
Performance of a multi-agent greedy algorithm in a cooperative game with

imperfect information

Sam Chan
Faculty of Humanities Bachelor Thesis Artificial Intelligence

Utrecht University 7,5 ECTS

Heidelberglaan 8 First Supervisor: Krisztina Szilagyi

3584 CS Utrecht Second Supervisor: Tomas Klos

2 July 2021

Abstract

Artificial Intelligence (AI) is slowly integrating into our
everyday lives. Some of these AI applications must cooperate
with humans and each other. Such cooperation is essential for
the safety of people in contact with these AIs. This proves to
be difficult, due to the sheer amount of uncertainty in the real
world. The virtual environments in games are a safe starting
place for the research and development of AI capabilities such
as cooperation in imperfect information environments.
However, cooperative games with imperfect information are an
uncommon topic for AI, which is why we have researched such
a game called The Crew. We implemented the card game into
a program and made an AI that can play it using different
algorithms. We experimented with a random algorithm, a
cooperative multi-agent greedy algorithm called CoopGreedy,
and a competitive multi-agent greedy algorithm called
CompGreedy. These algorithms also incorporated heuristics to
improve their performance. Our results showed that
CoopGreedy outperformed the other algorithms considerably.
CoopGreedy in combination with the Expected Value Hand
Estimation Heuristic and the Longest Suit Higher Card Goal
Selection Heuristic also noticeably improved performance. We
also found that CoopGreedy performed better with perfect
information than with imperfect information. Our findings
indicate that cooperation and heuristics improved performance
significantly, but that imperfect information impedes AI
performance. We can derive from our experiment that
CoopGreedy could be used as a benchmark algorithm for
further research. We recommend future research on local
search and learning algorithms for The Crew.

Keywords: multi-agent system; greedy algorithm; cooperative
game; imperfect information

Introduction

One of many qualities that humans possess is their ability to

work together, even when they are surrounded by many

uncertain factors. This can be illustrated by traffic, where

multiple individuals cooperate with minimal communication

in an imperfect information environment. Many applications

of AI revolve around an AI’s potential to replicate human

capabilities. For instance, the self-driving car is such an

application. The goal of researching self-driving cars is to

make traffic more autonomous. To achieve this, a self-driving

car needs to be able to cooperate with other cars. Of course,

just like we cannot replace all fuel-driven cars with electric

cars in an instant, we cannot immediately make all cars

autonomous. We will have to find a way to safely incorporate

self-driving cars into traffic that is not yet void of human-

driven cars. For this reason, self-driving cars highlight the

importance of cooperation between man and machine.

However, the real world can sometimes be a too

unpredictable starting ground for research, due to many

uncontrollable variables. These variables can impede

experiments. In contrast, the virtual environment in games is

not accompanied by these uncontrollable variables.

Therefore, games can be a useful starting place to research AI

capabilities.

Since AI’s first usage in games, it has expanded and

improved to a considerable degree. Several games feature AI

players on the same level as human players of average skill.

These games range from turn-based tabletop games to fast-

paced 3D video games. Moreover, AI players have even

defeated professional chess players (Campbell, Hoane Jr, &

Hsu, 2002).

Despite the importance of cooperation between humans

and AI, most common games are competitive zero-sum

games where players compete against each other to achieve

their goals (Russell, S., & Norvig, P., 2002). In comparison

to competitive games, the amount of research conducted on

AI in cooperative games is limited.

Besides the competitive aspect, perfect information occurs

frequently in games with AI (Russell, S., & Norvig, P., 2002).

Such games have all information about the game state

available to everyone. An example is the game of chess,

where both players have all the necessary knowledge about

the rules, the position of the pieces, etc. In Poker, players do

not have all knowledge of the game state available to them.

Players do not know what cards other players have up until

the end of the game, hence Poker is an imperfect information

game. Most AI applications in games involve perfect

information because imperfect information games are

difficult to optimize (Blair, J. R., Mutchler, D., & Liu, C.,

1993). The major challenge is the large state space that

accompanies imperfect information games (Ganzfried, S., &

Sandholm, T., 2013). Machine learning is an effective tool to

tackle this problem (Charlesworth, H. 2018). Combining

machine learning and traditional search algorithms has also

proven to be useful. The results of these techniques on

imperfect information games are AIs that can perform on a

super-human level (Brown, N., Bakhtin, A., Lerer, A., &

Gong, Q., 2020).

