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Abstract 

Artificial Intelligence (AI) is slowly  integrating into our 
everyday lives. Some of these AI applications must cooperate 
with humans and each other. Such cooperation is essential for 
the safety of people in contact with these AIs. This proves to 
be difficult, due to the sheer amount of uncertainty in the real 
world. The virtual environments in games are a safe starting 
place for the research and development of AI capabilities such 
as cooperation in imperfect information environments. 
However, cooperative games with imperfect information are an 
uncommon topic for AI, which is why we have researched such 
a game called The Crew. We implemented the card game into 
a program and made an AI that can play it using different 
algorithms. We experimented with a random algorithm, a 
cooperative multi-agent greedy algorithm called CoopGreedy, 
and a competitive multi-agent greedy algorithm called 
CompGreedy. These algorithms also incorporated heuristics to 
improve their performance. Our results showed that 
CoopGreedy outperformed the other algorithms considerably. 
CoopGreedy in combination with the Expected Value Hand 
Estimation Heuristic and the Longest Suit Higher Card Goal 
Selection Heuristic also noticeably improved performance. We 
also found that CoopGreedy performed better with perfect 
information than with imperfect information. Our findings 
indicate that cooperation and heuristics improved performance 
significantly, but that imperfect information impedes AI 
performance. We can derive from our experiment that 
CoopGreedy could be used as a benchmark algorithm for 
further research. We recommend future research on local 
search and learning algorithms for The Crew.  

Keywords: multi-agent system; greedy algorithm; cooperative 
game; imperfect information 

Introduction 

One of many qualities that humans possess is their ability to 

work together, even when they are surrounded by many 

uncertain factors. This can be illustrated by traffic, where 

multiple individuals cooperate with minimal communication 

in an imperfect information environment.  Many applications 

of AI revolve around an AI’s potential to replicate human 

capabilities. For instance, the self-driving car is such an 

application. The goal of researching self-driving cars is to 

make traffic more autonomous. To achieve this, a self-driving 

car needs to be able to cooperate with other cars. Of course, 

just like we cannot replace all fuel-driven cars with electric 

cars in an instant, we cannot immediately make all cars 

autonomous. We will have to find a way to safely incorporate 

self-driving cars into traffic that is not yet void of human-

driven cars. For this reason, self-driving cars highlight the 

importance of cooperation between man and machine. 

However, the real world can sometimes be a too 

unpredictable starting ground for research, due to many 

uncontrollable variables. These variables can impede 

experiments. In contrast, the virtual environment in games is 

not accompanied by these uncontrollable variables. 

Therefore, games can be a useful starting place to research AI 

capabilities.  

Since AI’s first usage in games, it has expanded and 

improved to a considerable degree. Several games feature AI 

players on the same level as human players of average skill. 

These games range from turn-based tabletop games to fast-

paced 3D video games. Moreover, AI players have even 

defeated professional chess players (Campbell, Hoane Jr, & 

Hsu, 2002).  

Despite the importance of cooperation between humans 

and AI, most common games are competitive zero-sum 

games where players compete against each other to achieve 

their goals (Russell, S., & Norvig, P., 2002). In comparison 

to competitive games, the amount of research conducted on 

AI in cooperative games is limited. 

Besides the competitive aspect, perfect information occurs 

frequently in games with AI (Russell, S., & Norvig, P., 2002). 

Such games have all information about the game state 

available to everyone. An example is the game of chess, 

where both players have all the necessary knowledge about 

the rules, the position of the pieces, etc. In Poker, players do 

not have all knowledge of the game state available to them. 

Players do not know what cards other players have up until 

the end of the game, hence Poker is an imperfect information 

game. Most AI applications in games involve perfect 

information because imperfect information games are 

difficult to optimize (Blair, J. R., Mutchler, D., & Liu, C., 

1993). The major challenge is the large state space that 

accompanies imperfect information games (Ganzfried, S., & 

Sandholm, T., 2013). Machine learning is an effective tool to 

tackle this problem (Charlesworth, H. 2018). Combining 

machine learning and traditional search algorithms has also 

proven to be useful. The results of these techniques on 

imperfect information games are AIs that can perform on a 



super-human level (Brown, N., Bakhtin, A., Lerer, A., & 

Gong, Q., 2020). 

