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Figure 6.3: Bursts b5 (left panel) and b11 (right panel) of 251711—339 in the 2-
28 keV passband. The first 10 bursts show similar shapes and are represented by
b5. The persistent emission was detected during the observations before/after
all these bursts. Before and after b1l the persistent emission was below the
detection limit of the Wide Field Cameras.

of Fig.6.3 we show the best example (b5) of these bursts. To fit the average
persistent emission before and after the bursts, we employ the absorption column
derived in Sect. 3.2.1. A cut-off power law with a photon-index of 0.7+0.5 and
a high-energy cut off of 2.840.8 keV provides a satisfactory fit; the flux of the
persistent emission is given in Table6.1.

During a 40 ks observation on March 22 2000 an eleventh burst (b11) was
detected while the persistent emission level before and after the burst was be-
low the detection limit. Assuming that the spectral parameters of the persistent
flux observed with bursts b1-b10 still apply, we obtain a 3o upper-limit on the
persistent flux of 7.0 x 107! ergem 257! (2-28 keV); this is a factor of ten
lower than during bursts b1-b10. This burst, which is shown in the right panel
of Fig. 6.3, has a different shape than the previous 10 bursts. Both the rise and
decay time for burst b1l are longer. In Table 6.2 we summarize the characteris-
tics for the 11 individual bursts. In Fig. 6.2 we show the RXTE/ASM long-term
lightcurve of 25 1711—-339 which shows that the first 10 bursts occurred during
an outburst.

It is clear from Table 6.2 that none of the exponential fits to the decay is
formally acceptable. Also, for none of the individual bursts cooling can be
unambiguously shown. Therefore, we decided to combine the light curves of
burst bl to bl0. The last burst, bll, is excluded because of its deviating
shape. To combine the bursts we created lightcurves with a time resolution of
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Table 6.2: Characteristics of the individual bursts of 2S1711—339. For each
burst we give the time of occurrence, the peak count rate in the WFC, and from

a fit of an exponential to the decay, the e-folding decay time and the reduced

X2

burst Start time CRpeak To_og %
(MJD) (em=2 s71) (s) 47 d.o.f.

bl 51058.024301  1.1540.05 6.94+0.4 1.3
b2 51087.268967  1.73£0.04 7.0+£0.3 1.5
b3 51229.857483  1.72+0.04 6.34+0.2 1.3
b4 51232.083607  1.69£0.04 3.6+0.1 14
b5 51234.270915  1.6340.06 5.240.2 1.6
b6 51249.958462  0.9440.03 14.5+0.8 1.4
b7 51262.473439  1.2940.03 11.5+0.4 1.4
b8 51274.775982  1.88+0.04 6.940.2 1.5
b9 51278.327360  1.25+0.07 10.5£0.9 1.5
b10 51278.992006 could not be constrained

bll 51625.046991  1.18+0.04 15.0£0.7 1.3

1 s. We took the highest bin as the peak for each burst and the corresponding
time as t=0 s. Then the bursts were combined, by averaging the count rates
and determining the statistical error in the mean. Fig.6.1 shows the resulting
profile.

A black-body spectrum was fit to the burst spectrum of all 11 burst. We
assumed a fixed absorption column, Ng = 1.5x 10?2 atoms cm =2 (see Sec. 3.2.1).
We fitted the 11 burst spectra simultaneously; the black-body temperature was
forced to be the same for all bursts, whereas the black-body radius was allowed
to vary. In Table 6.1 we have summarized the results for fits to the spectrum and
to the exponential decays in different passbands. Instead of giving the radius
of each individual burst we indicate the range of radii in Table6.1. Varying the
temperature and forcing the radius to be the same for all bursts simultaneously
gives a range of temperatures between 1.2-2.0 keV and a radius of 7.8+£0.9 km
(at 7.5 kpc). Burst b8 has the highest peak flux. The temperatures and the
radii found are typical values for TypeI bursts. We conclude that the 11 events
are Typel bursts.

From the observed peak flux during the burst and the constraint that this
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Figure 6.4: Error circles (large to small) from the Wide Field Cameras position
(this paper), RXS J171419.3—340243 (Voges et al. 1999), and Chandra position
of 251711—339 (this paper) superposed on an image from the Digitized Sky
Survey.

must be less than the Eddington limit, we derive from the brightest burst b8 an
upper limit to the distance of 2S1711-339 of 7.5 kpc.

Other observations of 2S1711-339

A Chandra/ACIS-S observation of 251711—339 was performed on June 9 2000
for a total of 949 s. A single relatively bright source with a countrate of
0.46+0.02 cts s~! is detected at a position RA=17"14™19.8%, Dec=—34°02/47"
(J2000) with a conservative error-radius of 1”.

Our WFC position for 251711—-339 (Table6.1), the position of the Ariel V
source A 1710—34 (Carpenter et al. 1977), and the position of the source RXS
J171419.3—340243 from the ROSAT All Sky Survey (Voges et al. 1999) are all
compatible with the Chandra position of 25 1711—339 as illustrated in Fig. 6.4.
We conclude that they are all the same source. We note that the nearest source
with comparable (ROSAT) brightness in the ROSAT All Sky Survey is at a
distance of ~ 30’.
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The spectrum during a BeppoSAX Narrow Field Instrument (NFI) observa-
tion on February 29, 2000 (MJD 51603) of 25 1711—-339 is best described by an
absorbed power law model with photon index 2.2 and an absorption column of
1.5 x 10%2 atomscm~2 for the persistent emission (Migliari, di Salvo, Belloni,
in preparation). Use of this spectrum for the persistent flux measured with the
Wide Field Cameras does not significantly change the numbers given in Sect. 3.2
and Table6.1. The flux between 2 and 6keV in units of 107! ergcm™2s~! for
251711—339 varied from < 40 in February 1975 to 200 in September 1976 (Car-
penter et al. 1977), to 5 during the EXOSAT Galactic Plane Survey (Warwick et
al. 1988). Assuming the spectrum as observed by the NFI we obtain fluxes be-
tween 2 and 6 keV in units of 107! ergem™2s~! of 2 during the ROSAT All Sky
Survey, 2.4 during the NFI observations, and 0.3 during the Chandra/ACIS-S
observations. The large range of fluxes shows that 2S1711—-339 is a genuine
transient.

6.3.3 2S0918-549

A single bright burst was detected from the X-ray source 2S5 0918-549 on June
6.049, 1999. The burst has a fast rise, a flat top and an exponential decay. In
Table 6.1 we summarize exponential-decay fits in different passbands and the
results of spectral modeling. We fix the interstellar column at the value found
from Einstein X-ray data (Christian & Swank 1997).

The persistent flux is satisfactorily described by a cut-off power law spectrum
with a photon index of 0.940.6 and a high-energy cut-off of 5.2+3.8 keV, or a
bremsstrahlung spectrum with a temperature of 8.9+1.8 keV (the flux is only
marginally different between the two models). The black-body model gives the
best fit to the burst spectrum. We also performed time-resolved spectral fits
for the burst. The values of kTy;, and Ry are plotted as a function of time
in Fig.6.5. We notice that the burst shows the characteristics of a radius-
expansion burst (an increase in the black-body radius, and a drop in the black-
body temperature while the flux stays constant). A distance of 4.2 kpc (with an
uncertainty of 30%; see e.g. Kuulkers et al. 2002) and a persistent luminosity
of 6.8 x 10%° ergs™! are implied.

Other observations

It turns out that 2S 0918—549 is in the field of view of a 4.8 ks ROSAT PSPC ob-
servation of HD 81188, with a countrate (channels 11-240) of 9.8340.05 cts s~ 1.
We have analyzed its spectrum and tried to model it with the combination of
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Figure 6.5: The lightcurve and results of the time-resolved spectroscopy of the
burst from 2S0918-549. Each bin is 3 seconds, apart from the last three bins
which are 17 s, 30 s and 50 s respectively. The top panel gives the lightcurve,
the middle panel the black-body temperature during the burst and the bottom
panel the black-body radius for a source at 4.2 kpc. For the spectral fits a fixed
column density of Ny = 0.5 x 10?2 atoms cm ™2 is assumed.

a 2 keV black body and 2 keV thermal bremsstrahlung spectrum as fitted by
Christian & Swank (1997) to Einstein data of this source. This model is not
acceptable. An acceptable fit (y2 = 1.2, 9 d.o.f.) is obtained for a combina-
tion of a 0.1 keV black body and 3.0 keV thermal bremsstrahlung spectrum,
absorbed by Nz=5.0 x 10?! atomscm™2. The ratio of the black-body to the
bremsstrahlung flux in the 0.5-2.5 keV band is 1.45. For this fit the 2-10 keV
flux is due to the bremsstrahlung only, and is 2 x 10~ %ergcm=2s~!, a factor
two below the level observed with the Wide Field Cameras. The flux in the
0.5-20 keV range is 8 x 10719 ergem =257, a factor four higher than the level
observed with Einstein.

Jonker et al. (2001) were the first to detect a burst of 250918—549. The
data analyzed by Jonker et al. do not combine good time resolution with spectral
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resolution. Therefore Jonker et al. cannot and indeed do not establish that the
burst they observed is at the Eddington-limit. However, they estimate a peak
luminosity of about 8.8 x 10 8ergecm=2s™1 (2-20 keV), close to the peak flux
of the burst we observed. Accordingly, their distance upper-limit of 4.9 kpc
is comparable to our measurement. We conclude that the burst observed by
Jonker et al. must be at, or close to, the Eddington limit as well; indeed, the
lightcurve presented Jonker et al. is highly suggestive of a radius-expansion
burst. The upper-limit < 4.2 x 1071% ergem =251 (2-20 keV) for the persistent
flux before the burst derived by Jonker et al. is compatible with (and close to)
the persistent flux that we detect.

The optical counterpart of 2S0918—549 was identified by Chevalier & Ilo-
vaisky (1987), as a blue star (V=21.0, B—V=0.3) in the error circle of the
Einstein position for the X-ray source. The X-ray to optical flux ratio of ~ 800
indicates that the source is a low-mass X-ray binary. Chevalier & Ilovaisky
assume a distance of 15kpc, and note that the X-ray and optical luminosities
are low, as compared to those of average low-mass X-ray binaries. Our distance
estimate of 4.2kpc leads to lower luminosities with My ~6.9 (for Ay~1.0), and
Ly~ 8.7 x 10%%ergs~1.

The visual extinction is estimated by assuming that (B—V),=0 — a common
value for low-mass X-ray binaries — and is roughly compatible with the value
estimated for the X-ray absorption, using the relation between the latter and
the visual extinction according to Predehl & Schmitt (1995).

6.4 Discussion

Our observations add at least three and possibly five bursters to the list of X-ray
bursters in our Galaxy and provide a distance estimate for a recently discovered
burster. In this section we discuss the implications of our results for the theory
of bursts (in Sect. 4.1) and make a comparison between the class of bursters
with low persistent luminosities — to which we have added four members — with
other low-mass X-ray binaries (in Sect. 4.2).