Prior research on cooperative imperfect information games

has been done on the tabletop game Hanabi. However, the

reinforcement learning algorithms used were unable to

surpass hand-coded AIs in this game (Bard, N. et al, 2020).

We chose to research another cooperative imperfect

information game called The Crew. For our experiment, we

created three algorithms that could play this game: a random

algorithm and two greedy algorithms that use heuristics. An

AI that uses our random algorithm bases its decision-making

process entirely on chance. With our greedy algorithm, the

AI always chooses the most obvious decision, which is the

decision that maximizes the AI’s expected utility.

The random algorithm is not an effective way for an AI to

play this game. However, since no prior research has been

done on The Crew, the random algorithm’s performance does

form a clear baseline for determining how effective

algorithms such as our greedy algorithms are in this game.

Greedy algorithms have been used in studies on games such

as the real-time strategy game StarCraft (Churchill, D., &

Buro, M., 2013) and other real-time adversarial games

(Moraes, R., Mariño, J., & Lelis, L., 2018). In these studies,

they used greedy algorithms in combination with other

algorithms, due to the high complexity of such games. In the

algorithms section, we will discuss in detail the algorithms

and heuristics of our experiment.

Our research question is: How well does a multi-agent

greedy algorithm perform in a cooperative game with

imperfect information? We will answer this question by

answering these sub-questions:

• How much do the heuristics influence the greedy

algorithm performance?

• How does the greedy algorithm compare to a

random algorithm?

• How does the greedy algorithm compare to a

competitive variant of the same algorithm?

• How does the greedy algorithm perform with

perfect information?

We will compare test runs with different parameters to

answer these sub-questions.

Definitions

The Crew

The Crew: Quest for Planet Nine is a trick-taking card game

that can be played with two to five players. The rules of a

two-player game are different compared to a game with three

or more players. Since the complexity increases with the

player count, we decided to implement the game with three

players.

The Crew is played with a deck of 40 playing cards and a

deck of 36 goal cards. The playing card deck contains four

regular suits and one trump suit: pink, yellow, green, blue,

and rocket (trump suit). Every regular suit has nine cards with

values 1 through 9. The trump suit has four cards with values

1 through 4. The goal card deck contains the same cards as

the playing card deck except that it does not contain rocket

cards.

At the start of every mission, the playing deck and the goal

deck are shuffled. Then a predetermined number of goal

cards are dealt face up. The number of goals varies per

mission configuration. After that, the playing card deck is

distributed over all the players. Player 1 gets 14 playing cards

and the other players get 13 playing cards each. Players

cannot see the hands of others. The player with the highest

rocket card (rocket 4) is the commander. The commander

always leads the first trick. A trick is a single round of play

in which every player gets one turn to play a card. Every trick

starts with the leader playing a card of their choice. Then each

player gets a turn to play a card of the same suit as the leader’s

card, this is called following suit. Players always take turns

in clockwise order. When a player cannot follow suit, he can

play any card in their hand instead. After every player has

played a card, the player with the highest card that followed

suit ‘takes the trick’. If a rocket is played, then the player that

played the highest rocket takes the trick. The player that takes

the trick takes all the cards played in the trick and is the leader

of the next trick. Cards taken from a trick are out of the game

for the current mission.

After the commander has been determined, players take

turns to choose a goal card from the available face-up goal

cards, starting with the commander. This repeats until all

face-up goal cards have been distributed. The goal of the

game is that every player completes all their goal cards. A

player’s goal card is completed when they take the playing

card that corresponds with their goal card. However, when a

player takes a card that matches someone else’s goal card,

that goal has been failed and thus cannot be completed. In the

original version of The Crew, the mission is over when a goal

has been failed. In our implementation, the mission ends

when no more goals can be completed or after the trick in

which a player plays their last card.

