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Abstract

It is generally recognized that human, epidemiological data, if available, are preferred as the starting point for quantitative risk analy-
sis above the use of data from animal studies. Although methods to obtain proper risk estimates from epidemiological data are available,
several impediments prevent their widespread application. These impediments include unfamiliarity with epidemiological methods and
the lack of a structured and transparent approach. We described a framework to conduct quantitative cancer risk assessment based on
epidemiological studies in a structured, transparent, and reproducible manner. Important features of the process include a weight-of-the-
evidence approach, estimation of the optimal exposure-risk function by Wtting a regression model to the epidemiological data, estimation
of uncertainty introduced by potential biases and missing information in the epidemiological studies, and calculation of excess lifetime
risk through a life table to take into account competing risks. Sensitivity analyses are a useful tool to obtain insight into the impact of
assumptions made and the variability of the underlying data. The framework is suYciently Xexible to allow many types of data, ranging
from published, sometimes incomplete data to detailed individual data, while maintaining an optimal result, i.e., a state-of-the-art risk
estimate with conWdence intervals, based on all available evidence of suYcient quality.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Quantitative analysis of cancer risks associated with
(occupational) exposure to carcinogens and the establish-
ment of a risk estimate play an important role for risk char-
acterization of carcinogenic chemicals (Sanner et al., 2001;
U.S. Environmental Protection Agency, 2005). It is gener-
ally recognized that human data from epidemiological
studies, if available, are preferred as the starting point for
quantitative risk analysis of carcinogens above the use of
data from experimental animal studies. This is, because

* Corresponding author. Fax : +31 30 69 44 070.
E-mail address: bausch@voeding.tno.nl (R.A. Goldbohm).
0273-2300/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.yrtph.2006.01.007
eVects observed in animal species have to be translated into
eVects expected in humans, i.e., an extrapolation step is
needed that not only is substantially uncertain, but also,
from a precautionary principle approach, has to be conser-
vative in nature (Vermeire et al., 1999). Besides the advan-
tage that epidemiological data relate to the same species
(i.e., man), the most important other advantages of epide-
miological data over animal data are that exposure condi-
tions and other circumstances that may modify the risk are
usually much more comparable to those in the target popu-
lation than those simulated in an animal experiment. Quan-
titative risk assessment based on epidemiological studies
entails therefore substantially less uncertainty than if based
on animal models, irrespective of some inherent uncertain-
ties introduced by the epidemiological design itself.
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Despite the availability of epidemiological data, empha-
sis used to be on calculating cancer risks from experimental
animal data. One of the reasons is that a clear, transparent,
and generally accepted protocol for calculating cancer risk
from epidemiological data is not available, despite substan-
tial and important contributions to the development of epi-
demiological risk-assessment methods from distinguished
scientists, e.g., Hertz-Picciotto and Hu, 1994; Hertz-Picci-
otto, 1995; Moolgavkar et al., 1999; Samet et al., 1998;
Shore, 1995; Stayner et al., 1995, 1999a,b, 2000; Steenland
and Deddens, 2004; van Wijngaarden and Hertz-Picciotto,
2004. The relative complexity of issues involved in epidemi-
ological data analysis also hampers acceptation by non-epi-
demiologists.

This situation is illustrated by the case of hexavalent
chromium. In several reports, quantitative risk assessments
are based on epidemiological data on exposure to chro-
mium and lung cancer (Canadian Environmental Protec-
tion Act, 1994; Dutch Expert Committee on Occupational
Standards, 1998; European Union Risk Assessment
Report, 2002; ScientiWc Committee on Occupational Expo-
sure Limits, 2003; Sorahan et al., 1998b; U.S. Environmen-
tal Protection Agency, 1998; WHO, 2000a). These reports
diVer with respect to the epidemiological data sets used and
the methods applied. As a result, the risk estimates diVer as
well, sometimes substantially. Such diVerent risk estimates
do not pose a problem as such, as they are by nature
derived with substantial uncertainty. More troubling, how-
ever, is that the multitude of choices, assumptions, and
extrapolations, which are inherent in risk assessment, were
often not motivated or made explicit. For this reason, it is
diYcult—not only for toxicologists and regulators, but also
for most epidemiologists—to follow, interpret, compare
and evaluate these risk assessments.

The objective of the present paper is to describe and dis-
cuss a systematic approach to quantitative risk assessment
based on epidemiological data, focusing on the purpose
and the essential features of the consecutive steps in the
process. The steps include selection and evaluation of epi-
demiological data, derivation of a relative risk as function
of exposure from the selected epidemiological data and cal-
culation of excess lifetime risk for an exposed target popu-
lation of interest. The approach is illustrated by the
derivation of an excess lifetime risk estimate of lung cancer
for exposure to hexavalent chromium, using diVerent data
sets and options. The approach is compared with some of
the available quantitative risk assessments for hexavalent
chromium. For a better comprehension of the risk estima-
tion approach based on epidemiological data, some critical
aspects, such as epidemiological study design, frequently
used risk parameters, and exposure assessment in epidemio-
logical studies are discussed Wrst.

As hazard characterization is the main focus of this
paper, hazard identiWcation from epidemiological studies
will not be discussed. The focus is on derivation of excess
lifetime risks for the worker population, but the principles
can equally be applied to other populations.
We hope that this systematic approach stimulates the
use of existing epidemiological data and the conduct of new
studies for the purpose of risk assessment for carcinogens
and also enhances conWdence in their use.

2. Basic epidemiological concepts

2.1. Epidemiological study design

In animal experiments eVorts are made to generate
genetically and environmentally homogeneous conditions
except for the factor under study. Such conditions are usu-
ally not found in epidemiological studies. Human popula-
tions are heterogeneous in behavior and genetic
susceptibility. Epidemiological, observational studies take
this real life situation into account and conclude from it
with respect to disease risk. Observational studies, where
persons have not been randomly assigned to exposed versus
unexposed groups, may be aVected by confounding, which
distorts the exposure-disease association. Confounding can
occur because study participants also diVer in many other
aspects relating to exposure. In experimental studies, ran-
dom allocation of subjects to diVerent treatments will mini-
mize the eVect of this variation. In observational studies,
random allocation to exposure is not possible. Instead, epi-
demiologists make use of many methods—in the design
and in the statistical analysis of an observational study—to
minimize most sources of bias and confounding.1 High
quality studies are usually those in which such methods
are appropriately applied and biases are quantiWed. For
the purpose of epidemiological risk assessment, two diVer-
ent types of observational studies are the most relevant:
cohort or follow-up studies and case-control studies (see
text boxes).

2.2. Risk, rate, relative risk, and excess risk

To non-epidemiologists, the concepts of risk, rate, and
the eVect measures as used in epidemiology are always a
source of much confusion. A basic comprehension of these
concepts is necessary to understand how epidemiological
studies can be used for risk assessment in a way comparable
to animal studies. Without using mathematical formulas,
an explanation and comparison of the key concepts and
their application will be given below. A summary of these
concepts is given in Table 1.

Risk refers to a person and is deWned as the probability
for that person to get (or die of) the disease of interest dur-
ing a speciWc time period. This time period may be lifetime,
up to a certain age (e.g., 75), or starting and ending at speci-
Wed ages. Since it is impossible to measure a probability in a
person, we measure risk among a larger group of people.

1 It is outside the scope of this paper to discuss all potential biases and
the possible solutions to be applied to avoid such biases. Epidemiologists
are trained to discern potential methodological problems in studies and to
assess the suitability of any chosen solutions.
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Risk is measured as the number of subjects developing dis-
ease during a time period divided by the number of subjects
followed for the time period and represents the average risk
of disease in the population (Rothman, 2002).

Cohort studies
Cohort studies start with a population initially fre

assessed at the start of the study (and is sometimes r
naire/interview data, information from employee files
biological materials. During follow-up, some subjects
most others do not. The risk of developing the diseas
in terms of relative risk or relative rate, comparing risk
For an explanation of risks and rates, see main text. A
subjects are free of the disease in question. Therefo
tion) of the subjects. To be sure about this, cases d
excluded to avoid possible information bias due to p
cancer substantial follow-up time is required for a coh
sure period and the end of the study should be suffici
is caused by such exposure to develop into a clinicall
study is based on mortality as endpoint).