6.4.1 Comparison with burst theory

We compare the properties of the bursts with theory. Fujimoto etal. (1987,
see also Bildsten 2000) propose three classes of bursts. At the lowest accre-
tion rates, 1071 Moyr~! < M < 2 x 10710 Mg yr~!, a burst is triggered
by thermally unstable hydrogen burning, and can last between 102 to 10 s.
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At intermediate accretion rates, 2 x 10710 < M < 1072 Mg yr—!, a pure he-
lium burst occurs with a duration of order 10 s. In the high accretion regime,
1072 S M < 2.6 x 1078Mg yr—!, a burst with a duration of tens of seconds
may occur in a mixed He/H environment. At even higher or lower accretion
rates no bursts are expected to occur. To consider our observations, we first
converted accretion rates to fractions of the Eddington limit. The pure helium
bursts occur when the accretion rate is in the range 0.014 - 0.070 of the Ed-
dington accretion rate. The ratio of (the upper limit to) the persistent flux
and the peak flux during the burst, where the latter is (a lower limit to) the
Eddington flux, provides an estimate of the fraction of the Eddington limit at
which a source is accreting. This assumes that the emission is isotropic and
that the persistent flux in the range 2-28 keV is close to the bolometric flux.
With the values listed in Table 6.1 we obtain < 0.002 for SAX J1324.5—6313,
< 0.009 for SAX J1818.7+1424, < 0.004 for SAX J1828.5—1037, < 0.001 for
SAX J2224.9+5421, 0.02 for 251711—-339 at bursts bl-b10, and < 0.002 at
burst b1l1l, and 0.004 for 2S5 0918—549.

We thus note that, with the exception of 2S5 1711—-339 during bursts b1-b10,
all sources are in the low accretion regime, and thus according to theory should
emit bursts lasting longer than about 100s. Source 251711—339 follows this
prediction nicely, showing short (~10-20 s) bursts b1-b10 when accretion was
in the intermediate range, and a longer (~60 s) burst b1l when the accretion
had dropped to the low regime. Also the burst from SAX J1828.5—1037 lasts
about 60 s, pointing towards the low accretion regime. Similarly, the bursts
observed by Jonker et al. (2001) and by us for 250918—549 are long (~150 s),
as predicted from the low accretion rate.

In remarkable contrast, the bursts from SAX J1324.5—6313, SAX J1818.7
+1424 and SAX J2224.945421 are all short (~10-20 s), even though these sys-
tems appear to be in the low accretion regime. Can it be that the true ac-
cretion rate is higher than we estimate? One possibility is that the emission
is anisotropic. However, to our knowledge no indication has been found for
anisotropies in other burst systems. A second possibility would be that most of
the persistent flux is outside the observed 2-28 keV range. However, we estimate
that more than 50% of the persistent flux is in this range. We therefore consider
it unlikely that these effects are sufficient to bring especially SAX J1324.5—6313
and SAX J2224.94-5421 to the intermediate accretion regime.

A third possibility is that the accretion is limited to a small area of the
neutron star, e.g. a ring connected with the accretion disk (Popham & Sunyaev
2001). This enhances the local accretion rate, which is the parameter determin-
ing the properties of the bursts (as discussed by Bildsten 2000). This would
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imply that the accreting surfaces in SAX J1324.5—6313 and SAX J2224.9+5421
are less than about 15% and 8% of the surface of the neutron star, respectively.
This possibility cannot be excluded a priori, but raises the interesting question
why the accreting surface areas would be so different between bursters — the
rotation period of the neutron star could affect the area over which the accreted
matter spreads out, for example.

A fourth possibility is that the persistent flux at the time of the burst is
not representative of the time-averaged flux in the months before the burst. In
transients like e.g. Aql X-1, Cen X-4, XTE J1709—267 and SAX J1750.8—2900,
X-ray bursts were detected during the decline of the outburst, at times when the
persistent flux, easily detectable at L, 2 1036 ergs™!, was at an accretion rate
of ordinary burst sources (Matsuoka et al. 1980, Koyama et al. 1981, Cocchi et
al. 1998, Natalucci et al. 1999). Also the transient SAX J1808.4—3658 showed
a ~100 s long burst 30 days after the peak of an outburst, when the persistent
flux had declined below the detection limit of the Wide Field Cameras, < 1036
ergs~! (in 't Zand et al. 2001). However, the RXTE/ASM lightcurves show
no detection of SAX J1324.5—6313 and SAX J1818.741424, at an upper-limit
of ~ 10%¢ ergs~! making a transient outburst very unlikely.

One might propose the possibility that these systems are old and the com-
panion has only pure helium left. In this case only helium bursts can occur
independent of the accretion rate. However, calculations on bursts due to pure
helium accretion show that at low accretion rates the burst duration increases
to ~ 100 s (Bildsten 1995).

For pure helium bursts, the energy released during the burst due to nu-
clear fusion is about 1% of the accretion energy released when the same matter
accreted onto the neutron star before the burst (see e.g. Lewin et al. 1993).
From the observed burst fluences and the (upper limits to) the persistent flux,
we can therefore derive (lower limits to) the interval to the previous burst.
The computed waiting time of 16 d is sufficiently long to explain that only one
burst was detected for 250918—549, whose WFC exposure times totalled for
all observations between August 1996 and December 2001 is about 62d. For
SAX J1324.5—6313, SAX J1818.7+1424, SAX J1828.5—1037 and SAX J2224.9
+5421 the total observation times between August 1996 and December 2001
are about 58d, 30d, 25d and 65d, respectively. For these sources the wait-
ing times are > 3.7d, > 0.6d, > 2.6d and > 2.2d. The chance probability
of observing at most one burst for these sources is then 0.07% or (much) less.
The fact that only one burst was observed for each system suggests that the
persistent emission levels are much lower than the upper-limits derived.
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Table 6.3: Overview of the burst sources at low persistent emission as observed
with the Wide Field Cameras.

Name l]] b[[ chak/chrs T (S)
SAX J1324.5-6313 306°64 —0°59 >540 6.0
RX J171824.2-402934* 347°28 —1°65 >90 47.5
GRS 1741.9-2853° 359296 0°12 >130 8.8

>180 11.0

>100 16.0
SAX J1752.4-3138¢ 358244  —-2°64 >120 21.9
SAX J1753.5-23494 5230 1°10 >180 8.9
SAX J1806.5-2215¢ 8°15 —0°71  >200 4.0

>210 9.0
SAX J1828.5—1037 20288  4+0°18 >226 11.2
SAX J1818.74+1424 42°32  13°65  >110 4.5
SAX J2224.9+5421 102°56 —2°61 >940 2.6

@ Kaptein et al. (2000); ® Cocchi et al. (1999).
¢ Cocchi et al. (2001); ¢ in 't Zand et al. (1998).

6.4.2 Low persistent emission bursters

Gotthelf & Kulkarni (1997) discovered a burst from a low-luminosity source
in the globular cluster M 28, with a peak luminosity that is only 0.02% of the
Eddington limit. This low peak flux discriminates it from the bursters discussed
by Cocchi et al. (2001) and in this paper, that have fluxes close to the Eddington
limit: if their peak fluxes were as low as that of the M 28 source, they would be a
local population near the Sun, which is clearly incompatible with their galactic
length and latitude distributions.

As discussed by Cocchi et al. (2001), a class of bursters with low persistent
emission has emerged in recent years. The four sources discussed in Sect. 3.1
also appear to be member of this class, strenghtening its existence. Whereas
most bursters emit their bursts at persistent luminosities 2 1036 ergs—!, most of
the members of this new class emit bursts at luminosities below the RXTE/ASM
detection-limit of ~ 1036 ergs~!. How much lower is not clear, and we briefly
consider three possibilities. One is that the sources are steady in the range
1034735 ergs™!, as suggested for the bursters 1RXS J171824.2—402934 (Kaptein
et al. 2000) and SAX J1828.5—1037 (this paper), whose persistent emission lev-
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Figure 6.6: The top two panels show the cumulative Galactic longitude [;; and
latitude br; distributions (solid lines) of the low persistent emission bursters
compared to the exponential (Galactic) distribution of the low-mass X-ray bina-
ries weighted with observation times (dashed lines). The probability according
to a two-sided Kolmogorov-Smirnov test that they have the same distribution
is given in the lower right corners. For comparison we also show an isotropic
distribution weighted with observation times (dotted lines). In the bottom two
panels the low persistent emission bursters (solid line) are compared to the faint
transients (dashed line).

els were detected at this level with ROSAT a few years before the burst. The
second possibility is that the sources are steady at the level 1032733 ergs™1,
the quiescent level of soft X-ray transients with neutron stars; and the third
possibility is that they are usually at this low level, but emit their bursts dur-
ing or soon after faint (< 1036 ergs~!) outbursts, as suggested by the case of
251711—339. More sensitive X-ray observations are required to discriminate
between these various possibilities.

However, a first test can be made on the basis of the spatial distributions.
In Figure6.6 we compare the distributions of galactic length and latitude for
the bursters with low persistent luminosity — listed in Table 6.3 — with those of
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the low-mass X-ray binaries. For the latter we use exponential distributions in
galactic longitude and latitude with scale angles of 45° and 8°3, respectively,
as determined by van Paradijs & White (1995). Kolmogorov-Smirnov tests
indicate that the bursters with low persistent luminosity may indeed be drawn
from the distribution of low-mass X-ray binaries.

A new class of faint transients has been discovered with BeppoSAX: tran-
sients whose outbursts are rather fainter (peaking below 1037 ergs™!) and often
also shorter (lasting less than a month) than the outbursts of the ordinary soft
X-ray transients which reach the Eddington limit and may last months (Heise et
al. 2000). Tt is tempting to assume that the bursters at low persistent emission
are an extension of this class of faint transients. Remarkably, this new class
of faint transients is more concentrated towards the galactic center than the
ordinary low-mass X-ray binaries (In 't Zand 2001). A Kolmogorov-Smirnov
test shows that the galactic longitudes of bursters with low persistent emis-
sion cannot be drawn from the longitude distribution of the faint transients, as
illustrated in Fig. 6.6.

We conclude that the bursters at low persistent emission are probably not
from the same class as the faint transients, which makes the transient explana-
tion even more unlikely.
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Chapter 7

Chandra follow-up of
bursters with low persistent
emission

R. Cornelisse, F. Verbunt, J.J.M. in 't Zand, E. Kuulkers and J. Heise
Astronomy & Astrophysics 2002, 392, 931

Abstract— We report on Chandra ACIS-S observations of five typel X-ray
bursters with low persistent emission: SAX J1324.5—6313, SAX J1752.3—3128,
SAX J1753.5—2349, SAX J1806.5—2215, and SAX J1818.74+1424. We designate
candidate persistent sources for four X-ray bursters. All candidates are detected
at a persistent luminosity level of 1032733 ergs™!, comparable to soft X-ray tran-
sients in quiescence. From the number of bursters with low persistent emission
detected so far with the Wide Field Cameras, we estimate a total of such sources
in our Galaxy between 30 and 4000.

7.1 Introduction
Many low-mass X-ray binaries show bursts of X-rays which are characterized
by a rapid rise and exponential decay, and by a black body spectrum with

spectral softening during the decay i.e. the emitter cools. Such typel X-ray
bursts are interpreted as thermonuclear flashes on surfaces of neutron stars, and
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thus effectively identify the emitting source as a neutron star as opposed to a
black hole. The theory of these bursts predicts a relation between the accretion
rate onto the neutron star, as measured by the persistent X-ray luminosity,
and the properties of the X-ray burst. Briefly, for very low and very high
accretion rates, no X-ray bursts are expected, because thermonuclear fusion is
steady (Fujimoto et al. 1987). At intermediate accretion rates, hydrogen /helium
fusion occurs sporadically in bursts, and the burst frequency is a function of the
accretion rate per square meter on the neutron star. Because the effectively
accreting area of the neutron star is also a function of the accretion rate, the
burst frequency is a non-monotonic function of the persistent X-ray luminosity.
Recent reviews of burst theory are given by Bildsten (1998, 2000).

Low-mass X-ray binaries are discovered as either persistent sources or tran-
sient sources. The transient sources with neutron stars show outbursts lasting
for weeks, sometimes up to years, at luminosities above 1036 ergs~!. During
their quiescent state their luminosity drops to a level of 1032733 ergs—! (e.g.
Campana et al. 1998), and the time averaged luminosities are < 1036 ergs=1
(e.g. White et al. 1984). Most bursts are emitted by systems at luminosities
2 1036 ergs™!, e.g. the transients AqlX-1 and Cen X-4 emitted X-ray bursts
when they were in outburst (Koyama et al. 1981, Matsuoka et al. 1980).

