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ABSTRACT

Germline and somatic variants within an individual
or cohort are interpreted with information from large
cohorts. Annotation with this information becomes a
computational bottleneck as population sets grow to
terabytes of data. Here, we introduce echtvar, which
efficiently encodes population variants and annota-
tion fields into a compressed archive that can be
used for rapid variant annotation and filtering. Most
variants, represented by chromosome, position and
alleles are encoded into 32-bits-half the size of previ-
ous encoding schemes and at least 4 times smaller
than a naive encoding. The annotations, stored sep-
arately within the same archive, are also encoded
and compressed. We show that echtvar is faster and
uses less space than existing tools and that it can
effectively reduce the number of candidate variants.
We give examples on germ-line and somatic variants
to document how echtvar can facilitate exploratory
data analysis on genetic variants. Echtvar is available
at https://github.com/brentp/echtvar under an MIT li-
cense.

INTRODUCTION

A site in the genome that differs from the reference, either as
a somatic mutation or a germline variant must be decorated
with additional information in order to be interpretable.
Millions of sites in an individual will differ from the ref-
erence genome. Several pieces of information can be added
to each variant to assist in determining which of those are
relevant to disease. For instance, it is often critical to know
the predicted effect on a gene––for example, does it create
a new stop-codon in the sequence of an exon? Additionally,
the frequency or absence of a variant in a large population
database indicates potential constraint within the species
(1). Likewise, the conservation of the site across species (2)
indicates that a site might be important and should there-
fore experience selection and be removed from the popula-

tion. Each of these pieces of information must be added to
each variant in a call-set using an annotation tool.

Tools that calculate the effect of a genetic variant on pro-
tein (and non-coding) sequence such as variant-effect pre-
dictor (VEP) (3), bcftools CSQ (4) and snpEff (5) are in-
valuable; but here, we focus on the annotation that involves
searching for a particular variant or site in a database and
annotating the variant with this information from the match
in the database. Note that, as we will demonstrate, it is also
possible to pre-calculate variant effects and store them in a
database. This way of annotating variants is a fundamen-
tal building block in most genetics data analysis pipelines
and plays a critical role in variant interpretation. For ex-
ample it is very common to annotate with population allele
frequency from the Genome Aggregation Database (gno-
mAD) (6) or other large population sets. Another exam-
ple is the addition of a CADD (7) score for each variant
in a Variant Call Format (VCF) file (8). While conceptually
simple, the space and time efficiency of the annotation algo-
rithms become critical as call-sets and annotation databases
have grown substantially.

As an example of the scale of the data, the Genome Ag-
gregation Database (gnomAD) (6) v3.1.2, mentioned above,
contains nearly 760 million variants, consuming >2 ter-
abytes of data. Storing this database can be onerous on an
average compute cluster and hard to justify when the size of
alignment and variant information for a trio that an inves-
tigator might wish to annotate is on the order of a few gi-
gabytes of data. Further, attaching population information
to each variant in this example trio would take additional
compute to decompress and parse the huge gnomAD files,
even when using an approach that combines index-jumping
and streaming like VCFAnno (9). Likewise, the CADD (7)
score includes a prediction for each of 3 possible single-
base changes for each position in the human reference;
this commonly-used annotation is 81 Gigabytes of com-
pressed data and incurs substantial compute. Even anno-
tations for only coding variants can be quite large. dbNSFP
(10), for example, which aggregates many of these scores,
totals around 30 Gigabytes of compressed data. Data this
size requires new methods in order to be utilized with effi-
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ciency and ease, especially given their routine use in modern
day genetics pipelines.

Here, we introduce our command-line tool, echtvar, and
show how the annotations and filtering performed by echt-
var can dramatically and quickly reduce the number of can-
didate variants. We document speed and filtering capabil-
ity in experiments looking at germline and somatic variants.
These characteristics make echtvar a useful tool, especially
for sequencing projects where speed is critical, such as for
whole-genome neonatal projects (11).