Prior research on cooperative imperfect information games 

has been done on the tabletop game Hanabi. However, the 

reinforcement learning algorithms used were unable to 

surpass hand-coded AIs in this game (Bard, N. et al, 2020). 

We chose to research another cooperative imperfect 

information game called The Crew. For our experiment, we 

created three algorithms that could play this game: a random 

algorithm and two greedy algorithms that use heuristics. An 

AI that uses our random algorithm bases its decision-making 

process entirely on chance. With our greedy algorithm, the 

AI always chooses the most obvious decision, which is the 

decision that maximizes the AI’s expected utility. 

The random algorithm is not an effective way for an AI to 

play this game. However, since no prior research has been 

done on The Crew, the random algorithm’s performance does 

form a clear baseline for determining how effective 

algorithms such as our greedy algorithms are in this game. 

Greedy algorithms have been used in studies on games such 

as the real-time strategy game StarCraft (Churchill, D., & 

Buro, M., 2013) and other real-time adversarial games 

(Moraes, R., Mariño, J., & Lelis, L., 2018). In these studies, 

they used greedy algorithms in combination with other 

algorithms, due to the high complexity of such games. In the 

algorithms section, we will discuss in detail the algorithms 

and heuristics of our experiment.  

Our research question is: How well does a multi-agent 

greedy algorithm perform in a cooperative game with 

imperfect information? We will answer this question by 

answering these sub-questions: 

• How much do the heuristics influence the greedy 

algorithm performance? 

• How does the greedy algorithm compare to a 

random algorithm? 

• How does the greedy algorithm compare to a 

competitive variant of the same algorithm? 

• How does the greedy algorithm perform with 

perfect information? 

We will compare test runs with different parameters to 

answer these sub-questions. 

Definitions 

The Crew 

The Crew: Quest for Planet Nine is a trick-taking card game 

that can be played with two to five players. The rules of a 

two-player game are different compared to a game with three 

or more players. Since the complexity increases with the 

player count, we decided to implement the game with three 

players.  

The Crew is played with a deck of 40 playing cards and a 

deck of 36 goal cards. The playing card deck contains four 

regular suits and one trump suit: pink, yellow, green, blue, 

and rocket (trump suit). Every regular suit has nine cards with 

values 1 through 9. The trump suit has four cards with values 

1 through 4. The goal card deck contains the same cards as 

the playing card deck except that it does not contain rocket 

cards. 

At the start of every mission, the playing deck and the goal 

deck are shuffled. Then a predetermined number of goal 

cards are dealt face up. The number of goals varies per 

mission configuration. After that, the playing card deck is 

distributed over all the players. Player 1 gets 14 playing cards 

and the other players get 13 playing cards each. Players 

cannot see the hands of others. The player with the highest 

rocket card (rocket 4) is the commander. The commander 

always leads the first trick. A trick is a single round of play 

in which every player gets one turn to play a card. Every trick 

starts with the leader playing a card of their choice. Then each 

player gets a turn to play a card of the same suit as the leader’s 

card, this is called following suit. Players always take turns 

in clockwise order. When a player cannot follow suit, he can 

play any card in their hand instead. After every player has 

played a card, the player with the highest card that followed 

suit ‘takes the trick’. If a rocket is played, then the player that 

played the highest rocket takes the trick. The player that takes 

the trick takes all the cards played in the trick and is the leader 

of the next trick. Cards taken from a trick are out of the game 

for the current mission. 

After the commander has been determined, players take 

turns to choose a goal card from the available face-up goal 

cards, starting with the commander. This repeats until all 

face-up goal cards have been distributed. The goal of the 

game is that every player completes all their goal cards. A 

player’s goal card is completed when they take the playing 

card that corresponds with their goal card. However, when a 

player takes a card that matches someone else’s goal card, 

that goal has been failed and thus cannot be completed. In the 

original version of The Crew, the mission is over when a goal 

has been failed. In our implementation, the mission ends 

when no more goals can be completed or after the trick in 

which a player plays their last card. 