The Wide Field Cameras (WFC) on board the Italian-Dutch Satellite Bep-
poSAX discovered sporadic typel bursts from nine previously unknown burst
sources, which had persistent X-ray fluxes below the WFC detection limit of a
few times 10719 ergem 257! (2-28 keV). At 8 kpc, the distance of the Galac-
tic center, these flux limits correspond to luminosities of ~ 1036 ergs™!. Four
of the nine previously unknown burst sources were detected with other instru-
ments at fluxes well below the WFC detection limit (see Table7.1). The five
other bursters are listed in Table7.2. In this article we present Chandra ob-
servations which we obtained in order to determine the flux levels of these five
burst sources.

The persistent luminosities of the nine previously unknown burst sources are
(possibly far) below 103¢ ergs™!, i.e. below the level X-ray bursts are usually
observed. This is the reason why Cocchi et al. (2001) suggested that these
sources are members of a new class of bursters with low persistent emission (see
also Cornelisse et al. 2002).

The nine sources can be used to explore the low end of the relation between
luminosity and burst properties. The long waiting times between typel bursts,
compared to brighter burst sources, plus the low persistent emission level make
these sources difficult to discover. Its large field of view makes the WFC an
efficient instrument for the detection of such rare events.
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Table 7.1: Overview of the detection of four of the low persistent emission
bursters. For each source we list the instrument which detected the source, the
date of observation and the persistent flux in 107! ergem™2s~! plus passband
in keV. References: a. Kaptein et al. 2000, b. Cocchi et al. 1999, c. Pavlinsky
et al. 1994, d. Cornelisse et al. 2002, f. Antonelli et al. 1999, g. in 't Zand

et al. 2002 (in preparation).

source instrument date F  range ref
1RXSJ1718.4—4029 ROSAT/P 1990 1 2-10 a
1RXSJ1718.4—4029 ROSAT/H 1994 0.4 2-10 a
GRS1741.9-2853  GRANAT 1990 19 4-30 b,c
SAX J1828.5—1037 ROSAT/P 1993 0.19 0.5-2.5 d
SAX J2224.9+45421¢ SAX/NFI 1999 0.013 2-10 fg

¢ Observation a few hours after burst.

In Sect. 2 we describe the Chandra observations and data analysis and in
Sect. 3 we discuss which of the detected sources are the most likely candidates
for each burster. In Sect. 4 we briefly present unpublished but relevant ob-
servations with other instruments of SAX J1806.5—2215 and GRS 1741.9—2853.
In Sect. 5 we discuss the implications for the class of low persistent emission
bursters.

7.2 Observations and data analysis

With the Chandra satellite (Weisskopf 1988) we observed the WFC error circles
of the five burst sources without persistent emission listed in Table7.2. For
each field we used the ACIS-S3 detector in imaging mode. We analyzed the
level 2 FITS data provided with the standard data products using the Chandra
Interactive Analysis of Observations Software (CIAQ) version 2.1.3. None of the
five observations showed periods of high background and we used all data. For
source detection we used a wavelet-based algorithm (Freeman et al. 2002), only
taking into account the events between 0.5 and 7 keV. We set the significance
threshold for the source detection at 1076, i.e. giving at most one spurious
source on the ACIS-S3 detector per observation. In the dithered detector image
we checked each source region for the presence of flickering pixels. If a pixel
detected more than one photon from a source during the whole observation we
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Table 7.2: Observation log of the bursters at low persistent emission. For each
source we list the start and exposure time of the Chandra observation, the WFC
error radius (99% confidence), the absorption column (Ny, in 10! atoms cm=2)
as found by interpolating the HI maps of Dickey & Lockman (1990), and the up-
per limit to the distance (d,, in kpc) derived from the burst peak flux. For com-
parison with a model spectrum of a neutron star H-atmosphere plus power-law
we also list for this model the absorbed flux (F', 0.5-7 keV, in 10712 erg cm 257 1)
corresponding to 1 Chandra count per second, and the absorbed softness-ratio
(SR) of the soft count rate (0.5-2 keV) to the total count rate (0.5-7 keV). Ref-
erences: a. Cornelisse et al. (2002), b. Cocchi et al. (2001), c. in ’t Zand et al.
(1998), d. this paper

source start date  exp. 6 Ny dy F SR ref
(SAXJ) (MJD) s) (O
1324.5—-6313  52162.39 5101 1.8 15 6.2 1.0 0.69
1752.3—3128  52174.20 4717 29 56 9.2 2.5 0.82
1753.5—2349  52187.83 5171 2.5 83 88 1.6 0.76
1806.5—2215  52206.39 4758 2.9 12 80 1.5 0.68
1818.7+1424  52092.17 4758 2.9 1.0 94 55 0.94

» 00 T W

marked this as a flickering pixel; given the small number of photons in each
source (see Table7.3) we think that the chance probability that this happens
is too small (~ 1075) to be coincidence. In Table 7.3 we have noted the source
which is affected by a flickering pixel with an f. The count rate and position are
not reliable for this source. The wavelet method also gives an estimate of the
background. We consider all sources detected with a significance of more than
30. Only for the observation of SAX J1753.5-2349 no sources above 30 were
detected; here we derive an upper limit of 5 counts.

7.3 Selecting candidate burst sources

In Table 7.3 we list the detected sources on the whole S3-chip for each observa-
tion, because there is still a 1% possibility that the source is outside the error
circle. In all four observations there is more than one source inside or close to
the WFC error circles. Based on the photon count rate, there are no extreme
examples of sources which would qualify them as particularly likely candidates.
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Table 7.3: For each source detected on the S3-chip we list the position, and the
counts in the total (0.5-7 keV), and the soft (0.5-2 keV) band as well as the
detection significance, 0. A conservative estimate for the error in the positions
is 0/7. In the second column we indicate — where appropriate — reasons to reject
the source as the burster candidate: o. position outside the WFC error circle,
*. optical counterpart too bright, s. X-ray spectrum too hard (for discussion
see text). In the second column we have also indicated the sources which are
disturbed by a flickering pixel with f.

# mnote RA (J2000) Dec (J2000)  counts soft o
SAX J1324.5—-6313

A 13h24m30.2%  —63°12/41”  5.942.4 5.9+24 3.1
B S 13h24™30.3%5  —63°13'50” 77.948.9 21.7+4.7 33
C 13h24™38.0° —63°12'26”  6.842.6  6.842.6 3.4
D 13124m38.35  —63°13'28"  19.54+4.5 19.5+4.5 9.2
E 13124m39.45  —63°13'34”  5.9+2.4 59424 3.1
SAX J1752.3—3128

A 17052m16.75  —31°39/46”  10.7+3.3 10.7+3.3 5.3
B 17852m30.65 —31°38'58”  6.742.6  4.842.2 3.3
C o  17852m39.4%  —31°37'56"” 36.5+6.2 35.9+6.1 13
SAX J1806.5—2215

A 0 18h06m18.15  —22°15'39”  13.743.9 2.841.7 5.7
B 0 18M06™18.55  —22°17'24"  48.447.1 43.746.7 19
C 0 18706™m19.9°5 —22°18'03"  7.9+£2.8 1.9+14 41
D 18h06™31.7¢  —22°13'19”  9.0+3.2 5.5£2.4 3.9
E * 18206™35.8%  —22°15'01”  10.543.3 9.843.2 5.0
F s 18h06™36.8°  —22°1526"  14.9+3.9 < 0.66 7.7
G f 18h06m37.45 —22°17'22"  7.942.8  6.942.6 4.0
H 18806™43.6°  —22°16'06”  8.7+£3.0  8.7+3.0 4.3
I 0 18"06™43.8%  —22°18/42" 13.843.7 3.0+1.7 6.9
SAX J1818.7+1424

A o 18M18M32.15  4+14°22/09” 45.3+6.9 45.3+6.8 21
B 0 18h18M34.3%  +14°26'29”  6.842.6  4.042.0 3.5
C * 18M18m35.65  +14°22/32"  9.9+3.2 9.9+3.2 52
D * 18R18™37.65  +14°22'44”  36.646.1 36.6+46.1 18
E 18h18™m37.8%  +14°22'06”  7.0+£2.6  6.0+2.4 3.7
F 18718m38.6°  +14°22'59”  27.845.3 21.9+4.7 14
G 18818™M48.3%  +14°22/43”  9.943.2  9.94+3.2 5.1
H 0 18M18M55.8%  +14°27'38”  10.24+3.5 7.843.0 4.0
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This could very well mean that all detected sources are spurious and none are
the bursters, also given that no source was detected during the observation of
SAX J1753.5—2349.

Thus, we resort to several criteria to select viable burster candidates. We
start with excluding all sources outside the WFC error circles. In Fig. 7.1 we see
that several X-ray sources are close to optical sources from the Sloan Digitized
Sky Survey. We have listed the closest star from the USNO catalogue within 4”
of the X-ray sources in Table 7.4. Given the small number of counts we estimate
an error in the X-ray position of 1 pixel, i.e. 0”5, and a systematic error of
another pixel. This gives a total error of 077. The positional error for the
sources in the USNO Digitized Sky Survey is negligible in comparison. For each
source in Table 7.4 we count the number of stars from the USNO catalogue inside
the WFC error-circle and brighter than the potential counterpart. On the basis
of this number we estimate the chance coincidence as in the following example.
In the USNO catalogue the star closest to source D of SAX J1324.5—6313 is at
0”83 (see Table7.4). We find 24 stars in the USNO catalogue inside the WFC
error circle of 1’8 that are brighter than B=17.2 and R=15.3. This gives a
chance probability of 0.14% that one arbitrarily chosen position falls within one
of the 24 error circles of 0783. The five Chandra sources inside the WFC error
circle correspond to five trials, i.e. the chance probability that one or more of
these sources are close to a star is 0.71%. In Table 7.4 we have listed the chance
probabilities P thus computed for all Chandra sources within 4” of an optical
star.

Although it is difficult to draw firm conclusions from a posteriori statistics,
we think that the optical counterparts with P < 0.1% are secure. The optical
sources located at a distance A 2 1” from the X-ray position are very likely
chance coincidences. This leaves only D of the SAX J1324.5—6313 field as a
borderline case, which may or may not be the counterpart. We have indicated
the optically identified sources in Table 7.3 with an asterisk.

Assuming that the V' magnitudes are between the B and R magnitudes given
in the USNO Digitized Sky Survey, we find that the X-ray to optical flux ratios
of these stars are well within the range of the coronal emission from normal
nearby stars found in the ROSAT All Sky Survey (Hiinsch et al. 1999; here
we use that for coronal sources with interstellar absorption columns up to 102!
atoms cm ™2 the ROSAT/PSPC count rate is typically 1/3 to 1/4 of the Chandra
count rate). Soft X-ray transients with neutron stars have X-ray to optical flux
ratios in quiescence several orders of magnitude higher than ordinary stars (e.g.
Fig. 5 in Pooley et al. 2002a). Thus we conclude that the optically identified
Chandra sources indicated in Table 7.3 are too bright in the optical for them to
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Table 7.4: USNO Digitized Sky Survey sources close to detected Chandra detec-
tions. For each source we give the position, B and R magnitudes, the distance
(A) from the X-ray source, and the chance probability P that the optical source
is in the Chandra error-circle.