Case-control studies
In contrast to cohort studies, case-control studies 

have the disease or condition under study. These ca
represent the population from which the cases arose 
sure information is collected concerning a defined tim
study usually compares the odds of past exposure to a
obtain an odds ratio, which is an estimate of the rel
cohort design is that no long follow-up period is requi
diseases, a much smaller sample size is needed, whil
relative risk. A main disadvantage of case-control stud
mation provided by the subjects (“recall bias”) or rec
be, because of the disease (“presence-of-disease bia
sciously or unconsciously) exaggerate his perceived 
blame someone or something for his disease. Anoth
studies is “selection bias”, which can occur as a cons
Selection bias is present when the relationship betwee
actually involved in the study from those who theor
those who in the end did not participate). Low respo
the control group may give some indication on the po
For practical reasons, risk is hard to measure directly
in studies on chronic disease. This is, because a popula-
tion of human subjects, whether they are participants in
an epidemiological study or members of the general

e of the health outcome under study. Exposure is
epeated during follow-up) and may include question-
, exposure monitoring data, and also the collection of
 develop the disease (or other health outcome) and

e is related to the exposure, and generally expressed
s (rates) among exposed and unexposed individuals.
 main advantage of the cohort design is that at entry,
re, the disease will not influence exposure (informa-
iagnosed in the first few years of follow-up may be
reclinical disease. Due to the long latency period of
ort study. The total time between the relevant expo-

ent to cover the time span necessary for a tumor that
y detectable tumor (or even to cause death when the

start with a group of patients, or persons known to
ses are compared with a control group, selected to
with respect to the exposures of interest. The expo-

e prior to diagnosis of the disease. A case-control
 suspected risk factor between cases and controls to
ative risk (Table 1). An advantage compared to the
red to get results. A second advantage is that for rare
e the odds ratio is a very close approximation of the
ies is that the disease can influence exposure infor-

ent exposure really is diVerent from what it used to
s”). For example, someone with cancer may (con-
exposure to certain chemicals because he wants to
er form of bias that can be present in case-control
equence of improper selection of study participants.
n exposure and disease is different in those subjects
etically were eligible to participate, (thus, including
nse rates in cases and/or an inappropriate choice of
ssible presence of selection bias.
Table 1
Comparison of parameters to describe incidence and mortality and their derived measures of association

Parameter Synonyms Type Unit Range Proxies

Risk Absolute risk Probability, proportion — [0,1] Cumulative rate
Cumulative incidence/mortality
Incidence/mortality proportion

Rate Incidence/mortality rate Number of cases
person years

Time¡1 [0,>1] Incidence density
Hazard rate

Relative risk (RR) Risk ratio Ratio of risks — [0,1] Rate ratio, Incidence density ratio, 
Standardized ratio (SIR, SMR), Odds ratio (OR)

Excess risk Risk diVerence DiVerence of risks — [¡1,1]
Added risk
Additive risk
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population in a deWned geographic area, is almost never
observed during their entire life span, simply because this
would take much too long and part of the population will
die of other causes in the meantime. For diseases such as
chronic diseases, which can occur in principle anytime
during someone’s life, frequency of occurrence of the dis-
ease in a population can be directly observed by the num-
ber of subjects developing disease divided by the total time
experienced for the subjects followed (Rothman, 2002).
This parameter is called rate and is applicable to
incidence (number of new cases of the disease detected)
or mortality (number of cases died as a result of the
disease). The ‘total time experienced’ is expressed as
‘person years.’ The rate is the basic parameter used in
cohort studies as well as in registries such as cancer regis-
tries and in mortality statistics. Comparison of rates
between populations is possible if these rates are strati-
Wed for age (i.e., divided in 1- or 5-year age groups) or
standardized or adjusted for age.

The purpose of most epidemiological studies, as in
experimental studies, is not to establish rates or risk for
the population investigated, but to assess an association
between exposure and disease. Epidemiological studies
almost always use the ratio of two rates (e.g., rate among
exposed group divided by rate among unexposed group) to
express the magnitude of the association. This is because
the ratio, unlike the underlying rates, is independent on
the height of the rates compared. This property is impor-
tant because most cancer incidence and mortality rates
strongly increase with age. The rate ratio is also equiva-
lent to the risk ratio or relative risk. The standardized
ratio, such as standardized mortality ratio (SMR) or
standardized incidence ratio (SIR), which are used in
cohort studies if the unexposed reference group is the
general population, is also a measure of relative risk as is
the odds ratio (OR), which is derived from case-control
studies.

The interest of risk assessment is usually in excess risk,
i.e., the risk attributable to the exposure of interest (risk in
the exposed group minus risk in the unexposed group), which
is usually not directly estimable from epidemiological stud-
ies. The relative risks derived from the epidemiological
study or set of studies have to be transformed into excess
(lifetime) risk, preferably by means of the life table method
(see step 3 described below).
2.3. Exposure metrics in epidemiological analyses

Most exposures that are relevant for cancer, as well as
for many other chronic diseases, consist of two compo-
nents, i.e., the level (intensity) of exposure and the duration
or frequency of exposure.

Yet, specifying a biologically relevant exposure parame-
ter is complex and even if detailed exposure information is
available, it is often not clear how to summarize exposure
data into a meaningful exposure metric (Smith, 2002). As
both intensity and duration may contribute to risk, various
combinations of these components are used in epidemio-
logical analyses. In general, studies either use a form of
cumulative exposure, in which the duration of exposure is
incorporated, or a form of exposure level without duration,
e.g., time-weighted average exposure (dose or concentra-
tion) or number of peak exposures within a speciWed time
period. More complex parameterizations of an exposure
metric that account for eVects of intensity and time in a
Xexible manner, e.g., giving less weight for more recent
exposures, have been described in occupational epidemiol-
ogy but are scarce (Seixas et al., 1993).

The type of exposure employed in a study determines
how the association between the exposure and a disease has
to be extrapolated to the situation used in risk assessment
for the workplace, in which it is assumed that a worker is
exposed for 40 years, beginning at age 20, 8 h/day, etc. Table
2 summarizes which fundamentally diVerent exposure deW-
nitions can be distinguished and how they can be extrapo-
lated to the situation at the workplace.

Ideally, risk assessors should have available the informa-
tion based on the regression model relating exposure to rel-
ative risk in which level and duration are separate
independent terms (situation 1 in Table 2). This is because it
is by no means certain that increasing the exposure dura-
tion (e.g., with a factor of 2) has the same impact on cancer
risk as increasing the exposure level with the same factor. In
fact, examples are available that this is not (always) the case
(Verhagen et al., 1994; Voorrips et al., 2000). Unfortu-
nately, occupational epidemiological studies are almost
never analyzed with exposure level and duration as sepa-
rate terms in the model.

In situation 2—representing cumulative exposure, often
expressed as ppm·year—it is assumed that duration and level
of exposure have the same impact. This type of exposure deW-
Table 2
Types of individual exposure metrics and their extrapolation to risk assessment at the workplace

a �1, regression coeYcient relating level of exposure to relative risk; X1, level of exposure (e.g., ambient concentration in mg/m3); �2, regression coeYcient
relating duration of exposure to relative risk; X2, duration of exposure (years); �, regression coeYcient relating cumulative exposure to relative risk.

Possibilities Regression modela Extrapolation to workplace

1 Level + Duration �1X1 + �2X2 Fix duration (X2) to 40 years
2 Level £Duration �(X1 ¤ X2) Fix duration (X2) to 40 years
3 Level; implicit continuous exposure �1X1 Duration is (implicitly) the same for each person, therefore level is suYcient
4 Level; no individual duration available �1X1 Impossible to extrapolate, unless average exposure duration for the study

population is available or can be assumed
5 Duration �2X2 Uniform exposure level assumed throughout exposure period
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nition is frequently used in occupational epidemiology. It has
the disadvantage that the separate impact of level and dura-
tion of exposure on cancer risk can not be distinguished as
in situation 1. Therefore, using this exposure metric, an
implicit assumption is made that the two have the same
impact and are interchangeable, e.g., a cumulative exposure
of 40 ppm·year results from an exposure to 1ppm during 40
years, but also from an exposure to 40ppm during one year.

Situation 3 is not directly applicable to occupational epi-
demiology, since a subject’s duration of exposure depends
on the start and end of employment and can therefore not
assumed to be constant (unless all workers studied were
employed in an exposure-associated job from their 20s until
retirement). However, in studies on, for example, dietary
habits and cancer this is the usual situation.