At the start of each trick, before a card is played, players

get the opportunity to communicate one of the cards in their

hand that is not a rocket card. This card is revealed to

everyone. The communicating player also must reveal

whether this card is the highest, lowest, or only card in its suit

that they have in hand. If no such revelation can be made, that

card cannot be communicated. Each player is only allowed to

communicate once per mission. All other forms of

communication are prohibited.

Imperfect Information

In a perfect information environment, our AIs would only

need a knowledge base to store true information about the

environment. More specifically, the AI would store in their

knowledge base every card and the corresponding player that

has it in their hand. However, since The Crew has an

imperfect information environment, we also need the AIs to

be able to work with cards without knowing which player has

them in their hand. In The Crew, players can only see the

cards in their hand and the cards that are revealed by play or

communication. Therefore, algorithms that normally work

with perfect information games are not as effective in this

game. Especially at the beginning of a mission, there is

limited information available to the players. Due to this,

players would have to make a lot of random decisions.

Furthermore, the state space in The Crew is large due to

imperfect information. We attempted to solve the limited

information problem and the large state space problem with

hand estimation. We will discuss hand estimation in more

detail in the algorithms section.

Decision Tree/The Problem

We represented the decision-making process of the active

player with a tree structure. The active player is the player

whose turn it is. To better illustrate how this decision-making

process was represented, we give the informal definition of

the tree structure and its components here:

• A tree is a recursively defined data structure

that consists of a root node and a list of subtrees.

• A root node is the topmost node of a tree.

• A node is an element of a tree that consists of

an actor and an action.

• An actor is a player that performs the action of

a node.

• An action corresponds to a card that the actor

can play according to the active player.

• A subtree is in itself a tree with a root node and

a list of subtrees.

• A leaf node is the root node of a tree without

subtrees. This node marks the end of a branch.

• A branch encompasses all the nodes from the

root node of a tree to a leaf node.

• The main root node is the topmost root node of

the entire tree structure.

Algorithms

In this section, we will first discuss the heuristics that the

algorithms use. Afterward, we will discuss the algorithms

themselves.

Hand Estimation Heuristics

We explored two ways of estimating the hands of players: the

Random Hand Estimation Heuristic (RHH) and the Expected

Value Hand Estimation Heuristic (EVHH).

With the RHH, all the cards that a player (Player X) knows

nothing certain about are compiled into a deck. Player X then

randomly assigns these cards to the other players (Player Y

and Z), such that each player has an equal number of assigned

cards. These assigned cards are called assumptions. Player X

then combines the knowledge he does have of the other

players’ hands with the assumptions. The result is an

estimated hand for Player Y and an estimated hand for Player

Z. Player X can then use these estimated hands to make

decisions the same way he would in a perfect information

environment.

Using the EVHH, all the cards that Player X knows nothing

certain about are compiled into a deck as well. Instead of

randomly assigning these cards to other players, the cards are

assigned based on a heuristic. The heuristic determines the

expected number of cards Player Y and Z have of each suit.

Since the playing card deck is shuffled before dealing the

hands, the probability of having a card in hand of a specific

non-trump suit is 9/40. The probability of having a rocket

card is 4/40 = 1/10. This means the expected number of cards

in hand of a specific non-trump suit is approximately three

cards (13 * 9/40). And the expected number of rocket cards

in hand is approximately one card (13 * 1/10). Player Y and

Z are then assigned the appropriate amount of cards for each

suit. If Player Y or Z is the player that starts with 14 cards,

then that player gets assigned an additional card. If it is

known to Player X that another player has more cards of a

suit than is expected, that player is assigned fewer cards of

other suits, and vice versa.

The RHH was the most straightforward way to estimate

hands but was also prone to high estimation errors. The

estimation error is the difference between how many cards a

player is assumed to have and how many cards they actually

have. When estimating a player’s hand with the RHH, the

worst-case estimation error is nine cards. For instance, when

a player is assumed to have no cards in a certain suit, but in

reality, that player has nine cards in that suit. Then the

difference between the assumption and reality is nine cards,

which is the highest possible estimation error. Our motivation

for implementing the EVHH was to reduce the worst-case

estimation error of the RHH. The worst-case estimation error

of the EVHH is six cards. For example, when Player X has

no knowledge of Player Y’s hand, Player Y is assumed to

have the expected three cards per suit. Then when Player Y’s

hand actually contains nine cards in a suit, the difference

between the assumption and reality is only six cards instead

of nine. There is one exception: if Player Y has a hand of 14

cards, then the worst-case estimation error is seven cards

instead of six.