RA Dec B R A() P %)
13"24m38.284% —63°13'27.16” 17.2 153 0.83 0.7
17h52M16.723%  —31°3944.24" 19.5 17.3  1.78 5.7
17h52m30.537%  —31°38/58.88” 19.0 17.3  1.19 1.9
18"06™31.589% —22°13'18.94” 157 13.1  3.32 1.1
18"06™35.819% —22°15’00.87" 16.1 14.8  0.28 0.0
18"06™43.734% —22°16'06.08” 19.8 17.0 1.86 6.3
18"18™35.593%  +14°22'32.67" - 11.1  0.66 0.0
18M18™37.634%  +14°22'44.44" 8.6 7.4 0.0 0.0
¢ star HD 168344 with V=7.6

Qaolmmow=oE

be the bursters.

Due to the small number of counts in each source, it is not possible to
constrain the spectral shape of the X-ray emission. The most commonly used
models to describe the quiescent emission of neutron star X-ray transients are
0.3 keV black body radiation, 0.3 keV Raymond-Smith emission, power-law
emission with a slope of I' ~ 3 or emission from a hydrogen atmosphere (e.g
Campana et al. 1998). Added to these models is a hard energy tail detected
at high energies (e.g. Campana et al. 1998, Asai et al. 1996). Here we assume
emission from a hydrogen atmosphere of a neutron star (Zavlin et al. 1996) plus
a power-law, as was, for example, found for the quiescent emission of the neutron
star X-ray transients Cen X-4 and AqlX-1 (Rutledge et al. 2001a, 2001b). We
estimate the number of photons below 2 keV using the average parameters
found for Cen X-4 and Aql X-1, i.e. a power-law photon-index I"'=1.0, neutron
star radius R,=16 km, a neutron star temperature kK7=100 eV, and a ratio of
the unabsorbed flux (0.1-7 keV) expected from the H-atmosphere to the power-
law component of 5:1. For such a spectrum we compute the flux for a source
with 1 Chandra count per second, and the ratio of counts at energies between
0.5 and 2 keV to the total count rate. The resulting numbers are listed in
Table 7.2. By comparison with the observed soft-to-total count ratios listed in
Table 7.3 we can exclude sources which are harder than expected for soft X-ray
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transients in quiescence. We do not reject sources with soft spectra, because
there is evidence that the photon-index of the power-law component could be
higher than we have assumed (Campana et al. 1998). The two sources which
are excluded in this way are indicated in Table7.3 with s. Unacceptably high
column densities are needed (~ 1023 atoms cm™2) to account for the lack of soft
photons due to absorption (for source F of SAX J1806.5—2215 we do not detect
anything below 2 keV). The fluxes do not significantly change if we assume the
other spectral models or change the temperature and radius of the neutron star
atmosphere model.

For all sources the distribution of the arrival times of the photons is com-
patible with a constant flux. Given the small number of photons for each source
the limits on variability are not very constraining, but we can exclude that the
flux measured is due to a flare lasting shorter than the exposure time.

Taking all these criteria into account we conclude that we have four can-
didate counterparts left for SAX J1324.5—6313 (source A, C, D and E), two
for SAX J1752.3—3128 (A and B), two for SAX J1806.5—2215 (D and H), and
three for SAX J1818.7+1424 (E, F and G). For SAX J1753.5—2349 we have no
candidate.

7.4 SAXJ1806.5—2215 and GRS 1741.9—-2853

In 't Zand et al. (1998) reported the detection of two X-ray bursts from
SAX J1806.5—2215, and showed the analysis of the first burst. We take the
opportunity of the present paper to report the detection of two additional typel
bursts from SAX J1806.5—2215 during WFC observations on MJD 50537.91 and
MJD 50732.90. No persistent emission is observed for this source in any WFC
observation. The first and strongest burst (on MJD 50325.88) has a duration of
~150 s, all other bursts last ~20 s. The observed spectra can be well described
by an absorbed black body model with temperatures between 1.7 and 2.2 keV.
The unabsorbed bolometric peak flux of the strongest burst is (2.641.2) x 10~8
ergcm~2s~1. This gives an upper-limit on the distance of 8.0 kpc and neutron
star radii between 4.8 and 7.0 km, assuming that the peak flux is below the
Eddington limit of Lgqq=2 x 103® ergs~!. The waiting times between the four
bursts are 41, 171 and 195 days, respectively.

Recently the ASM lightcurve of SAX J1806.5—2215 became available. It
shows a faint but clear detection between March 1996 and October 1997. This
coincides with the same period as the occurence of the four X-ray bursts observed
with the WFC. The maximum persistent flux was ~ 2x 10710 ergem =251 (2-10
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Figure 7.1:

inside or close to the
cles for SAXJ1324.5—6313, SAXJ1752.3—3128, SAX J1806.5—2215,

18m568 18m48s 18m40s

2000~ 18"

WFC error cir-
and

SAX J1818.74+1424, respectively. All detections are superposed on an image
from the Digitized Sky Survey. The large circles indicate the WFC error circles.
The error circles of all sources are increased to 5” for easier reference.
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keV) , and slowly decreased over time. This is comparable to the upper-limit
derived during the WFC observations. Assuming the distance derived above,
this corresponds to a luminosity of ~ 2 x 1036 ergs~!.

GRS 1741.9—2853 was in the field of view of a 47.2 ks ROSAT/PSPC pointed
observation of the Galactic center region obtained on March 2-9, 1992. It is
not detected, and we determine an upper-limit of 0.0003 cts s=! (channels 50—
240), corresponding to an unabsorbed luminosity in the 0.5 to 2.5 keV range of
3 x 10%* ergs™! at the distance of 7.2 kpc, for an assumed power-law spectrum
with photon index 1 absorbed by a column Ny = 1023 atomscm~2 (see Cocchi
et al. 1999). This proves that GRS 1741.9—2853 is a burster with low persistent

emission.

7.5 Discussion

Three of the nine burst sources with low persistent emission discovered with the
WEC were observed during ROSAT observations at luminosities of ~1034—35
ergs™! a few years prior to the X-ray burst (Kaptein et al. 2000; Cornelisse
et al. 2002; this paper). If the five burst sources of Table 7.2 had similar lumi-
nosities and spectra, their countrate with Chandra would be several orders of
magnitude higher than the countrates of the sources listed in Table 7.3. Instead,
the luminosities of the burst sources are at ~ 1033 ergs~!, comparable to the
BeppoSAX/NFI observations of SAX J2224.945421 (Antonelli et al. 1999; in 't
Zand 2002, in preparation) and in the range of quiescent soft X-ray transients
with neutron stars (e.g. Campana et al. 1998).

With the interstellar hydrogen column and upper limits to the distances
listed in Table 7.2 and the spectrum described in Sect. 3, we compute the un-
absorbed flux and upper limits to the luminosities between 0.5 and 7.0 keV. For
the brightest candidate counterparts of SAX J1324.5—6313, SAX J1752.3—3128,
SAX J1806.5—2215 and SAX J1818.7+1424 we obtain upper limits to the un-
absorbed persistent luminosity of 4x1032, 3x1032, 2x1032 and 4x103? ergs™!,
respectively. From the upper-limit derived from the observation of SAX J1753.5
—2349 we get a luminosity of < 4 x 1032 ergs™! (0.5-7 keV). These luminosities
are indeed in the range expected for quiescent soft X-transients with a neutron
star.

Because our Chandra observations give more than one possible counterpart,
several possible counterparts must be chance coincidences. This is in agreement
with known log N — log S distributions, which predict ~5 sources in the field
of view (see e.g. Rosati et al. 2002). This raises the question whether all
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Chandra sources are chance coincidences, i.e. whether we have not detected the
actual counterparts for the bursters. Given that these systems are neutron star
low mass X-ray binaries, we compare them to known other systems, i.e. the
soft X-ray transients in quiescence. The lowest X-ray luminosities detected for
quiescent soft X-ray transients are ~ 1032 ergs~! (e.g. Cen X-4, Campana et al.
1998). This is around the detection limit for the Chandra observations discussed
in this paper. We therefore consider it possible that we actually have detected
the persistent flux of the bursters, and that they are soft X-ray transients in
quiescence, for which no outburst has as yet been detected. If so, this implies
that their actual distances are not much less than the upper limits listed in
Table 7.2.

The persistent luminosities of the bursters observed with Chandra is well be-
low the limit set with the WFC observations. This means that we cannot exclude
that the persistent luminosity during the WFC observations was ~10-100 times
higher than detected with Chandra, and that it was this higher flux level which
triggered the burst. The detections with ROSAT of 1RXS J171824.2—402934
and SAX J1828.5—1037, and of GRS 1741.9—2853 with GRANAT combined
with non-detections at other epochs, show that the persistent flux level of these
sources is variable.

The energy released during a burst due to nuclear fusion is about 1% of the
accretion energy of the matter accreted onto the neutron star (see e.g. Lewin et
al. 1993). Dividing the fluence of the bursts detected with the WFC by 1% of
the persistent emission detected by Chandra we estimate burst intervals of ~10
years. If only 1/6th of the persistent flux is due to accretion, the remainder being
due to the cooling of the neutron star (i.e. if only the power-law component is
due to accretion, see Sect. 3) the estimated burst intervals rise to ~60 years. It
is also suggested that the power-law component during quiescence is not due to
accretion (see e.g. Campana et al. 1998), and this means that the waiting time
derived above is an under-limit. This explains why these events are so rare, and
why we have only seen one burst for most of these sources.

This raises the question how many of these burst sources with low persis-
tent emission exist in our Galaxy. With the WFC the Galactic Center re-
gion is observed every half year since 1996, for a total observation time of
5.5 x 10% s up to end 2001. If we assume the Galactic distribution of low-mass
X-ray binaries derived by van Paradijs & White (1995), ~50% of the popula-
tion is in the field of view (40°x40°) of the WFC. During all Galactic center
observations 5 bursters with low persistent emission have been detected, i.e.
SAX J1752.3—3128, SAX J1753.5—2349, SAX J1806.5—2215, 1IRXS J171824.2—
402934, and GRS 1741.9—2853 (the other four are outside the Galactic center
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region). This gives an average waiting time between the detection of these
bursters of 1.1 x 10° s. If we also assume that the waiting time between burst of
one source is 60 years (1.9 x 109 s) we expect ~ 2 x 10 sources in the Galactic
center region, giving 4 x 102 sources in the whole Galaxy. If on the other hand
these sources are extensive periods of time at a persistent luminosity of 1034
ergs™!, as the detections of SAX J1828.5—1037, 1RXS J171824,2—402934, and
GRS 1741.9—2853 suggests, the waiting time drops to 0.5 year (see Table7.1).
This gives a number of 30 sources in our Galaxy. We conclude that the esti-
mates for the total number of X-ray bursters with low persistent fluxes range
from 0.5 to 60 times the number of known bursters (~ 70).

In this respect it is interesting to note that the first Chandra observations
of globular clusters indicate that these systems harbour more quiescent soft X-
ray transients than bursters with high persistent fluxes. For example, Liller 1,
NGC 6440 and NGC 6652 all contain such quiescent sources in addition to the
bright source (Homer et al. 2001, Pooley et al. 2002b, Heinke et al. 2001);
and 47 Tuc, w Cen, NGC 5139 and NGC 6397 contain quiescent sources but no
bright source (Grindlay et al. 2001a, 2001b, Rutledge et al. 2002, Pooley et
al. 2002a). The formation mechanism for low-mass X-ray binaries in globular
clusters (tidal capture or exchange encounter; see review by Hut et al. 1992)
is different from the formation mechanism in the galactic disk (evolution of a
primordial binary). If the ratio of quiescent to bright X-ray bursters depends
on the formation mechanism, we do not necessarily expect comparable ratios in
the cluster and in the Galactic disk.

