
Article https://doi.org/10.1038/s41467-023-37647-x

Predicting response to enzalutamide and
abiraterone in metastatic prostate cancer
using whole-omics machine learning

Anouk C. de Jong 1,4, Alexandra Danyi 2,4, Job van Riet 1, Ronald de Wit1,
MartinSjöström 3, Felix Feng 3, JeroendeRidder 2&Martijn P. Lolkema 1

Response to androgen receptor signaling inhibitors (ARSI) varies widely in
metastatic castration resistant prostate cancer (mCRPC). To improve treat-
ment guidance, biomarkers are needed. We use whole-genomics (WGS;
n = 155) with matching whole-transcriptomics (WTS; n = 113) from biopsies of
ARSI-treated mCRPC patients for unbiased discovery of biomarkers and
development of machine learning-based prediction models. Tumor muta-
tional burden (q <0.001), structural variants (q < 0.05), tandem duplications
(q <0.05) and deletions (q < 0.05) are enriched in poor responders, coupled
with distinct transcriptomic expression profiles. Validating various classifica-
tion models predicting treatment duration with ARSI on our internal and
external mCRPC cohort reveals two best-performing models, based on the
combination of prior treatment information with either the four combined
enriched genomic markers or with overall transcriptomic profiles. In conclu-
sion, predictive models combining genomic, transcriptomic, and clinical data
can predict response to ARSI in mCRPC patients and, with additional optimi-
zation and prospective validation, could improve treatment guidance.

With approximately 350,000 men dying yearly of prostate cancer,
prostate cancer is the fifth leading cause of cancer-related death
worldwide1. Although early-phase prostate cancer is known for its
favorable prognosis, the prognosis of metastatic prostate cancer is
poor, especially when patients progress to the castration-resistant
phase of the disease2,3. The treatment ofmetastatic castration-resistant
prostate cancer (mCRPC) has significantly improved since the advent
of second-generation androgen receptor signaling inhibitors (ARSI),
like abiraterone acetate + prednisone (AAP) and enzalutamide3–5.
However, response to these treatments varies widely between indivi-
dual patients4,5 To improve therapy guidance and optimize patient
outcome, biomarkers, which canpredict response before or soon after
the start of therapy, are needed.

The existing biomarkers for treatment guidance in this setting are
increasingly based on so-called liquid biopsies. It has been shown that

five or more circulating tumor cells (CTCs) in 7.5ml of blood and high
levels of cell-free DNA (cfDNA) before the start of treatment are
associated with a poor prognosis6–8. In addition, more detailed mole-
cular analyses can be performed to predict resistance to ARSI. In CTCs,
expression of androgen receptor variant 7 (AR-V7) is associated
with resistance to ARSI, while this correlation is not found for
chemotherapy8–14. To genotype cfDNA, gene panels targeting known
driver and/or resistance-related genes are often used for sequencing
or PCR. The most commonly identified alterations, that are associated
with resistance to ARSI in patients, encompass AR mutations and
amplifications8,15–19. Furthermore, RB1 loss, TP53 aberrations, ZFHX3
deletions and PI3K pathway defects were associated with worse
survival8,15,19. However, liquid biopsy-based analyses are mostly tar-
geted to a certain set of genes and rely on patients having a high
tumor-derived cfDNA fraction in the blood. Therefore, liquid biopsies
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are less suitable for the discovery of potential biomarkers, that predict
the outcome of treatment.

Whole genome and transcriptome sequencing (WGS andWTS) of
tumor tissue provides extensive and detailed information about
underlying genomic and functional aberrations of the malignancy.
Rather than relying on a priori known targets using targeted gene-
panels, studying the genome-wide somatic inventory may enable the
unbiased discovery of biomarkers predicting treatment outcome.
Prior work shows that genomic clusters could be linked to response to
treatment, e.g., patients with microsatellite instability tend to respond
well to immunotherapy and patients with a BRCA-like phenotype are
likely to benefit from PARP-inhibition20,21. The value of sequencing the
entire genome, including non-coding regions, for understanding
tumor proliferation mechanisms is shown by the identification of an
intergenic enhancer region upstream of AR, that is amplified in 81% of
the mCRPC patients and correlates to increased AR expression20,21.
Besides, WTS reveals that the Wnt/β-catenin pathway is enriched in
enzalutamide-resistant patients in comparison to enzalutamide-naïve
patients22. In addition, mutations in β-catenin and loss of 17q22 are
solely found in enzalutamide-resistant patients and are associatedwith
poor clinical outcome22,23.

Statistical analysis of WGS andWTS data is challenging due to the
extreme high number of features. In the last years, precision oncology
often employs machine learning (ML) approaches to build predictive
models in clinical and preclinical settings using genomic and tran-
scriptomic information24. By analyzing the performance ofMLmodels,
the predictive power of these features can be assessed. Recently,
advanced deep learning models have shown promise in the field. In
2018, a deep learning model effectively integrated multiple data
modalities and leveraged large available training data (~1000 drug
response experiments per compound)25. Within clinical patient
cohorts, sample sizes are usually smaller, leading to inevitable over-
parameterization andpoor generalization performancewhen complex
deep-learning models are used. Therefore, in such scenarios simple
and strongly regularized ML models are preferred, as these generally
suffer less from overfitting on limited training data and have already
been proven to be efficient in similar contexts26,27. In addition, several
methodological steps can be performed to handle small datasets. One
suchmethod is feature selection inwhich e.g., transcriptomic features,
deemed as irrelevant for a particular response or genotype are
removed28. Another widely applied procedure is dimensionality
reduction in which small datasets with high feature dimensionality
(e.g., transcriptome-wide expression) canbe representedwith reduced
feature space and consequently be used inMLmodelswith a lower risk
of overfitting29.

In this study, we aim to develop a ML-based classification model
using WGS and WTS characteristics from biopsied metastatic malig-
nancies to predict response of individual mCRPC patients to ARSI. To
this end, we interrogate the full genomic inventory of metastatic
malignancies from 155 mCRPC patients, who were subsequently trea-
ted with ARSI. In addition, matched WTS of these malignant tissues is
available for 113 included mCRPC patients. Based on ARSI treatment
duration, patients are categorized into good and poor responders.
Subsequently, we determine and validate relevant clinical, genomic,
and transcriptomic features for their usage as features within a ML-
based approach to predict response to ARSI. Finally, we validate the
performance of this classification model within an internal and exter-
nal patient cohort.

Results
Included patients in discovery cohort (CPCT-02)
Between February 2015 and October 2019, 235 patients with mCRPC
were included within CPCT-02 and treated with AAP or enzalutamide
directly after a fresh-frozen biopsy20,30. Two patients were included
twice, resulting in the inclusion of 233 unique patients. From 235

biopsies, 155 (66%) could be successfully analyzed by WGS. Eighty
biopsies were excluded due to an unevaluable biopsy (n = 42), a biopsy
of the primary tumor (n = 13), whole exome sequencing (WES) instead
of WGS (n = 11), protocol violation (n = 9), missing treatment infor-
mation (n = 4) and a second evaluable biopsy in combinationwith ARSI
within one patient (n = 1). The second evaluable biopsy of this patient
was excluded to prevent overfitting in the analyses.MatchedWTS data
of the malignant tissue was available for 113 patients (Fig. 1).

Clinical characteristics and stratification of patients
Patients were stratified in good (≥180 days of treatment; n = 66),
ambiguous (101–179 days of treatment; n = 25) and poor (≤100 days of
treatment; n = 64) responders, based on treatment duration with ARSI
(Fig. 1). Cut-off values were based on clinical practice (see Methods).
Baseline characteristics for good, poor and ambiguous responders are
shown in Table 1 andwere compared for good andpoor responders, as
only these groups were included for biomarker discovery (see Meth-
ods). Good and poor responders were similar in age (mean± SD:
68.1 ± 7.9 years and 69.5 ± 7.7 years, respectively, adjusted
p (q) = 1.000). Poor responders showed a trend towards a higher pro-
portion of biopsies, obtained from liver, compared to good respon-
ders (18.8% (n = 12) versus 3.0% (n = 2), q =0.076). The proportion of
patients treated with AAP and enzalutamide, respectively, after biopsy
was comparable in the two groups (good responders 40.9% (n = 27)
and 59.1% (n = 39), and poor responders 62.5% (n = 40) and 37.5%
(n = 24), q =0.266). Median treatment duration was 445 days (Q1-Q3:
242–NR) and 63 days (Q1 - Q3: 48–83) in the good and poor responder
group, respectively. The number of prior systemic treatment lines was
higher in poor responders than in good responders (median 2 treat-
ment lines (Q1 - Q3: 1–3) vs 1 treatment line (Q1 - Q3: 0–1), q <0.001). In
detail, poor responders were more often previously treated with
enzalutamide (37.5% (n = 24) vs 6.1% (n = 4), q <0.001) than good
responders. In addition, poor respondingpatients hada highermedian
PSA value at time of biopsy than good responding patients (140 ug/L
(Q1–Q3: 58–390, n = 35) vs 23 ug/L (Q1–Q3: 13–92, n = 44), q <0.001).

Exploration of relevantWGS andWTS characteristics relating to
response
To investigate relevant WGS and WTS features, relating to treatment
response, and to design our subsequent classificationmodels, we split
our discovery cohort (CPCT-02) of matched WGS and WTS samples
(n = 113) into a training (n = 79; 70%) and internal validation (n = 34;
30%) dataset. The training set contained a balanced number of good
and poor responders, n = 38 and 41 respectively (Fig. 2).

The genomic landscape of mCRPC patients, treated with ARSI
By utilizing WGS, we could inventory the genomic landscape of the
good, ambiguous and poor responders (n = 155; Fig. 3).