Apart from reducing the estimation error, we implemented

these hand estimation heuristics to decrease the state space of

The Crew. When Player X assumes Player Y has a certain

Card Y, then Player X automatically assumes Player Z does

not have Card Y. Therefore, all the states wherein Player Z

has Card Y are not taken into consideration when making a

decision. This decreases the state space and consequently

speeds up Player X’s decision-making process.

Goal Selection Heuristics

At the start of a mission, players must base their selection of

goals on their hands. We explored three heuristics for

choosing goals: the Random Goal Selection Heuristic (RGH),

the Matching Cards Goal Selection Heuristic (MCGH), and

the Longest Suit Higher Card Goal Selection Heuristic

(LHGH). The RGH is simple: pick a goal at random. The

other strategies are based around the choosing player’s

(Player C) limited knowledge, which is their hand.

For the MCGH, Player C looks at the available goals and

their hand. If an available goal matches one of their cards in

hand, the player picks that card. If more than one goal

satisfies this condition, the goal with the highest value that

satisfies the condition is picked. We chose to implement this

heuristic because if Player C has the card in hand that

corresponds to the chosen goal (Card C), it automatically

follows that Player C knows who has Card C. Therefore, it

feels intuitive for Player C to pick the goal for which they

have the corresponding card in hand.

For the LHGH, Player C determines their longest suit by

looking at their hand and count how many cards they have of

each suit. The suit with the most cards is Player C’s longest

suit. Then Player C looks at the available goals that have the

same suit as Player C’s longest suit. Player C will not select

a goal that corresponds to one of their cards in hand. Also,

Player C will only select a goal if they have a card in hand

that is higher than that goal and is of the same suit. If more

than one goal satisfies these conditions, Player C chooses one

of these goals at random. If none of the goals satisfy this

condition, the process is repeated with the next longest suit if

possible. Otherwise, a goal is picked at random. We

implemented this heuristic because it prioritizes goals that are

easiest to complete for Player C.

CoopGreedy

The main algorithm of our experiment is CoopGreedy. It can

use the heuristics we described to make decisions in the goal

selection phase. This algorithm uses hand estimation to cope

with imperfect information. The goal of CoopGreedy is to

maximize goal completion.

In a trick, the active CoopGreedy player (Player A) utilizes

the cards that have been played in the current trick to better

determine which card to play. Of course, if Player A is the

leader of the trick, no cards have been played in the trick yet.

Consequently, the leader and the second player of the trick

must estimate the actions of other actors. Only the last player

of the trick determines which card to play without doing these

estimations.

In the tree structure of Player A, each branch from the main

root node to a leaf node represents a possible scenario of how

the trick can play out according to Player A’s knowledge and

assumptions. Player A calculates the expected utility for each

possible scenario. The utilities of scenarios in which Player

A plays the same card are summed to form one value. Finally,

Player A takes their turn by playing the card that has the

highest summed expected utility. The utility of a scenario is

calculated with the following formula:

c * r - f * p + Utility of Play

c = Number of goals that will be completed in this scenario.

r = Reward per goal completed.

f = Number of goals that will be failed in this scenario.

p = Penalty per goal failed.g = Number of goals Player A will

have left after this scenario plays out.

h = Number of cards still in the hands of other players that

are higher than Player A’s play in this scenario.

l = Number of cards still in the hands of other players that are

lower than Player A’s play in this scenario.

Play Points is the predetermined maximum utility of a play.

Utility of Play represents how good of a choice it is for Player

A to play this card in this scenario. The calculation of Utility

of Play depends on two conditions: whether c > 0 and whether

g > 0. Table 1 shows how Utility of Play is calculated.