MATERIALS AND METHODS

Echtvar encoding

Echtvar accepts a VCF (or BCF) (8) and a JSON configura-
tion file that indicates which fields should be extracted from
the INFO field of each variant and how they are stored in
the echtvar ZIP archive. This archive partitions each chro-
mosome into 1 048 576 (220) base intervals (bins), which
are stored in separate directories (Figure 1). The amount
of data in memory for encoding and annotation is deter-
mined by the number of variants and fields within each bin.
Each bin contains one 32-bit entry for each variant from
the VCF. Small variants, those with a combined reference
and alternate allele length of fewer than 5 bases, are en-
coded into 32 bits and stored directly in the primary ta-
ble (Figure 1). Because each chromosome and 1 048 576
(220) base interval is stored in a separate directory within
the ZIP archive, only 20 bits are needed to indicate the
position of the variant within that interval (Figure 1, up-
per right). The remaining 12 bits in a 32 bit integer can
store the reference and alternate alleles of variants with a
total length (REF + ALT) of fewer than 5 bases (Figure
1, upper-right). This is possible, because with 4 total nu-
cleotides, we only need 2 bits to store each nucleotide, but
we also need to store, within those 12 bits, the length of the
reference and alternate alleles. Around 92% of variants in
gnomAD (6) v3.1.2 fit into 32 bits. We have taken inspi-
ration from this format encoding from VariantKey (12), a
format that encodes the full position along with the chro-
mosome into a 64-bit integer. Since most variants fit in 32
bits and we can store the chromosome outside of the en-
coded variant, we find this to be more compact with little
tradeoff.

For each long variant, a place-holder variant with empty
reference and alternate allele is encoded and inserted into
the primary variant file for that bin. In addition, variants
that are 4 bases or larger (longer insertions or deletions) are
stored in a different file within each bin in a still efficient
format that uses a variable-length encoding to handle any
size variant.

Each field that is requested by the user, for example ‘AF’
for allele-frequency, is extracted and encoded into a file
(for each bin) with the user-specified alias, such as ‘gno-
mAD AF’. Within each of those value files, there is one
value for each variant from the VCF that falls within that re-
gion. The configuration file can also specify a default value
when that file is missing, and other modifications to default
parameters. Upon encoding, the user-specified configura-
tion file is stored in the ZIP archive.

Within each bin, the encoded variants (and place-holder
variants) are sorted to allow for fast searching. The vari-
ants are delta-encoded––so that only the difference between
each 32 bit encoded variant and the one that precedes is
stored. This requires the extra step of performing the cu-
mulative (prefix) sum upon annotation, but improves com-
pression. The delta-encoded variants are then further en-
coded with Stream VByte-encoding (13), which encodes in-
tegers to use between 1 and 4 bytes depending on the size
of the value; a separate block of ‘control bytes’ indicates
the number of bytes consumed by each integer. Since it is
common to have many small numbers, especially in vari-
ant annotation where most variants are rare, this can effec-
tively compress the data. In addition, the schema, where the
control bytes are stored separately, allows modern proces-
sors to rapidly decode the data and allows skipping num-
bers without decoding them. Longer variants that do not fit
within the 32 bits are encoded with bincode (https://github.
com/bincode-org/bincode) which internally uses compres-
sion and varint encoding. Varint encoding is similar to
Stream VByte-encoding, except that the control bytes are
stored with each encoded number.

As each variant is encoded and inserted, the correspond-
ing user-requested INFO fields are inserted into vectors
such that there is a one-to-many correspondence between a
variant and the fields. Each field vector will have exactly the
same number of entries as the encoded variant vector. Dur-
ing iteration of the VCF, once a new 220 base bin is reached,
the previous bin, including primary encoded variants, long
variants, and all fields are written to separate files within
the same ZIP directory for that bin. Fields also undergo
Stream VByte-encoding; floating point values are first con-
verted to integers by multiplying by a user-specified value.
Upon annotation, the extracted integers are then divided by
that same multiplier to regain nearly the same value. Higher
multipliers give better precision but less compression. Inte-
ger values do not need to undergo this transformation but
are limited to 32 bits.

Echtvar encodes string fields from a VCF into integers in
the archive by using an extra lookup vector of the unique
observed strings. For each unique string observed in any
bin, echtvar inserts that string into the vector and stores
the index of that vector for that variant. For low cardinality
fields, for example, with only 10 unique values, this means
that only integer values between 0 and 9 are saved in the
field arrays. Once encoding of the entire file is complete, the
string arrays are written to a single file per field. During later
annotation, the string arrays are then used to convert from
the integer stored per variant to the actual string value.