If bursts can arise from quiescent systems, we must consider the possibility
that a burst from a globular cluster is due to a dim source, rather than to the
bright source in it. This would undermine the argument that a burst from a
cluster proves that the bright source in it is a neutron star. Nonetheless, we
think that the argument holds in all eleven cases where it has been applied so far,
as bursts from dim sources are extremely rare. For example, we have detected
~ 2200 X-ray bursts in our WFC observations of the Galactic center region;
only five of these are from dim sources. Indeed, bursts from the globular cluster
NGC 6440 were detected only when the transient in this cluster was active (in
't Zand et al. 2001).
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Observations of nine typel
X-ray bursters

Six years of BeppoSAX Wide Field Cameras observation

R. Cornelisse, J.J.M. in 't Zand, F. Verbunt, E. Kuulkers, J. Heise, M. Cocchi,
L. Natalucci, A. Bazzano and P. Ubertini

To be published in Astronomy € Astrophysics

Abstract— We present an overview of BeppoSAX Wide Field Cameras obser-
vations of the nine most frequent typel X-ray bursters in the Galactic center
region. Six years of observations (from 1996 to 2002) have amounted to 7 Ms of
Galactic center observations and the detection of 1823 bursts. The 3 most fre-
quent bursters are GX 354—0 (423 bursts), KS 1731—260 (339) and GS 1826—24
(260). These numbers reflect a unique dataset. We show that all sources have
the same global burst behavior when they are at the same luminosity. At the
lowest luminosities bursts occur quasi-periodically and the burst rate increases
linearly with accretion rate. At Lpes=2x10%7 ergs™! the burst rate drops by a
factor of five, corresponding to the transition from, on average, a hydrogen-rich
to a pure helium environment for the flashes that are responsible for the bursts.
At higher luminosities the bursts recur irregularly and no bursts are observed
anymore at the highest luminosities. Our central finding is that most of the
trends in bursting behavior are driven by the onset of stable hydrogen burning
in the neutron star atmosphere. Furthermore, we notice three new observations
which are more difficult to explain with current burst theory: the presence of
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short pure-helium bursts at the lowest accretion regimes, the bimodal distri-
bution of peak burst rates, and an accretion rate at which the onset of stable
hydrogen burning occurs that is ten times higher than predicted. Finally, we
note that our investigation is the first to signal quasi-periodic burst recurrence
in KS 1731-260, and a clear inverse proportionality between the frequency of the
quasi-periodicity and the persistent flux in GS 1826-24 and KS 1731-260.

8.1 Introduction

Since the discovery of typel bursts by Grindlay & Heise (1975) about 65 other
X-ray bursters have been discovered (e.g., in 't Zand 2001). Most of these
are concentrated towards the Galactic center, which illustrates their Galactic
origin. X-ray bursts are characterized by a fast rise and an exponential decay
with durations ranging from seconds to tens of minutes. Their spectrum can
best be described by black body radiation with cooling during the decay of the
burst. These typel X-ray bursts are due to unstable hydrogen/helium burning
in a thin shell on a neutron star surface (see, e.g., the review by Lewin et al.
1993).

By far most of the X-ray bursts are emitted by sources, persistent or tran-
sient, with luminosities of 1036737 ergs™!. Sources at higher persistent lumi-
nosities also show X-ray bursts (e.g., Kuulkers et al. 2002), but such bursts are
less common. At lower luminosities bursts have also been sporadically observed
(e.g., Gotthelf & Kulkarni 1997, Cocchi et al. 2001a, Cornelisse et al. 2002).

Assuming that the amount of fuel burnt per burst is roughly the same, one
expects that the burst rate increases linearly with accretion rate. However, for
most X-ray bursters where it is possible to study this the opposite is observed
(van Paradijs et al. 1988a). An example is GX3+1 (den Hartog et al. 2002).
Bildsten (2000) noted that the onset of a burst is governed by the local rather
than the global accretion rate (see also Marshall 1982). If the area on the
neutron star on which accretion takes place increases rapidly with the global
accretion rate, the local accretion rate may actually drop, giving rise to a lower
burst rate.

Observations of several sources (e.g., 4U 1705—44, Gottwald et al. 1986a;
EXO 0748—676, Gottwald et al. 1986b), show different burst properties at
different accretions rates. Fujimoto et al. (1981) predicted this behavior by
showing that the composition of the unstable burning shell changes with ac-
cretion (see also Bildsten 1998 for a recent overview). Briefly, at the highest
accretion rates (M 2 107° Mg yr~!) the helium ignites in an unstable fashion
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in a mixed He/H environment, causing bursts with durations of minutes. At the
intermediate accretion regime (107° 2 M /(Mg yr™') 2 2 x 10719) the helium
ignites in a hydrogen-poor environment, causing bursts with durations smaller
than 10 s. At the lowest accretion regime (M < 2x1071% Mg yr=!) unstable
hydrogen burning triggers a helium flash causing bursts with durations larger
than 10 s.

If the accretion rate is stable over long periods of time, periodic burst be-
havior is expected. It should always take the same amount of time to accrete
enough matter to start the unstable burning again. This quasi-periodic burst
behavior is observed in several burst sources, for example 4U 1820—30 (Haberl
et al. 1987) or 4U 1705—44 (Langmeier et al. 1987), but only for limited peri-
ods of time. During other periods the occurrence of bursts appear completely
a-periodic. An exception is GS 1826—24 whose bursts are always seen to recur
quasi periodically (Ubertini et al. 1999; Cocchi et al. 2001b).

In this paper we describe the burst behavior of the nine most frequent X-ray
bursters in the Galactic center region observed with the Wide Field Cameras.
All are known X-ray bursters and most of them are persistently bright. We
compare these bursters with each other and others. The observations and the
search for typel bursts are described in Sect. 2. In Sect. 3 we present the results.
We start in Sect. 3.1 with the general properties of the nine burst sources. In
Sect. 3.2 we discuss the wait time as a function of persistent emission for the
bursters where this is possible. In Sect. 3.3 we compare the exponential decay
times of the bursts with the theoretical regimes. Finally in Sect. 4.1 we start with
a summary of the observations and compare our results with previous studies
and in Sect. 4.2 discuss some implications for burst theory. We also derive some
general properties of the population of X-ray bursters.

8.2 Observations and data analysis

The BeppoSAX satellite operated from May 1996 until May 2002 (Boella et al.
1997). During this period the Wide Field Cameras (Jager et al. 1997) onboard
the satellite observed the Galactic center region each spring and fall with an
average schedule of one day per week. This adds up to 12 Galactic center
campaigns with a total net observation time of 7 Ms. The Wide Field Cameras
(WFCQC) are two identical coded mask cameras with a 40° x 40° field of view, a
5" angular resolution, 2-28 keV bandpass and 20% spectral resolution(full width
at half maximum at 6 keV). The large field of view combined with the good
angular resolution makes it an excellent instrument to simultaneously observe

95



Chapter 8

Table 8.1: Overview of the nine most frequent burster sources in the Galactic
center region. They are ordered in decreasing number of bursts observed with
the WFC. For each source a factor (conv.) in erg/count is derived to convert
photon flux to energy flux in 2-28 keV . We also show the net exposure for
each individual source and the distance as quoted in the literature. For each
distance estimate we assume an error of 30%. The distances are derived from:
[1] Galloway et al. 2002, [2] Muno et al. 2000, [3] in 't Zand et al. 1999,
[4] Lutovinov et al. 2001, [5] Muno et al. 2001, [6] Gottwald et al. 1989, [7]
Augusteijn et al. 1998, [8] Kuulkers & van der Klis 2000, [9] Heasley et al. 2000.

Source #bursts exp. time  conv. d ref.
WFC (Ms) (1078)  (kpc)

GX 354—0 423 7.4 1.9 5.4 [1]
KS1731-260 339 6.7 1.5 7.0 2]
GS 1826—24 260 6.5 1.9 8.0 3]
A1742-294 178 7.0 2.2 8.5 [4]
40U 1702—429 104 8.9 1.7 6.7 5]
4U1705—44 66 8.7 1.8 89 a
4U 1636—536 61 4.7 1.5 5.9 [7]
GX3+1 61 6.9 1.6 4.5 8]
41U 1820—-30 49 7.1 1.6 7.6 [9]

a: distance estimated from [6]

a large fraction (50%) of the low mass X-ray binary (LMXB) population in our
Galaxy when pointed at the Galactic center.

Each source in the field of view casts a shadow of the mask pattern on the
detector. The detector accumulates the sum of differently shifted mask shadows.
By cross-correlating this detector image with the mask pattern a sky image is
reconstructed (e.g., in 't Zand 1992). This procedure is supplemented with a
dedicated iterative cleaning algorithm (Hammersley et al. 1992). When no
new sources are detected in the iterative process the background is estimated
from the (supposedly) empty sky image. Lightcurves are constructed in the full
bandpass for each detected source with a time resolution of 5 s, which is a trade-
off between the average duration of a typel burst (~ 10 s) and the statistical
quality of the data.

These lightcurves are employed in the following manner. We estimate the
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average flux and the standard deviation (o) for each orbit (about 60 minutes of
net exposure time). If a bin is at least 40 above the average flux we mark this
as a candidate burst. We estimate that we have only one false peak triggered as
a burst per average observation. A marked bin is visually approved as a burst
if the shape of the lightcurve around the bin can be described by a fast rise
and exponential decay. If needed, this is done at 1 s time resolution. Thus,
we detect all bursts with e-folding times 22 s and peak fluxes in excess of 0.5
Crab. Bursts with lower peak intensities or shorter e-folding times do exist but
we think that this is only a minor fraction compared to the bursts detected in
this way (e.g. Cocchi et al. 2001b, van Paradijs et al. 1988b).

We also searched the lightcurve of all photons detected on the whole detector
(“detector lightcurve”) for X-ray bursts from sources whose persistent flux is
below the detection limit of the WFC, and note that this limit becomes worse
towards the edge of the field of view. Detector lightcurves are created with a
resolution of 1 s. A running average of 50 bins is calculated and if at maximum 24
successive bins are >4% above the average the first bin is labeled as a candidate
burst. For all potential new bursts we cross-correlate the detector image again
with the coded mask but only for the burst time interval. In this way a genuine
point source is identified. The sensitivity in this procedure is at most a factor
of 2 worse than in the above mentioned procedure.

8.3 Results

8.3.1 Global burst behavior

A total of 1823 bursts have been detected from 37 sources in the Galactic center
region, not counting bursts from the Rapid Burster (MXB 1730—333) and the
Bursting Pulsar (GRO J1744—29). For each burst we determined the exponen-
tial decay time in the total energy band (2-28 keV), the peak flux and average
persistent flux over the observation in WFC cts s~! em™2. In Table 8.1 we give
an overview of the nine most frequent bursters in the Galactic center region. All
these sources are known X-ray bursters and have been studied in the past. The
number of typel bursts detected with the WFC in other burst sources becomes
too small for a meaningful statistical analysis.

In Fig. 8.1 we show RXTE All Sky Monitor (RXTE/ASM; Levine et al. 1996)
lightcurves of the sources listed in Table8.1. Most lightcurves show a smooth
variation and no large fluctuations on a timescale of weeks. On the timescale of
years a variation by a factor of roughly 50% is often present in these sources, and
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Figure 8.1: ASM/RXTE lightcurves of 9 of the most frequent X-ray bursters
in the WFC database. Each bin is a one week average. Below the lightcurve
the WFC observations on these sources are indicated with horizontal bars. The
arrows just above the horizontal bars indicate the times of typel bursts.
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Fig. 8.1 Continued...

an apparent increase in burst rate when the source becomes fainter. In contrast,
the lightcurves of 4U 1705—440 and 4U 1820—30 show strong variations, and
bursts are observed only when the flux is low. Note that bursts would have
been easily detected at the highest observed persistent flux levels of all sources,
because those levels are presumed to be still significantly below the Eddington
limit.