Table 1: Utility of Play formulas.

c > 0 g > 0 formula

true true Play Points / (l + 1)

true false Play Points / (h + 1)

false true Play Points / (h + 1) * -1

false false Play Points / (l + 1) * -1

CompGreedy

CompGreedy is the competitive variant of the CoopGreedy

algorithm. Like its cooperative counterpart, CompGreedy can

use the same heuristics to select goals and uses hand

estimation to handle imperfect information. The difference

between these two versions of the greedy algorithm is that

CompGreedy always strives to take a trick, whereas

CoopGreedy only tries to take tricks that must be won by

them. CompGreedy uses a formula for calculating the utility

of a scenario similar to CoopGreedy:

c’ * r - f’ * p + Utility of Play

c’ = Number of goals of Player A that will be completed in

this scenario.

f’ = Number of goals of Player A that will be failed in this

scenario.

Utility of Play is calculated the same way as with

CoopGreedy, except that c > 0 is replaced with c’ > 0.

Method

The experiment was conducted on a Lenovo Ideapad 320

laptop. We implemented The Crew in C# with Visual Studio

2019. The input variables we used for each algorithm and

heuristic are listed in Table 2 and Table 3, respectively. For

all our tests, we had three AI players who used the same

algorithms and heuristics. The performance of every

algorithm and heuristic was tested by running 1000 missions

for each goals-per-mission configuration. There were ten

configurations, each with a different number of goals per

mission ranging from one to ten. So the first configuration

had one goal per mission, the second configuration had two

goals per mission, and so forth.

The number of goals per mission is the independent

variable of our experiment. The Mission Completion Rate

and the Goal Completion Rate are the dependent variables.

The Mission Completion Rate was calculated by dividing the

number of missions completed by the total number of

missions. A mission was considered complete when all goals

have been fulfilled. The Mission Completion Rate better

reflected the official performance measure of The Crew.

However, it only provided a binary view of the performance

of the algorithms and their heuristics. The Goal Completion

Rate was a more detailed assessment of this performance. We

calculated the Goal Completion Rate by dividing the average

number of goals completed by the number of goals per

mission. We used the LHGH for the algorithm tests because

our experimental results indicated that this heuristic performs

best in comparison to other goal heuristics. The same holds

for our choice for the EVHH. After some experimenting, we

have found that using an equal value for Goal Reward and

Goal Penalty gave us the most consistent results. Initially, we

set the value of these scoring parameters to 100. However,

later we found that the performance was best with the Play

Points scoring parameter set to a value 1/10 of the Goal

Reward or Goal Penalty values. When we set Play Points to

10, inaccurate rounding formed a problem. We fixed this by

setting the Goal Reward and Penalty values to 1000 and the

Play Points to 100. All algorithms used the same heuristics

and scoring parameters, but the random algorithm’s

performance was not influenced by these heuristics and

parameters in contrast to other algorithms.

Table 2: The input variables used per algorithm.

 Random
Imperfect

CoopGreedy
CompGreedy

Perfect

CoopGreedy

Perfect Information false false false true

Goals Per Mission
varies between

1 and 10

varies between

1 and 10

varies between

1 and 10

varies between

1 and 10

Max Missions 1000 1000 1000 1000

Trick Algorithm random coopGreedy compGreedy coopGreedy

Goal Heuristic LHGH LHGH LHGH LHGH

Uses EVHH true true true true

Goal Reward 1000 1000 1000 1000

Goal Penalty 1000 1000 1000 1000

Play Points 100 100 100 100

Table 3: The input variables used per heuristic combination.

EVHH &

LHGH

RHH &

LHGH

EVHH &

RGH

EVHH &

MCGH

Perfect Information false false false false

Goals Per Mission
varies between

1 and 10

varies between

1 and 10

varies between

1 and 10

varies between

1 and 10

Max Missions 1000 1000 1000 1000

Trick Algorithm coopGreedy coopGreedy coopGreedy coopGreedy

Goal Heuristic LHGH LHGH RGH MCGH

Uses EVHH true false true true

Goal Reward 1000 1000 1000 1000

Goal Penalty 1000 1000 1000 1000

Play Points 100 100 100 100

Results

Heuristics

The Mission Completion Rate of CoopGreedy with different

setups of heuristics is shown in Figure 1. Figure 2 shows the

Goal Completion Rate of CoopGreedy with different

configurations of hand and goal heuristics. The difference

between mission completion and goal completion was most

apparent when there were ten goals per mission. Despite

CoopGreedy with EVHH and MCGH completing almost no

missions, it did complete 65% of the goals. We see that the

EVHH consistently performed better than the RHH. The

MCGH performed worse than CoopGreedy with the RGH in

all cases. This is most noticeable when the amount of goals

per mission is high. The LHGH did improve the performance

of CoopGreedy significantly when compared to RGH,

especially with three or more goals per mission.