Echtvar annotation

To annotate a query VCF with an echtvar archive, the user
specifies those two files along with an output path to write
the annotated VCF (or BCF) file. All fields from the archive
are added to the output file. For each variant in the query
VCF, if the position is in a different bin than the previous
variant, then the files for the new bin, including variants,
long variants, and fields, are read into memory. As such,
echtvar is fastest on files that are sorted by genomic position.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/1/e3/6775383 by guest on 03 M

ay 2024

https://github.com/bincode-org/bincode


PAGE 3 OF 8 Nucleic Acids Research, 2023, Vol. 51, No. 1 e3

Figure 1. Echtvar encoding and annotation schema. Echtvar encodes small variants into 32-bit integers with the bits partitioned as in the top-right. Encod-
ing simply partitions values to those bits which results in a 32-bit integer. The genomic bin determines the 1 048 576 bin and corresponding directory within
the echtvar archive for a given query variant. During annotation, if the bin is different from the previous query variant, the data for that bin, including the
primary (var32) table, the larger variants in the supplemental (big vars) table, and the fields, are all read into memory. If the bin is the same, the values are
already in memory. The encoded variant is then used in a binary search against the primary (var32) table to find the index of the variant. That index is
then used to extract the corresponding fields. If the variant is not found in the table, user-specified default values are returned. Variants with a combined
reference and alternate allele length greater than 4 bases will not fit into 32-bits and must be encoded and then searched in the large-variants, supplemental
(big vars) table. The binary search in that table again yields an index which is used to extract the associated fields. Those fields are then added to the query
variant which is written to the output.

This sorting is a requirement for the other tools we compare
to. If the variant has a total length less than 5 bases, echtvar
encodes the variant into a 32-bit integer and does a binary
search against the primary variant table to find the index.
Note that variants from the archive remain as integers and
do not need to be decoded back into variants. The index
from the binary search is then used to extract the values for
each field and add them to the query variant (see Figure
1). Query variants with 5 or more total bases are encoded
into the longer format and a binary search against the sup-
plemental table containing the long variants is performed.
That yields an object that contains an index which is then
used to extract the value for each field in the archive. At
this point, the extracted fields are then tested against a user-
specified filter if one was given. If the filter passes (evaluates
to true), then the fields are added to the query variant which
is then written to the output file. The filter is evaluated using
fasteval.

Libraries used in echtvar

These methods are achieved with the help of a
number of libraries. We use HTSLib (14) via rust-
htslib (https://github.com/rust-bio/rust-htslib) to read,
update and write the VCF files. We use fasteval
(https://github.com/likebike/fasteval) to parse and eval-
uate the filter expressions, stream-vbyte-rust (https:
//bitbucket.org/marshallpierce/stream-vbyte-rust/src)

to perform the Stream VByte compression, bincode
(https://github.com/bincode-org/bincode) to compress
large variants, and zip-rs (https://github.com/zip-rs/zip) to
create the echtvar zip archive.

Whole-Genome variants annotated with gnomAD: compari-
son with other tools

We downloaded gnomAD v3.1.2. In order to make the
comparison as fair as possible, we subset the files to
contain only the 10 INFO fields of interest, and con-
catenate them into a single 20GB file. We used this
to annotate variants from Genome in a Bottle (GiaB)
for HG001 from: https://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/release/NA12878 HG001/NISTv4.2.1/GRCh38/
HG001 GRCh38 1 22 v4.2.1 benchmark.vcf.gz

We used bcftools (4) norm to decompose and normalize
the variants to a consistent representation.

All tools were added to a single docker image for repro-
ducibility and versioning.