Comparisons between good and poor responders were per-
formed within the training set (n = 79). We observed significantly
higher numbers of the tumor mutational burden (TMB; q < 0.001),
total number of structural variants (SV; q < 0.05), total number of
tandem duplications (q <0.05) and total number of deletions
(q < 0.05) within the poor responders compared to the good respon-
ders (Suppl. Figure 1a–d). In detail, the median (and Q1 - Q3) for poor
responders vs. good responders of TMB, total SV, total number of
tandem duplications and total numbers of deletions was observed to
be 3.03 (2.32 − 4.3) vs. 2.21 (1.72 − 2.77), 349 (268 − 618) vs. 246 (172 −
377), 44.5 (24 − 80) vs. 30.5 (20 − 44) and 79.5 (59 − 116) vs. 64.5 (43 −
90), respectively.

We next assessed the mutational incidence of known
genomic aberrations, related to ARSI resistance, which included
genomic aberrations within AR, TP53, PTEN, RB1, CTNNB1 and
chromosomal arms aneuploidies (Suppl. Fig. 1e, f)8,15–19. No statisti-
cally significant differences between good and poor responders for
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these markers were found in the training set. In addition, we did not
observe significant mutual-exclusivity for driver-genes, as detected
by unbiased driver detection (dN/dS and/or GISTIC2). Genes with
protein-coding aberrations within ≥20% of all samples within either
the poor or good responder group were explored as well. No sig-
nificant differences between good and poor responders were
observed.

Differentially expressed genes in good and poor responders
to ARSI
Using the matched WTS from the training cohort (n = 79), we investi-
gated differentially expressed genes (DEGs) between the good and
poor responders for all protein-coding genes, which were not desig-
nated as putative biopsy-site specific markers (see Methods; Fig. 4).
Using stringent criteria to select for uniformdisparity between the two
groups, we designated 151 genes as DEGs between the two groups
(Fig. 4, Suppl. Table 1). In addition, weperformedGene-set Enrichment
Analysis (GSEA) between the responder classes (Suppl. Figure 2a) and
assessed the expression of AR-V7 (Suppl. Figure 2b).

Within the DEGs (n = 151), we observed uniformpresence of genes
regulating or attributed to epithelial-mesenchymal transition (EMT)
such as TIMP-3 and TGFBI, or found genes previously attributed to
tumorigenesis, poor survival and/or aggressiveness such as RGS2
andSLC7A5 to harbor higher expression within the poor responders vs.
the good responders31,32. Conversely, genes attributed to the sup-
pression of tumor growth and/or metastatic potential such as RBM47
and ENDOD1 were expressed in fewer quantity33,34 (Suppl. Fig. 2a). We

did not observe dissimilar expression of AR-V7 between responder
classes (Suppl. Fig. 2b).

Concordant, the GSEA revealed enriched expression of mechan-
isms and signaling, commonly reported within more aggressive forms
of prostate cancer, including EMT, coupled with enriched inflamma-
tory responses, TGF-β receptor signaling andTNFα signaling viaNF-kB.
In addition, the good responders revealed enrichment of the androgen
response gene-set.

Robustness assessment of differential expression analysis
After the initial differential gene expression analysis, we performed an
out-of-sample analysis in a Leave-One-Out Cross-Validation (LOOCV)
scheme to test the robustness of the selected DEGs due to our limited
sample size (see Methods). As we observed notable variation within
several DEGs between LOOCV folds, we suspected that a straightfor-
ward DESeq2-approach might possibly not provide robust results for
classification purposes (Fig. 4). Therefore, we opted for an alternative
methodology (Independent Component Analysis, described below)
for feature selection during classification model development.

Design of a machine learning-based classification model to
predict response to ARSI
Our approach to generate classification models included three stages.
First, we assessed relevant and robust WGS, WTS and clinical char-
acteristics for treatment response using a LOOCVon the training set of
samples with matched WTS and WGS (n = 79). Resulting models were
subsequently compared and evaluated in the internal validation sets

Prostate cancer patients treated with ARSI within CPCT-02
N = 235

Genomics available
N = 155

Transcriptomics available
N = 113

Unique patients: N = 233 
Two patients were included twice.

Excluded: N = 80
Biopsy not evaluable: N = 42
Biopsy of primary tumor: N = 13
Whole exome sequencing: N = 11
Protocol violation: N = 9
Treatment info missing: N =4 
Second biopsy in combination with ARSI: N = 1*

Good responder
(TD 180 days)

N = 66 (43%)

Poor responder
days)

N = 64 (41%)

Ambiguous responder
(TD 101 - 179 days)

N = 25 (16%)

Good responder
(TD 180 days)

N = 47 (42%)

Poor responder
days)

N = 47 (42%)

Ambiguous responder
(TD 101 - 179 days)

N = 19 (17%)

Fig. 1 | Overview of mCRPC patients, treated with ARSI post-biopsy, within
CPCT-02 cohort. Of the 235 mCRPC patients, who were treated with androgen
receptor signaling inhibitors (abiraterone acetate + prednisone (AAP) or enzalu-
tamide; ARSI) and included in the CPCT-02 study, genomics and transcriptomics
were available for 155 and 113 patients, respectively. Patients were stratified

according to treatment duration with ARSI (TD). Only good and poor responders
were used for the exploration of whole-omics data to prevent bias by the indistinct
response of ambiguous responders. Ambiguous responders were included in the
internal validation. One patient was included twice. To prevent overfitting, only the
first biopsy was used.
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and finally, validated in an external cohort (see Methods; Fig. 2). In
total, we utilized four schemes of classificationmodels: 1)WGS-only, 2)
WTS-only, 3) combined WGS and WTS and, 4) combined WGS and
clinical co-variates. For thesemodels, the remaining samples, thatwere
not used for internal training (n = 79), were used for the internal vali-
dation. For the WGS-only and combined WGS/clinical variables mod-
els, this included 76 patients, spanning 28 good, 23 poor and 25
ambiguous responders. For the WTS-only and combined WGS/WGS
models, this included 34 patients, spanning 9 good, 6 poor and 19
ambiguous responders. In addition, similar mCRPC patients from the
West Coast Dream Team (WCDT) cohort, who were treated with ARSI
as next therapy after biopsy, were used as external validation cohort35.
Within this cohort, relevant WGS and WTS characteristics were avail-
able for 56 and 77 patients, respectively.

Initial model performance assessment with LOOCV
WGS-only classification model. We utilized the four previously
observed WGS characteristics, which revealed statistically significant
differences between good and poor responders within the internal
training set (TMB and the numbers of total structural variants, tandem

duplications and deletions) to train a Logistic Regression classifier.
Performance was subsequently measured as Area Under the Curve
(AUC) of 0.76, with a specificity and sensitivity of 49% and 79%,
respectively (Fig. 5a and Table 2). Classifier hyperparameters were
further tested in grid search, but no unequivocally better setting was
found, when evaluating the model in LOOCV.

WTS-only classification model. Prior to WTS-based classification,
dimensionality reduction was performed on the full transcriptome
using multiple approaches (see Methods). Independent Component
Analysis, sparse PCA, and conventional PCA were applied to the data
with components ranging from 10 to 50, and consequently used as
input in the training of linear Support Vector Classifier (SVC) models.
The best overall performance was achieved with 40 independent
components (ICs), with an AUC of 0.76, specificity of 83%, and sensi-
tivity of 58% (Fig. 5a and Table 2).

Combining WGS and WTS in ensemble classification models
Notable overlaps could be identified in the predicted true positives
(true good responders, n = 18) and predicted true negatives (true poor

Table 1 | Baseline characteristics Baseline table of clinical characteristics of theCPCT-02 cohort (DR-071; December 19th 2021)

Characteristic Responder category Adj. P value*

Good responder (TD
ARSI ≥ 180 days, n = 66)

Poor responder (TD
ARSI ≤ 100 days, n = 64)

Ambiguous responder (TD
ARSI 101-179 days, n = 25)

Good vs poor
responder**

Age at biopsy in years (mean ± SD) 68.1 ± 7.9 69.5 ± 7.7 66.8 ± 8.6 1.000a

Biopsy site

Lymph node 32 (48.5%) 22 (34.4%) 20 (80.0%) >0.95b

Bone 28 (42.4%) 18 (28.1%) 2 (8.0%) >0.95b

Liver 2 (3.0%) 12 (18.8%) 3 (12.0%) 0.076b

Lung 1 (1.5%) 1 (1.6%) 0 (0.0%) >0.95b

Soft tissue 3 (4.5%) 6 (9.4%) 0 (0.0%) >0.95b

Other 0 (0.0%) 5 (7.8%) 0 (0.0%) NA2

Started ARSI after biopsy

AAP 27 (40.9%) 40 (62.5%) 12 (48.0%) 0.266b

Enzalutamide 39 (59.1%) 24 (37.5%) 13 (52.0%)

Time between biopsy and start treat-
ment in days (median (IQR))

5.5 (0-14) 5.0 (0–12) 1.0 (0–7) 1.000c

Treatment duration in days
(median (IQR))

445 (242–NR) 63 (48–83) 133 (112–153) NA

Number of prior treatment lines
(median (IQR))

1 (0–1) 2 (1–3) 2 (0–3) <0.001c

0 25 (37.9%) 7 (10.9%) 7 (28.0%) NA

1 26 (39.4%) 18 (39.1%) 3 (12.0%) NA

2 8 (12.1%) 21 (32.8%) 4 (16.0%) NA

3+ 7 (10.6%) 18 (28.1%) 11 (44.0%) NA

Prior therapies

AAP 4 (6.1%) 10 (15.6%) 6 (24.0%) 1.000b

Enzalutamide 4 (6.1%) 24 (37.5%) 10 (40.0%) <0.001b

Other ARSI 1 (1.5%) 0 (0.0%) 1 (4.0%) 1.000b

Docetaxel 35 (53.0%) 50 (78.1%) 15 (60%) 1.000b

Cabazitaxel 11 (16.7%) 22 (34.4%) 11 (44.0%) 0.513b

Other chemotherapy 0 (0.0%) 4 (6.3%) 0 (0.0%) 1.000b

Radium-223 6 (9.1%) 9 (14.1%) 2 (8.0%) 1.000b

Other treatment 3 (4.5%) 8 (12.5%) 3 (12.0%) 1.000b

PSA at biopsy (ug/L) (median (IQR)) 23 (13–92) (n = 44) 140 (58–390) (n = 35) 13 (10–171) (n = 9) <0.001c

*P values were adjusted for multiple testing using Bonferroni (n = 19 tests).
**Two-sided statistical tests were performed to compare good and poor responders, as these patients were also used for further analysis and training of the classification model.
aIndependent T-test.
bFisher’s Exact test + comparison of column proportions with z-test (p values adjusted according to Bonferroni).
cMann–Whitney U test. The exact adjusted p value for number of prior treatment lines, prior enzalutamide and PSA at biopsy is 0.000076, 0.000209, and 0.00076, respectively. TD treatment
duration, ARSI androgen receptor signaling inhibitor, SD standard deviation, IQR inter-quartile range, NR not reached, NA not applicable, PSA prostate specific antigen.