Algorithms

In Figures 3 and 4 we compare for each goals-per-mission

configuration the performance of the random algorithm,

CoopGreedy, and CompGreedy. We can see that the

performance of CoopGreedy was substantially better than the

other algorithms. With ten goals per mission, CoopGreedy

completed 115.7% more goals than Random and 94.4% more

than CompGreedy. We can also see that the performance of

CompGreedy was better than Random. With ten goals per

mission, CompGreedy completed 11% more goals than

Random. The performance of Random and CompGreedy

from one goal to ten goals per mission decreases

exponentially. In terms of mission completion, there are three

outliers in the results of Random and CompGreedy. Random

completed one mission with six goals per mission and one

with eight goals per mission. CompGreedy did the same with

eight goals per mission. Apart from these outliers, Random

was unable to complete missions when the goals per mission

rose above five goals. For CompGreedy, this was the case

when the goals per mission were higher than six goals.

Imperfect Information and Perfect Information

In Figures 5 and 6 we do the same comparisons as before,

except here we compare the performance of CoopGreedy

with imperfect information to CoopGreedy with perfect

information. In all cases, CoopGreedy with imperfect

information performed worse than CoopGreedy with perfect

information. Imperfect information CoopGreedy with ten

goals per mission completed 4.2% fewer goals than perfect

information CoopGreedy.

Figure 1: Mission Completion Rate comparison of the

different heuristic combinations for CoopGreedy.

Figure 2: Goal Completion Rate comparison of the different

heuristic combinations for CoopGreedy.

Figure 3: Mission Completion Rate comparison of Random,

CoopGreedy, and CompGreedy, for each goals-per-mission

configuration.

Figure 4: Goal Completion Rate comparison of Random,

CoopGreedy, and CompGreedy, for each goals-per-mission

configuration.

Figure 5: Mission Completion Rate comparison of

CoopGreedy with imperfect information and CoopGreedy

with perfect information.

Figure 6: Goal Completion Rate comparison of CoopGreedy

with imperfect information and CoopGreedy with perfect

information.

Discussion

Our results show that both the Mission Completion Rate and

the Goal Completion Rate decrease when the number of goals

per mission increases. This means that the complexity of a

mission is dependent on the number of goals. This negative

relation between completion rate and goals per mission is

most noticeable with the Mission Completion Rate because

failing a goal automatically renders a mission impossible to

complete. Consequently, the number of missions completed

drops faster than the number of goals completed.

As anticipated, the EVHH performed better than the RHH.

This can be explained by the fact that the worst-case

estimation error of the EVHH is smaller than that of the RHH.

The goal selection heuristics were based on decisions that

were intuitive to us. Contrary to what we initially expected,

the MCGH performed worse in all cases compared to

randomly selecting goals with the RGH. The problem of the

MCGH is that if the card that corresponds to the goal (Card

X) selected by a player (Player X) is Player X’s only card in

that suit, the other players will have more cards of Card X’s

suit than expected. This increases the probability of Player X

being forced to play Card X. The conditions for this problem

to occur are easily met and could be the reason why MCGH

performed worse than RGH. The LHGH performed as

expected, surpassing all other heuristics in terms of absolute

performance gain. The most likely reason for this

performance gain is two properties of the LHGH. The first

property is that the LHGH always prioritizes goals that allow

the choosing player to complete the goal in the same suit as

the goal. The second property is that the LHGH favors goals

that are of the longest suit of the choosing player.

The exponential decay of Random and CompGreedy’s

performance as the number of goals increases suggests that

the complexity of a mission increases exponentially with

each goal added. The stark difference between the

performance of CoopGreedy and CompGreedy exemplifies

the importance of cooperation between players in The Crew.