For slivar, echtvar and varnote we performed the neces-
sary encoding steps documented in the script linked be-
low. Since these encodings are one-time costs, we did not
compare the run times. We then evaluated the tools using
the commands in: https://github.com/brentp/echtvar/blob/
main/paper/echtvar-paper.sh

We saved the times using /usr/bin/time -v and we also
saved the total size of all files needed for the annotation.
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Filtering whole-genome variants

We used the gnomAD v3.1.2 archive described above and
the HG001 query VCF to evaluate the effect of filtering. We
simply added the parameter:

-i 'gnomad popmax af < 0.01'

to include only variants that met that expression. The
gnomad popmax af filter is from the AF popmax field in the
original gnomAD VCFs that indicates the maximum allele
frequency across each of the sub-populations in gnomAD.
A variant contributing to a severe phenotype should be rare
in all populations; using the maximum across populations
allows us to apply that filter.

Annotating with CADD

We downloaded the CADD text file from: https:
//kircherlab.bihealth.org/download/CADD/v1.6/GRCh38/.

In order to prevent common errors and automati-
cally enforce certain restrictions, echtvar requires VCF
format. Therefore, we wrote a simple script to convert
the >8 billion CADD variants in tab-separated value
file to VCF: https://github.com/brentp/echtvar/blob/main/
examples/cadd/cadd2vcf.py.

We then converted the CADD VCF to an echtvar
archive using the commands here: https://github.com/
brentp/echtvar/tree/main/examples/cadd.

Since CADD also distributes pre-calculated scores for a
set of insertions and deletions found in gnomAD, we used
this as an opportunity to add additional tests to verify that
all insertions and deletions were indeed correctly annotated.
We used the CADD echtvar archive to annotate the source
file and verified that every indel was correctly annotated
with itself.

Filtering somatic variants with dbNSFP

We annotated 1902 VCF files of somatic variants with db-
NSFP version 4.3a. First, we converted dbNSFP to VCF
format using this script from the echtvar repository: https:
//github.com/brentp/echtvar/blob/main/scripts/dbnsfp.py.

We then converted the resulting VCF to an echtvar
archive with the following command:

echtvar encode dbNSFP.echtvar.zip db-
NSFP.json $dbnsfp.vcf.gz

where dbNSFP.json contains:

[{
'field': 'SIFT converted rankscore',
'alias': 'dbsnfp SIFT converted rankscore',
'multiplier': 1000000
}, {
'field': 'DANN rankscore',
'alias': 'dbsnfp DANN rankscore',
'multiplier': 1000000
}, {
'field': 'GERP++ RS rankscore',
'alias': 'dbsnfp GERPpp RS rankscore',
'multiplier': 1000000
}]

Finally we annotated each ICGC VCF with the archive
using:

echtvar anno -e dbNSFP.echtvar.zip $vcf
/dev/null \
-i 'dbsnfp SIFT converted rankscore > 0.2
\
|| dbsnfp DANN rankscore > 0.2 \
|| dbsnfp GERPpp RS rankscore > 0.2 '

while saving the run-time. Full commands for this are
in this script: https://github.com/brentp/echtvar/blob/main/
paper/icgc.sh

Gene and consequence of all single nucleotide variants

We generated three variants for every position in the
GRCh38 reference genome with a known reference and al-
ternate allele. We then annotated with bcftools CSQ (15)
and use the ‘split-vep’ plugin to insert the gene and con-
sequence of the ‘worst’ impact for each variant. This will
choose among multiple transcripts and extract the single
transcript with the predicted worst consequence. We could
also have used the union or some other reducing function.
Once added to the VCF info field, these single worst con-
sequence types and associated genes, one for each variant,
were available to create an echtvar archive. Echtvar stores
a list of each string and then stores the integer index into
that list for each variant. Even for the gene field with more
than 30 thousand unique values, there are only a few genes
per megabase bin and consecutive values are nearly always
similar. This means that the compression is extremely effec-
tive, yielding about 1.28 bits per variant (1.4 gigabytes/8.77
billion variants). The code for this process is here: https://
github.com/brentp/echtvar/tree/main/examples/CSQ-fields

RESULTS

We first give a brief summary of the echtvar algorithm (this
is expanded in the methods section), then we compare echt-
var to other tools on a practical example–annotating a set
of whole-genome germline variants with information from
gnomAD. This demonstrates the speed and memory use of
echtvar relative to other tools on a common, yet sizable,
task. Then, on the same germline variants we show the fil-
tering capabilities of echtvar which enable interactive, ex-
ploratory data-analysis. Next, we give an example of us-
ing echtvar to annotate somatic variants of thousands of
samples from International Cancer Genome Consortium
(ICGC) with values from dbNSFP (10). Finally, we create
an archive of every possible single-nucleotide change (three
changes for each nucleotide in the genome) for both impact
(missense, synonymous etc.) and gene name.