To study the burst rate as a function of persistent flux we assigned to each
burst the average WFC-measured flux over the complete observation in which
the burst occurred. We also checked the average persistent flux in a 5-minute
time interval prior to each burst, but the difference with the aforementioned flux
is negligible (within the errors). We divided the persistent flux range in 5 or 10
intervals of equal size. Only the flux range of KS1731—260, the sole transient
source in our sample, was divided in 10 bins with averaging bin size. For each
flux interval we determined the total exposure time and the number of bursts,
assigning an error equal to the square root of this number. In Fig. 8.2 we show
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Figure 8.2: Burst rate as a function of the observed count rate (bottom axis)
and the persistent flux (top axis) for the nine frequent X-ray bursters in the
galactic center region. The photon and energy flux are for a bandpass of 2-28
keV.
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Fig. 8.2 Continued...

for each source the burst rate as a function of observed photon flux (bottom
axis) and the derived energy flux (top axis). To convert the photon flux to
energy flux we created for each source a spectrum for each campaign. Assuming
an absorbed thermal bremsstrahlung model we derived the conversion factors
(corrected for absorption), see Table8.1. The spread in the conversion factors
over all campaigns is about 10% for each source.

We notice in Fig.8.2 that at the lowest flux levels KS1731—260 shows an
increase in burst rate with increasing persistent flux. When KS 1731—26 reaches
1.7 x 1072 ergem 257!, the burst rate drops by a factor of 5 and at the higher
flux levels the burst rate slowly decreases. If we compare the behavior of the
other sources it is noticeable that 4U 1702—429, GX 354—0 and GS 1826—24
all show only an increasing burst rate, while 4U 1636—536 is the only source
that shows a decreasing burst rate 4U 1705—44, GX 3+1 and 4U 1820—30 show
a drop by a factor of ~5 in burst rate over a small range of persistent flux.
A 1742—294 is the only source for which no trend is visible, and the burst rate
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stays constant over the total observed flux range. This source traces out the
lowest fluxes within our sample.

8.3.2 Wait times

Several sources are known to show quasi-periodic burst recurrence. The best
example is GS 1826—24, which exhibited in 1996-1997 a burst every ~6 hours,
and the burst wait times were constant within a few minutes for long periods
of time (Ubertini et al. 1999; Cocchi et al. 2001b).

In the left panel of Fig.8.3 we plotted the wait time as a function of the
persistent flux for GS1826—24. Most wait times appear to follow a straight
line, and a second linear trend can clearly be distinguished above this line (and
even two more above that). Given the fact that BeppoSAX has a 96-minute low-
earth orbit, it is probable that bursts are missed during data gaps and multiples
of the burst wait times observed. We checked bursts with long wait times within
one observation and find that for all of them the previous burst may very likely
have occurred during an earth occultation or South Atlantic Anomaly passage.
From Fig. 8.3 we see that the wait time between the bursts decreases linearly
with increasing persistent flux. We performed a least-squares fit on the bursts
where the previous one is not missed to the function: At = AF,es + B. The
results for the parameters are given in Table8.2. Assuming a wait time that
is two times longer (i.e., doubling the numbers derived above) gives a good
description of the trend followed by the bursts forming the second line from the
bottom. This shows again that for these points the previous burst is missed.

Formally the fit is not acceptable (x2 = 5.7, 92 d.o.f.), but the general trend
is clearly visible. This means that there are significant fluctuations in the wait
time around the average relation.

From theory a linear relation between the burst rate (inverse of the wait
time) and the persistent flux is expected, and no bursts are expected anymore
when Fjers=0 erg cm~2s7!. We therefore tried to fit the relation: At = C/Fpers.
The result of the fit of parameter C is given in Table 8.2.

Given the large number of bursts, we have also investigated the relation be-
tween the wait time and persistent flux for KS 1731—260 and GX 354—0. In the
middle panel of Fig.8.3 we show the results for KS1731—260, and notice the
strong suggestion of a linear dependency. However, this only applies to persis-
tent flux levels below 0.14 WFCctscm~2s~!. At higher persistent flux the wait
time between bursts becomes apparently random. We fitted the relations as

given above for the bursts with a persistent flux below 0.14 WFCectscm™2s7!
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Figure 8.3: The burst rate as a function of persistent flux for the sources
GS1826—24 (left panel) and KS1731—260 (middle panel) and GX 354—0 (right
panel). A typical error in the flux for GS1826—24 is indicated at the bottom
left, while the error in the flux for the other two sources is as large as a dot. The
error in the wait time for all sources is much smaller than the size of a dot. A
best linear fit is drawn for the bursts for which the previous burst is not missed.
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Table 8.2: Best fit parameters for a relation where the wait time is proportional
(A and B) or inversely proportional (C) to the persistent flux. Due to the large
X2 the formal errors on the parameters have no meaning.

parameter GS1826—24 KS1731-260 GX354—0

A 1234010 -0.68+0.09  -0.49+0.07
B 0.31+£0.01  0.1740.01  0.26+0.01
¥2 (dof)  5.7(92) 20 (100) 266 (202)
C 0.017£0.001  0.009+0.001  0.029+0.001
X2 (dof)  6.2(93) 38 (101) 234 (203)

and where we expect that the previous burst is not missed. The best fit param-
eters are given in Table 8.2.

Also for GX 354—0 there vaguely appears to be a linear relation between the
persistent flux and the wait time (right panel Fig. 8.3). However, the scatter is
significantly larger than in the previous two cases, making a clear distinction
between the different multiples of the wait time very difficult. Therefore, an
iterative process was used to search for bursts where we expect that the previous
one is not missed. We simultaneously fitted a straight line (the single wait time
line) plus several lines at multiples of the wait time. The bursts closest to the
single wait time line were attributed to this line and used for a least-square
fit to get a better estimate. This process was continued until a best fit was
found. The bursts attributed to the single wait time line were also used to fit
the relation: At = C/Fpers. The results are summarized in Table 8.2.

For the other six sources the number of subsequent bursts with a wait time
of less than one day becomes very small, and the data does not allow the veri-
fication of a linear relation.

We converted the fit parameters as given in Table 8.2 from the observed flux
to luminosities using the conversion factors and distances as given in Table 8.1.
For the parameter C the values are (2.5 £ 1.5) x 1036, (0.8 & 0.5) x 103¢ and
(1.9 + 1.1) x 1035 for GS1826—24, KS1731-260 and GX 354—0, respectively
(taking into account an error of 30% in the distance). Although the errors are
very large, these slopes are the same within their errors. The burst rate may be
a unique function of the persistent flux.
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Figure 8.4: The exponential decay time as a function of persistent flux for the
nine most frequent burst sources observed with WFC. In the upper-right corner

of each panel a typical error-bar is shown.



Chapter 8

60

60

GX 341 t 4U 1820-30 —+

T (s)
40

20
T
I
20
T
I

Sleranee . R PRI I L
PR .o ' . i

; | |
0.3 0.4 0.5 0.6 0.2 0.25 0.3
F (WFC cts s~ em™2) F (WFC cts 57" cm™2)

T T
GS 182624 +
.

60

40

I
0.05 0.1 0.15
F (WFC cts ™' ecm™2)

Fig. 8.4 Continued...

8.3.3 Decay times

Another important burst parameter is the e-folding decay time. As discussed
in Sect. 1, this diagnoses the composition of the burst fuel. To derive the decay
time for each burst we created a lightcurve with a 1 s time resolution. A
running average of 5 s was used to determine the moment of the peak flux. The
persistent emission level and the decay time are then simultaneously fitted with
a constant and exponential, respectively. We took the bin in which the peak
flux was reached as the first data point. In Fig. 8.4 we show the decay times as
a function of persistent emission for the nine sources. We discuss GX 354—0,
KS1731-260 and GS 1826—24 in more detail and compare them with the other
sources.
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GX 354—0 only shows bursts with decay times shorter than ~10 seconds at
all flux levels. The same applies to 4U 1636—536, GX 3+1 and 4U 1820—30.
GS 1826—24 shows a large range of decay times at all persistent flux levels, but
almost no bursts below 10 seconds are observed (less than 5% of all bursts). Of
the nine sources, this is the only one that shows this behavior.

Two trends can be observed for the decay times of KS1731—-260. At high
persistent flux (20.14 WFCectss™! em™2) all decay times are below 10 seconds,
as for GX 354—0. At lower fluxes the spread in decay times increases rapidly and
most bursts have decay times well above 10 s, as for GS 1826—24. However, in
contrast to GS 1826—24, still a significant fraction of bursts shows decay times
below 10 s (about 30%). The same behavior is also suggested by the figures for
4U 1702—429, 4U 1705—44 and A 1742-294.

A spectral variation of the persistent emission could explain the occurrence
of both long and short bursts at low persistent flux. We therefore investigated
the low persistent flux levels of KS1731—260 in a little more detail. At MJD
51799.60 and MJD 51799.72 there were bursts with decay times of 4.7+0.1 s and
20.843.5 s, respectively. Due to the low flux level of the source full resolution
spectra do not have enough statistics, and we resorted to the study of hardness
ratios. The WFC passband was divided in two channels from 2-6 keV and 6-28
keV, and derived hardness ratios of 0.68+0.07 and 0.70£0.08 for the periods
prior to the two bursts, respectively. We also note that the average persistent
flux stayed constant at 0.111 and 0.115 WFC ctss~! em ™2 in these periods The
1o statistical fluctuations at one minute time resolution are 24% and 30%. We
conclude that no significant changes occurred between the two bursts caused by
a change in burst fuel composition or accretion flow.

The transition from short bursts to long/short bursts in KS1731—260 is
rapid. Therefore, an observation (at MJD 51637) where the persistent emission
is at this transition was analyzed in more detail. A spectrum was derived for
this observation, assuming an absorbed bremsstrahlung spectrum with a hy-
drogen absorption column of 1.3 x 10?2 atoms cm ™2 (Predehl & Schmitt 1995).
A temperature of 21.44+3.4 keV and an unabsorbed flux of (2.440.3)x107°
ergem 2571 (2-28 keV) was estimated. A power law spectrum with a pho-
ton index of 1.64+0.06 gives a flux of (2.640.2)x107? ergem =251 (2-28 keV;
corrected for absorption). Converting these numbers to a mass accretion rate,
assuming standard neutron star parameters and 100% efficiency in converting
gravitational energy to radiation, gives 1.3x107% Mg yr—?, similar to the mass
accretion rate of GX 341 at its transition (den Hartog et al. 2002).
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Figure 8.5: A schematic diagram of the burst rate as a function of luminosity
for the nine X-ray burst sources (see Fig. 8.2). Between the solid lines the region
is indicated where the burst rate drops by a factor of 5. No typel bursts were
observed at luminosities above the dashed line. The dotted-dashed line indicates
the theoretical predicted transition from hydrogen-rich bursts to pure helium
bursts.

8.4 Discussion

8.4.1 Observational summary

Our observations of the burst rate for the nine frequent X-ray bursters are sum-
marized in Fig.8.5. In order to compare sources we calculated the 2-28 keV
luminosity from the flux and the distances as listed in Table8.1. Given that the
distance has an estimated accuracy of 30% and that the 2-28 keV luminosity
is only a crude indicator of the accretion rate, we estimate that the luminosity
correspondence between sources is accurate to about a factor of 2. The following
conclusion can be drawn from Figs. 8.5 and 8.2: the burst rate shows trends with
luminosity that are consistent over all sources. At 1 to 2 x 1037 ergs™! the burst
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rate peaks. Above that the burst rate drops fast by roughly a factor of 5 (first
observed in GX 341 by den Hartog et al. 2002, and now also seen for 4U 1820-30,
KS1731-269, and 4U 1705-44). Below that there is a smooth increase. Above
5.5x10%7 ergs~! no bursts are seen anymore. The latter is confirmed by obser-
vations of brighter low-mass X-ray binaries in the same field with presumably
similar distances such as GX 9+1, GX 34942, GX 34040, GX 1742, GX 13+1
and GX 5-1. None of these were seen to burst by the WFC. The general trends in
burst rate were known previously. The knowledge that our work adds is 1) that
there does seem to be a rather consistent burst rate behavior from one burster
to another, and 2) that there is a rather discrete transition in this behavior
between 1.4 to 2.1x10%7 ergs™!.