From our results, we can derive that CoopGreedy cannot

solve The Crew, even with perfect information. This suggests

that an optimal algorithm might require more than a utility

function that maximizes goal completion. It also suggests that

an algorithm must look further into the game than the current

trick.

Conclusion

Our experiment showed that a well-chosen heuristic such as

LHGH did improve CoopGreedy significantly. However, a

poorly chosen heuristic like MCGH could do the contrary.

The hand estimation heuristics seemed to influence the

performance of CoopGreedy. Reducing the worst-case

estimation error of a hand estimation resulted in improved

performance. However, without an algorithm that does not

use hand estimation, we cannot speak of the influence of hand

estimation as a whole on performance. Further research is

required to answer this. CoopGreedy performed substantially

better than both Random and CompGreedy. Since neither

Random nor CompGreedy actively encouraged cooperation

like CoopGreedy, this result showed that cooperation is an

essential aspect of The Crew. Comparing imperfect

information to perfect information revealed that even with

perfect information, CoopGreedy was not optimal. Despite

this, CoopGreedy with perfect information did show an

improvement of performance compared to CoopGreedy with

imperfect information. All in all, our experiment showed that

CoopGreedy is a decent replacement for Random as a

benchmark algorithm for further research on The Crew.

For future work on The Crew, it would be interesting to see

the performance of an algorithm that looks further than the

current trick to make its decision. Local search algorithms

such as Hill Climbing or Simulated Annealing could be

effective approaches for this. We also recommend looking

into the Monte Carlo Tree Search algorithm. It has been used

for other trick-taking games in the past and proved to be an

effective method for improving the performance of AI in such

games. Machine learning techniques applied on The Crew are

also interesting topics for future research. For example, an AI

that uses reinforcement learning could learn to play The Crew

from experience. Since there are no training data sets

available for The Crew, especially reinforcement learning

could be a viable machine learning approach.

References

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M.,

Song, H. F., ... & Bowling, M. (2020). The Hanabi

challenge: A new frontier for ai research. Artificial

Intelligence, 280, 103216.

Bax, F. (2020). Determinization with Monte Carlo Tree

Search for the card game Hearts (Bachelor's thesis).

Blair, J. R., Mutchler, D., & Liu, C. (1993). Games with

imperfect information. In Proceedings of the AAAI Fall

Symposium on Games: Planning and Learning, AAAI

Press Technical Report FS93-02, Menlo Park CA (pp. 59-

67).

Brown, N., Bakhtin, A., Lerer, A., & Gong, Q. (2020).

Combining deep reinforcement learning and search for

imperfect-information games. arXiv preprint

arXiv:2007.13544.

Campbell, M., Hoane Jr, A. J., & Hsu, F. H. (2002). Deep

blue. Artificial intelligence, 134(1-2), 57-83.

Charlesworth, H. (2018). Application of self-play

reinforcement learning to a four-player game of imperfect

information. arXiv preprint arXiv:1808.10442.

Churchill, D., & Buro, M. (2013, August). Portfolio greedy

search and simulation for large-scale combat in StarCraft.

In 2013 IEEE Conference on Computational Intelligence

in Games (CIG) (pp. 1-8). IEEE.

Ganzfried, S., & Sandholm, T. (2013, June). Improving

performance in imperfect-information games with large

state and action spaces by solving endgames. In

Workshops at the twenty-seventh AAAI conference on

artificial intelligence.

Moraes, R., Mariño, J., & Lelis, L. (2018, September).

Nested-greedy search for adversarial real-time games. In

Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (Vol. 14,

No. 1).

Mutchler, D., & van Lent, M. (1993). A pruning algorithm

for imperfect information games. Technical report, Dept.

of Computer Science, University of Tennessee.

Osawa, H. (2015, April). Solving Hanabi: Estimating hands

by opponent's actions in cooperative game with incomplete

information. In Workshops at the Twenty-Ninth AAAI

Conference on Artificial Intelligence.

Russell, S., & Norvig, P. (2002). Artificial intelligence: a

modern approach.

Sturtevant, N. (2002, July). A comparison of algorithms for

multi-player games. In International Conference on

Computers and Games (pp. 108-122). Springer, Berlin,

Heidelberg.