Brief algorithm overview

Echtvar chunks the genome, efficiently encodes variants
into integers, and utilizes integer compression methods to
facilitate compact variant representations that can be used
for rapid annotation. Briefly, echtvar combines the follow-
ing:
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• an encoding scheme that fits most variants, including po-
sition, reference, and alternate alleles into 32 bit integers,

• a chromosome and region chunking file-layout scheme
that limits memory-use and improves compression,

• the Stream-VByte encoding scheme which can encode
and decode billions of integers per second while reducing
the space required by nearly 4 times for some field-types,

• use of the standard ZIP file format to allow random-
access to each region,

• a command-line interface that allows users to create cus-
tom echtvar archives by extracting specific integer, float,
and low-arity string fields from population databases,

• a tool to annotate and filter query variant files with values
in echtvar archives.

This combination of methods and utilities make echtvar a
valuable tool for annotating and filtering genetic variants. It
is, however, limited to variants with sequence-resolved ref-
erence and alternate alleles and does not include other for-
mats or variants with symbolic alleles like ‘<DEL>’. We
expand on the process of encoding and annotation in more
detail in the methods.

Comparison with other tools

We compare echtvar speed, memory-use and archive size to
bcftools annotate (4), VarNote (16), and slivar (17) on gno-
mAD v3.1.2 (6) annotating Genome in a Bottle calls for
HG001 (18) which contains about 3.9 million SNP and in-
del whole-genome, germline calls.

Echtvar is the fastest tool (Figure 2A, B) with the smallest
annotation file-size footprint (Figure 2d) while using a small
amount of memory (Figure 2C) for any modern server.
Echtvar completes the task in 132.2 s with 68.1 megabytes
of memory; the closest competitor is BCFtools which uses
396.7 s and 43.5 megabytes of memory. Note that echtvar
uses only 7.3 gigabytes on disk while BCFtools uses 12.6
gigabytes. These sizes are close because we subset the gno-
mAD VCF to contain only fields of interest to make the
comparison as fair as possible–the original VCF files are
around 2 terabytes of data. The echtvar command used for
this comparison was:

echtvar anno \
-e gnomad.v3.1.2.echtvar.v2.zip \
$vcf $output vcf

where ‘$vcf’ and ‘$output vcf’ are placeholders for the
input VCF to be annotated and the output file where results
are written.

Filtering whole-genome germline variants with gnomAD

Next, we remove variants unless the highest allele frequency
of any population in gnomAD v3.1.2 was less than 0.01.
For this purpose, we used the same set of calls for HG001
along with the same echtvar annotations from the previous
comparison. This can be achieved with the following echtvar
command:

echtvar anno -e gno-
mad.v3.1.2.echtvar.v2.zip $vcf $out-
put vcf \

-i 'gnomad popmax af < 0.01'

While exact filtering strategies will vary, this is a reason-
able starting filter for rare-disease variants, where we expect
candidate variants contributing to a severe phenotype to be
rare. In doing this filtering, we reduced the echtvar run-time
from 132 seconds (as in Figure 2) to 87 s (34%) and reduced
the number of variants from around 3.95 million to 67 017
(98% reduction). The speed improvement is because fewer
variants are written and writing to file is otherwise a bot-
tleneck in the annotation step. The filtered variant set is 50
times smaller and so will potentially use 50 times less stor-
age depending on the compression (4.2MB versus 127MB
= = 30 times for this example), and less compute for inten-
sive downstream tasks such as effect annotation, for exam-
ple with Variant Effect Predictor (VEP) (3). Combining the
annotation with filtering compounds the benefit of each of
these steps and also highlights the utility of fast tools that
leverage large population datasets such as gnomAD in pri-
oritizing variants.