Article https://doi.org/10.1038/s41467-023-37647-x

Nature Communications |         (2023) 14:1968 4



responders, n = 17) of the WGS-only and WTS-only models (Suppl.
Fig. 3). The WGS-only model yielded better classification of good
responders than the WTS-only model (79% vs. 58% sensitivity), whilst
the WTS-only model yielded better classifications of poor responders
(83% vs 49% specificity; Table 2). To investigate whether leveraging
both WTS and WGS features would improve performance, we com-
bined our best-performing WGS-only and WTS-only classification
models using two ensembling approaches (seeMethods). The stacking
classifier resulted in an AUC of 0.76 (71% specificity / 71% sensitivity),
whilst ensemble averaging resulted in an AUC of 0.81 (73% specificity /

68% sensitivity) (Fig. 5b and Table 2). The four WGS features and the
WTS features from the best performing model (40 ICs) were also
combined in two additional ensembling experiments (see Methods).
The bagging classifier yielded an AUC of 0.76 (66% specificity / 71%
sensitivity), while the multi-model averaging ensemble resulted in an
AUC of 0.75 (59% specificity / 66% sensitivity) (Fig. 5b). Thus, the
ensemble model that outperformed the WGS-only and WTS-only
classification models was the averaging ensemble, which yielded an
AUCof 0.81 compared to theWGS-only andWTS-onlymodel with both
an AUC of 0.76 (Fig. 5e).

Fig. 2 | Workflow of prediction model design and validation. Machine learning
pipeline design steps, using the CPCT-02 cohort (matched WGS/WTS n = 113)
divided into a training set (n = 79) and an internal validation set (n = 34). External
validationwas performed on theWCDTcohort (WGS n = 56,WTSn = 77). a Steps in
initial LOOCV performance assessment: Transcriptomics data was decomposed
with Independent Component Analysis and the reduced feature space was used in
linear support vector classifier (linear SVC). All classifiers that use transcriptomics
data were linear SVC models. Statistically significant genomics features (TMB**,
total number of tandem duplications*, total number of SVs*, total number of SV
deletions*) and prior treatment features (ARSI, taxane-based chemotherapy,
number of treatment lines) were tested separately in logistic regression classifiers.
The combined WGS +WTS+ARSI data was tested in a linear SVC. Performance of
the best classifiers (transcriptomics, “clinicogenomics” - genomics and prior
treatment, “clinicotranscriptomics” - transcriptomics and prior treatment, WGS +
WTS+ prior treatment, genomics) was evaluated and visualized on ROC curves.
b Internal validation of the best transcriptomics model (40 independent

components). The model was retrained on the full training set using the same
features as in LOOCV (transcriptomics data decomposed with Independent
Component Analysis). Then the transcriptomics data of the internal validation
cohort was transformed with the 40 independent components model (which was
previously fitted on the full training set), and predictions were made with the best
transcriptomics model. (Other validated models were also retrained on the full
training cohort, but no further pipeline adjustment was made - therefore not
shown). c Transcriptomics data of the external validation cohort was decomposed
with Independent Component Analysis into 40 components (independent of the
training set). Then domain adaptation was performed on the decomposed tran-
scriptomics data of the training set and the external cohort using PRECISE. Domain
adapted training data matrix was used to train a Linear SVC classifier on the tran-
scriptomics-only, clinicotranscriptomics and WGS+WTS+ prior treatment data.
Performance of the classifier was evaluated on the domain adapted external data.
(Othermodels did not require further pipeline adjustments - therefore not shown).
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Addition of clinical data to the WGS- and WTS-based classifica-
tion models
Compared to true good responders, true poor responders received
more prior treatment lines for metastatic prostate cancer, including
more frequently prior enzalutamide (Table 1). Therefore, we deter-
mined whether including information on whether patients had
received prior treatment with ARSI and/or taxane-based chemother-
apy and the number of respective treatment lines would increase the
performance of the best-performing classification models. A classifi-
cationmodel based solely on these clinical variables yielded anoverall
mediocre performance with a maximal AUC of 0.61 and sensitivity
and specificity of 45% and 51%, respectively (Fig. 5c, Suppl. Fig. 4).
However, we investigatedwhether a potential synergistic effect could
be found by integrating a mixture of these clinical variables with the
WGS and WTS data. Out of the models, combining WGS with clinical
variables, the addition of prior/no prior ARSI as feature into theWGS-
onlymodel resulted in the highest performance increase compared to
WGS-only. This combined ‘clinicogenomics’model yielded an AUC of
0.81 with 66% specificity and 76% sensitivity (Fig. 5c, e and Table 2).
The model that used WTS combined with prior/no prior ARSI also
performed well, yielding an AUC of 0.82 with 73% specificity and 74%
sensitivity (Fig. 5c, e and Table 2). A final combined model, which
included both WTS and WGS features with prior/no prior ARSI,
resulted in an AUC of 0.84 with 73% specificity and 74% sensitivity
(Fig. 5c, e and Table 2).

Shuffled label experiments
To confirm whether the presented classification models operate on
meaningful underlying structures, random label permutation experi-
ments were performed on the best models in LOOCV setting. The
shuffled label experiments resulted in a median AUC of 0.50–0.51 for
all models, with upper quartiles of the shuffled label experiments well
below the AUC obtained using correctly labeled data (Fig. 5d). Based
on these results, we concluded that our presented classification
models indeed capture underlying patterns relating to the treatment
response.

Validation of final classification models
We validated our best-performing models in an internal and external
validation cohort. Here, we describe the validation of one of the best
performing models, which utilizes the four significant genomic char-
acteristics and prior treatment with ARSI (clinicogenomics model), in
detail (Table 2, Figs. 6 and 7). The other models were also successfully
validated and the corresponding results are summarized in Table 2 and
Suppl. Figs. 6 and 8.

Internal validation cohort
For internal validation, we used 76 WGS samples of the CPCT-02
cohort, that were not used during training. This internal validation
cohort encompassed 28 good, 23 poor and 25 ambiguous responders.
For 34 patients, including 9 good, 6 poor, and 19 ambiguous

Fig. 3 | Genomic landscape of thediscovery cohort, orderedbyARSI treatment-
duration and response category.Overview of genome-wide characteristics of the
discovery cohort (CPCT-02; DR-071; n = 155) ordered by descending treatment
duration (abiraterone acetate + prednisone or enzalutamide). For each mCRPC
patient, the following tracks are shown: a Responder category. The responder
categoryofeach sample, basedon treatment duration (indays) onARSI.bTypeand
duration of ARSI treatment. Y-axis representing the ARSI treatment duration (in
days), whilst the coloring represents the type of given treatment (abiraterone
acetate + prednisone in blue, enzalutamide in orange). Y-axis is shown in square-
root transformed scale. c Tumor mutational burden (TMB). The number of geno-
mic mutations averaged per megabase over the entire genome (TMB). Threshold
for high-TMB status (TMB≥ 10) is shown by a horizontal red dotted line. Y-axis is
shown in square-root transformed scale.d Total no. of structural variants. The total
number of structural variants (green) over the entire genome. This includes dele-
tions, tandem duplications, translocations, inversions, insertions, and single-end
breakpoints as detected by GRIDSS. Y-axis is shown in square-root transformed

scale. e Relative frequency of structural variant classes. Relative frequency of each
of the structural variant categories; deletions in orange, inversions in light-blue,
tandem duplications in red, translocations in dark-blue, insertions in yellow and
single-end breakpoints (Singles) in grey. f Mean genome-wide ploidy. Mean
genome-wide ploidy ranges from0 (red) to 6 (green; hexaploidy). Commondiploid
status is shown in white. Samples which have undergone a whole-genome dupli-
cation (WGD) have beenmarked by an asterisk (*). g Relative frequency of COSMIC
(v3.2) signatures, grouped per proposed etiology. The relative contribution of the
COSMIC single-base substitution mutational signatures (v3) grouped and aggre-
gated per proposed etiology. Per sample, signatures with <5 percent relative con-
tribution were categorized under the “Filtered (<5%)” category. The proposed
etiologyof the signatures is denoted below.hMicrosatellite-instability (MSI) status.
i Homologous recombination deficiency (HRD) status as detected by CHORD.
j Presence of chromothripsis. k Generalized biopsy location. l)Availability of mat-
ched whole-transcriptome sequencing.
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responders, matched WTS was available. This subset was used for
the validation of models, that included transcriptomics features
(Table 2).