Situation 4 is an undesirable situation, because an
important determinant of cancer risk, i.e., duration of expo-
sure is missing. Studies that have used such exposure assess-
ment (e.g., “exposed versus unexposed”) should ideally not
be used for quantitative risk assessment, although they
might contribute to hazard identiWcation. If some sort of
aggregate information on exposure duration is available,
for example average employment duration of the workers
or if lifetime employment can be assumed, it might be possi-
ble however to use the data from such a study.

In situation 5, information on level of exposure through-
out time of employment is missing and therefore constant
exposure is—often implicitly—assumed. It depends on
knowledge about the exposure conditions in the plant in
question whether such a study is acceptable for quantitative
risk assessment or not.

3. Derivation of a risk estimate

The process to arrive at an acceptable risk estimate com-
prises three distinctive steps. The Wrst step comprises the
evaluation and selection of suitable epidemiological studies.
The second step is conducted entirely within the epidemio-
logical study (or set of studies) selected and its aim is to
derive the best estimate of an exposure-related relative risk
(RR) that is to be used for the risk assessment. In the third
and last step, the exposure-related RR derived from the epi-
demiological study (or studies) is used to estimate the
excess lifetime risk (ELR) in the population to which the
risk assessment applies. Incorporation of uncertainty esti-
mates is an essential part of the process, whereas sensitivity
analyses are useful to check the impact of assumptions
made. The steps are summarized in Table 3.

3.1. Step 1: evaluation and selection of suitable 
epidemiological studies

In epidemiology, the aim is usually to evaluate an associ-
ation between exposure and disease and to derive a best
Table 3
Summary of steps in the derivation of an excess lifetime risk as function of exposure based on a single selected epidemiological study or on a set of selected
studies

a For a speciWed exposure level.

Step Aim Input Method Output

1 Unbiased selection of 
available evidence

All published (peer-reviewed) studies on 
the association between the exposure 
and outcome of interest (relevant studies)

• Systematic literature search A selection of suitable 
studies, meta-analyses and 
pooling studies

• Review of all relevant studies for:
þ Availability of required data
þ Absence of severe Xaws

2 Establish relative risks (RRs) for 
the range of exposure categories 
(Study-speciWc or meta-analysis 
or pooling study)

For each exposure category: Fit a (regression) model A relative risk (RR) 
as function of exposure• Exposure level

• No. of observed cases and person
 years across strata of confounders OR

• No. of observed cases and expected no. of
 cases according to reference population 
 with same confounder distribution OR

• Confounder-adjusted RRs or ORs, or 
 SMRs/SIRs plus conWdence intervals

3 • Derive an excess lifetime 
risk per unit of exposure

• A relative risk (RR) as function 
 of exposure

1. Construct life tables for 
exposeda and unexposed

• An excess lifetime 
 risk per unit of exposure 
 (‘unit risk’)AND

• Derive an excess lifetime 
risk for exposed population

• Exposure distribution in the 
 target population

2. Subtract risk in unexposed from 
that in exposeda population as 
calculated from life tables

• An excess lifetime risk 
 for a population exposed 
 at a given levelAND

• Derive an exposure at a given 
level of excess lifetime risk

• Age-speciWc incidence (mortality) 
 of the cancer of interest in the unexposed 
 (target) population

• Exposure at a given 
 level of excess lifetime
 risk

AND
• Total age-speciWc mortality in the 
 (target) population
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estimate for the size of the association. As results of individ-
ual studies may be inXuenced by chance or particular cir-
cumstances, a review of the whole body of available
evidence (including “negative” studies) is considered neces-
sary to obtain an unbiased estimate. Studies may be
excluded only if they have serious Xaws or provide irrele-
vant data. In quantitative risk estimation based on animal
studies, in contrast, it has been usual practice to select the
study with the most conservative, although relevant results
on the basis of the precautionary principle. Although the
precautionary principle could be applied to epidemiological
data as well for the purpose of quantitative risk estimation,
we can be sure that in the long run such practice systemati-
cally overestimates the impact of exposure on disease.

A quality review of the available data is an essential step
in the risk assessment process. The assessor must consider
whether the supplied data are complete and valid for use in
risk assessment. This should be done according to a struc-
tured framework to avoid a strong dependency on the qual-
ity of individual judgments. Issues with respect to quality of
animal studies (Klimisch et al., 1997) and exposure data
(Money and Margary, 2002; Tielemans et al., 2002) in the
context of regulatory risk assessment have been discussed
in the literature. Checklists for evaluating epidemiological
data have mainly been published in the context of conduct-
ing meta-analyses (Blair et al., 1995; Stroup et al., 2000;
Wong and Raabe, 1996), but the evaluation of epidemio-
logical evidence for quantitative risk assessment has also
received some attention (Health EVects Institute, 1999;
Hertz-Picciotto, 1995; WHO, 2000b).

3.1.1. Quality of epidemiological evidence
Only few, mostly recent epidemiological studies are

designed and conducted speciWcally for quantitative risk
assessment purposes. Hence, from a pragmatic point of
view it is diYcult to rigorously apply a framework for
quality evaluation, since a rigid approach may result in
the exclusion of a large amount of valuable data. Asses-
sors should carefully evaluate Xaws in epidemiological
studies before dismissing them as useless for risk assess-
ment in advance. This is in line with a ‘weight of evidence’
approach according to which all epidemiological evidence
with at least acceptable quality are used in a risk assess-
ment process. The information from all studies meeting
minimum quality requirements is combined with the aim
of obtaining a risk estimate with as much precision and
validity as possible (Shore, 1995). Such an approach is
also compatible with the recognition that studies of vary-
ing quality can have a contribution to diVerent compo-
nents of the risk assessment process, ranging from
detailed exposure–response modeling to hazard identiWca-
tion only.

In general, the validity of exposure–response relations
produced by epidemiological studies is determined by the
control of bias and confounding that may mask or accentu-
ate risks. Moreover, epidemiological results should be
informative in that the results produce relative precise risk
estimates. Basic elements of a quality review of an epidemi-
ological study includes study design, selection of the popu-
lation, exposure pattern, diagnostic criteria, length of
observation period, adjustment for confounding factors,
statistical analysis, and sample size. For a more complete
understanding and in depth discussion of these issues, sev-
eral overviews of quality issues in epidemiology are avail-
able (Blair et al., 1995; Health EVects Institute, 1999; Hertz-
Picciotto, 1995; Stroup et al., 2000; WHO, 2000b; Wong
and Raabe, 1996).

3.1.2. A quantitative exposure assessment component
Epidemiological studies identiWed as potentially provid-

ing valid exposure–response information have to undergo
an additional selection process that considers whether or
not the exposure assessment component is quantitative.
The importance of correctly ranking subjects according to
exposure status has become a central focus of research
eVort over the past decades (Checkoway et al., 1987; Hee-
derik and AttWeld, 2000; Kauppinen, 1994; Kromhout
et al., 1999; Seixas and Checkoway, 1995; Stewart, 1999).
Yet, correctly estimating absolute exposure levels in the
study population has been less of an issue (van den Brandt
et al., 2002). Researchers have used various ways of group-
ing subjects with common occupational exposure levels,
such as collection of information on job title or the use of
job-speciWc questionnaires combined with expert evalua-
tions. Recently, Semple et al. showed that expert judgments
can potentially yield reliable quantitative exposure esti-
mates (Semple et al., 2001). However, in general these
approaches do not result in absolute exposure levels and
qualitative categories of exposure are then used instead in
epidemiological studies. Qualitative estimates of exposure
often take the form of high, medium, and low categories
without any indication of the actual range of exposures
associated with each category. In these circumstances,
diVerent studies with the same exposure category deWnition
may be estimating eVects at diVerent points on the expo-
sure–response curve (Blair et al., 1995). Hence, the absence
of any quantitative information on exposure precludes the
extrapolation of epidemiological evidence to other popula-
tions and exposure situations.