At the start of each trick, before a card is played, players 

get the opportunity to communicate one of the cards in their 

hand that is not a rocket card. This card is revealed to 

everyone. The communicating player also must reveal 

whether this card is the highest, lowest, or only card in its suit 

that they have in hand. If no such revelation can be made, that 

card cannot be communicated. Each player is only allowed to 

communicate once per mission. All other forms of 

communication are prohibited. 

Imperfect Information 

In a perfect information environment, our AIs would only 

need a knowledge base to store true information about the 

environment. More specifically, the AI would store in their 

knowledge base every card and the corresponding player that 

has it in their hand. However, since The Crew has an 

imperfect information environment, we also need the AIs to 

be able to work with cards without knowing which player has 

them in their hand. In The Crew, players can only see the 

cards in their hand and the cards that are revealed by play or 

communication. Therefore, algorithms that normally work 



with perfect information games are not as effective in this 

game. Especially at the beginning of a mission, there is 

limited information available to the players. Due to this, 

players would have to make a lot of random decisions. 

Furthermore, the state space in The Crew is large due to 

imperfect information. We attempted to solve the limited 

information problem and the large state space problem with 

hand estimation. We will discuss hand estimation in more 

detail in the algorithms section. 

Decision Tree/The Problem 

We represented the decision-making process of the active 

player with a tree structure. The active player is the player 

whose turn it is. To better illustrate how this decision-making 

process was represented, we give the informal definition of 

the tree structure and its components here: 

• A tree is a recursively defined data structure 

that consists of a root node and a list of subtrees. 

• A root node is the topmost node of a tree. 

• A node is an element of a tree that consists of 

an actor and an action. 

• An actor is a player that performs the action of 

a node. 

• An action corresponds to a card that the actor 

can play according to the active player. 

• A subtree is in itself a tree with a root node and 

a list of subtrees. 

• A leaf node is the root node of a tree without 

subtrees. This node marks the end of a branch. 

• A branch encompasses all the nodes from the 

root node of a tree to a leaf node. 

• The main root node is the topmost root node of 

the entire tree structure. 

Algorithms 

In this section, we will first discuss the heuristics that the 

algorithms use. Afterward, we will discuss the algorithms 

themselves. 

Hand Estimation Heuristics 

We explored two ways of estimating the hands of players: the 

Random Hand Estimation Heuristic (RHH) and the Expected 

Value Hand Estimation Heuristic (EVHH).  

With the RHH, all the cards that a player (Player X) knows 

nothing certain about are compiled into a deck. Player X then 

randomly assigns these cards to the other players (Player Y 

and Z), such that each player has an equal number of assigned 

cards. These assigned cards are called assumptions. Player X 

then combines the knowledge he does have of the other 

players’ hands with the assumptions. The result is an 

estimated hand for Player Y and an estimated hand for Player 

Z. Player X can then use these estimated hands to make 

decisions the same way he would in a perfect information 

environment. 

Using the EVHH, all the cards that Player X knows nothing 

certain about are compiled into a deck as well. Instead of 

randomly assigning these cards to other players, the cards are 

assigned based on a heuristic. The heuristic determines the 

expected number of cards Player Y and Z have of each suit. 

Since the playing card deck is shuffled before dealing the 

hands, the probability of having a card in hand of a specific 

non-trump suit is 9/40. The probability of having a rocket 

card is 4/40 = 1/10. This means the expected number of cards 

in hand of a specific non-trump suit is approximately three 

cards (13 * 9/40). And the expected number of rocket cards 

in hand is approximately one card (13 * 1/10). Player Y and 

Z are then assigned the appropriate amount of cards for each 

suit. If Player Y or Z is the player that starts with 14 cards, 

then that player gets assigned an additional card. If it is 

known to Player X that another player has more cards of a 

suit than is expected, that player is assigned fewer cards of 

other suits, and vice versa.  