Within our internal validation cohort (n = 76), we correctly pre-
dicted 21 out of 28 true good responders and 13 out of 23 true poor
responders using the clinicogenomics model, thereby resulting in a
sensitivity of 79% and specificity of 57% and an AUC of 0.74. These
results are comparable with the results during training. Although

limited by the number of samples during validation, the overall dis-
tribution of genomic and clinical features for predicted classes
resembles those seen during feature selection (Fig. 6a–n). Survival
analysis of the complete internal validation cohort, including the true
ambiguous responders, revealed an overall longer ARSI-treatment
duration (p =0.015; log-rank test) for predicted good responders vs.
poor responders with respectively a median (and 95%CI) of 187.5 days
(143-386) and 116.5 days (90–138) (Fig. 6o).
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To investigate the confidence of our binary predictions (i.e., pre-
dicted poor or good response), we explored whether including a third
category of predicted ambiguous responders, capturing uncertain
predictions (probability scores of 50± 10%), to the clinicogenomics
model could result in a better discrimination of poor and good pre-
dicted responders (Fig. 6b and p). Using these three prediction cate-
gories, similar survival analysis indeed revealed a larger stratificationof
treatment durationbetweenpredictedpoor andgood responderswith
a median ARSI-treatment duration (and 95%CI) of 217 days (166–488),
133 days (110–267) and 103 days (84–147) for good, ambiguous and
poor predicted responders, respectively, (Fig. 6o) and an increased
statistical difference between predicted good and poor responders of
q =0.0013 (pairwise log-rank test with BH-correction), compared to
the two-group scheme (p = 0.015), described above. Although all pre-
dicted groups consist of patients from all three true responder cate-
gories, only 12% (n = 3) of the predicted poor responders is a true good
responder, while 23% (n = 7) of the predicted good responders is a true
poor responder (Fig. 6b–c).

To explore whether the model has additional value in all patient
groups, the performance of the clinicogenomics model was tested in
uniform pre-treated subgroups within our internal validation cohort
(Suppl. Figure 5). In patients, who received 0 or 1 prior therapy, pre-
dicted good responders showed a higher median ARSI-treatment
duration than predicted poor responders of 266 days (95% CI 172-790,
n = 23) vs 129.5 days (95% CI 89-NA, n = 10), p = 0.059. Predicted
ambiguous responders showed a median treatment duration of
218 days (95% CI 116-NA) (n = 9) in this subgroup (Suppl. Fig. 5a). In
patients, who received ≥2 prior therapies, the difference between
predicted good and poor responders was less pronounced (median
treatment duration (95% CI) 110 days (52-NA) (n = 7), 121.5 days (102-
NA) (n = 12) and 84 days (59–147) (n = 15) for good, ambiguous and
poor responders, respectively, p =0.093 for good vs poor responders)
(Suppl. Fig. 5b). In addition, in patients who did not receive prior
enzalutamide, predicted good responders showed a longer treatment
duration than predicted poor responders (median 217 days (95% CI
166-488) (n = 30) and 90 days (95% CI 84-189) (n = 15) respectively,
p =0.012). Predicted ambiguous responders showed a moderate
median treatment duration of 142 days (95% CI 112-NA) (n = 15) (Suppl.
Fig. 5c). In patients who did receive prior enzalutamide, no good
responders were predicted, while ambiguous and poor predicted
responders showed a median treatment duration of 117.5 days (95% CI
63-NA, n = 6) and 112 days (95% CI 59-NA, n = 10), respectively (Suppl.
Fig. 5d). Despite being limited by the sample sizes per subgroup, the
relevance of incorporating genomic features was especially visible in
patients, who received less prior therapies.

Upon internal validation of the other classification models, espe-
cially the clinicotranscriptomics model performed well with a specifi-
city of 50%, sensitivity of 89% and AUC of 0.83. Predicted good
responders showed a median treatment duration of 243 days (95% CI
110-NA, n = 9), compared to 138 days (95% CI 112-168, n = 14) for poor
responders (q =0.020) (Table 2, Suppl. Fig. 6).

External validation cohort
Next, the models were externally validated in the West Coast Dream
Team (WCDT) cohort, which included 56 and 77 mCRPC patients for

whom WGS and WTS of metastatic biopsies, respectively, was avail-
able, and who were treated with ARSI after these biopsies 35. In con-
trast to the CPCT-02 cohort, clinical outcome in theWCDT cohort was
only expressed as overall survival from time of biopsy (OS). Never-
theless, as the correlation between treatment duration and overall
survival was clear for patients within the CPCT-02 cohort (mean OS
(95% CI) 1613 days (1365–1860) (n = 66), 764 days (547–982) (n = 25)
and 774 days (568–979) (n = 64) for true good, ambiguous and poor
responders, respectively, p <0.001 for true good vs poor responders),
use of the WCDT cohort for external validation was considered justi-
fied (Suppl. Fig. 7a).

After application of the clinicogenomics classification model on
the external validation cohort, survival analyses of predicted classes
revealed overall longer OS (p = 0.015; log-rank test) for predicted good
responders (n = 27) vs. predicted poor responders (n = 29), with a
median (and IQR) of 34.1 (25.7-NA) and 17.4 (9.8-31.5) months,
respectively, and a hazard ratio (95% CI) of 0.47 (0.28-0.88) (Fig. 7).

In response to the correlation of treatment duration and OS in
true responders in the internal cohort and the difference in OS in
predicted responders in the external validation cohort, we explored
OS in predicted responders in the internal training and validation
cohort. Nevertheless, this did not reveal statistically significant differ-
ences between predicted poor and good responders (n = 31 vs. n = 36,
q = 0.88 and n = 25 vs. n = 30, q = 0.15, respectively; in total 46% of the
patients had to be censored for OS) (Suppl. Figure 7b, c).

Finally, we validated the other classification models within the
external cohort. As in the internal validation cohort, the clinicotran-
scriptomics model showed good performance with a hazard ratio of
0.51 (95% CI 0.30–0.86) and a median OS of 1017 days (IQR 771–1691,
n = 42) and 589 (IQR 487–959, n = 35) for predicted good and poor
responders, respectively (p =0.001) (Suppl. Fig. 8). Combinationof the
genomics and transcriptomics in an averaging ensemblemodel did not
result in a better performance than the single models.

Application of an adapted clinicogenomics model to WES data
To explore the possibility of applying the clinicogenomics model to
targeted sequencing data, we assessed the importance of the indivi-
dual features to the clinicogenomics model. TMB and prior ARSI were
more valuable than the number of SVs, deletions and tandem dupli-
cations (Suppl Fig. 9). As TMB is also the only feature that could be
partially extracted from targeted sequencing data, we developed a
simplifiedmodel based on TMB and prior ARSI only. Subsequently, we
applied this model to WES data, that was extracted from the original
WGS data, showing a specificity of 56%, sensitivity of 84% and an AUC
of 0.71 in the training cohort and good performance in the internal
(q = 0.001) and external validation cohort (p = 0.029) (Table 2, Fig. 8).

Discussion
Within this study, we performed an unbiased discovery of biomarkers
in whole genomic and transcriptomic data to predict response of
mCRPC patients to ARSI. Subsequently, we developed multiple clas-
sification models, that can predict response to ARSI in individual
mCRPC patients, using machine learning. The clinicogenomics model
as well as the clinicotranscriptomics model, both based on prior
treatment with ARSI and genomic or transcriptomic features,

Fig. 4 | Differential gene expression analysis between good and poor respon-
ders within the discovery cohort reveals 151 putative markers with predictive
potential. Overview of reads counts after variance-stabilizing transformation,
shown as Z-scores (negative values in green and positive values in red) for the 151
putativemarkerswithpredictive potential betweengood andpoor responderswith
matching whole-transcriptome data (n = 47 and 47, respectively). Each column
represents a distinct sample. Samples and genes were clustered (using their
respective values as displayed) using Canberra distance and the Ward.D2 method.
In descending order, the top and bottom annotation tracks represent: Type and

duration of ARSI treatment. Y-axis representing the ARSI treatment duration (in
days) whilst the coloring represents the type of given treatment (abiraterone
acetate + prednisone in blue, enzalutamide in orange). Y-axis is shown in square-
root transformedscale. Responder category.Generalizedbiopsy location.The inner
right-hand boxplot depicts the Log2FC (dot) and Log2FC standard-error (depicted
as whiskers) between poor vs. good responders. The outer right-hand boxplot
depicts the number of LOOCV-iterations in which each gene found to be statisti-
cally significant differentially expressed.
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respectively, performed well in the training set, internal and external
validation cohort. The averaging ensemble model, based on a combi-
nationof the genomics and transcriptomicsmodel, performedgoodas
well during training and external validation, but could not distinguish
good from poor responders in the internal validation. In addition, we
considered it less suitable for clinical application, since it did not
outperform the clinicogenomics and clinicotranscriptomics model,

and obtaining the combined sequencing data would be more expen-
sive. The exome-only approximation of the clinicogenomics model
showed good results. Application of this model in current clinical
practice would be lower in costs than the WGS-based model. In addi-
tion, genomics-based models might also be effective with liquid
biopsy-obtained sequencing data, which offers possibilities for less
invasive response prediction.