If quantitative exposure information is not available one
has to evaluate whether other databases containing quantita-
tive exposure information can be used. Such an external
source has to be linked to the qualitative exposure categories
from the epidemiological study. The variable common to
both the external exposure database and the epidemiological
study that enables the link between exposure levels and
health eVects is for instance job title or type of tasks per-
formed by the study subjects. Obviously, the appropriateness
of this linkage has an impact on the validity of the exposure–
response modeling. The impact of choices with respect to
linking databases can be explored by means of sensitivity
analyses using diVerent sets of assumptions. The results of
sensitivity analyses may show whether (and to what extent)
risk estimates diverge under diVerent assumptions.
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Exposure databases may be held by various organiza-
tions, including, among others, companies, labor unions,
governmental agencies, published literature. Yet, at the
same time diYcult methodological obstacles confront the
eVective use of occupational databases and there is justiW-
able concern regarding the quality of part of the data
(Cherrie et al., 2001; Tielemans et al., 2002). As a result of
poor documentation a considerable number of exposure
measurements conducted in the past are of little use in the
exposure assessment of epidemiological studies. Notwith-
standing these important limitations, Burstyn and co-work-
ers showed that it was possible to derive quantitative
exposure predictions for an epidemiological study among
asphalt pavers using pre-existing data of varying quality
from diVerent countries in combination with expert judg-
ment (Burstyn et al., 2000; Burstyn and Kromhout, 2002).
These authors illustrated that existing databases may
indeed represent a huge potential of knowledge on expo-
sure proWles, which can be used in epidemiological risk
analyses.

The end result of this step is the identiWcation of all avail-
able studies meeting the criteria for the quantitative risk
assessment. Depending on the quantity and type of avail-
able data and the preference of the risk assessor, they can
either be used as separate studies or their results can be
combined in a meta-analysis or pooled analysis before pro-
ceeding to step 2. Meta-analyses and pooling studies are
very useful to summarize results from many studies in a bal-
anced way (i.e., weighting the studies according to their sta-
tistical power) and to enhance precision. An excellent
example of a meta-analysis that is directly applicable to
quantitative risk assessment is the study by Armstrong et al.
(2004) on lung risk cancer after exposure to polycyclic aro-
matic hydrocarbons (PAHs). The authors combined the
results of 39 cohorts and calculated a summary relative risk
at an exposure to 100�g/m3·year benzo[a]pyrene, which was
used as an indicator of exposure to PAHs. At the other
hand, the risk assessor may also Wnd it useful to consider a
few large studies separately, because the diVerences between
the studies and between their eVects on the exposure–
response function provide more insight into the robustness
of the Wnal estimate. In such cases, pooling of the results can
then be conducted at the end of step 3. If data are available
as a data set containing the individual data of the study par-
ticipants, step 2 must be conducted on this data set.

3.2. Step 2: Wtting a model to epidemiological data

The purpose of this step is to relate the exposure to the
rate of disease in the population studied, i.e., establishing an
exposure–response association. The exposure may be
expressed as e.g., average exposure to a substance, peak
exposure, or alternatively, as a cumulative exposure for each
unit of person-time of observation (e.g., ppm·year). The sim-
plest form of this association is based on two categories of
exposure, i.e., exposed versus unexposed. However, more
than one exposure category is strongly preferable because it
allows assessment of the consistency and shape of the asso-
ciation. Although it is possible to use multiple exposure cat-
egories as such for most purposes of risk estimation, the
data are most eYciently used when a mathematical model is
Wtted to the data, provided the model Wts the data well. Such
models can have a variety of forms, ranging from linear to a
more complex mathematical function. As most epidemio-
logical studies only publish RRs for categories of exposure,
the risk assessor has to decide what mathematical function
to Wt (see text box). Whatever the model used, the end result
of this step is always the RR as a function of exposure
(Table 3), where the regression coeYcient (�) is equivalent to
the potency of the carcinogen (van Wijngaarden and Hertz-
Picciotto, 2004).

It is possible that in the publication of an epidemiological
study the data analysis that is relevant for risk assessment
has been done and that the reported relative risks (RRs) or
estimated slope (the regression coeYcient) can be used
directly to go to step 3 and calculate excess lifetime risks.
Unfortunately, however, the data analysis is often done in a
suboptimal way, in particular in older publications, and
sometimes, authors do not report the results as required for
risk assessment (Rushton, 2000; van den Brandt et al., 2002).
For example, exposure levels may only be described as high
and low or exposure categories may be reported as a range
without a point estimate, such as a median or (geometric or
arithmetic) average. To use published data eVectively for
quantitative risk assessment, minimum requirements are
that for each exposure category is reported: a point estimate
of the exposure level, incidence or mortality rates (adjusted
for age and preferably other confounders).

From a statistical point of view, it is strongly prefera-
ble, however, to use the number of observed cases and
person years-at-risk, i.e., the primary data, for each expo-
sure category. These will allow estimation of a regression
coeYcient weighted for the information density present in
each exposure category and of (correct) conWdence inter-
vals around this estimate. Number of cases and person
years should either be reported across categories of age
and other confounders or, alternatively, the expected
number of cases should be available, which are calculated
from the rates in the reference population with the same
distribution of age (and preferably other confounders) as
the subjects in each exposure category (e.g., age/gender/
race standardized). Alternatively, adjusted RRs or SMRs,
together with their conWdence intervals as reported in a
publication can be used.

Poisson regression is particularly suited to use for pub-
lished, already categorized data. Other options used to
analyze epidemiological studies, such as Cox’ regression,
are also available if the risk assessor disposes of the data-
set with individual data. Crump et al. (2003) compared
both regression methods in the same data set and found
reasonably comparable results. A calculator- or spread-
sheet-based estimation using the linear relative risk model
has also been proposed (van Wijngaarden and Hertz-Pic-
ciotto, 2004).
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3.3. Step 3: converting the RR to an ELR as function of 
exposure in the target population

Two diVerent methods may be applied to calculate the
Excess Lifetime Risk (ELR) in the target population from
the estimated RR. Some risk assessors use the more simple
approach of the cumulative risk (more accurately called
“incidence or mortality proportion”), which can be calcu-
lated from the incidence (or disease-speciWc mortality) rate
(Rothman and Greenland, 1998). In the simple approach,
the excess cumulative risk for one or more exposure levels is

How to choose a mathematical model
If sufficient data are available over a whole range o

data can be fitted appropriately to a (simple or more c
is preferable to base the calculation of risk on this m
available information is being used and the consisten
be checked. A mathematical model is furthermore the
good starting point for extrapolation, provided that ex
observations.

From the literature it appears that the types of ma
Relative risk and additive risk models are both being 
risk models are better suited to epidemiological (canc
Stayner et al., 1995). The same conclusion was reach
oratory animals (Kuo et al., 2002). The difference bet
risk models the effect of exposure multiplies the back
effect of exposure adds to the background risk. Withi
of the exposure–risk relation can be and has been use
root, polynomial. The log-linear model, where the RR
used by epidemiologists by default.

The final model chosen is often guided by the best
sion. However, many investigators test only one or 
result, risk estimates may vary from study to study
used. As the available epidemiological data are usuall
as clear-cut as one would wish because the differenc
comprehensibility, comparability, and ultimately acce
should be the preferred choice, unless there are good
often been found to give the best or almost best fit on
that it is easy to interpret for the majority of investig
matical formulas. Furthermore, it does not need an e
the observed range, if needed. A limitation of the lin
method is available to pool data from separate studie
land and Deddens (2004) suggested a feasible strateg
or semi-parametric model, such as a regression splin
ation of the shape of the exposure–risk relation. Then
calculate the risk estimate.