Filtering recessive whole-genome germline variants

In order to further show the capabilities of echtvar, we eval-
uate filtering for recessive variants where we expect that sites
(variants) contributing to disease would have few samples
from gnomAD that were homozygous for the variant. We
therefore filtered to variants where the proportion of ho-
mozygous alternate samples across all populations was less
than 0.5% of the number of total samples in that popula-
tion. Echtvar supports this through the following command:

echtvar anno -e gno-
mad.v3.1.2.echtvar.v2.zip $vcf $out-
put vcf \
-i 'gnomad popmax nhomalt / (gno-
mad popmax an / 2) < 0.005'

Note that we get the number of samples using the num-
ber of chromosomes (the ‘an’ suffix is for ‘number of alleles’
across the population) divided by 2 since we are consider-
ing only the autosomes. The left-hand side then gives the
proportion of samples and we compare that to the right-
hand size (0.005). This completes in around 90 s and writes
178 117 variants (95.5% of variants filtered). This example
demonstrates the flexibility of the expressions which allow
a variety of mathematical operations. It also highlights the
advantage of such a fast tool. We can rapidly evaluate ex-
pressions of 4 million variants to decide on the exact fil-
tering parameters. For example if the analyst were to de-
cide that 178 thousand variants is too many, they could run
again with a cutoff of 0.1% and have the results in about a
minute and a half.

Annotating with CADD

CADD (7) is a very dense annotation set with a raw score
and a PHRED score for each of the three possible single-
base changes at each site in the genome. We created a 17
gigabyte echtvar archive from the 81 gigabyte file that con-
tains over 8 billion variants obtained from the CADD site.
This is a ∼4.8-fold size reduction from the compressed
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Figure 2. Comparison of echtvar speed, memory, and archive size with other annotation tools. A VCF with about 3.9 million variants was annotated with
allele frequency, number of homozygous alternate alleles, and other fields from gnomAD v3.1.2. The first row shows wall-time, how long the programs
took to complete (A) and user-time, how much processing time (across multiple threads) was used (B). The amount of memory used is shown in (C) with
slivar taking much more memory than other tools. (D) The file size of the annotation files required. Since echtvar encodes the data, it can use smaller files
than the original file. Original gnomAD file sizes are much larger, the values shown for bcftools and varnote are from a VCF or BCF subset to contain only
the fields of interest for a more fair comparison.

CADD file. In order to also evaluate the effect of larger in-
dels that don’t fit into the 32-bit representation, we created
an archive of the set of pre-scored indels from the CADD
site,corresponding to the insertion and deletion variants
found in gnomAD. This represents a likely worst-case sce-
nario for echtvar as over 56% of these variants do not fit in
the 32 bit representation. We find that, even in this worst-
case scenario, the file size is still reduced from the original
1020 megabytes to 770 megabytes in the echtvar archive. We
simultaneously annotated the whole genome variants with
both the SNP and indel archives and filtered to variants with
a CADD PHRED score over 15 using the command:

echtvar anno -i 'cadd phred > 15' \
-e cadd.v1.6.hg38.zip \
-e cadd.v1.6.hg38.indels.zip \
$input bcf \
$output bcf

Note that we can annotate with both archives in the same

command and that we are only writing the variants that
meet the (-i) include expression. This reduces the set of can-
didate variants by more than 99% from nearly 4 million to
3512 at a rate of about 13 000 (input) variants per second.

Filtering whole-genome somatic variants

To demonstrate applicability in a somatic variant setting,
we annotated and filtered each of 1902 VCF files of somatic
variants from the International Cancer Genome Consor-
tium (ICGC) with annotations from dbNSFP. We used the
command:

echtvar anno -e dbNSFP.echtvar.zip $vcf
/dev/null \
-i 'dbsnfp SIFT converted rankscore > 0.2
\
|| dbsnfp DANN rankscore > 0.2 \
|| dbsnfp GERPpp RS rankscore > 0.2 '
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Figure 3. Histograms of run-time (A) and variants remaining after filtering (B) for 1902 VCFs containing somatic variants for a variety of cancer types from
the ICGC. We annotated each VCF with data from dbNSFP version 4.3a and then filtered to variants with a high score in any of three of the annotated
fields.

to annotate with dbNSFP and filter to variants that had
at least one of the rank scores >0.2. We chose these fields
and expressions to highlight the flexibility and possibilities
of echtvar rather than to address a specific question. Fig-
ure 3 shows the time required to run this command for each
file, along with the number of variants left after filtering. All
commands finish in a few seconds and leave only a hand-
ful of variants in most cases. This demonstrates how one
could rapidly evaluate different cutoffs to get to a reason-
able number of variants of interest. While nearly all samples
had <50 variants that passed the filters, a few samples had
>100 variants (not shown in Figure 3B, which is truncated
at 100). These could be samples that require further qual-
ity control. As echtvar readily achieves these calculations in
a matter of seconds it would be possible to include them
as broad quality control measures that require little extra
compute.