The RHH was the most straightforward way to estimate 

hands but was also prone to high estimation errors. The 

estimation error is the difference between how many cards a 

player is assumed to have and how many cards they actually 

have. When estimating a player’s hand with the RHH, the 

worst-case estimation error is nine cards. For instance, when 

a player is assumed to have no cards in a certain suit, but in 

reality, that player has nine cards in that suit. Then the 

difference between the assumption and reality is nine cards, 

which is the highest possible estimation error. Our motivation 

for implementing the EVHH was to reduce the worst-case 

estimation error of the RHH. The worst-case estimation error 

of the EVHH is six cards. For example, when Player X has 

no knowledge of Player Y’s hand, Player Y is assumed to 

have the expected three cards per suit. Then when Player Y’s 

hand actually contains nine cards in a suit, the difference 

between the assumption and reality is only six cards instead 

of nine. There is one exception: if Player Y has a hand of 14 

cards, then the worst-case estimation error is seven cards 

instead of six. 

Apart from reducing the estimation error, we implemented 

these hand estimation heuristics to decrease the state space of 

The Crew. When Player X assumes Player Y has a certain 

Card Y, then Player X automatically assumes Player Z does 

not have Card Y. Therefore, all the states wherein Player Z 

has Card Y are not taken into consideration when making a 

decision. This decreases the state space and consequently 

speeds up Player X’s decision-making process. 

Goal Selection Heuristics 

At the start of a mission, players must base their selection of 

goals on their hands. We explored three heuristics for 

choosing goals: the Random Goal Selection Heuristic (RGH), 

the Matching Cards Goal Selection Heuristic (MCGH), and 

the Longest Suit Higher Card Goal Selection Heuristic 

(LHGH). The RGH is simple: pick a goal at random. The 

other strategies are based around the choosing player’s 

(Player C) limited knowledge, which is their hand. 

For the MCGH, Player C looks at the available goals and 

their hand. If an available goal matches one of their cards in 

hand, the player picks that card. If more than one goal 



satisfies this condition, the goal with the highest value that 

satisfies the condition is picked. We chose to implement this 

heuristic because if Player C has the card in hand that 

corresponds to the chosen goal (Card C), it automatically 

follows that Player C knows who has Card C. Therefore, it 

feels intuitive for Player C to pick the goal for which they 

have the corresponding card in hand. 

For the LHGH, Player C determines their longest suit by 

looking at their hand and count how many cards they have of 

each suit. The suit with the most cards is Player C’s longest 

suit. Then Player C looks at the available goals that have the 

same suit as Player C’s longest suit. Player C will not select 

a goal that corresponds to one of their cards in hand. Also, 

Player C will only select a goal if they have a card in hand 

that is higher than that goal and is of the same suit. If more 

than one goal satisfies these conditions, Player C chooses one 

of these goals at random. If none of the goals satisfy this 

condition, the process is repeated with the next longest suit if 

possible. Otherwise, a goal is picked at random. We 

implemented this heuristic because it prioritizes goals that are 

easiest to complete for Player C. 

CoopGreedy 

The main algorithm of our experiment is CoopGreedy. It can 

use the heuristics we described to make decisions in the goal 

selection phase. This algorithm uses hand estimation to cope 

with imperfect information. The goal of CoopGreedy is to 

maximize goal completion.  

In a trick, the active CoopGreedy player (Player A) utilizes 

the cards that have been played in the current trick to better 

determine which card to play. Of course, if Player A is the 

leader of the trick, no cards have been played in the trick yet. 

Consequently, the leader and the second player of the trick 

must estimate the actions of other actors. Only the last player 

of the trick determines which card to play without doing these 

estimations.  