In today’s risk assessment, two different paradigm
being used, based on biological grounds: for genot
threshold) is assumed, while for all other effects a th
not expected to occur. It is more and more recogniz
able, in particular if more data on mode of action ar
2005). Animal studies are usually conducted with very
at much lower exposures to mimic the exposure situ
are used, it makes more sense to “let the data speak f
cal construct into the exposure-risk function.
calculated from ELRDRR£P-P, in which P represents the
cumulative (lifetime) risk in the non-exposed target popula-
tion. The state-of-the-art approach is the ELR as calculated
from a life table. Both the life table risk and the cumulative
risk represent the probability of a disease (or death attrib-
uted to a disease) during lifetime or up to a certain age (e.g.,
75 years). However, the cumulative risk is a measure condi-
tional upon survival, whereas the life table risk is an uncon-
ditional and therefore more accurate estimate of lifetime
risk. In contrast to the conditional cumulative risk, the life
table risk takes into account that a cohort is dying out from

f relevant (including low) exposure levels and these
omplex) mathematical exposure–response model, it
athematical model. The reasons for this are that all
cy of the estimated exposure–response relation can
 best available basis for interpolation and provides a
trapolation is not conducted far outside the range of

thematical models used are, however, very diverse.
used, but many authors have concluded that relative
er) data (Breslow and Day, 1980; Crump et al., 2003;

ed based on observations of cancer incidence in lab-
ween the two types of models is that in the relative
ground risk, whereas in the additive risk models the

n the relative risk type of models, a variety of shapes
d, e.g., linear, log-linear (exponential), power, square
 is modeled on a log-scale, is the conventional model

 fit to the data, as seems to be the most logical deci-
a few shapes, often without clear arguments. As a

 without an indication of the validity of the models
y relatively sparse, the fit of a model is a criterion not
es in fit may be small. For reasons of transparency,
ptability, we think that the linear relative risk model

 reasons to choose a different model. This model has
 cancer epidemiological data and has the advantages
ators that are not comfortable with complex mathe-
xtra step for extrapolation to exposures lower than
ear relative risk model is that currently no accepted
s in a meta-analysis (Armstrong et al., 2004). Steen-
y to decide for a model: in a first exploration, a non-
e (Durrleman and Simon, 1989), gives a visual evalu-
, based on this shape, a parametric model is fitted to

s for the shape of a dose–response relationship are
oxic carcinogens for which a linear shape (without
reshold is assumed to exist below which effects are
ed, however, that a more flexible approach is desir-
e available (U.S. Environmental Protection Agency,
 high exposures, requiring extrapolation of the curve
ation in man. However, when epidemiological data
or themselves” and therefore not to force a theoreti-
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other causes of death than the disease under study. The
diVerence in results between the two methods is illustrated in
Fig. 1, which demonstrates that overestimation through the
conditional cumulative risk becomes larger with increasing
old age, when all-cause mortality has a strong impact. It is
therefore unnecessarily conservative. The discrepancy will
be even larger if mortality due to the eVect of the exposure
of interest on other causes of death is high. Since calculation
of life table risk is straightforward and available (e.g., Steen-
land et al., 1998), this is the preferred method and is there-
fore presented as the only possible approach in many
reports (e.g., Canadian Environmental Protection Act, 2000;
Stayner et al., 1995, 2000; Thomas et al., 1992). Nevertheless,
life table risk can be replaced by conditional risk if the back-
ground rate of the disease and the potency of the substance
are low or if the age for which the risk is considered relevant
is relatively young (<70 years).

The life table approach described below is an adaptation
of the description in van den Brandt et al. (2002). Besides a
RR as function of exposure, several pieces of information
are needed to calculate the ELR as function of exposure
with the help of a life table. These pieces are:

• The background rate of the disease or outcome of inter-
est in each age group in the general population. We
assume that death is the outcome of interest, but slight
modiWcations can be applied to conduct these calcula-
tions for disease incidence.

• The background all-cause mortality rate in each age
group in the general population. These should be gen-
der-speciWc, if the exposure distribution or the relative
risks from the published study diVer by gender.

• Depending on the purpose of the risk assessment, a dis-
tribution or level of exposure in the target population
has to be chosen.

A life table is constructed for each level of exposure of
interest. In the construction of the table, the measure of
exposure must match the one used in the epidemiological
study (e.g., ppm·year), see also Table 2. The life table
begins at birth or at the age of Wrst occupational exposure,
starting with a Wxed cohort of a certain size, which is
aVected at every subsequent age by the mortality and dis-
ease rates for that age. The life table continues such that
the Wnal interval ends at either a near maximum lifetime
(say 90 years) or somewhere near a mean or median life-
time; the current life expectancy for Dutch men is 60 years
from age 20 (CBS Statistics Netherlands, 2005). The life-
time risk for an exposed population is derived by applying
the RR that was derived from the epidemiological data
(step 2) for that level of exposure to the ‘background’ inci-
dence or mortality rates in the general (unexposed) popu-
lation at each age. Here again, it is essential that the
exposure–risk relation used in the life table is the same as
that used in step 2. For example, if the relative risk (RR)
for a certain exposure level was 2 in the study, then the
rates at each age are multiplied by 2. These new ‘pre-
dicted’ incidence or mortality rates are used to construct
the life table for the exposed population. The cumulative
risk through the last age interval is calculated for the
given exposure level, and compared to the cumulative risk
up to the same achieved lifetime for the unexposed popu-
lation. The diVerence is the ELR (Table 3). An example of
a life table is presented for the case of hexavalent chro-
mium in the next section.

The description above assumes that the inXuence of
the exposure of interest on the incidence and mortality
rates in the general population is negligible. This will be
the case for most occupational exposures as the propor-
tion of exposed people among the general population will
be very low and also for novel substances to which the
population at large has not yet been exposed. Slight
adaptations to the method are needed if (part of) the gen-
eral population has been exposed to the substance of
interest (Hertz-Picciotto and Hu, 1994; Korte et al.,
2000). If the exposure of interest also causes other deaths
than those due to the disease of interest, the calculation
should be adapted accordingly.
Fig. 1. Lifetime risk of lung cancer in a cohort of 1000 Dutch men, based on mortality rates in 1997 (Visser et al., 2001) according to the life table method
and the conditional method. Assumed exposure to an ambient concentration of 1 � g/m3 at work from age 20 to 60 and an exposure-risk relation based on
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The result obtained from the life table analysis is an
ELR as function of exposure, in other words, an ELR for
one or (preferably) more levels of exposure or a continuous
function with a certain shape. These results can be used fur-
ther to compare to given exposure scenarios, to derive an
exposure level for a given level of excess risk, or to derive an
excess risk per unit of exposure. If the shape of the function
is non-linear, it can be decided to conduct a linear extrapo-
lation from a certain exposure or excess risk level towards
the origin. For example, the US EPA establishes an eVective
dose (ED), which is the level of exposure associated with a
speciWed level of excess risk in the range of observations
(e.g., 10, 1, or 0.1%) (U.S. Environmental Protection
Agency, 2005). Through linear extrapolation, i.e., by con-
necting the observed ED with the origin (no exposure/no
excess risk), the risk per unit of exposure can be derived
(e.g., Stayner et al., 2000). In general, the risk assessor has to
decide from which point in the curve such extrapolation
has to be carried out.

3.4. Incorporating uncertainty and variability

As in quantitative risk assessment based on animal stud-
ies, estimating the amount of uncertainty is an essential
part of the assessment. Although uncertainty is less due to
lack of the interspecies extrapolation step and a (usually)
less extreme high to low dose extrapolation, other sources
of uncertainty inherent in epidemiological studies may be
larger than in animal studies. Uncertainty is associated with
all steps in the estimation process. Stayner et al. (1999a)
studied and listed several sources of uncertainty that are
particularly relevant in epidemiological studies: those asso-
ciated with (1) study design (i.e., small sample size, con-
founding, other biases, insuYcient follow-up), (2) choice of
the data set, (3) speciWcation of the dose–response model,
(4) estimation of exposure and dose, and (5) unrecognized
variability in human susceptibility. It should be noted, how-
ever, that some of these sources, such as small sample size,
choice of the data, speciWcation of the dose–response model
and human variability, equally apply to risk assessment
based on animal data.