Fig. 5 | Development of classification models, using Leave-One-Out Cross-
Validation (LOOCV) and label permutation. a)ROC curves with AUC of the
genomics-only model and transcriptomics-only models using multiple numbers of
independent components (ICs). b)ROC curves with AUC of ensemble experiments.
Stacking and averaging ensembles were based on genomics-only and best per-
forming transcriptomics (40 ICs) models. Bagging classifier and multi-model
averaging ensemble were based on models using randomized subsets of features
fromcombined genomics and transcriptomics data. c)ROC curveswith AUCofbest
performing omics modelspo[[, clinical data-only model (ARSI and chemotherapy),
and addition of clinical data features to the genomics-only model in multiple

combinations. Addition of prior ARSI treatment data to the transcriptomics-only
model is also shown. In a final combined experiment, both genomics, tran-
scriptomics and prior ARSI clinical features were jointly tested. N.t.l = number of
prior treatment lines. d)Shuffled label permutation experiment for the genomics-
only, transcriptomics-only, averaging ensemble, clinicogenomics, clinicotran-
scriptomics and clinicomultiomics (based on addition of prior ARSI) models.
Boxplots represent median, inter-quartile range and full range. e)Summary of best
performing models based on genomics, transcriptomics and clinical data, visua-
lized by ROC curves with corresponding AUC.
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Clinical differences between true good and poor responders
included a lower number of prior treatment lines, less prior treatment
with enzalutamide and lower PSA at time of biopsy within good
responders, and were expected based on previous studies36–38. Prior
treatment with enzalutamide could have caused resistance to ARSI
within the poor responders, whilst the lower PSA at start of ARSI within
the good responders has previously been associated with a better
prognosis36. However, as baseline PSA was only available for a part of
the patients, this could not be included in the training of the classifi-
cation models37,38. Nevertheless, it might be interesting to add this
feature to the models during future optimization.

Comparison of genomic characteristics in the internal training set
revealed four significantly enriched genomic markers within the true
poor vs. good responders. These genomic characteristics included
TMB, the total number of structural variants and the total number of
tandem duplications and deletions. Genomic aberrations within AR,
TP53, PTEN, RB1, CTNNB1, and chromosomal arms aneuploidies, that
were previously associated with ARSI resistance, could not be con-
firmed within our internal training set8,15–19,22,23,39. In addition to geno-
mic characteristics, we observed uniform presence of genes and gene-
sets regulating or attributed to EMT, tumorigenesis, poor survival and/
or aggressiveness, having greater expression within the poor respon-
ders vs. the good responders. AR-V7, which was previously associated
with ARSI resistance, was not differentially expressed in the internal
training cohort8–14.

These discrepancies might be caused by differences in prior
therapy and used clinical outcome between the cohorts of the large
tissue-based studies (SU2C West Coast and East Coast cohort). In
addition, the SU2C West Coast cohort compared enzalutamide-naïve
and enzalutamide-resistant patients whilst we investigated pre-
treatment biopsies of good and poor responders for WTS analyses.
The cfDNA-based studies often studied only a targeted panel of genes
and might be confounded by a varying (unknown) tumor fraction
within blood.

The CPCT-02 cohort is a diverse cohort of mCRPC patients, who
varied inphaseof their disease, as is for example illustratedby thewide
distribution in number of prior therapies30. As we expected treatment
duration to be less influenced by disease phase than overall survival,
we preferred treatment duration above overall survival as clinical
endpoint. Additionally, treatment duration was already available for
most patients,whileoverall survivalwouldhaveneeded tobecensored
for approximately half of the patients, which would have increased
uncertainty in training and internal validation of the model. Never-
theless, treatment duration and overall survival appeared to be highly
correlated within the CPCT-02 cohort, justifying its use in the WCDT
validation cohort, for which only OS was available35.

For the clinicogenomics model, additional analyses were per-
formed. The addition of the ambiguous prediction category in the
internal validation cohort increased the overall stratification of ARSI-
treatment duration for good and poor predicted responders, which

Fig. 6 | Overview of the clinicogenomics prediction model on the internal
validationcohort a-n).Overviewof theprediction scores andgenomic features for
classifying as a poor or good responder within the internal validation cohort
(n = 76) using the clinicogenomic classification model. Samples are ordered by
descending prediction score (poor to good responder). A prediction score of at
least 60% for one of two respective classes (poor or good responder) were
required, otherwise samples were designated as ambiguous predictors. For each
patient (n = 76), the following tracks are shown: a Prediction score. The prediction
score for either the good or poor responder class. A score of 0.5 means equal
likelihood of being either class. b Predicted class based on the clinicogenomics
classifier. c True responder class, based on ARSI treatment duration. d Type and
duration of ARSI treatment. Y-axis representing the ARSI treatment duration (in
days) whilst the coloring represents the type of given treatment (abiraterone
acetate + prednisone in blue, enzalutamide in orange). Y-axis is shown in square-
root transformed scale. e Tumor mutational burden (TMB). The number of

genomic mutations averaged per megabase over the entire genome (TMB).
Threshold for high-TMB status (TMB ≥ 10) is shown by a horizontal red dotted line.
Y-axis is shown in square-root transformed scale. f Total no. of structural variants.
Y-axis is shown in square-root transformed scale. g Total no. of large-scale dele-
tions. Y-axis is shown in square-root transformed scale. h Total no. of large-scale
tandem duplications. Same as (g), but for tandem duplications. i Prior abiraterone
acetate + prednisone and/or enzalutamide treatment was given to patient. j Prior
docetaxel and/or cabazitaxel treatment given to patient. kMicrosatellite-instability
(MSI) status. l Homologous recombination deficiency (HRD) status as detected by
CHORD.m Presence of chromothripsis. n Generalized biopsy location. o Survival
analysis using ARSI-treatment duration (in days) and whether patients were still
currently receiving ARSI (event) using the two-group scheme of poor and good
predictors. Median OS with 95% confidence intervals are shown per strata. p)Same
aso, but between good (≥ 60%probability) poor (≥ 60%probability) and remaining
ambiguous predictions.
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were predicted with at least 60% predictive probabilities. To explore
the additional value of the clinicogenomics model in clinical sub-
groups, the performancewas tested in uniformpre-treated subgroups
within our internal validation cohort. Despite being limited by the
number of patients within the subgroups, the relevance of incorpor-
ating genomic features was especially visible in patients, that were not
heavily pre-treated. Interestingly, this is also the patient group, that
would benefit most from improved treatment guidance, as the

number of available therapies is highest in the beginning of the disease
course.

By simultaneously interrogating bothWGS andWTSwithmachine
learning,wewereable toperformanunbiaseddiscovery of biomarkers
for response to ARSI in one of the largest cohorts of mCRPC patients
with extensive sequencing data. Although clinical studies often have
relatively small sample sizes for statistical analyses of whole omics
data, machine learning techniques such as dimensionality reduction

Fig. 7 | External validation of clinicogenomics model in WCDT cohort. Overall
survival (OS) of patients in the external WCDT cohort from time of first biopsy to
death for patients with an ARSI as the next therapy after biopsy. Patients were sub-
grouped based on the clinicogenomics model as predicted good or poor

responder. Survival curves were visualized using the Kaplan-Meier method and
hazard ratios were calculated using Cox proportional hazards regression. P value
was calculated using the Wald-test/log-rank test. Median OS with 95% confidence
intervals are shown per strata.

Fig. 8 | Predictive values of WES-based clinicogenomics model. a ROC curves
and AUCs ofWGS clinicogenomics and exome-only (WES) clinicogenomicsmodels
in LOOCV. b Survival analysis using ARSI-treatment duration (in days) and whether
patientswere still currently receiving ARSI (event) using the three-group scheme of
poor, good and ambiguous predictors for theWES (TMB) + prior ARSI classification
model on the internal validation cohort (n = 76). Survival curves were visualized
using the Kaplan-Meier method and hazard ratios were calculated using Cox

proportional hazards regression. Significance was calculated using the Wald-test/
log-rank test between all groups (p-value) and between poor vs. good responders
only (q-value). Median OS with 95% confidence intervals are shown per strata.
c Same as (b) for overall survival (OS) of patients in the externalWCDT cohort from
time of first biopsy to death for patients with an ARSI as the next therapy after
biopsy. Patients were sub-grouped based on the WES (TMB) + prior ARSI classifi-
cation model as predicted good or poor responder.

Article https://doi.org/10.1038/s41467-023-37647-x

Nature Communications |         (2023) 14:1968 12



with Independent Component Analysis, and LOOCV, enabled the
selectionof predictive featureswhilst preventingoverfitting.ML-based
classification models can, in contrast to the traditional statistical
models, determine the most predictive combination of biomarkers
from a large set of features and predict response of future individual
patients.

Up to now, no biomarkers for response prediction to ARSI are
implemented in clinical practice. The most extensively studied bio-
marker is AR-V7 in CTCs, which presence has been associated with a
shorter PFS and OS14. However, questions are raised about the con-
foundingprognostic value of AR-V7, and a randomized controlled trial,
showing better outcomes for AR-V7 positive patients, who were trea-
ted with other therapies than ARSI, hasn’t been performed yet40. The
observed performance of our classificationmodels is not high enough
for direct application in the clinical setting. In addition, we can’t dis-
tinguish whether our models have rather a predictive or prognostic
value, as in this study patients were only treated with ARSI. To the best
of our knowledge, no other machine learning-based models, that aim
to predict response to ARSI in mCRPC patients, have been published.

This study does show the possibilities of response or prognosis
prediction based on whole omics data. We also explored the perfor-
mance of a simplified version of the clinicogenomics model on
approximated WES data, which showed good results in the training
and validation cohorts aswell. Currently, the lower costs ofWES are an
advantage for the clinical implementation of the simplified model.
Nevertheless, the implementation of a wider range of genomic fea-
tures in themodel, aswithin theoriginal clinicogenomicsmodel,might
result in better generalizability in other patient cohorts. Additionally,
although whole omics sequencing is not available for all patients
nowadays, it is expected that WGS will be more cost-efficient than
targeted panel sequencing in the near future due to decreasing costs
and increasing number of targeted therapies41.

In theory, the clinicogenomics model might also be extended to
liquid biopsies if sequenced deeply enough to reliably obtain tumor
mutational burden and structural variant load. However, obtaining
comparably detailed sequencing data from liquid biopsies might be
challenging due to the often low tumor fraction and amount of cfDNA,
which can be isolated from blood. Nevertheless, analysis on cfDNA
does harbor the potential to better capture the inherent heterogeneity
of (metastatic) cancer and different clones present throughout the
body and would be a worthwhile endeavor to follow up. However, a
similar modeling approach to generate a cfDNA-specific model would
likely yield better results and might better take into consideration the
landscape as seen within cfDNA.