Our searches for (quasi-)periodicity in burst recurrence were meaningful in
three sources: GX 354-0, KS1731-260 and GS 1826-24. The presence of quasi-
periodicities is obvious in GS 1826-24 (see also Ubertini et al. 1999 and Cocchi
et al. 2001b) and KS1731-260, but only suggestive in GX 354-0. The quasi-
periodicity is only present during times when the persistent flux is below that
for the peak burst rate, as is most clearly demonstrated by KS 1731-260 which,
thanks to its transient nature, traces a relatively wide range of fluxes. GS 1826-
24 never leaves this domain which explains why its bursts always recur quasi-
periodically. The same appears to apply to GX 354-0. Quasi-periodicity has
been seen previously with EXOSAT in a number of other sources: EXO 0748-
676 (Gottwald et al. 1986), 4U 1705-44 (Gottwald et al. 1989), Ser X-1 (Sztajno
et al. 1983) and 4U 1636-536 (Lewin et al. 1987). Our observations for the first
time show empirically that quasi-periodicity is restricted to a very particular
luminosity range and shows a narrow relationship between its frequency and
the persistent flux.

Our determinations of burst decay times in KS1731-260 and 4U 1705-44
suggest a clear correspondence between decay time, burst rate behavior and
quasi-periodicity, in the sense that there is a clear transition at a luminosity
between 1.4 and 2.1x1037 ergs—!. However, the decay times observed in GX 3+1
and 4U 1705-44 do not follow this trend despite tracing out similar ranges in
luminosity (formally the same applies to 4U 1820-30 but here we know that
decay times cannot be long because the mass donor is proven to be a helium
white dwarf).

To summarize: the central finding in our study is the likely identification
of a single luminosity between 1.4 to 2.1x1037 ergs™!, consistent with a single
mass accretion rate, where the bursting behavior changes in three basic ways:
going to higher luminosities, bursts 1) become a factor of 5 less frequent, 2) stop
recurring quasi-periodically, 3) stop being long. To our knowledge, the first two
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observations are new.

8.4.2 Theoretical interpretation

From theory it is expected that long bursts can only be due to helium flashes in a
hydrogen-rich environment, which is predicted to occur at the highest or lowest
accretion regimes (Fujimoto et al. 1981; Bildsten 1998; see also introduction).
Given the fact that in our sample only short bursts are observed at higher
luminosities, we identify the transition in burst behavior with the transition
from the lowest to the middle accretion regime.

At the lowest luminosities the helium flash is triggered by unstable hydrogen
burning (Fujimoto et al. 1981). Between two bursts no hydrogen is burned, and
it is only the accretion of matter that increases the pressure and temperature to
high enough values to start this burning. If we assume that the accretion flow
is stable then the burst wait time is only dependent on the accretion rate, and a
quasi-periodic behavior is not unexpected, as is a narrow relationship between
its frequency and the persistent flux.

In the middle accretion regime, bursts take place in a pure helium shell
which is fed by stable hydrogen burning in a layer above that. When a critical
temperature and pressure are reached the helium ignites. Here the onset of the
bursts is determined by the heating of the shell due to the hydrogen burning
and the accretion. But more importantly, the onset of helium burning is very
sensitive to the temperature (Bildsten 1998), making it highly dependent on
local perturbations in the hydrogen burning. This means that local conditions
determine the onset (and thus the wait time) of a burst, and quasi-periodic
behavior is not readily expected anymore.

Hydrogen starts burning in an unstable fashion at lower column depths than
helium (Joss 1977). This means that the conditions for triggering an X-ray
burst in the lowest accretion regime are reached sooner than in the middle
accretion regime, and a higher burst rate is expected. Given the fact that
only the accretion rate can set the condition for the start of unstable hydrogen
burning, it is expected that this transition happens in a fairly small range of
accretion rates.

We have for the first time shown that the largest decrease in burst rate
towards higher fluxes is coincident with the onset of stable hydrogen burning.
Thereby, the above-mentioned explanation for the decreasing burst rate may
partly resolve a long-standing problem for explaining decreasing burst rates.
Van Paradijs et al. (1988) explained this by invoking increased stable helium
burning with increasing accretion rate. However, such burning is not expected
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to occur at sub-Eddington accretion rates (Fujimoto et al. 1981). Nevertheless,
Bildsten (2000) suggested that non-global accretion on the neutron star (Mar-
shall 1982; Inogamov & Sunyaev 1999) may explain that: the accretion area
may be smaller than the neutron star surface so that the local mass accretion
rate is higher than the globally measured one.

It is unclear how the burst rate behaves above this transition. Direct mea-
surements (Fig.8.2) are ambiguous: it may be constant or slowly decreasing.
The rarity of X-ray bursts for more luminous sources suggests that there is a
decrease, but observations in this domain are subject to strong selection effects
as was already noted by other investigators (i.e., since the persistent emission
is already close to Eddington there is hardly any room for flux increases by
bursts). If the decrease is real, that does need to be explained, perhaps in a
manner as proposed by Van Paradijs et al. (1988) and Bildsten (2000).

So far, we have dealt with observations that are explainable in current burst
theory. There are three observations for which this is more difficult. The first
is the fact that short bursts seem to be rather common in the low accretion
regime. Long bursts would be expected because the flashes occur in a hydrogen-
rich layer. This problem was also recently recognized by Den Hartog et al.
for the specific case of GX3+1. Also, short type-I bursts have been detected
with extremely low persistent fluxes (e.g., a burst from SAX J2224.945421 was
quickly and deeply followed up in X-rays and no persistent source was found
with a 2-10 keV upper limit of 1.3 x 1073 ergem—2s~!; see Cornelisse et al.
2002). Fujimoto et al. (1981) briefly sketch an alternative path to trigger bursts
in the lowest regime that could explain this. If the unstable hydrogen burning
in the bottom shell does not trigger the helium burning instantaneously it will
cause temporary stable hydrogen burning in the higher shells. The unstable
hydrogen burning is not observable (Joss et al. 1977). A pure helium layer will
be built up by the stable hydrogen burning and it will probably take a number
of invisible hydrogen flashes to trigger a helium flash in this layer, very much
like in the middle accretion regime, with a short burst as result.

It is unclear what determines the varying mix of short and long bursts (100%
short bursts for GX 34+1 and GX 354-0, less than 5% for GS1826-24, and in-
between percentages for other sources). We suspect that variability of the per-
sistent flux may be an issue. If we compare the ASM lightcurves in Fig. 8.1
of KS1731-260 and GS 1826—24 we notice that KS1731—260 is more variable
at comparable luminosities (between MJD 51000 and MJD 51700). During
the last WFC campaign (around MJD 51800) only long bursts are observed
for KS1731—-260 and the variability becomes comparable to GS 1826—24. This
would indicate that low variability, (i.e., a smooth accretion rate) gives rise to
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solely long X-ray bursts, while a more inhomogeneous accretion rate gives rise
to incidental pure helium flashes.

Another issue unexplainable by current burst theory is the inconsistent peak
burst rate between different sources. A bi-modal distribution appears to be
present. GX 354—0, KS1731—260, 4U 1820—30 and GS 1826—24 all have a peak
burst rate of about 9 bursts day !, while the other sources have a peak burst
rate of about 2.5 bursts day~!. EXOSAT observations of 4U 1636—536 showed
a burst rate of 8 bursts day !, more in line with the first group (Lewin et al.
1987). Given the large uncertainty in the distance it could well be possible that
during the WFC observations the luminosity of 4U 1636—536 is not low enough
for such high burst rates, and this might be the case for the other sources. We
have no good explanation for the bi-modality.

A large discrepancy between theory and observations is the accretion rate
at which the transition from the middle accretion regime to the lowest regime
takes place. Bildsten (1998) gives a value of 2 x 10719 Mg yr~! (indicated
in Fig.8.5 with a dashed dotted line), while we find (1.4-2.1)x10~% M yr—'.
The values Bildsten derived are for certain assumptions on the conditions in the
neutron star (abundances of CNO elements, opacity etc.). This easily gives a
uncertainty of a factor of two, but this is not enough. A non-global accretion on
the neutron star does not help, because that would imply an even larger local
mass accretion rate.

8.5 Summary

Thanks to the wide (50%) and long (7 Ms) coverage of the population of low-
mass X-ray binaries we detected an unprecedented large number of type-I X-ray
bursts for nine sources which enabled us to perform a comparative study of
bursting behavior which was hitherto not possible. We were able to accurately
detect systematic trends in burst rate, burst duration and burst recurrence pe-
riodicity and to put them under the common denominator provided by current
burst theory. Our central finding is that most of the trends in bursting behavior
are driven by the onset of stable hydrogen burning in the neutron star atmo-
sphere. Furthermore, we notice three new observations which are more difficult
to explain with current burst theory: the presence of short pure-helium bursts
at the lowest accretion regimes, the bimodal distribution of peak burst rates,
and an accretion rate at which the onset of stable hydrogen burning occurs that
is ten times higher than predicted. Finally, we note that our investigation is
the first to signal quasi-periodic burst recurrence in KS1731-260, and a clear
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inverse proportionality between the frequency of the quasi-periodicity and the
persistent flux in GS 1826-24 and KS 1731-260.
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Hoofdstuk 9

Nederlandse samenvatting

9.1 De hemel

Wanneer ’s nachts naar een onbewolkte hemel wordt gekeken is het eerste wat
opvalt de vele fonkelende sterren. Met wat geluk kan ook de melkweg worden
gezien als een oplichtende band. Als met een telescoop naar deze band wordt
gekeken blijkt die te bestaan uit vele miljoenen individuele sterren. Samen
vormen al deze sterren het melkwegstelsel waar onze zon, ook een ster, onderdeel
van uit maakt.

Alle sterren die op deze manier worden waargenomen, hebben gemeen dat
ze ongeveer dezelfde temperatuur hebben als de zon, zo rond de 6000 graden
Celsius. Het is niet vreemd dat we alleen deze sterren zien, want bij deze
temperatuur zendt een ster voornamelijk straling uit waar onze ogen het meest
gevoelig voor zijn. Deze straling wordt licht genoemd, maar ook wel optische
straling.

Zouden we een fictieve ster zoals de zon steeds koeler kunnen maken, dan zou
het licht dat wordt uitgezonden steeds roder worden. Als de ster nog maar een
temperatuur van ongeveer 600° C heeft, kan deze niet meer worden gezien met
onze ogen. We moeten dan een infra-rood bril opzetten om die ster te kunnen
waarnemen.

Uiteraard kan deze fictieve ster ook heter worden gemaakt. Hij zal dan
langzaam maar zeker steeds blauwer licht gaan uitstralen. Als een temperatuur
van 10.000° C wordt bereikt is de meeste straling niet meer zichtbaar met het
blote oog. Hij zendt dan voornamelijk ultra-violette straling uit. Indien de
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temperatuur van deze ster verder wordt verhoogd tot ongeveer 100.000° C zou
hij rontgenstraling gaan uitzenden.