The degree of uncertainty associated with speciWc
study data is usually described by the (95%) conWdence
interval around the point estimate. The former EPA
guidelines prescribed the use of the upper conWdence
limit (UCL) instead of the point estimate to take into
account a worst-case situation (U.S. Environmental Pro-
tection Agency, 1986). Alternatively, a probabilistic
approach could be used, which can also deal with other
sources of uncertainty simultaneously (Steenland and
Greenland, 2004; U.S. Environmental Protection
Agency, 2005). Although usually more labor-intensive, a
probabilistic approach produces more realistic (instead
of cumulated worst-case) estimates and a better and
more useful characterization of uncertainty. Other
potential sources of uncertainty in epidemiological stud-
ies, such as bias (for example, the healthy worker eVect),
exposure measurement error or possible confounding
can be estimated, for example in validation studies or, if
such studies are not available, from the literature or
available knowledge. For example, Steenland and Green-
land (2004) showed how the impact of confounding due
to smoking could be estimated in a study on exposure to
silica and lung cancer, despite the lack of data on smok-
ing in the study subjects. For this study, they showed that
the unadjusted SMR of the exposed workers shifted
from 1.60 (95% CI: 1.31–1.93) to 1.43 (95% CI: 1.15–1.78)
for the smoking-adjusted SMR by applying Monte Carlo
sensitivity analysis (a probabilistic approach) using gen-
erally available information on prevalence of smoking in
blue collar workers and on the eVect of smoking on lung
cancer risk. Strikingly, this approach introduced only
minimal increase in uncertainty, as can be derived from
the conWdence intervals. Exposure-measurement error
correction can also be applied to get a handle on uncer-
tainties connected with exposure assessment in the epide-
miological study. For example, in studies on dietary
habits and cancer, this is being more and more applied,
as demonstrated in a study on meat consumption and
large-bowel cancer, in which, besides the exposure data
collected via questionnaire in the entire study popula-
tion, more accurate exposure data were available in an
8% random sample of the study population (Norat et al.,
2005). In this study, the uncorrected RR for large-bowel
cancer was 1.25 (95% CI: 1.09–1.41) for every 100 g meat
consumption, whereas the corrected RR was 1.55 (95%
CI: 1.19–2.20). Even in absence of a validation study, an
estimate of the exposure measurement error can be
derived from the literature and incorporated as a source
of uncertainty in the risk assessment. Similar work has
been done to estimate the possible impact of the healthy
worker eVect.

4. Example on chromium

Hexavalent, but not trivalent, chromium causes cancer in
laboratory animals and has been classiWed as a human car-
cinogen via inhalation (International Agency for research
on Cancer, 1990). Many epidemiological cohort studies on
occupational chromium exposure and risk of lung cancer
have been published over the last 30 years (International
Agency for research on Cancer, 1990). A few of those studies
have been used in one or more of the available risk assess-
ments for chromium (Dutch Expert Committee on Occupa-
tional Standards, 1998; European Union Risk Assessment
Report, 2002; ScientiWc Committee on Occupational Expo-
sure Limits, 2003; Sorahan et al., 1998b; U.S. Environmental
Protection Agency, 1998; WHO, 2000a). It was not always
clear from the reports why the studies were selected, but
important reasons were the size of the studies and the avail-
ability of multiple quantitative exposure categories. More
recently, new studies on existing cohorts have been pub-
lished, which are very suitable for quantitative risk estima-
tion (Crump et al., 2003; Gibb et al., 2000).
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4.1. Step 1: selection of studies

As the chromium example is used speciWcally to illus-
trate and discuss the principles of and approach for deriva-
tion of quantitative risk estimates from epidemiological
data (i.e., steps 2 and 3), we skipped the formal quality
review of the studies and included the studies that were
used in previous quantitative risk assessments in addition
to the two recent studies. A summary of those cohorts is
presented in Table 4. From more than one publication of
the same cohort, the last publication with the latest update
of follow-up in the cohort was used.

The three studies by Mancuso (1997), Gibb et al. (2000),
and Crump et al. (2003) appeared to be the only studies
with quantitative exposure estimates and both studies used
more than one exposure category. The study by Mancuso
et al. was used in the risk assessment conducted by the EPA
(U.S. Environmental Protection Agency, 1998) as the best
study before the much larger study by Gibb et al. became
available. The study by Sorahan et al. (1998a), a qualita-
tively acceptable study in which the level of exposure to
chromium was not available, was nevertheless used to con-
duct a quantitative risk assessment by postulating a posteri-
ori a range of exposure levels (Sorahan et al., 1998b). The
meta-analysis by Steenland et al. (1996), based on 10 occu-
pationally exposed chromium cohorts, did not have quanti-
tative exposure estimates either, but was used in the risk
assessment conducted by the EU ScientiWc Committee for
Occupational Exposure Limits using the same approach as
Sorahan et al. assuming several exposure levels (ScientiWc
Committee on Occupational Exposure Limits, 2003). The
purpose of the publication by Crump et al. (2003) was
quantitative risk estimation.

We selected the three cohort studies by Mancuso (1997),
Gibb et al. (2000), and Crump et al. (2003) for quantitative
risk estimation. All three publications report the minimally
required data, have quantiWed exposure (based on airborne
concentrations of chromium), and used several exposure
categories to enable exposure–response modeling (Table 4).

The Mancuso study is the smallest and exposure assess-
ment was based on one industrial hygiene survey only. How-
ever, exposure levels and contrast in exposure were high. No
information on smoking status of the cohort was available.
The Gibb study was by far the largest study, exposure assess-
ment was based on frequent industrial hygiene surveys, and
data on smoking status were available for 93% of the cohort,
which is important, as smoking is a strong determinant of
lung cancer and therefore a serious potential confounder.
The exposure levels and contrast in exposure were, however,
low. The Crump study, conducted in cohorts from the same
Ohio plants but from a more recent generation than the
Mancuso study, was much smaller, but had extensive expo-
sure information and relatively high exposure levels. Smok-
ing status was known for part of the cohort. Besides the data
extracted for the purpose of this paper, the authors of one of
the original papers also investigated other exposure metrics
(peak exposure by Crump et al.). These are not included in
the present paper. Furthermore, two studies used cumulative
exposure lagged by 5 years (Crump et al., 2003; Gibb et al.,
2000). This was done to improve the Wt of the model (step 2)
and is understandable as clinical cancer develops consider-
able time after exposure.
Table 4
Selection of occupational studies on chromium exposure and lung cancer risk

a Regression coeYcient (�) based on log-linear model and log-transformed cumulative exposure: RR D exp (�10log [cumulative exposure]).
b Regression coeYcient (�) based on linear model: RR D 1 + �[cumulative exposure].

Study type Reference Country Exposure 
period

Follow-up 
period

Type of data reported Exposure categories Exposure assessment

Meta-analysis 
of cohorts

Steenland et al. 
(1996)

Several Diverse Diverse Mean SMR based on 
10 studies

1; no quantiWcation; 
no duration

Cohort Sorahan et al. 
(1998a)

Great Britain
Midlands

1946–1975 1946–1995 No. of cases and expected 
no. of cases (standardized 
for age, sex, calendar year)

1; no quantiWcation; 
4 categories of duration

Cohort Mancuso 
(1997)

USA Ohio 1931–1937 1931–1993 • Age-adjusted 
 mortality rates

6; range per category; 
cumulative exposure, 
quantiWed as airborne 
soluble Cr conc.

1 industrial hygiene 
survey (1949), 
combined with 
job titles

• No. of cases and 
 person-years 
 stratiWed on age

Cohort Gibb et al. 
(2000)

USA Maryland 1950–1974 1950–1992 • No. of cases, person-years 
 and expected no. of cases 
 stratiWed on age

• Age- and smoking-adjusted 
 regression coeYcienta

4; mean per category; 
cumulative exposure, 
quantiWed as airborne 
CrO3 conc.

70,000 contemporary
industrial hygiene 
measurements, 
combined with 
job titles

Cohort Crump et al. 
(2003)

USA Ohio 1940–1972 1940–1997 • No. of cases, person-years 
 and expected no. of cases 
 (standardized for age)

10; mean per category; 
cumulative exposure, 
quantiWed as airborne 
hexavalent Cr conc.

26 industrial 
hygiene surveys
conducted over
time, combined 
with job titles

• Age-adjusted regression 
 coeYcient b
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4.2. Step 2: Wtting a model to epidemiological data

The published data from the three selected studies are
presented in Table 5. We decided to estimate the lifetime
risk of cancer for all three studies separately and not use a
combined estimate of the RR to get better insight into the
diVerences and similarities between the estimates. Ulti-
mately, the estimates may be pooled into one estimate.

We used, as did Crump et al., the most straightforward
model, i.e., the linear relative risk model [RRD1 +
�(exposure)]. This model can be Wtted to the data through
Poisson regression, taking into account several forms of
availability of the published data. For the Crump data, we
replicated and used (almost) the same potency estimate
(�D0.7925) as reported by the authors (Crump et al., 2003).
As comparison, we also Wtted the log-linear model
[RRDe�(exposure)] on the three datasets through Poisson
regression. The data we used were those displayed in Table 5;
however, for Gibb et al. we used the age-stratiWed data from
the publication (Table V from the original publication) and
for Mancuso we initially used the age-stratiWed data as well
(Table XII from the publication). As the linear Poisson
regression model failed to converge for the Mancuso data,
we used linear regression (least squares) with the reported
age-adjusted lung cancer mortality rates (Table 5) instead. As
the Gibb exposure data were based on CrO3 instead of ele-
mental chromium, the exposure data were rescaled to ele-
mental chromium.
The results of the Wtted models for each of the data sets
are presented in Table 6. Whereas the predicted relative
risk per unit of exposure was twice as large for the Man-
cuso data compared to the Crump data, the relative risks
for the Gibb data were much higher. The results did not
diVer very much between the linear and log-linear model
for the Mancuso and Crump data, in contrast to the Gibb
dataset, which resulted in very high RRs for the log-linear
model.