Predictionmodels could be used to not only stratify patients with
a predicted poor response to ARSI for alternative treatments, but also
to identify those patients, which are in highest need of additional
therapies. In response, clinical trials can focus on the subgroup of
patients who respond poorly or moderately to standard-of-care
options, such as ARSI, and who would benefit most from the devel-
opment of additional therapies.

In conclusion, response to ARSI in mCRPC patients can be pre-
dicted using machine learning-based classification models, that inclu-
ded whole genomics, transcriptomics and prior treatment data. After
optimization and prospective validation, these models could be used
to guide treatment decisions and select those patients for clinical
trials, that would benefit mostly from the development of therapies.

Methods
Study design and patients
With 41 participating hospitals within the Netherlands, the Center for
Personalized Cancer Treatment (CPCT) aims to improve cancer treat-
ment by selecting patients for clinical trial participation based on Next
Generation Sequencing data of tumor tissue. A list of participating
hospitals is available via www.cpct.nl/ziekenhuizen. The prospective

CPCT-02 biopsy study (NCT01855477) has been approved by the
medical ethical committee of the University Medical Center Utrecht
and has been conducted in accordance with the Declaration of Hel-
sinki. In- and exclusion criteria were published before20,30,42. In short,
patients were eligible if they had a locally advanced ormetastatic solid
tumor for which a next line of systemic treatment with a registered
anti-cancer agent was indicated, and a safe tumor biopsy could be
obtained. All patients provided written informed consent before any
study procedures were performed. Compensation for participation
was not provided.

For the current analysis, all mCRPC patients, who underwent a
successfully sequenced biopsy from a metastatic lesion within the
CPCT-02 study between February 2015 and October 2019, and who
were subsequently treated with AAP or enzalutamide, were included.
As CPCT-02 is an ongoing study with more than 4000 patients, we
used a snapshot of the clinical data from December 19th, 2021 for the
current analysis (ALEA Clinical). Clinical data collection is performed
by trained local data managers and supervised by a central data
manager.

Stratification of patients based on response to ARSI
As themain reason for stop ofARSI is progression of disease and rarely
toxicity, patients were stratified according to treatment duration (TD)
as surrogate for treatment response4,5,43. Patients were stratified in
good (TD ≥ 180 days), ambiguous (TD 101–179 days), and poor
(TD≤ 100 days) responders. Cut-off values were based on clinical
practice. We considered patients with a treatment duration of
≤100 days as true poor responders, as 100 days (~12 weeks) is typically
the first major decision point for treatment (dis)continuation accord-
ing to the PCWG3 criteria44. In addition, another threshold was set at
≥180 days to distinguish the true good responders from the ambig-
uous responders. To minimize the chance of bias due to incorrectly
categorized patients, only the good and poor responder group were
used for biomarker discovery and training of the classification model.
Nevertheless, for a complete overview of the patient cohort, the
ambiguous responders are visualized in the figures and are included
during the testing of the classification model.

Study procedures, sample processing, and sequencing
strategies
Study procedures consisted of peripheral blood samples for germline
DNA and image-guided core needle biopsies of a metastatic lesion.
Biopsies were obtained before start of systemic treatment, indepen-
dent of line of therapy. Detailed study procedures were published
before30,42. In short, core needle biopsies were obtained according to
standardized protocols and frozen in liquid nitrogen, directly after the
procedure. In addition, a tube of blood was drawn. Further sample
processing has been performed by the Hartwig Medical Foundation,
Amsterdam, the Netherlands. Tumor cellularity was estimated by an
experienced pathologist based on a single 6 µm haematoxylin and
eosin (H&E) stained section. DNAwas isolated fromblood andbiopsies
with ≥30% tumor cellularity, according to supplier’s protocol (Qiagen)
using the DSP DNA Midi kit and QIAsymphony DSP DNA Mini kit,
respectively. Barcoded DNA libraries were prepared from 50–100 ng
of genomic DNA (TruSeq Nano LT library preparation, Illumina) and
sequenced on HiSeqX generating 2 × 150 read pairs using standard
settings (Illumina).

Whole-transcriptome sequencing was performed according to
the manufacturer protocols using a minimum of 100ng total RNA
input. Total RNA was extracted using the QIAsymphony RNA kit
(QIAGEN, FRITSCH GmbH, Idar-Oberstein, Germany). Paired-end
sequencing of (m)RNA was performed on either the Illumina Next-
Seq 550platform (2 x 75bp; Illumina, SanDiego, CA,USA) andNovaSeq
6000 platform (2 x 150bp; Illumina, San Diego, CA, USA) using manu-
facturer’s protocols.
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Processing and analysis of the whole-genome sequencing data
Pre-processing of whole-genome sequenced samples. Whole-
genome sequencing samples were pre-processed by the GRIDSS,
PURPLE, LINX workflow as detailed previously by Priestley et al. and
Cameron et al.30,45. PURPLE v3.1, GRIDSS v2.11.1 and LINXv1.16was used
by the Hartwig Medical Foundation (HMF) using a matched-normal
design using peripheral blood.

Additional processing of whole-genome sequenced samples. From
the WGS-data obtained from the HMF, we performed additional pro-
cessing using a custom workflow as implemented in the R2CPCT
(v0.3.2) package. Genomic variants were re-annotated using Variant
Effect Predictor46 (VEP; release 104) based on GRCh37 and GENCODE
v38 annotations using the custom workflow available from https://
github.com/J0bbie/VariantAnnotation_VEP. In addition, gnomAD47

(genome and exome v2.1.1) and ClinVar48 (accessed on 27-09-2021)
annotations were added in addition to default VEP annotations.

Genomic (somatic) variants were filtered if they were present in
≥5 samples in the Panel-Of-Normals (PON) of the HMF. In addition,
genomic variants were filtered if they were present in the gnomAD
exome and/or genome populations with an allele-frequency (AF) of
0.001 and 0.005, respectively. Large structural somatic variants (SV),
as detected by GRIDSS (PASS-only), were imported and annotated
using the StructuralVariantAnnotation package (v1.10.0) into translo-
cations, deletions, insertions, inversions, tandem duplications and
single-breakends (in which the partnering break-end could not be
detected).

Genome-wide ploidy, overlapping copy-number segments and
their estimated tumor purity-corrected absolute copy-number as
derived by PURPLE were used in assessing gene-wise copy-number
alterations. If the overlapping copy-number segment of a gene har-
bored an estimated absolute copy-number ≤0.75, the gene would be
classified as an “deep deletion”. Similarly, if the estimated absolute
copy-number was only half of genome-wide ploidy, it would be clas-
sified as an “deletion”. If the estimated absolute copy-number was 1.5
times the genome-wide ploidy, it would be classified as an “amplifi-
cation” and if the estimated absolute copy-number was 3 times the
genome-wide ploidy or constituted ≥15 copies, it would be classified as
a “deep amplification”. For chromosome X and Y, a correction of
genome-wide ploidy minus one was used to correct for haploidy in
these chromosomes. In addition, if the gene-wise B-allele frequency
based on heterozygous germline markers was ≤0.15 or ≥0.85, it would
also be classified as a Loss-Of-Heterozygosity (LOH) event. Per gene,
this approachwas also used to detect deleted or amplified exons using
the same criteria.

CHORD (v2.0)49 was used to assess samples with BRCA1/BRCA2-
associated homologous repair deficiency using default settings. Shat-
terSeek (v0.6)50 was used to detect putative chromothripsis events
using best-practice settings as detailed by the authors. The criteria for
a chromothripsis-like event were based on the following criteria: (a)
total number of intra-chromosomal SVs involved in the event ≥25; (b)
max. number of oscillating CN segments (2 states) ≥7 or max. number
of oscillating CN segments (3 states) ≥14; (c) total size of chromo-
thripsis event ≥20 megabase pairs (Mbp); (d) satisfying the test of
equal distribution of SV types (p > 0.05); and (e) satisfying the test of
non-random SV distribution within the cluster region or chromo-
some (p ≤ 0.05).

Discovery of genes under evolutionary selection
Weperformed adN/dS analysis on somaticmutations (SNV and InDels)
using dndscv (v0.0.1.0)51 on respective genome sequences and tran-
script annotations using a custom transcript database based on
ENSEMBL Genes (v104)/GENCODE (v38) annotations. We performed a
dN/dS analysis over the entire discovery cohort (n = 155) and on the
poor andgood responders, separately. Genes-of-interestwere selected

based on the statistical significance, corrected for multiple hypothesis
testing (Benjamini-Hochberg), which integrated all mutation types
(missense, nonsense, essential splice-site mutations and InDels; qglo-
bal_cv≤0.1) and/or without InDels (qallsubs_cv ≤0.1).

Unbiased detection recurrent and focal copy-number aberra-
tions and overlap with known drivers
We performed GISTIC2 analysis (v2.0.23) for the WGS-discovery
cohort on the PURPLE-derived copy-number segments using tumor
purity-corrected absolute copy-numbers as input (log2-transformed −
1, i.e., diploid is set to zero); haploid chromosomes in male samples
were corrected by adding a pseudo-count (of 1) prior to log2-trans-
formation. Segmentswith log2-transformed values ≤10were set to −10.

GISTIC2 (v2.0.23)wasperformedusing the following settingswith
default GISTIC2-provided GRCh37 annotations:

gistic2 -b <output > -seg <segments > -refgene hg19.UCSC.add_-
miR.140312.refgene.mat -genegistic 1 -gcm extreme -maxseg 4000
-broad 1 -brlen 0.98 -conf 0.95 -rx 0 -cap 3 -saveseg 0 -armpeel 1
-smallmem 0 -res 0.01 -ta 0.3 -td 0.3 -savedata 0 -savegene 1 -qvt 0.1
-twoside 0

We performed this GISTIC2 analysis for the full discovery cohort
(n = 155) and separately on the poor and good responder groups.