In the tree structure of Player A, each branch from the main 

root node to a leaf node represents a possible scenario of how 

the trick can play out according to Player A’s knowledge and 

assumptions. Player A calculates the expected utility for each 

possible scenario. The utilities of scenarios in which Player 

A plays the same card are summed to form one value. Finally, 

Player A takes their turn by playing the card that has the 

highest summed expected utility. The utility of a scenario is 

calculated with the following formula:  

 

c * r - f * p + Utility of Play 

 

c = Number of goals that will be completed in this scenario. 

r = Reward per goal completed. 

f = Number of goals that will be failed in this scenario. 

p = Penalty per goal failed.g = Number of goals Player A will 

have left after this scenario plays out. 

h = Number of cards still in the hands of other players that 

are higher than Player A’s play in this scenario. 

l = Number of cards still in the hands of other players that are 

lower than Player A’s play in this scenario. 

Play Points is the predetermined maximum utility of a play. 

Utility of Play represents how good of a choice it is for Player 

A to play this card in this scenario. The calculation of Utility 

of Play depends on two conditions: whether c > 0 and whether 

g > 0. Table 1 shows how Utility of Play is calculated. 

 

Table 1: Utility of Play formulas. 

 

c > 0 g > 0 formula 

true true Play Points / (l + 1) 

true false Play Points / (h + 1) 

false true Play Points / (h + 1) * -1 

false false Play Points / (l + 1) * -1 

 

CompGreedy 

CompGreedy is the competitive variant of the CoopGreedy 

algorithm. Like its cooperative counterpart, CompGreedy can 

use the same heuristics to select goals and uses hand 

estimation to handle imperfect information. The difference 

between these two versions of the greedy algorithm is that 

CompGreedy always strives to take a trick, whereas 

CoopGreedy only tries to take tricks that must be won by 

them. CompGreedy uses a formula for calculating the utility 

of a scenario similar to CoopGreedy: 

 

c’ * r - f’ * p + Utility of Play 

 

c’ = Number of goals of Player A that will be completed in 

this scenario. 

f’ = Number of goals of Player A that will be failed in this 

scenario. 

Utility of Play is calculated the same way as with 

CoopGreedy, except that c > 0 is replaced with c’ > 0. 

Method 

The experiment was conducted on a Lenovo Ideapad 320 

laptop. We implemented The Crew in C# with Visual Studio 

2019. The input variables we used for each algorithm and 

heuristic are listed in Table 2 and Table 3, respectively. For 

all our tests, we had three AI players who used the same 

algorithms and heuristics. The performance of every 

algorithm and heuristic was tested by running 1000 missions 

for each goals-per-mission configuration. There were ten 

configurations, each with a different number of goals per 

mission ranging from one to ten. So the first configuration 

had one goal per mission, the second configuration had two 

goals per mission, and so forth.  

The number of goals per mission is the independent 

variable of our experiment. The Mission Completion Rate 

and the Goal Completion Rate are the dependent variables. 

The Mission Completion Rate was calculated by dividing the 

number of missions completed by the total number of 

missions. A mission was considered complete when all goals 

have been fulfilled. The Mission Completion Rate better 

reflected the official performance measure of The Crew. 

However, it only provided a binary view of the performance 



of the algorithms and their heuristics. The Goal Completion 

Rate was a more detailed assessment of this performance. We 

calculated the Goal Completion Rate by dividing the average 

number of goals completed by the number of goals per 

mission. We used the LHGH for the algorithm tests because 

our experimental results indicated that this heuristic performs 

best in comparison to other goal heuristics. The same holds 

for our choice for the EVHH. After some experimenting, we 

have found that using an equal value for Goal Reward and 

Goal Penalty gave us the most consistent results. Initially, we 

set the value of these scoring parameters to 100. However, 

later we found that the performance was best with the Play 

Points scoring parameter set to a value 1/10 of the Goal 

Reward or Goal Penalty values. When we set Play Points to 

10, inaccurate rounding formed a problem. We fixed this by 

setting the Goal Reward and Penalty values to 1000 and the 

Play Points to 100. All algorithms used the same heuristics 

and scoring parameters, but the random algorithm’s 

performance was not influenced by these heuristics and 

parameters in contrast to other algorithms.

 

Table 2: The input variables used per algorithm. 