4.3. Step 3: converting the RR to an ELR as function of 
exposure

We developed a life table based on Dutch data for lung
cancer mortality and all-cause mortality and calculated the
ELR from the three studies by using as input the linear rel-
ative risk function of cumulative exposure as derived from
the Poisson regression. As an example, the abridged life
table used for the ELR calculation from the study by
Crump et al. is presented in Table 7. The life table risk in
Fig. 1 was produced from such a life table.

The ELRs up to age 89 per 1�g/m3 chromium as calcu-
lated from the life tables, range between 3 and 16£ 10¡3 for
the three datasets (Table 8). If based on conditional risk up
to age 89, the ELRs are almost twice as high. If the back-
ground lung cancer mortality in the (target) population
would be that of a non-smoking population, the ELRs are
10 times smaller.
Table 5
Summary of data from cohort studies with quantitative exposure data as reported by authors

na, not available.
a No. of cases per 100,000 person years.
b Midpoint of category.
c 1 mg CrO3»0.5 mg hexavalent Cr.

Cumulative exposure 
categories (mg/m3·year)

Average cumulative 
exposure (mg/m3·year)

Person years Lung cancer 
deaths

Expected no. of 
lung cancer deaths

Lungca-rate 
age-adjusteda

RR/SMR

Mancuso (1997, Table VI, soluble Cr) RR
<0.25 0.125b 4375 5 na 99.7 1 (reference)
0.25–0.49 0.375b 1952 10 na 503.7 5.1
0.50–0.99 0.75b 2676 16 na 605.3 6.1
1.00–1.99 1.5b 2526 19 na 794.6 8.0
2.00–3.99 3b 1180 14 na 1312.8 13.2
74.00 5b 172 2 na (2848.3) (28.6)

Gibb et al. (2000, Table VI, hexavalent CrO3)
c SMR

0–0.00149 0.00045 28,512 26 27.1 na 0.96
0.0015–0.0089 0.0042 14,879 28 19.8 na 1.42
0.009–0.0769 0.030 15,194 30 19.1 na 1.57
0.077–5.25 0.449 13,409 38 17.0 na 2.24

Crump et al. (2003, Table IV, hexavalent Cr) SMR
0.00–0.06 0.00976 3112 0 2.09 na 0
0.06–0.18 0.115 1546 3 2.19 na 1.4
0.18–0.30 0.233 1031 3 2.19 na 1.4
0.30–0.46 0.386 1130 5 2.13 na 2.3
0.46–0.67 0.563 1257 0 2.20 na 0
0.67–1.00 0.817 1431 4 2.22 na 1.8
1.00–1.63 1.27 1493 12 2.23 na 5.4
1.63–2.60 2.09 1291 3 2.18 na 1.4
2.60–4.45 3.37 1248 10 2.18 na 4.6
4.45–29.0 7.55 904 11 2.12 na 5.2
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k Excess number of lung cancer deaths up to that age.
Table 6
Relative risks (RRs) for lung cancer death for diVerent exposure levels predicted from log-linear and linear models (Poisson regression)

a RR D e�(exposure).
b RR D 1 + �(exposure).
c As the Poisson regression model failed to converge, least square linear regression was applied to the age-adjusted rates, with exclusion of the highest

exposure level due to small number of cases.

Cumulative exposure to 
CrVI (mg/m3·year)

Mancuso (1997) Gibb et al. (2000) Crump et al. (2003)

Log-lineara Linearb,c Log-lineara Linearb Log-lineara Linearb

0 1 1 1 1 1 1
1 1.6 2.5 7.0 5.3 1.3 1.8
2 2.5 4.1 49.1 9.5 1.7 2.6
3 4.0 5.6 344.2 13.8 2.1 3.4
4 6.4 7.1 2412.4 18.1 2.8 4.2
5 10.2 8.6 16,907.3 22.4 3.6 5.0
Table 7
Life table calculation of the excess lifetime (i.e., until age 89) risk for lung cancer death due to hexavalent chromium exposure in Dutch workers

Exposure level of hexavalent chromium D 0.001 mg/m3, �D 0.7925 (Crump et al., 2003) (based on linear Poisson regression corrected for age). Only the
start, the middle part and the end of the life table are reproduced.

a 20 D 20 years 0 days.
b Population at risk at exact age.
c Average ambient exposure at the workplace (mg/m3).
d Cumulative exposure at exact age (mg/m3·year).
e Probability of death before next birthday (CBS1997).
f Number of deaths occuring at that age, in the absence of any exposure eVect.
g Death rate from lung cancer in general male population (per 100,000, Visser et al., 2001).
h (Cumulative) expected number of deaths from lung cancer in absence of any exposure eVect.
i RR D 1 + �(cumulative exposure), according to linear relative risk model.
j (Cumulative) predicted number of lung cancer deaths.

Exact 
agea

Cohort 
at riskb

Exposure Prob. of 
deathe

No.of 
deathsf

Among unexposed RRi Among exposed

Levelc Cumulatived Lung cancer 
death rateg

Cases 
expectedh

Cum cases 
expectedh

Cases 
predictedj

Cum cases 
predictedj

Excess 
riskk

20 1000 0.001 0 0.0007 0.70 0.06 0.00 0.00 1.00 0.00 0.00 0.00
21 999 0.001 0.001 0.0007 0.70 0.08 0.00 0.00 1.00 0.00 0.00 0.00
22 999 0.001 0.002 0.0005 0.50 0.12 0.00 0.00 1.00 0.00 0.00 0.00
23 998 0.001 0.003 0.0007 0.70 0.16 0.00 0.00 1.00 0.00 0.00 0.00
24 997 0.001 0.004 0.0007 0.70 0.22 0.00 0.01 1.00 0.00 0.01 0.00
25 997 0.001 0.005 0.0009 0.90 0.29 0.00 0.01 1.00 0.00 0.01 0.00
26 996 0.001 0.006 0.0007 0.70 0.39 0.00 0.01 1.00 0.00 0.01 0.00
27 995 0.001 0.007 0.0006 0.60 0.51 0.01 0.02 1.01 0.01 0.02 0.00
28 995 0.001 0.008 0.0007 0.70 0.66 0.01 0.02 1.01 0.01 0.02 0.00
29 994 0.001 0.009 0.0006 0.60 0.85 0.01 0.03 1.01 0.01 0.03 0.00
30 993 0.001 0.010 0.0007 0.70 1.08 0.01 0.04 1.01 0.01 0.04 0.00
31 993 0.001 0.011 0.0008 0.79 1.36 0.01 0.06 1.01 0.01 0.06 0.00

58 921 0.001 0.038 0.0086 7.92 121.65 1.12 8.72 1.03 1.15 8.94 0.22
59 913 0.001 0.039 0.0093 8.49 153.52 1.40 10.12 1.03 1.45 10.38 0.26
60 905 0.001 0.04 0.0105 9.50 185.39 1.68 11.79 1.03 1.73 12.11 0.32
61 895 0 0.04 0.0121 10.83 217.26 1.94 13.74 1.03 2.01 14.12 0.38
62 884 0 0.04 0.0133 11.76 249.13 2.20 15.94 1.03 2.27 16.39 0.45
63 872 0 0.04 0.0147 12.82 281.00 2.45 18.39 1.03 2.53 18.92 0.53
64 859 0 0.04 0.0165 14.18 312.87 2.69 21.08 1.03 2.77 21.69 0.61