GISTIC2 output was imported and re-annotated using GENCODE
annotations (v38; min. 10 bp overlap) thereby using the wide-peak
limits of the recurrent copy-number peaks (q ≤0.1) to classify the
region containing the likely target(s) of the recurrent and focal copy-
number aberration.

Genes were annotated to GISTIC2 peaks (q ≤0.1) based on the
following strategy;
1. All overlapping genes (min. 10 bp) were assigned to the each

GISTIC2 peak.
2. If multiple genes overlap a GISTIC2 peak, known driver genes

would be used to annotate that peak. E.g., if a GISTIC2 peak
overlapped both MYC and a near-adjacent non-driver gene, only
MYC would be chosen as possible target.

3. If no overlapping genes could be found, GISTIC2 peaks were
annotated with the nearest GENCODE (v38) protein-coding gene.

The peak amplitude thresholds were used to represent the pre-
sence (or absence) of the observed GISTIC2 peak within each respec-
tive sample; Low amplitude (t > −0.3), Med. amplitude (−0.3 > t > −1.3)
and High amplitude (t < −1.3).

Analysis and quantification of known mutational signatures
Mutational signatures analysis was performed using the Mutatio-
nalPatterns package (v3.2.0) basedonCOSMIC signatures (v3.2; single-
base substitutions, doublet-substitutions and InDels-based)52. Sample-
specific signature refitting was done by finding the optimal contribu-
tion of the COSMIC signatures (v3.2). Proposed etiologies for the
COSMIC signatures were taken from the COSMIC signature data-
base (v3.2).

Detection of genomic differences between poor and good
responders
Differences in genomic characteristics between poor and good
responders were tested using a two-sided Mann-Whitney U test with
Benjamini-Hochberg correction on the internal validation cohort
(n = 79). We tested the following genomic characteristics: tumor
mutational burden, total number of deletions (SV), total number of
inversions (SV), total number of insertions (SV), total number of
translocations (SV), total number of tandem duplications (SV), total
sum of structural variants per sample and genome-wide ploidy.

Mutual-exclusiveness of mutant genes, chromothripsis status (≥1
chromothripsis event in sample) and HRD-status were assessed
between poor and good responders using a two-sided Fisher’s Exact
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Test with Benjamini–Hochberg correction. Genes with protein-coding
mutation(s) and/or deep amplification or deep deletion status were
counted as mutants within this analysis.

Processing and analysis of the whole-transcriptome sequen-
cing data
Pre-processing ofwhole-transcriptomedata. Prior to alignment, raw
reads (per lane) were pre-processed using fastp (v0.23.2) to trim
adapter sequences (paired-end), low-quality bases and perform low-
complexity trimming but without a min. length selection on the
remainder of the read. Subsequently, these corrected reads are aligned
against the human reference genome (GRCh37) with GENCODE (v38)53

annotations using STAR (v2.7.9a)54. Alignment was performed against
the full reference genome and also only against the transcriptome to
allow for downstream calculation of the fragments per kilo base per
million mapped reads (FPKM). Per sample, all lanes (both R1 and R2;
paired-end) are used during alignment using the following command:

STAR --genomeDir <GRCh37 > --readFilesIn <R1 lanes > <R2
lanes > --readFilesCommand zcat --outFileNamePrefix <prefix > --out-
SAMtype BAM SortedByCoordinate --outSAMunmapped Within --out-
SAMattributes All --outFilterMultimapNmax 10 --outFilterMismatch
Nmax 3 --limitOutSJcollapsed 3000000 --chimSegmentMin 10 --chi-
mOutType WithinBAM SoftClip --chimJunctionOverhangMin 10
--chimSegmentReadGapMax 3 --chimScoreMin 1 --chimScoreDropMax
30 --chimScoreJunctionNonGTAG 0 --chimScoreSeparation 1 --out-
FilterScoreMinOverLread 0.33 --outFilterMatchNminOverLread 0.33
--outFilterMatchNmin 35 --alignSplicedMateMapLminOverLmate 0.33
--alignSplicedMateMapLmin 35 --alignSJstitchMismatchNmax 5 −1 5 5
--twopassMode Basic --twopass1readsN −1 --runThreadN 10 --limit-
BAMsortRAM 10000000000 --quantMode TranscriptomeSAM --out-
SAMattrRGline <sample-specific readgroup>

Post-alignment, duplicate reads were marked using sambamba
markdup (v0.8.1)55 and general alignment metrics (e.g., number of
primary-mapped reads) were retrieved using sambamba flag-
stats (v0.8.1).

Determining per-gene expression. Read-counts per gene, from
GENCODE annotations (v38), were retrieved using featureCounts
(v2.0.3)56 on primary-aligned reads only with paired-end and strand-
specific options:

featureCounts -T 50 -t exon -g gene_id --primary -p -s (1 or 2) -a
<GENCODE v38 > -o <output > <Genome-aligned BAM files>

FeatureCounts was performed on NextSeq 550WTS samples with
-s = 2whilst NovaSeq 6000WTS samples were performedwith -s set to
1 to address differences in library read-orientations.

Only protein-coding genes were used (n = 19449) in all down-
stream analysis.

Batch-effect correction. To remove potential bias regarding site of
biopsy, we used the full CPCT-02 mCRPC cohort. We performed dif-
ferential analysis using DESeq2 per major biopsy site (≥5 samples)
versus the rest; the major sites being liver, lymph node, bone and
“Other”, i.e., liver (n = 54) vs. the rest (n = 267), lymph node (n = 159) vs.
the rest (n = 162), bone (n = 72) vs. the rest (n = 249) and “Other”
(n = 36) vs. the rest (n = 285) on all protein-coding genes. Following
default DESeq2 analysis (Wald test), we performed LFC-shrinkage
using the ‘ashr’ method57. Next, genes with the following criteria were
designated as putative biopsy-site (batch-effect) markers: adjusted p
(q) ≤ 0.05, log2 fold-change standard error (lfcSE) ≤ 1 and |log2 fold-
change | ≥ 1. This resulted in a list of 3419 distinct genes, which were
significantly enriched (or depleted) within liver, lymph node and/or
bone biopsies (Suppl. Table 1). These markers were removed prior to
all subsequent whole-transcriptome analysis.

A t-SNE approach (θ =0.5, perplexity = 15, dims = 2, 1000 itera-
tions) was performed to visualize the batch effect of alternate biopsy

sites and the effectiveness of the removal within the 155 whole-
transcriptome sequenced samples used as discovery cohortwithin this
study and no lingering batch-effects were observed.

Differential expression analysis between treatment response
groups. We performed differential expression analysis using DESeq2
on all protein-coding genes without the designated biopsy-site specific
genes (as described above) between good responders (n = 38) vs. poor
responders (n = 41) within our internal validation cohort. Next, genes
with the following criteria were designated as differentially-expressed
genes: adjusted p (q) ≤ 0.05, an average read count over all samples
(baseMean) ≥ 25, Log2FC standard error ≤ 1 and |log2FC | ≥ 0.5.

Quantification of AR-V7 expression. We quantified the percent
spliced in (PSI) of AR-V7 by comparing the number of junction-reads
which spanned AR exon 2 and cryptic exon 3 (ARV7) vs. the number of
junction-reads spanning AR exon 1 and exon 2 (ARe12) and dividing
them appropriately:

PSIARV7 =
ARV7 reads

ðARV7 reads +ARe2312 readsÞ
ð1Þ

Design of ML-classification models for prediction of response
to ARSI
The internal cohort of patients with matched WGS and WTS was divi-
ded in a training- and internal validation set of 70% (n = 79) and 30%
(n = 34) of the samples, respectively. Good and poor responders were
randomly divided. Ambiguous responders were included in the vali-
dation set only. The training set was used in LOOCV (‘LeaveOneOut’
from sklearn.model_selection) to determine model performance and
then the full training set was used to train amodel, that was applied on
the internal validation set. To perform validation on the external
cohort, the same training set was used to train a classifier, but forWTS
data, additional preprocessing stepswere applied (see below). Figure 2
shows themachine learningmodel design and evaluation steps (figure
made in BioRender.com).

Additional experiments with hyperparameter tuning in grid
search were applied for the best performing models in LOOCV. The
hyperparameter combinations were evaluated based on accuracy
score (‘sklearn.metrics.accuracy_score’).

Classification input preprocessing and model design. The four sig-
nificantly divergent genomic features between good and poor
responders to ARSI, namely TMB, total number of structural variants,
total number of tandem duplications and total number of deletions,
were centered and scaled prior to classification. Standard scalingwas a
necessary pre-processing step based on the comparison of genomic
feature distributions in the training, internal and external cohorts
(Suppl. Figure 10). To train the genomics and genomics-clinical cov-
ariate models, Logistic Regression classifier was applied (‘LogisticRe-
gression’ from sklearn.linear_model, solver = ’liblinear’).

The raw transcriptomics data was TMM transformed (edgeR) and
centered and scaled (‘StandardScaler’ from sklearn.preprocessing,
with_mean= True, with_std = True). To perform dimensionality reduc-
tion, sparse PCA58, conventional PCA59 and Independent Component
Analysis60 were evaluated. While evaluating the cumulative explained
variance of the principal components is a widely used approach to
select the optimal number of components to describe the dataset with
PCA, this information is not available when applying sparse PCA and
Independent Component Analysis (additionally the latter being an
entirely different approach). Therefore, to compare sparse PCA
(‘sparsePCA’ from sklearn.decompostion), PCA (‘PCA’ from sklearn.de-
composition) and Independent Component Analysis (‘FastICA’ from
sklearn.decomposition), thesemodels were first applied on the training
dataset with target sparse component number (‘n_components’)
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ranging from 10 to 50. Afterwards, a Linear Support Vector Classifier
(Linear SVC) (‘LinearSVC’ from sklearn, penalty = ’l2’, loss = ’

squared_hinge’, C = 1.0, max_iter = 10’000) was trained on a given set of
components which was subsequently calibrated (‘Cali-
bratedClassifierCV’ from sklearn). Lastly, all dimensionality reduction-
based classification models were evaluated based on AUC (Suppl.
Fig. 11) and the best performing model was chosen for internal and
external validation.