 

 Random 
Imperfect 

CoopGreedy 
CompGreedy 

Perfect 

CoopGreedy 

Perfect Information false false false true 

Goals Per Mission 
varies between 

1 and 10 

varies between 

1 and 10 

varies between 

1 and 10 

varies between 

1 and 10 

Max Missions 1000 1000 1000 1000 

Trick Algorithm random coopGreedy compGreedy coopGreedy 

Goal Heuristic LHGH LHGH LHGH LHGH 

Uses EVHH true true true true 

Goal Reward 1000 1000 1000 1000 

Goal Penalty 1000 1000 1000 1000 

Play Points 100 100 100 100 

 

Table 3: The input variables used per heuristic combination.

 

 
EVHH &  

LHGH 

RHH & 

LHGH 

EVHH & 

RGH 

EVHH &  

MCGH 

Perfect Information false false false false 

Goals Per Mission 
varies between 

1 and 10 

varies between 

1 and 10 

varies between 

1 and 10 

varies between 

1 and 10 

Max Missions 1000 1000 1000 1000 

Trick Algorithm coopGreedy coopGreedy coopGreedy coopGreedy 

Goal Heuristic LHGH LHGH RGH MCGH 

Uses EVHH true false true true 

Goal Reward 1000 1000 1000 1000 

Goal Penalty 1000 1000 1000 1000 

Play Points 100 100 100 100 



Results 

Heuristics 

The Mission Completion Rate of CoopGreedy with different 

setups of heuristics is shown in Figure 1. Figure 2 shows the 

Goal Completion Rate of CoopGreedy with different 

configurations of hand and goal heuristics. The difference 

between mission completion and goal completion was most 

apparent when there were ten goals per mission. Despite 

CoopGreedy with EVHH and MCGH completing almost no 

missions, it did complete 65% of the goals. We see that the 

EVHH consistently performed better than the RHH. The 

MCGH performed worse than CoopGreedy with the RGH in 

all cases. This is most noticeable when the amount of goals 

per mission is high. The LHGH did improve the performance 

of CoopGreedy significantly when compared to RGH, 

especially with three or more goals per mission. 

Algorithms 

In Figures 3 and 4 we compare for each goals-per-mission 

configuration the performance of the random algorithm, 

CoopGreedy, and CompGreedy.  We can see that the 

performance of CoopGreedy was substantially better than the 

other algorithms. With ten goals per mission, CoopGreedy 

completed 115.7% more goals than Random and 94.4% more 

than CompGreedy. We can also see that the performance of 

CompGreedy was better than Random. With ten goals per 

mission, CompGreedy completed 11% more goals than 

Random. The performance of Random and CompGreedy 

from one goal to ten goals per mission decreases 

exponentially. In terms of mission completion, there are three 

outliers in the results of Random and CompGreedy. Random 

completed one mission with six goals per mission and one 

with eight goals per mission. CompGreedy did the same with 

eight goals per mission. Apart from these outliers, Random 

was unable to complete missions when the goals per mission 

rose above five goals. For CompGreedy, this was the case 

when the goals per mission were higher than six goals. 

Imperfect Information and Perfect Information 

In Figures 5 and 6 we do the same comparisons as before, 

except here we compare the performance of CoopGreedy 

with imperfect information to CoopGreedy with perfect 

information. In all cases, CoopGreedy with imperfect 

information performed worse than CoopGreedy with perfect 

information. Imperfect information CoopGreedy with ten 

goals per mission completed 4.2% fewer goals than perfect 

information CoopGreedy. 

  
Figure 1: Mission Completion Rate comparison of the 

different heuristic combinations for CoopGreedy. 

 
Figure 2: Goal Completion Rate comparison of the different 

heuristic combinations for CoopGreedy. 

 
Figure 3: Mission Completion Rate comparison of Random, 

CoopGreedy, and CompGreedy, for each goals-per-mission 

configuration. 



 
Figure 4: Goal Completion Rate comparison of Random, 

CoopGreedy, and CompGreedy, for each goals-per-mission 

configuration. 