82 349 0 0.04 0.1087 37.93 834.00 2.91 86.40 1.03 3.00 89.08 2.68
83 311 0 0.04 0.1194 37.13 834.00 2.59 89.00 1.03 2.68 91.76 2.76
84 274 0 0.04 0.1342 36.74 834.00 2.28 91.28 1.03 2.36 94.12 2.84
85 237 0 0.04 0.1475 34.95 834.00 1.98 93.25 1.03 2.04 96.15 2.90
86 202 0 0.04 0.1514 30.57 834.00 1.68 94.94 1.03 1.74 97.89 2.95
87 171 0 0.04 0.1749 29.96 834.00 1.43 96.37 1.03 1.47 99.37 3.00
88 141 0 0.04 0.1975 27.91 834.00 1.18 97.55 1.03 1.22 100.58 3.04
89 113 0 0.04 0.2163 24.52 834.00 0.95 98.49 1.03 0.98 101.56 3.07
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5. Discussion

Since the purpose of our paper was not to establish the
best quantitative estimate of lung cancer risk attributed to
exposure to hexavalent chromium, but rather to give
insight into the type of data and procedures required to
derive such estimates from epidemiological studies, we sim-
pliWed some of the choices made. For example, we did not
review all available studies and did not include all eligible
studies of suYcient quality, as is required for a proper
weight-of-evidence approach. Nevertheless, the three rela-
tively large studies with exposure information available
were included. Also, from the multitude of possibilities to
Wt a mathematical (or biological) model to the exposure–
response data, we choose the two most simple and straight-
forward to interpret, i.e., the linear and log-linear relative
risk model. Many of the other quantitative risk estimations
of chromium were based on a variety of models, e.g., Cana-
dian Environmental Protection Act, which used a time-
weighted quadratic additive risk model (Canadian Envi-
ronmental Protection Act, 1994) or US EPA, which used
the multistage (biological) model (U.S. Environmental Pro-
tection Agency, 1998). We also used cumulative exposure as
exposure metric, as this was the metric available for all
three studies and it is certainly one of the most frequently
used exposure metrics in occupational epidemiology. This
does not, however, imply that other exposure metrics may
not be relevant. Last but not least we did not attempt to
include any uncertainty estimates in the example.

The results (point estimates) of the risk estimation based
on the three studies (linear relative risk model) were all
within a relatively small range, i.e., 3–16£ 10¡3 excess lung
cancer deaths up to age 89. The Gibb study resulted in the
highest estimates, because it had the steepest slope; the
diVerence between this and the other two studies was that
the average exposure was lower and the exposure range
much smaller in the Gibb study. This might indicate that
the true shape of the exposure–response relation is more
like square root, where the curve begins steep but levels oV
at higher exposures. Such a shape has been observed for
many other substances as well, but it is speculated that it is
due to bias (Stayner et al., 2003). On the other hand, it
might reXect that the Gibb study, although by far the larg-
est, is hampered by the small range of exposure resulting in
a less robust estimate of the slope, due to a low signal-to-
noise ratio. The results from the Gibb study also clearly
demonstrate the danger of extrapolating from a Wtted
model outside the range of observation: in the log-linear
model the RRs are unrealistically high at higher exposure
levels, but it should be realized that these RRs are not
based on actual observations, but purely on extrapolation.
The log-linear is model is the model normally used in epide-
miology, but the majority of epidemiologists is not inter-
ested in extrapolation outside the range of observations.
For risk assessment, however, where prediction of risks at
exposure levels lower or higher than those observed in the
underlying studies can be the primary aim, the choice of the
model is much more critical than in conventional epidemi-
ology. As the log-linear relative risk model is particularly
susceptible to overestimation of risk at the right side of the
exposure range in the data, for example when a risk esti-
mate is calculated for a worst-case exposure scenario, it is
important for further evolution of quantitative risk assess-
ment based on epidemiological studies that statistical meth-
ods are developed to conduct a meta-analysis using the
linear relative risk model.

The example illustrated that the outcome of the risk
assessment process as quantiWed by the ELR relies heavily
on the background rates of speciWc cancers in the popula-
tion of interest, since relative risk is used as input. If this
background rate is strongly inXuenced by other environ-
mental or lifestyle risk factors, such as smoking on lung
cancer, the derived excess lifetime risk may vary with a fac-
tor of up to 10 depending on the proportion of smokers in
the population. This is true even if the epidemiological data
may have shown that no interaction between the two risk
factors was present. In other words, the RR for exposure to
a certain substance can be the same for smokers as for non-
smokers, but the ELR shows a diVerence up to one order of
magnitude depending on the proportion of smokers in the
population. This is because the eVect of exposure multiplies
the background risk in relative risk models. Several solu-
Table 8
Excess lifetime risks of lung cancer death per 1000 per unit of exposure to hexavalent chromium (�g/m3) on the workplace during 40 years, based on three
diVerent datasets and the linear relative risk model

a Current life expectancy from birth of Dutch men who survived up to age 20.
b Life table risk (up to age 89), based on a cumulative lifetime background risk of lung cancer death of 1%, which corresponds approximately to the risk

in a population of never smokers.

Data set Mancuso (1997) Gibb et al. (2000) Crump et al. (2003)

Life table method
Up to age 74 3.4 9.4 1.8
Up to age 80a 4.8 13.3 2.5
Up to age 89 5.9 16.4 3.0

Conditional method
Up to age 74 4.2 11.8 2.1
Up to age 80a 6.6 18.7 3.3
Up to age 89 10.5 29.7 5.2

Low background lung cancer mortality riskb 0.6 1.7 0.3
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tions are possible to this problem, but all solutions have in
common that, in the underlying study, information on the
distribution of this other risk factor and, preferably, on the
combined eVect of the two risk factors should be available.

Other quantitative risk assessments for the worker
population obtained the following ELRs per unit of
cumulative exposure to CrVI (1 �g/m3. year). Based on the
early study by Mancuso (1975), US EPA (U.S. Environ-
mental Protection Agency, 1998) calculated an ELR (life
table risk up to age 74) of 11.6£10¡3 for the general popu-
lation assuming continuous, lifetime exposure, using the
multistage model. Recalculation for the (not-continu-
ously) exposed worker population results in an ELR of
1.3£ 10¡3. Sorahan et al. (1998b) found a range of ELRs
(for life table risk up to age 85) between 0.3 and
8.1£ 10¡3, based on a British cohort (see Table 4) (Sora-
han et al., 1998a) using the linear relative risk model. The
authors conducted a sensitivity analysis using a range of
hypothesized exposure levels and also incorporating sev-
eral levels of bias in the results of the epidemiological
study. The ScientiWc Committee on Occupational Expo-
sure Limits of the European Union (ScientiWc Committee
on Occupational Exposure Limits, 2003) derived lower
ELRs of 0.1–0.6£ 10¡3 (for life table risk up to age 85),
based on a meta-analysis of 10 cohort studies (see Table
4) (Steenland et al., 1996). As no data on duration of
exposure were available in the meta-analysis (situation 4
in Table 2), the risk assessors assumed an average individ-
ual exposure duration of 15 years. The authors conducted
a sensitivity analysis similar to Sorahan et al. (1998b), but
with higher hypothesized ambient exposure levels, result-
ing in lower ELR estimates per unit of exposure. The
World Health Organization (WHO, 2000b) used the study
by Hayes et al. (1979) in combination with that by Braver
et al. (1985) for the exposure assessment and another
study by Langard et al. (1990) for derivation of ELRs.
Conditional ELRs between 1.3£ 10¡1 and 4.3£ 10¡2 were
calculated for continuous, lifetime exposure of the general
population, using the linear relative risk model. Given the
available, but scattered risk assessments for hexavalent
chromium and lung cancer, a new assessment, following
the proposed scheme, might be useful, not only to estab-
lish a ‘weight-of-the-evidence’ risk estimate, but also to
identify better the sources of variation in the ELR esti-
mate among the studies and methods used.

In conclusion, we described a framework to conduct
quantitative risk assessment based on epidemiological stud-
ies in a structured, transparent and reproducible manner.
Important features of the process include a weight-of-the-
evidence approach, estimation of the optimal exposure-risk
function by Wtting a regression model to the epidemiologi-
cal data, estimation of uncertainty introduced by potential
biases and missing information in the epidemiological stud-
ies, and calculation of excess lifetime risk through a life
table to take into account competing risks. Sensitivity anal-
yses are a useful tool to obtain insight into the impact of
assumptions made and the variability of the underlying
data. The framework is suYciently Xexible to allow many
types of data, including published, sometimes incomplete
data, but also more complex detailed individual exposure
data, while maintaining an optimal result, i.e., a state-of-
the-art risk estimate with conWdence intervals, based on all
available evidence of suYcient quality.
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