Onze ogen zijn dus eigenlijk heel beperkte instrumenten om het heelal te
bestuderen. We zien alleen maar de objecten met een bepaalde temperatuur,
terwijl vele objecten onzichtbaar blijven voor ons oog. Als we het heelal ooit
willen begrijpen zullen dus we dus ook de koude en warme objecten moeten
bestuderen die geen optische straling uitzenden. Vandaar dat er instrumenten
zijn ontwikkeld die andere straling dan het optische kunnen waarnemen.

9.2 Een stukje sterevolutie

Er bestaan geen sterren die zo heet zijn dat ze voornamelijk rontgenstraling
uitzenden. Om toch een beetje te begrijpen wat voor objecten réntgenstraling
uitzenden, is een stukje sterevolutie nodig.

Sterren zijn grote gasbollen die voornamelijk bestaan uit waterstof en helium.
Aan de buitenkant hebben ze een temperatuur van ongeveer 6000° C, maar in
het centrum kan dit oplopen tot vele miljoenen graden. Deze hoge temperaturen
en de hoge druk in het centrum van de zon maakt kernfusie mogelijk, ofwel de
waterstof verbrandt tot helium. Bij deze verbranding komt energie vrij die wij
uiteindelijk zien als het licht dat een ster uitstraalt.

Pas na enkele miljarden jaren is voor de meeste sterren het waterstof ver-
brand tot helium. Een ster is dan aan het eind van zijn leven gekomen. Sterren
zoals onze zon zullen dan de buitenste lagen verliezen, en de kern zal krimpen tot
een zogenaamde witte dwerg. Een witte dwerg is ongeveer zo groot als de aarde,
maar heeft nog steeds een massa vergelijkbaar met die van de zon. Zwaardere
sterren, tot ongeveer 10 keer de massa van de zon, zullen aan het eind van hun
leven exploderen, dit wordt ook wel een supernova explosie genoemd. Tijdens
deze explosie zal de kern van deze zware sterren tot een zogenaamde neutronen-
ster in elkaar storten. Neutronensterren zijn net zo groot als de stad Utrecht
maar zijn net zo zwaar als de zon. Ofwel, een kruiwagen vol met neutronenster
materie is net zo zwaar als onze aarde! Bij nog zwaardere sterren zal de kern in
elkaar storten tot een zwart gat. Daar is alle materie samengepakt in een punt,
iets wat niet meer is voor te stellen.

Het zijn voornamelijk deze restanten van sterren die rontgenstraling kunnen
uitzenden. Zo’n restant, dat compact object wordt genoemd, kan verbonden
zijn met een ‘normale’ ster waardoor ze om elkaar heen draaien. Dit wordt ook
wel een dubbelster genoemd. In de melkweg zijn veel van dit soort dubbelster-
ren. Het overgrote deel van deze systemen bestaan uit twee 'normale’ sterren,
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Ariel V 3rd Catalogue

Figuur 9.1: De rontgenhemel zoals deze met de satelliet Ariel V is waargenomen.
De horizontale lijn in het midden van het figuur geeft de melkweg aan, met
het centrum van de melkweg in het midden. Elke stip geeft de plek van een
rontgenbron in de hemel aan, met de grootte van de stip een maat voor de re-
latieve helderheid. Het vierkant dat om het centrum van de melkweg is getekend
geeft het deel van de hemel aan dat de groothoekcameras in één keer kunnen
waarnemen.

maar een heel kleine fractie heeft een compact object plus 'normale’ ster. De
begeleidende ster van zo’n compact object zal tegen het eind van zijn evolutie
de buitenste gaslagen afstoten (zie boven). Dit gas (voornamelijk bestaande
uit waterstof) zal op het compacte object 'vallen’ waarbij het wordt verhit tot
100.000° C zodat het voornamelijk rontgenstraling gaat uitzenden.

Nu blijkt dat vele van deze dubbelsterren zich richting het centrum van de
melkweg bevinden. Dit is geillustreerd in Figuur9.1. Dit was een reden om
in Utrecht de rontgen groothoekcameras te ontwerpen. Deze kunnen een groot
deel van de hemel in één keer bekijken, zodat vele van deze systemen tegelijk
kunnen worden waargenomen als richting het melkwegcentrum wordt gekeken.
Dit proefschrift gaat over waarnemingen aan deze dubbelsterren die met de
groothoekcameras zijn gedaan, en dan met name de bronnen die rontgenflitsen
vertonen.
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9.3 Rontgenflitsen

De meeste heldere bronnen in Figuur9.1 hebben als compact object een neu-
tronenster. De afgestoten gaslaag van de begeleidende normale ster zal op het
oppervlak van de neutronenster worden verzameld. Maar de temperatuur en
druk aan het oppervlak van een neutronenster zijn al extreem hoog zodat de
verbranding van waterstof tot helium direct optreedt. Er zal een steeds dikkere
laag van helium ontstaan op het oppervlak van de neutronenster, en de on-
derkant van die groeiende helium laag zal een nog hogere temperatuur en druk
krijgen. Deze laag blijft groeien totdat aan de onderkant een temperatuur en
druk wordt bereikt waarbij helium kan verbranden tot koolstof. Dit gaat op
zeer explosieve wijze, en er komt in enkele seconden net zo veel energie vrij als
de zon in ongeveer een dag produceert. Dit is voldoende energie om ook het
koolstof direct te verbranden tot nog zwaardere elementen (zoals ijzer).

Deze explosies worden waargenomen als zogenaamde rontgenflitsen. Een
voorbeeld van een rontgenflits is te zien in Figuur9.2. Hier is te zien hoe de
rontgenstraling van een neutronenster varieert in de tijd. Voor het grootste
deel van de tijd is de bron constant aan het stralen (dit is het gas dat op
de neutronenster valt), maar soms is er een ploseling een grote toename van
rontgenstraling te zien. Dit is het moment waarop de helium verbrand tot
koolstof, en het begin van de flits. Deze uitbarsting verwarmt de atmosfeer van
de neutronenster, en zodra alle helium is verbrand en er geen energie meer vrij
komt (het moment dat de piek van de flits wordt bereikt) kan de atmosfeer weer
gaan afkoelen tot de temperatuur is bereikt van voor de flits. Deze afkoeling is
te zien als een “afvallende staart”, die in dit geval ongeveer 100 seconden duurt.
Gemiddeld duurt een rontgenflits (vooral het afkoelen) ergens tussen de paar
seconden en een tiental minuten. De duur van een réntgenflits is voornamelijk
afhankelijk van de snelheid waarmee de neutronenster de buitenste gaslaag van
de begeleider ontvangt.

De groothoekcameras hebben in totaal ongeveer 1823 van deze rontgenflitsen
waargenomen, en die kwamen voor het overgrote deel van bronnen waarvan al
bekend was dat ze rontgenflitsen vertonen. De regelmaat waarmee een bron
rontgenflitsen produceert varieert sterk, van maar een keer per maand (of nog
minder) tot eens in de twee uur. De tijdsduur tussen twee flitsen hangt van
een aantal omstandigheden af. In de eerste plaats de snelheid waarmee de
neutronenster het gas ontvangt van zijn begeleider, maar ook welke fractie van
het oppervlak wordt bedekt door die waterstof en de snelheid waarmee het
waterstof kan verbranden.
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Figuur 9.2: Een typische rontgenflits zoals die werd waargenomen door de
groothoekcameras.

9.4 Dit proefschrift

De rontgenflitsen zijn in de jaren 70 van de vorige eeuw ontdekt (door John
Heise en medewerkers) en het hierboven geschetste model is niet lang daarna on-
twikkeld. In de jaren daarna zijn vele waarnemingen aan rontgenflitsen gedaan
die dit model bevestigen. Dus wat is nu de bijdrage van dit proefschrift aan dit
veld?

De afgelopen jaren is men zich gaan realiseren dat er een sub-klasse bestaat
van de dubbelsterren met compact object. De bronnen in deze klasse zijn maar
voor een paar weken actief. In die periode wordt er rontgenstraling van zo’n bron
waargenomen, terwijl de rest van de tijd (dit kan jaren maar misschien zelfs wel
decennia zijn) er niets is waar te nemen van zo’n bron. Blijkbaar kan de begelei-
der elke keer maar korte periodes zijn buitenste gaslagen afstoten. Hoofdstuk 3
van dit proefschrift beschrijft de actieve periode (in dit geval 2 weken) van zo’n
bron. Tijdens die actieve periode werden er 7 réntgenflitsen waargenomen van
die bron, wat aantoont dat het compacte object een neutronenster is.

Hoofdstuk 4 gaat over de ontdekking van een nieuw verschijnsel, de zoge-
naamde superflits, en hoofdstuk 5 over een tweede waargenomen superflits. Deze
superflitsen werden beide waargenomen in heldere rontgenbron die bekend ston-
den als rontgenflitser. Superflitsen zijn verwant aan de 'normale’ réntgenflits,
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maar duren veel langer (uren in plaats van minuten) en er komt veel meer
energie vrij (wat de zon ongeveer in een half jaar produceert). Tijdens de ont-
dekking was er geen enkele theorie die zo’n soort flits kon verklaren. Het is
namelijk onmogelijk om voldoende helium (en waterstof) te verzamelen voordat
het verbrandt tot koolstof (en verder) om de totale waargenomen energie te
verklaren.

Men kwam toen met een aangepaste theorie die voorspelt dat een klein beetje
koolstof als één van de eindproducten overblijft na een 'normale’ réntgenflits.
De hoeveelheid koolstof zal langzaam opbouwen over vele flitsen. Zodra er
voldoende koolstof is verzameld kan dit ook op explosieve wijze verbranden.
Dit wordt dan waargenomen als een superflits.

Een sub-klasse van rontgenflitser wordt behandeld in hoofdstukken6 en 7.
De meeste rontgenflitsers zijn altijd zeer heldere rontgenbronnen, zeker in de
periode als ze ook rontgenflitsen vertonen. Maar de afgelopen paar jaar zijn,
voornamelijk door de groothoekcameras, een aantal nieuwe bronnen ontdekt
die erg zwak zijn maar wel een réntgenflits vertonen (de meeste hebben tot
nog toe maar én flits vertoond). Het is alleen dankzij de flits dat ze konden
worden ontdekt. In hoofdstuk 6 wordt de ontdekking van vier van deze bronnen
(ongeveer de helft van de bronnen in deze sub-klasse) besproken. In hoofdstuk 7
wordt geprobeerd een aantal van deze bronnen met de rontgensatelliet Chandra
waar te nemen, deze satelliet is veel gevoeliger in het detecteren rontgenstraling
dan de groothoekcameras, om zo na te gaan hoe zwak deze bronnen nu precies
zijn.

Tot slot worden in hoofdstuk 8 de negen bronnen waar de groothoekcameras
de meeste flitsen van hebben waargenomen besproken. Door de grote aantallen
flitsen kunnen de verschillende bronnen op statistische wijze met elkaar worden
vergeleken en de huidige theorie worden getest. Daarmee kon voor het eerst
worden aangetoond dat alle bronnen eigenlijk hetzelfde gedrag vertonen wanneer
ze de zelfde hoeveelheid gas van hun begeleider ontvangen per seconde. Ook
kon bij een aantal bronnen worden aangetoond dat als de hoeveelheid gas dat
wordt ontvangen per seconde toeneemt ook het aantal flitsen toeneemt. En tot
slot werd aangetoond dat de theorie niet altijd de juiste duur van een flits kon
voorspellen. In dit hoofdstuk wordt dan ook een suggestie gedaan hoe de theorie
moet worden aangepast.

Dit proefschrift laat hopelijk zien dat we nog lang niet alles begrijpen van
de rontgenflitsen, en dat er na 30 jaar nog steeds nieuwe verschijnselen zijn te
ontdekken in dit veld.
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