 
Figure 5: Mission Completion Rate comparison of 

CoopGreedy with imperfect information and CoopGreedy 

with perfect information. 

 
Figure 6: Goal Completion Rate comparison of CoopGreedy 

with imperfect information and CoopGreedy with perfect 

information. 

Discussion 

Our results show that both the Mission Completion Rate and 

the Goal Completion Rate decrease when the number of goals 

per mission increases. This means that the complexity of a 

mission is dependent on the number of goals. This negative 

relation between completion rate and goals per mission is 

most noticeable with the Mission Completion Rate because 

failing a goal automatically renders a mission impossible to 

complete. Consequently, the number of missions completed 

drops faster than the number of goals completed. 

As anticipated, the EVHH performed better than the RHH. 

This can be explained by the fact that the worst-case 

estimation error of the EVHH is smaller than that of the RHH. 

The goal selection heuristics were based on decisions that 

were intuitive to us. Contrary to what we initially expected, 

the MCGH performed worse in all cases compared to 

randomly selecting goals with the RGH. The problem of the 

MCGH is that if the card that corresponds to the goal (Card 

X) selected by a player (Player X) is Player X’s only card in 

that suit, the other players will have more cards of Card X’s 

suit than expected. This increases the probability of Player X 

being forced to play Card X. The conditions for this problem 

to occur are easily met and could be the reason why MCGH 

performed worse than RGH. The LHGH performed as 

expected, surpassing all other heuristics in terms of absolute 

performance gain. The most likely reason for this 

performance gain is two properties of the LHGH. The first 

property is that the LHGH always prioritizes goals that allow 

the choosing player to complete the goal in the same suit as 

the goal. The second property is that the LHGH favors goals 

that are of the longest suit of the choosing player.  

The exponential decay of Random and CompGreedy’s 

performance as the number of goals increases suggests that 

the complexity of a mission increases exponentially with 

each goal added. The stark difference between the 

performance of CoopGreedy and CompGreedy exemplifies 

the importance of cooperation between players in The Crew.  

From our results, we can derive that CoopGreedy cannot 

solve The Crew, even with perfect information. This suggests 

that an optimal algorithm might require more than a utility 

function that maximizes goal completion. It also suggests that 

an algorithm must look further into the game than the current 

trick. 

Conclusion 

Our experiment showed that a well-chosen heuristic such as 

LHGH did improve CoopGreedy significantly. However, a 

poorly chosen heuristic like MCGH could do the contrary. 

The hand estimation heuristics seemed to influence the 

performance of CoopGreedy. Reducing the worst-case 

estimation error of a hand estimation resulted in improved 

performance. However, without an algorithm that does not 

use hand estimation, we cannot speak of the influence of hand 

estimation as a whole on performance. Further research is 

required to answer this. CoopGreedy performed substantially 

better than both Random and CompGreedy. Since neither 

Random nor CompGreedy actively encouraged cooperation 

like CoopGreedy, this result showed that cooperation is an 

essential aspect of The Crew. Comparing imperfect 

information to perfect information revealed that even with 

perfect information, CoopGreedy was not optimal. Despite 

this, CoopGreedy with perfect information did show an 

improvement of performance compared to CoopGreedy with 

imperfect information. All in all, our experiment showed that 



CoopGreedy is a decent replacement for Random as a 

benchmark algorithm for further research on The Crew. 

For future work on The Crew, it would be interesting to see 

the performance of an algorithm that looks further than the 

current trick to make its decision. Local search algorithms 

such as Hill Climbing or Simulated Annealing could be 

effective approaches for this. We also recommend looking 

into the Monte Carlo Tree Search algorithm. It has been used 

for other trick-taking games in the past and proved to be an 

effective method for improving the performance of AI in such 

games. Machine learning techniques applied on The Crew are 

also interesting topics for future research. For example, an AI 

that uses reinforcement learning could learn to play The Crew 

from experience. Since there are no training data sets 

available for The Crew, especially reinforcement learning 

could be a viable machine learning approach. 
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