Impact and gene name of every single-nucleotide change

As an example of the utility, speed and compression of an-
notating with string fields, we generated a VCF with ev-
ery possible single-nucleotide change for the HG38 human
reference genome (three changes per position). We used
bcftools CSQ (15) to annotate each variant with informa-
tion including the gene, transcript and consequence type.
Then we encoded the gene name and consequence type cor-
responding to the most deleterious consequence for each
variant into echtvar archives. There were 27 unique conse-
quence types and 33 581 unique gene names. The 8.77 bil-
lion variants were encoded into separate archives for conse-
quence and gene; each of these was 1.4 gigabytes. This result
of 1.28 bits per variant is possible because of the combina-
tion of the encoding and the zlib compression. We evalu-
ated the speed and correctness of this annotation with string
fields by annotating the 8.77 billion variant VCF with the
archive for consequence and verifying that the annotated
value matched the original value already contained in the
VCF. The annotation averaged nearly 549 000 variants per
second.

DISCUSSION

Variant annotations from large population sets are essen-
tial for virtually all variant interpretation and downstream
analyses. We have introduced echtvar which uses genome-
chunking and an encoding scheme that fits most SNP and
indel variants into 32-bit integers to facilitate rapid and flex-
ible annotation. We have shown that echtvar is often 3 times
as fast as competing tools while using less space for the en-
coded data and very little memory. We also showed exam-
ples of using echtvar to simultaneously annotate and filter
germline variants; first to those with low allele frequency in
a population, then to those with a small percentage of ho-
mozygous samples and finally using dense CADD annota-
tions. These are example analyses that are common in rare-
disease research. We also showed how echtvar can be used to
filter somatic variants. Finally, to demonstrate the compres-
sion capabilities of echvar, we generated all possible single-
nucleotide variants and created an echtvar archive each for
gene and consequence. This yielded a data footprint of only
1.2 bits per variant (including the consequence type). Taken
together, all of these analyses demonstrate that the speed,
compression and simplicity of echtvar make it a valuable
tool for variant annotation and filtering and for exploratory
data analysis.

Because of the design and target use of echtvar, we have
focused on annotating relatively large query variant sets,
such as for WGS with even larger annotation sets. When
the query set is smaller, the per-variant speed is lower. As
a worst-case example, when annotating only a small subset
of 967 high impact variants from the HG001 query set with
the extremely dense CADD archive, echtvar annotated at
∼5 variants per second. This is because echtvar must do a
lot of work to decompress a 220 base chunk for each query
variant. In more dense query datasets, that cost is amor-
tized, but this a consideration for smaller query sets.

Future work could evaluate using 64-bit integers instead
of 32-bit, as this would allow more variants to fit in the con-
cise scheme at the cost of a larger average size. This increase
in size could be mitigated by compression, but the delta-
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encoding, where each value is stored as the difference to the
previous value, is less effective when fewer bits are used for
compression. For example, if 20 bits are used for position,
then two adjacent variants would differ by at least 44 bits,
limiting the benefit of both delta-encoding and VByte com-
pression. Other work could explore the trade-off in using
bins with a fixed number of variables, rather than a fixed
size. This would mean that an index for the starting posi-
tion of each bin would need to be maintained but that each
bin would have a similar size in memory; this could improve
changes to echtvar that focus on parallelization which is an-
other area for future research.

We expect that the simplicity, speed, and utility of echtvar
will make it a staple in variant annotation pipelines.

Echtvar is available under the liberal MIT license from
https://github.com/brentp/echtvar. There is a static binary
that will work immediately on modern linux systems.
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