Combining genomic and transcriptomic models and data. As an
attempt to exploit the strength of both models and data types, dif-
ferent ensembling techniques were applied. A stacking classifier was
built using ‘StackingClassifier’ from sklearn.ensemble where the pre-
diction probability output of both models was used in final_estima-
tor=LogisticRegression() to calculate the final prediction. The averaging
ensemble approach was carried out by averaging the prediction
probabilities from the best transcriptomic model (40 independent
components or ICs) and the genomic model. A multi-model averaging
ensemble was built by averaging predictions from transcriptomics-
genomics averaging ensemble model pairs from 100 randomized
evaluations. In each individual averaging ensemble, the tran-
scriptomics model used n randomly selected components (max.
n = 40; from the best performing 40 independent components (ICs)
based transcriptomics data decomposition) fromwhich the prediction
was averaged with the genomics model. Each of these individual
ensemble results were then aggregated and averaged over the 100
experiments. Lastly, a bagging classifier was built using ‘Bagging-
Classifier’ from sklearn.ensemble with n_estimators = 100, max_sam-
ples = 1.0, bootstrap= True, oob_score = True and max_features =0.35,
by randomly sampling from a joint set of transcriptomics (40 ICs) and
genomics features for each individual learner. Boosting ensemble
methods that require extensive subsampling were not assessed due to
the limited size of the training set (79 samples). Moreover, the main
goal of ensembling was to reduce variance (due to potential over-
fitting) and not bias. All tested ensemble approaches were evaluated in
LOOCV in the initial model design step.

Addition of prior treatment data to classification models. Addi-
tionally, the WGS-only and WTS-only classification models were
extended with baseline clinical variables: AAP/enzalutamide pretreat-
ment, chemotherapy pretreatment and the number of treatment lines.
The former two clinical variables were binary (0 – not received, 1 –

received) while the number of treatment lines was ranging from0 to 9.
The clinicogenomics, clinicotranscriptomics and a joint WTS+WGS+
ARSI models were trained and evaluated in LOOCV.

Shuffled labels experiments onfinal classificationmodels. Shuffled
label experiments were carried out on the best performing WTS-only,
WTS + ARSI, WTS +WGS+ARSI, WGS-only, WGS +ARSI and ensemble
(WTS+WGS) models. By permuting the sample labels, the corre-
sponding distribution of the null hypothesis (=’there is no meaningful
feature pattern that can be used to distinguishbetween poor and good
responders’) canbe estimated. The label shuffling proceduremeasures
how likely it is that the observed classifier accuracy can be obtained by
chance. For each classification model, the sample labels were ran-
domly shuffled in 10’000 iterations using numpy.random.shuffle().
Afterwards, LOOCV was performed in each iteration, where the shuf-
fled labels were used in model training and then a left-out test sample
labelwas predicted in each fold. The same shuffled labelswereused for
all classification models in each iteration.

Validation of classification models in internal cohort
For the validation of the WGS-only and clinicogenomics classification
models, the genomic features were centered and scaled within the
internal cohort data. To perform dimensionality reduction on the

transcriptomics data of the internal validation cohort, the best inde-
pendent components model that was already fitted on the training
cohort was applied to transform the dataset. Following the dimen-
sionality reduction, the transformed data was used not only in the
WTS-only model but in the combined WTS +ARSI, WTS +WGS+ARSI
and ensemble (WTS +ARSI)models to predict responder groups in the
internal validation cohort.

Diagnostic accuracy and predictive values were evaluated for the
true good and poor responders within the internal validation cohort,
for comparison with the training set, as well as within the complete
internal validation cohort, including true ambiguous responders too.
Additionally, treatment duration and overall survival were compared
in the predicted groups. Subgroup analyses in similarly pre-treated
patients were performed for the clinicogenomics model to evaluate
the additional predictive value of genomics to clinical data.

Validation of classification models in external cohort
Classificationmodels were validated in the external West Coast Dream
Team cohort (WCDT), which included mCRPC patients treated with
ARSI after biopsy21,35. WGSwas available for 56 patients, whileWTSwas
available for 77 patients. Clinical outcome was defined as overall sur-
vival from time of biopsy to death of any cause.

Data from the WCDT cohort was pre-processed by applying the
same steps as in the CPCT-02 cohort. The genomic features were
centered and scaled prior to prediction. The transcriptomics data was
TMM-normalized, then centered and scaled. To account for batch-
effect and general inter-domain variability of the CPCT-02 and the
WCDT transcriptomics datasets, a domain adaptation method (PRE-
CISE) was used61. PRECISE first employs Independent Component
Analysis separately on the two transcriptomics matrices. Then using
the independent component datasets, it infers a so-called consensus
representation. First, the consensus representation was fitted on the
training data (70% of CPCT) and calculated with ‘Con-
sensusRepresentation’ with n_factors = 40, n_pv = 40, dim_reduction =
ica, n_representations = 40, mean_center = True and std_unit = True.
Then, both the training set and the external validation set were
transformed and a Linear SVC classifier (with the same parameters as
described in ‘Classification input preprocessing and model design’) was
trained on the transformed training data. The combined WTS +ARSI,
WTS +WGS+ARSI and ensemble (WTS + ARSI) models were also re-
trained on the transformed training data. Afterwards, the external
validation cohort sample labels were predicted with each model as
good or poor responder and OS in both groups was compared.

As the utilized transcript annotations differed between the inter-
nal training set and the external cohort (GENCODE v38 and GENCODE
v28), missing genes were filtered out from the internal training set. To
evaluate the potential effect of the missing genes on the classification,
we compared a classifier that was trained on the full transcriptomics
dataset and a classifier that was trained on the filtered transcriptomics
dataset in the initial LOOCV step (Suppl. Fig. 12).

Application of an adapted clinicogenomics model to WES data
Importance of the features in the clinicogenomicsmodel was assessed
in LOOCV. Individual importance valueswere determinedbasedon the
fitted Logistic Regression model coefficients, which were accessible
from the trained model (model:coef 0½ �). Unbiased interpretation of
these coefficients required that all the input features were scaled prior
to model training (see Suppl. Fig. 10 and Classification input pre-
processing and model design). The obtained importance values were
visualized in a bar plot, with error bars indicating the standard devia-
tion of values across all LOOCV folds (Suppl. fig. 9). To determine the
potential of a prediction model based on tumor mutation burden as
could be observedwithWES (coupledwith information on prior ARSI),
we subsampled somatic mutations found within our WGS to include
those found within exonic regions only (GENCODE v38). TMB was
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recalculated (using total Mb of exonic regions rather than the entire
genome) to generate a WES proxy for TMB.

A Logistic Regression model was trained on the approximated
WES feature (exome TMB) and prior ARSI treatment information in
LOOCV, then the performance was assessed based on AUC (Fig. 8a).
Internal and external validations were carried out in the same fashion
as for the WGS-based clinicogenomics model (see Fig. 8b, c).

Statistical designs
Clinical characteristics of good and poor responders were compared
using the appropriate statistical test, based onnumber of variables and
normality distribution (t-test, non-parametric test or Fisher’s Exact
test). P-values were adjusted for multiple testing using the Bonferroni
method. Unless otherwise stated, statistical tests were performed in a
two-sidedmanner. Treatment duration andOS in the predicted groups
were visualized in Kaplan Meier curves. Good and poor responders
were compared using log rank tests. Statistical tests wereperformed in
IBM SPSS Statistics (v28.0.1.0 (142) and the statistical platform
R (v4.1.1)).

Genomic differences (i.e., TMB, total SV and total deletions,
translocations, insertions, inversions and tandem duplications and
genome-wide ploidy) were tested using the two-sided Wilcoxon Rank-
Sum Test with multiple testing correction (Benjamini-Hochberg). Sta-
tistical tests were performed in the statistical platform R (v4.1.1). For
visualization, p-values (or q-values) are visualized as *(p <0.05),
**(p <0.01) and ***(p <0.001).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WGS, RNA-Seq and corresponding clinical data used in this study
was made available by the Hartwig Medical Foundation (Dutch non-
profit biobank organization) after signing a license agreement stating
data cannot be made publicly available via third party organizations.
Therefore, the data are available under restricted access and can be
requested upon by contacting the Hartwig Medical Foundation
(https://www.hartwigmedicalfoundation.nl/applying-for-data/) under
the accession code: DR-07120. In addition, we performed analysis on
the patients of the previously reported WCDT cohort, who were trea-
ted directly after biopsy with ARSI and for who WGS and/or WTS was
previouslyperformed21,35. For a detaileddescriptionofdata availability,
we refer to this paper21. Requests for data canbedirected towardsprof.
dr. Felix Feng, E: Felix.Feng@ucsf.edu. Thedata generated in this study
are provided in the Source Data file. Source data are provided with
this paper.

Code availability
The initial workflows and software for the processing of the WGS data
are available at https://github.com/hartwigmedical/. Any additional
custom code and scripts used within this study (processing, analysis,
and visualization) have been deposited on Zenodo: DOI: 10.5281/
zenodo.771261062 The custom R-based workflow (R2CPCT) used to
further analyze the WGS-data obtained from HMF and CPCT-02 study
is available on GitHub under the GPL-3.0 license: https://github.com/
J0bbie/R2CPCT The code used to further annotate genomic variants
(as retrieved from HMF) using VEP is available on GitHub under the
GPL-3.0 license: https://github.com/J0bbie/VariantAnnotation_VEP.
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